ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

南秦岭勉略构造带横现河地区变质沉积岩形成时代及物源——来自LA-ICP-MS碎屑锆石U-Pb年龄的证据

刘宝星, 裴先治, 李瑞保, 陈有炘, 王盟, 赵少伟

刘宝星, 裴先治, 李瑞保, 等. 南秦岭勉略构造带横现河地区变质沉积岩形成时代及物源——来自LA-ICP-MS碎屑锆石U-Pb年龄的证据[J]. 西北地质, 2020, 53(2): 77-101. DOI: 10.19751/j.cnki.61-1149/p.2020.02.005
引用本文: 刘宝星, 裴先治, 李瑞保, 等. 南秦岭勉略构造带横现河地区变质沉积岩形成时代及物源——来自LA-ICP-MS碎屑锆石U-Pb年龄的证据[J]. 西北地质, 2020, 53(2): 77-101. DOI: 10.19751/j.cnki.61-1149/p.2020.02.005
LIU Baoxing, PEI Xianzhi, LI Ruibao, et al. Age and Provenance of the Metasedimentary Rocks of Hengxianhe Area in Mianlue Tectonic Belt of Southern Qinling: Evidence from Detrital Zircons LA-ICP-MS U-Pb Dating[J]. Northwestern Geology, 2020, 53(2): 77-101. DOI: 10.19751/j.cnki.61-1149/p.2020.02.005
Citation: LIU Baoxing, PEI Xianzhi, LI Ruibao, et al. Age and Provenance of the Metasedimentary Rocks of Hengxianhe Area in Mianlue Tectonic Belt of Southern Qinling: Evidence from Detrital Zircons LA-ICP-MS U-Pb Dating[J]. Northwestern Geology, 2020, 53(2): 77-101. DOI: 10.19751/j.cnki.61-1149/p.2020.02.005

南秦岭勉略构造带横现河地区变质沉积岩形成时代及物源——来自LA-ICP-MS碎屑锆石U-Pb年龄的证据

基金项目: 

国家自然科学基金项目“扬子地块西北缘碧口群构造属性及与Rodinia超大陆聚合-裂解关系”(41872233)和“秦岭-祁连结合部位早古生代晚期岩浆事件及其对构造演化的启示”(41872235),陕西省基金项目“勉略宁地区中新元古代中酸性侵入岩构造属性研究”(2019JM-312),中央高校基本科研业务费资助项目(300102279108)

详细信息
    作者简介:

    刘宝星(1992-),男,长安大学地质学专业硕士研究生。E-mail:1316186335@qq.com

  • 中图分类号: P588.21

Age and Provenance of the Metasedimentary Rocks of Hengxianhe Area in Mianlue Tectonic Belt of Southern Qinling: Evidence from Detrital Zircons LA-ICP-MS U-Pb Dating

  • 摘要: 朱家山岩组、乔子沟岩片位于南秦岭勉略构造带横现河以北,是勉略构造带中强烈韧性变形的沉积岩系,是勉略构造混杂岩带的基质岩系,研究其形成时代、沉积物源,对于深入了解勉略构造带的形成时代与构造演化具有重要意义。笔者以横现河以北地区朱家山岩组、乔子沟岩片中的变质沉积岩(绢英千枚岩)为研究对象,进行碎屑锆石LA-ICP-MS锆石U-Pb年代学研究,探讨其形成时代及沉积物源。所获得的碎屑锆石年龄可以分为3组:古生代年龄组(375~542 Ma),可以划分为晚古生代早期-早古生代晚期年龄组(375~424 Ma),主要峰值为390 Ma、394 Ma,早古生代早期年龄组(530~542 Ma);新元古代年龄组(552~977 Ma),可以划分为新元古代晚期年龄组(552~797 Ma),主要峰值为758 Ma、787 Ma,新元古代早中期年龄组(800~977 Ma),主要峰值为855 Ma、951 Ma;中元古代晚期年龄组(1 008~1 124 Ma)。朱家山岩组、乔子沟岩片碎屑锆石最小年龄组分别为375~385 Ma(平均年龄为380.3 Ma)、377~389 Ma(平均年龄为383 Ma),说明朱家山岩组、乔子沟岩片浅变质沉积岩系的沉积时代不早于中-晚泥盆世。综合研究认为2件样品物源主要都来自勉略构造带、碧口微地块和扬子板块北缘地区的岩浆岩,沉积环境为裂陷盆地且由伸展裂陷过渡为稳定的台盆-台地沉积。
    Abstract: The Zhujiashan Formation and Qiaozigou Slice are located in the north of Hengxianhe of Mianxian-Lueyang Tectonic Belt in the south of Qinling,which are the sedimentary rocks with intense ductile deformation in the Mianlue Tectonic belt. As the basement rock series of the Mianlue Tectonic belt,it is of great significance to research the yielded ages and sediment provenances for understanding the yielded ages and tectonic evolution of the Mianlue Tectonic belt. In this paper,the metamorphic sedimentary rocks (sericite phyllite) are studied by LA-ICP-MS detrial zircon U-Pb chronology in Zhujiashan Formation and Qiaozigou Slice in the north of Hengxianhe area to explore their yielded ages and sediment provenances. The obtained detrital zircon age can be divided into three groups:the Paleozoic age group, the Neoproterozoic age group and the Late Mesoproterozoic age group. the Paleozoic age group(375 to 542 Ma) can be divided into the early Late Paleozoic-late Early Paleozoic age group (from 375 to 424 Ma) and the Early Paleozoic Age group (from 530 to 542 Ma), with the prominent peaks age being 390 Ma and 394 Ma. the Neoproterozoic age group (from 552 to 977 Ma), with the prominent peaks age being 758 Ma and 787 Ma, can be divided into late Neoproterozoic age groups(from 552 to 797 Ma)and the Early-Middle Neoproterozoic age group (from 800 to 977 Ma) with the prominent peaks age being 855 Ma and 951 Ma. The Late Mesoproterozoic age is from 1008 to 1124 Ma. the minimum age group of detrital zircons of Zhujiashan Formation and Qiaozigou Slice is from 375 to 385 Ma (average age 380.3 Ma) and from 377 to 389 Ma (average age 383 Ma),indicating that the sedimentary age is not earlier than the Middle-Late Devonian. Comprehensive study shows that the provenances of the two samples are mainly derived from magmatic rock in Bikou block of Mianlue Tectonic Zone and the northern margin of Yangtze plate. The sedimentary environment is rift basin, and from extensional rifting to stable platform-platform deposition.
  • 柴达木盆地北缘(柴北缘)构造带位于青藏高原东北部,呈北西–南东向夹持于柴达木地块和祁连地块之间,是一个构造变形复杂、物质组成多样、时间跨度巨大的多单元复合构造带(潘桂堂等,2002郭安林等,2009)。自20世纪90年代柴北缘构造带发现榴辉岩以来(杨经绥等,1998),前人对构造带内的高压–超高压变质作用(杨经绥等,1998宋述光等,2001孟繁聪等,2003陈丹玲等,2007)和与高压–超高压变质带空间上伴生的早古生代滩间山群浅变质火山–沉积岩系(赖绍聪等,1996李怀坤等,1999赵凤清等,2003王惠初等,2003朱小辉,2011孙华山等,2012王侃,2014张孝攀等,2015Sun et al.,2017路增龙等,2020周艳龙,2021)等开展了大量研究。然而,作为柴北缘早古生代重要的火山–沉积建造,滩间山群的时代归属及构造属性存在较大争议(图1a)(邬介人等,1987赖绍聪等,1996王惠初等,2003庄儒新,2006史仁灯等,20032004Shi et al.,2006李峰等,20062007孙华山等,2012汪劲草等,2013Liang et al.,2014王侃,2014张孝攀等,2015Sun et al.,2017周宾等,2019江小强等,2020路增龙等,2020周艳龙,2021),导致对柴北缘早古生代构造演化过程(如大洋闭合及陆陆碰撞的具体时限)的认识仍存在分歧(吴才来等,20072014高晓峰等,2011朱小辉等,2015夏林圻等,2016)。

    图  1  柴北缘地质简图(a)及研究区地质图(b)
    1.达肯大坂岩群第一岩组;2.达肯大坂岩群第二岩组;3.达肯大坂岩群第三岩组;4.达肯大坂岩群第四岩组;5.滩间山群;6.晚志留世黑云母花岗岩;7.早二叠世石英闪长岩;8.中二叠世二长花岗岩;9.早三叠世二长花岗岩(脉);10.第四系;11.晚奥陶世变玄武岩;12.早志留世英安岩/流纹岩;13.中二叠世辉长岩脉;14.晚二叠世辉长闪长岩脉;15.闪长岩;16.采样点
    Figure  1.  (a) Sketch map of tectonic location and (b) the geological map of study areas

    特定的镁铁质岩石(组合)的成因研究可有效判别其所经历的地球动力学过程和构造环境(Liu et al.,2017)。富铌玄武岩是一类具有相对高的TiO2(1%~2%)和Nb(>7×10–6)、低LILE/HFSE和HREE/HFSE值及弱Nb、Ta 负异常甚至正异常等特征的玄武岩(Kepezhinaskas et al.,1996Sajona et al.,1996张海祥等,2005Wang et al.,2007Castillo,2012Liao et al.,2018),通常被认为是由俯冲板片熔体交代的地幔楔橄榄岩部分熔融产生的,是大洋板片俯冲作用的直接产物(Aguillón-Robles et al.,2001Zhang et al.,2012Liu et al.,2014Chen et al.,2016);但也有学者提出富铌玄武岩是深部地幔物质参与下不均一的上地幔部分熔融产物(Petrone et al.,2008Castillo,2012Sorbadere et al.,2013)。对其形成时代和成因的准确厘定,可为区域构造演化历史提供有效约束。最近,笔者在柴北缘赛什腾山地区开展专项地质调查时,在滩间山群中识别出一套富铌玄武岩,为探讨柴北缘滩间山群时代归属、构造属性以及柴北缘早古生代构造演化提供了新的载体。由此,本文通过对该富铌玄武岩的地球化学、年代学研究,探讨其岩石成因及构造环境,旨在为柴北缘早古生代的构造格局与演化提供新的约束。

    柴北缘构造带南部以柴北缘深大断裂为界与柴达木地块相接,北部以拉脊山–中祁连南缘断裂与祁连地块毗邻,东西两端分别被哇洪山断裂和阿尔金断裂所围限(辛后田等,2006)。构造带内分别以乌兰–鱼卡断裂和宗务隆–青海南山断裂为界,由南至北由柴北缘早古生代结合带、欧龙布鲁克微地块和宗务隆晚古生代—早中生代裂陷带等3个次一级构造单元组成(潘桂堂等,2002)。研究区位于柴北缘构造带西段赛什腾山西北部,属于早古生代结合带与欧龙布鲁克微地块过渡部位。研究区内出露的地层主要为古元古界达肯大坂岩群和下古生界滩间山群(图1b),整体上呈北西或北北西向展布。区内达肯大坂岩群是一套原岩为火山-碎屑岩系并经历了中高级变质作用的表壳岩组合(陆松年等,2002王立轩等,2022),局部卷入后期造山过程中使其年轻化、复杂化。根据变形变质程度及岩性组合可划分为4个岩组,与区内滩间山群呈断层接触关系(图2);滩间山群总体为一套早古生代浅变质海相火山–沉积建造,在研究区内主要由浅变质火山碎屑岩夹少量碳酸盐岩、硅质岩和变火山岩组成,变形程度较弱,普遍发育低绿片岩相变质,与区域上滩间山群碎屑岩组可对比(青海地质矿产局,1991),其中浅变质火山碎屑岩主要岩性为灰色–浅灰绿色变(凝灰质)砂岩、灰绿色(凝灰质)千枚岩、灰黑色含炭质粉砂质板岩和灰色钙质粉砂岩,少量断裂带附近的凝灰质砂岩受韧性剪切改造为黑云母长英质糜棱岩;变火山岩呈条带状与变火山碎屑岩互层产出,岩性主要为灰绿色变流纹岩、变英安岩以及灰黑色变玄武岩等组成。晚古生代侵入岩呈岩体或岩脉侵入上述地层之中。

    图  2  赛什腾山变玄武岩宏观产出特征及显微镜下特征
    a. 变玄武岩宏观产出特征;b. 变玄武岩野外露头;c~d. 变余斑状结构,变斑晶为绿帘石化角闪石,基质为角闪石、斜长石、阳起石、绿泥石及少量石英(正交偏光);Ep. 绿帘石;Hbl. 角闪石;Act. 阳起石;Chl. 绿泥石;Pl. 斜长石;Qtz. 石英
    Figure  2.  Macroscopic and microscopic characteristics for meta–basalts of Saishiteng mountain

    本次用于同位素及地球化学研究的变玄武岩(编号TK02)样品采自赛什腾山西北部滩间山群中,距冷湖镇东约55 km处,采样坐标为93°56′23.4″E、38°36′57.1″N。变玄武岩(TK02)位于达肯大坂岩群与滩间山群断层界线附近,出露宽度约3 m,受后期韧性剪切作用改造呈北西向透镜状产于黑云母长英质糜棱岩之中(图2a)。岩石呈灰黑色,具片状、块状构造,柱状粒状结构,变余斑状结构(图2b图2c);变余斑晶为由角闪石蚀变而成的压扁拉长状绿帘石,基质主要为细粒柱状斜长石、角闪石、阳起石、绿泥石,含少量石英(图2c图2d);受后期韧性剪切变形作用影响,矿物发生剪切定向和塑性变形(图2d),高倍镜下可观察到斜长石聚片双晶沿长轴方向定向排列。

    样品的主微量及稀土元素测试分析在中国地质调查局西安地质调查中心实验测试中心完成,其中主量元素采用SX45型X荧光光谱仪(XRF)进行分析,分析误差小于1%;微量和稀土元素利用SX50型电感耦合等离子体光谱仪(ICP–MS)进行测定,分析误差小于5%~10%。样品锆石挑选由河北廊坊诚信地质服务有限公司完成,锆石的制靶及反射光阴极发光照相在陕西爱思拓普测试技术有限公司完成,测试点的选取首先根据锆石反射光和透射光照片进行初选,再与CL图像反复对比,力求避开内部裂隙和包裹体,以获得较准确的年龄信息。LA–ICP–MS锆石微区U–Pb年龄测定在自然资源部岩浆作用成矿与找矿重点实验室完成,采用193 nm ArF准分子(excimer)激光器的Geo Las 200M剥蚀系统,ICP–MS为Agilent 7700,激光束斑直径24 μm,以GJ–1为同位素监控标样,91500为年龄标定标样,NIST610为元素含量标样进行校正,普通铅校正依据实测204Pb进行校正。

    采用Glitter(ver4.0,Macquarie University)程序对锆石的同位素比值及元素含量进行计算,并按照Andersen Tom的方法(Andersen T,2002),用LAMICPMS Common Lead Correction(ver3.15)对其进行了普通铅校正,年龄计算及谐和图采用Isoplot(ver3.0)完成(Ludwig,2003)。

    本次选取新鲜、无蚀变或弱蚀变的变玄武岩样品进行全岩地球化学分析,分析结果见表1。赛什腾山滩间山群变玄武岩的烧失量较低(1.64%~1.87%),表明样品受后期低温蚀变作用及风化作用的影响较小。样品中SiO2含量为48.90%~52.05%,具相对高的MgO(4.89%~6.27%)、FeOT(10.17%~11.15%)、CaO(10.56%~11.78%),TiO2(1.35%~1.49%),低于OIB玄武岩,高于岛弧玄武岩,与E–MORB相似。全碱含量较低,K2O=0.39%~0.52%,Na2O=2.43%~3.02%,Na2O/ K2O为5.33~6.23,相对富钠贫钾;P2O5含量较低,为0.13%~0.16%。镁铁比m/f﹝Mg2+/(Fe3++ Fe3++ Mn2+)〕为0.90~1.03,属铁质基性岩类(m/f=0.5~2);扣除烧失量作归一化处理后分别对变玄武岩的6个样品进行投图,在哈克图解(图略)中除FeO、TiO2、Al2O3与MgO呈正相关关系外,其它主量元素与MgO相关性不明显, 暗示在变玄武岩形成过程中,分离结晶作用所起的作用有限;在Zr/TiO2–Nb/Y图解中样品均落入亚碱性玄武岩与碱性玄武岩边界附近(图3a),在AFM图解(图3b)和FeOT–FeOT/MgO图解(图3c)中样品均投到拉斑玄武岩系列范围内,综合认为赛什腾山变玄武岩为拉斑玄武岩。

    表  1  赛什腾山变玄武岩主量元素(%)、微量元素(10−6)及稀土元素(10−6)含量分析结果
    Table  1.  Major element (%), trace element (10−6) and REE element (10−6) compositions of meta–basalts of Saishiteng mountain
    样号TK02-1TK02-2TK02-3TK02-4TK02-5TK02-6
    SiO250.0848.9049.3849.4849.4352.05
    Al2O315.4615.5515.4515.5415.5614.98
    Fe2O34.885.235.414.814.405.30
    FeO6.296.446.116.346.745.40
    CaO11.1611.7811.4711.1710.5211.15
    MgO5.585.875.625.816.274.89
    K2O0.460.430.480.470.520.39
    Na2O2.602.442.562.733.022.43
    TiO21.451.441.471.481.491.39
    P2O50.140.140.150.160.140.13
    MnO0.1400.1400.1400.1400.1400.130
    LOI1.761.641.761.871.771.76
    TOTAL100100100100100100
    TFeO10.6811.1510.9810.6710.7010.17
    m/f0.920.930.900.961.030.85
    La11.911.711.911.411.011.2
    Ce25.124.324.023.624.024.2
    Pr3.403.293.223.183.353.16
    Nd14.614.014.213.714.313.7
    Sm3.413.333.303.213.313.19
    Eu1.191.161.161.171.141.16
    Gd3.553.593.623.433.513.41
    Tb0.620.610.600.590.610.58
    Dy3.503.513.533.403.503.30
    Ho0.690.700.690.670.670.64
    Er1.871.871.931.841.821.74
    Tm0.280.270.270.270.270.25
    Yb1.811.711.711.771.761.70
    Lu0.250.250.240.240.250.23
    Ba111.080.482.083.898.479.5
    Rb16.18.79.19.010.58.3
    Sr286273267245256284
    Co42.642.838.638.343.836.2
    V279282273275265267
    Cr54.253.660.050.149.047.6
    Ni53.251.550.649.451.852.0
    Nb13.813.513.313.613.513.7
    下载: 导出CSV 
    | 显示表格
    图  3  赛什腾山变玄武岩Zr/TiO2–Nb/Y分类图(a)(底图据Irvine T N,1971)、AFM图解(b)(底图据Winchester J A,1971)及TFeO–TFeO/MgO图解(c)(底图据Miyashiro A,1974
    Figure  3.  (a) TAS diagram, (b) AFM diagram and (c) TFeO vs. TFeO / MgO diagram for meta–basalts of Saishiteng mountain

    赛什腾山滩间山群变玄武岩稀土总量(ΣREE)较低,为80.26×10−6~112.47×10−6,LREE=56.26×10−6~59.20×10−6,高于E–MORB而低于OIB, HREE含量则稍低于E–MORB(22.48×10−6~55.86×10−6);LREE/HREE=1.01~2.57,(La/Yb)N =4.21~4.69,表明样品中轻稀土弱富集,轻重稀土元素分异不明显;(La/Sm)N=2.09~2.27,(Gd/Yb)N=1.56~1.71,显示轻、重稀土内部分异也不明显;σEu=1.02~1.07,为弱正异常,表明源区斜长石分离结晶不明显(韩吟文等,2004)。在球粒陨石标准化稀土元素配分图上,各样品具有与E–MORB相似的稀土分布模式(图4a),即LREE相对富集、HREE平坦的略向右缓倾型配分模式。样品具富Nb(13.3×10−6~13.8×10−6)以及高的(Nb/Th)PM(1.10~1.63)、(Nb/La)PM(1.08~1.18)和Nb/U(50.7~66.3)特征,在原始地幔标准化微量元素蛛网图中显示Nb、Ta弱正异常(图4b),此类地球化学特征与正常岛弧玄武岩不同,而与富铌玄武岩相似(Sajona et al.,1996张海祥等,2005Wang et al.,2007Castillo,2012Liao et al.,2018),在MgO–Nb/La和Nb–Nb/U图解(图5)中,均落入富铌玄武岩区域,表明柴北缘赛什腾山变玄武岩属富铌玄武岩系列。

    图  4  赛什腾山变玄武岩稀土元素球粒陨石标准化图解(a)和微量元素原始地幔标准化蛛网图(b)
    Figure  4.  (a) Chondrite–normalized REE patterns diagram and (b) Primitive–mantle normalised spidergram diagram for meta–basalts of Saishiteng mountain
    图  5  赛什腾山变玄武岩MgO–Nb/La图解(a)和 Nb–Nb/U图解(b)(底图据Kepezhinskas et al.,1997
    球粒陨石标准化值及原始地幔标准化值据Sun et al.,1989
    Figure  5.  (a) MgO vs. Nb/La diagram and (b) Nb vs. Nb/U diagram for meta–basalts of Saishiteng mountain

    在背散射电子(BSE)和阴极发光(CL)图像分析的基础上,选择样品中30颗锆石开展LA–ICP–MS锆石微区U–Pb年龄测定。锆石阴极发光(CL)图像见于图6,锆石表面年龄数据及Th、U元素含量见表2。得到的锆石年龄数据为263~2 462 Ma(<1000 Ma为206Pb–238U年龄,>1 000 Ma为206Pb/207Pb年龄),其中8颗锆石具有差的谐和度(<0.90或>1.10),偏离谐和曲线,其余22颗均在U–Pb谐和曲线之上或附近。22颗锆石中有6颗年龄较为集中(440 ~445 Ma),谐和线年龄为(444±4)Ma(MSWD=0.14),206Pb/238U表面年龄加权平均值为(443±3)Ma(MSWD=0.14),锆石晶体多呈四方柱与四方双锥的聚形,具特征的岩浆震荡环带和较高的Th/U值(0.30~0.95),稀土元素球粒陨石标准化配分模式显示锆石显著富集HREE,并具有明显的正Ce异常和负Eu异常(图略),表明此6颗锆石为典型的岩浆锆石成因,故其年龄可代表富铌玄武岩的形成时代,即晚奥陶世。此外,4颗锆石(9、15、20、28号)的206Pb/207Pb年龄为1 827 ~2 462 Ma,锆石呈近椭圆状,为捕获锆石,指示研究区存在古元古代基底;9颗锆石表面年龄为575~1 785 Ma,锆石Th/U值为0.03~0.83,CL图像显示锆石晶面复杂或发育震荡环带(如4号锆石),表明这些捕获锆石可能是早期岩浆或变质事件的产物(辜平阳等,2020);另在2颗锆石(11、14号)变质增生边上获得263 Ma 的206Pb/238U年龄,与中二叠世宗务隆洋俯冲消减时间一致(庄玉军等,2020),可能是这次强烈构造–热事件的反映。

    图  6  赛什腾山富铌玄武岩锆石U–Pb年龄谐和图(a)及典型锆石阴极发光图像(b)
    Figure  6.  (a)The U–Pb Concordian diagram of zircons and (b)Representative cathodoluminescence images of the zircons for meta–basalts of Saishiteng mountain
    表  2  赛什腾山富铌玄武岩锆石LA–ICP–MS U–Pb同位素测年结果
    Table  2.  LA–ICP–MS zircon U–Pb isotopic analysis for meta–basalts of Saishiteng mountain
    样点
    编号
    207Pb/206Pb207Pb/235U206Pb/238U208Pb/232Th207Pb/206Pb207Pb/235U206Pb/238U208Pb/232Th232Th238UTh/U谐和
    比值 比值 比值 比值 年龄(Ma) 年龄(Ma) 年龄(Ma) 年龄(Ma)
    10.049 870.001 210.286 160.006 520.0416 20.000 430.014 980.001 081893425652633301222473220.770.97
    20.065 810.000 831.218 750.013 340.134 330.001 160.046 710.002 98001180968137923562304600.501.00
    30.055 390.001 940.543 690.018 050.071 20.000 970.024 020.002 2342850441124436480441181700.691.00
    40.067 820.002 81.351 750.053 450.144 580.002 50.042 260.004 868635386823871148379438460.831.00
    50.056 470.0010.555 80.0090.071 40.000 680.025 210.001 594712044964454503313633810.951.01
    60.082 720.001 081.804 990.020 670.158 280.001 410.088 430.005 5112631010477947817131021373680.371.11
    70.096 350.003 980.5530.020 990.041 630.000 780.021 420.002 5155543447142635428491562780.561.70
    80.068 660.001 611.274 270.027 790.134 620.001 580.049 340.003 8788926834128149973753004900.611.02
    90.134 880.001 677.450 970.081 070.400 690.003 780.129 810.008 08216282167102172172467145991150.861.00
    100.054 360.001 080.532 70.009 770.071 080.000 70.025 440.001 793862443464434508353355890.570.98
    110.050 990.002 270.292 270.012 530.041 580.000 570.015 640.001 2224073260102634314241481181.260.99
    120.055 930.003 50.545 230.032 690.070 720.001 560.029 170.004 734509444221440958193461060.431.00
    130.056 20.002 530.547 820.023 480.070 710.001 20.032 120.004 484606544415440763988551840.301.01
    140.052 40.001 450.302 30.007 890.041 850.000 480.014 830.001 023033926862643298205763461.671.02
    150.111 70.001 35.031 970.049 940.326 750.002 860.106 640.007 06182781825818231420481291273320.381.00
    160.078 270.001 181.899 10.025 70.175 990.001 660.022 90.002 4211541310819104594584825812750.201.10
    170.072 750.001 230.417 780.006 360.041 650.000 390.015 040.000 99100716354526323022010907641.431.35
    180.055 40.000 880.545 810.007 780.071 470.000 640.022 650.001 534281744254454453304745750.830.99
    190.109 150.001 324.795 40.049 750.318 680.002 820.092 010.006 43178581784917831417791191091940.561.00
    200.160 590.002 6310.148 060.156 850.458 370.005 680.127 820.010 5724621224481424322524311891361960.691.01
    210.112 360.003 871.106 640.034 750.071 440.001 230.065 630.007 551838337571744571285143973780.261.70
    220.085 540.001 52.683 720.043 070.227 570.002 380.059 390.004 71328161324121322121166901101550.711.00
    230.093 910.003 240.538 430.017 070.041 590.000 650.025 260.002 77150637437112634504551433750.381.66
    240.090 440.002 080.518 90.010 840.041 620.000 480.019 650.001 714352342472633393342514930.511.61
    250.061 940.001 230.929 190.017 060.108 810.001 080.030 320.003 31672236679666660465221380.161.00
    260.068 720.000 920.673 980.007 760.071 140.000 610.025 810.001 988901152354434515393339510.351.18
    270.154 240.004 010.884 750.020 230.041 610.000 60.013 850.001 13239320644112634278234071602.542.45
    280.118 810.001 845.639 650.079 760.344 330.003 660.112 310.013 861938121922121907182151252283040.091.02
    290.059 620.001 850.766 410.022 650.093 250.001 160.053 930.017 4159042578135757106233441370.031.01
    300.070 690.001 311.356 530.022 970.139 190.001 410.039 110.003 8594819870108408775751686800.251.04
    下载: 导出CSV 
    | 显示表格

    因REE和部分HFSE元素(包括Nb、Ta、Zr、Hf、Th、Ce、U、Ti等)的活动性较差,其含量基本不受后期蚀变或热液作用影响,甚至在高级变质作用中亦能相对稳定(Hajash A Jr,1984Becker H et al.,1999Escuder-Viruete J et al.,2010),故常用上述不活动元素对岩浆演化过程及源区进行示踪。

    (1)同化混染与分离结晶

    赛什腾山富铌玄武岩中捕获锆石或继承锆石的存在,表明存在一定程度的地壳混染作用。众所周知,地壳同化混染可导致显著的Nb亏损(夏林圻等,2016),然而赛什腾山富铌玄武岩在原始地幔标准化微量元素蛛网图中却显示Nb弱正异常,暗示其遭受地壳同化混染程度可能较弱。此外,在封闭的岩浆体系中,元素丰度随结晶程度不同而发生相应变化,但总分配系数相同或者很相近的元素比值不会因结晶作用而改变,若有外来物质显著混染,则会导致这些元素比值发生巨大变化(张永,2019),因此常用总分配系数相同或者很相近且对同化混染作用敏感的元素比值(如Nb /U、Nb/La、Th/Nb、La/Sm等)来判定是否发生同化混染作用。高的La/Sm(>5)(Lassiter et al.,1997张永等,2019)和原始地幔标准化 Th/Nb 值($\gg $1)(Ormerod,1988)以及低Nb/La 值(<1)(Ernst et al.,2000)均是判断发生地壳混染作用的可靠微量元素指标(庄玉军等,2020)。赛什腾山富铌玄武岩La/Sm<5(3.32~3.61),(Th/Nb)PM<1(0.61~0.91),Nb/La>1(1.12~1.23),均指示富铌玄武岩形成过程未遭受或仅遭受弱的地壳混染。综合上述分析可知,赛什腾山富铌玄武岩形成过程中虽存在弱的地壳混染作用,但对岩石微量元素组成的影响有限。此外,如前所述,哈克图解中除FeO、TiO2、Al2O3与MgO呈正相关关系外,其它主量元素与MgO相关性不明显,暗示在富铌玄武岩形成过程中,分离结晶作用所起的作用不明显。

    (2)源区性质与部分熔融

    因LREE和HREE在不同的岩浆源区具有不同的矿物相/熔体相分配系数,故可用来限定地幔岩浆源区的组分及部分熔融的程度(Shaw et al.,2003)。赛什腾山富铌玄武岩具LREE相对富集、HREE平坦及低的(La/Yb)N(4.21~4.69)和(Gd/Yb)N(1.56~1.71),暗示其源区可能无石榴子石存在(蓝江波等,2007Pollock et al.,2010)。富铌玄武岩(Tb/Yb)PM<1.8(1.51~1.62),与尖晶石橄榄岩平衡熔体的(Tb/Yb)PM值一致,在(Tb/Yb)PM –(La/Sm)PM图解中(图7a)落入尖晶石二辉橄榄岩,表明岩石部分熔融可能发生在尖晶石稳定区域,而非石榴石稳定区域(解超明等,2019Wang et al.,2002)。在Ce/Y–Zr/Nb图解中(图7b),样品均位于原始尖晶石相二辉橄榄岩低程度熔融区域(<0.5%),进一步表明富铌玄武岩的岩浆源区为尖晶石相二辉橄榄岩。

    图  7  赛什腾山富铌玄武岩(Tb/Yb)PM –(La/Sm)PM图解(a)(底图据Wang et al.,2002)和Ce/Y–Zr/Nb图解(b)(底图据Deniel,1998
    Figure  7.  (a)(Tb/Yb)PM vs La/Sm)PM diagrams and (b) Ce/Y vs Zr/Nb diagrams for meta–basalts of Saishiteng mountain

    (3)构造环境

    前已提及,富铌玄武岩主要有2种成因机制:①俯冲板片熔融形成的埃达克质岩浆交代的地幔楔橄榄岩部分熔融产物(Aguillón-Robles et al.,2001Zhang et al.,2012Liu et al.,2014Chen et al.,2016)。②由富集地幔或洋岛玄武岩与亏损地幔混合的产物(Castillo,2008Petrone et al.,2008Sorbadere et al.,2013),如北美西部出露大规模的富铌玄武岩,被认为是从科迪勒拉板片窗上涌的软流圈地幔与俯冲交代的地幔楔相互作用的产物(Thorkelson et al.,2011)。然而,柴北缘已报道的与赛什腾山富铌玄武岩同时期的埃达克岩成因多与板片早期俯冲无关,而是加厚地壳部分熔融(于胜尧等,2011周宾等,2014杨士杰,2016)或陆壳折返阶段榴辉岩部分熔融的产物(李治华,2021);此外,与板片俯冲有关的埃达克岩是热的(即高温榴辉岩相)俯冲条件下部分熔融形成的(路增龙等,2020),但柴北缘地区早古生代与洋壳俯冲相关的榴辉岩均形成于相对冷的俯冲环境下(Zhang et al.,2008a2008b),在此环境下洋壳难以部分熔融形成埃达克质岩浆,进而也不可能交代地幔楔橄榄岩形成富铌玄武岩。综上可排除赛什腾山富铌玄武岩来源于俯冲板片熔体交代的地幔楔橄榄岩部分熔融产物的可能。

    柴北缘赛什腾山富铌玄武岩富Na2O、贫K2O,具相对高的TiO2和弱的Nb、Ta正异常,其球粒陨石标准化稀土元素配分曲线和原始地幔标准化蛛网配分形式与E–MORB类似,且在Zr–Ti图解(图8a)和Nb/Yb–Th/Yb图解(图8b)中样品均落在E-MORB区域附近或内部,表明其岩浆源区有富集地幔组分的加入。前人研究表明,早寒武世—晚奥陶世期间(520~445 Ma),柴北缘低角度北向俯冲的大洋板片发生陡角度回转,诱发软流圈地幔上涌,引起弧后伸展进而形成弧后盆地(夏林圻等,2016),而上涌软流圈地幔在弧后盆地边缘(靠近岛弧侧)与上覆亏损地幔楔混合,形成富铌玄武岩的源区,即低程度部分熔融(<0.5%)的尖晶石相二辉橄榄岩,后沿构造薄弱部位喷出地表,形成赛什腾山富铌玄武岩(图9)。

    图  8  赛什腾山富铌玄武岩Zr–Ti图解(a)和Th/Yb–Ta/Yb图解(a)(底图据Pearce J A,1982
    Figure  8.  (a) Zr vs Ti diagrams and (b) Th/Yb vs Ta/Yb diagrams for meta–basalts of Saishiteng mountain
    图  9  赛什腾山富铌玄武岩成因模式图(据周艳龙,2021修改)
    Figure  9.  The genetic model map for meta–basalts of Saishiteng mountain

    20世纪90年代以来,柴北缘因发现早古生代大陆深俯冲的高压–超高压变质岩石(杨经绥等,1998宋述光等,2001孟繁聪等,2003陈丹玲等,2007),而引起了国内外学者的广泛关注(Song et al., 2006, 2014Mattinson et al., 2006Zhang et al.,2008a2008b2010Chen et al.,2009Xiong et al., 2011张贵宾等,2012),并针对其早古生代地球动力学背景和构造演化等开展了大量的研究工作,认为区内在早古生代经历了大洋板片俯冲→弧后拉伸→洋盆闭合→弧-陆碰撞和陆–陆碰撞→碰撞后板块折返→后造山陆内伸展的完整造山旋回(史仁灯等,2003王惠初等,2005吴才来等,2007吴才来等,2008高晓峰等,2011Zhang et al.,2011周宾等,2013朱小辉等,2015邱士东等,2015宋述光等,2015庄玉军等,2019),但学者们对大洋闭合及陆陆碰撞的具体时限还存在争议。吴才来等(2007)通过锆石SHRIMP定年得出柴北缘西段柴达木山S型花岗岩结晶年龄为(446.3±3.9)Ma,并认为该年龄反映了柴达木板块与中南祁连板块陆陆碰撞的时代;朱小辉等(2015)对柴北缘地区陆壳深俯冲前新元古代—早古生代大洋发展与演化的岩石记录进行了系统总结,认为洋盆闭合于460~450 Ma;夏林圻等(2016)总结柴北缘高压–超高压变质带中与大洋俯冲有关的高压变质作用峰期年龄和与大陆俯冲有关的超高压变质作用峰期年龄分别为476~442 Ma和440~421 Ma,并据此认为南祁连洋闭合时限为441 Ma,随后转入陆陆碰撞阶段;而周宾等(2019)在绿梁山识别出形成于弧后盆地环境的中志留世玄武安山岩(431.5±5.7 Ma),笔者也在赛什腾山发现产于硅质岩与凝灰岩之间的与弧后盆地环境相关的早志留世流纹岩(436±2 Ma,未发表数据),均暗示在早—中志留世柴北缘尚有部分地区未发生陆陆碰撞。赛什腾山富铌玄武岩形成于晚奥陶世(444±4 Ma),是俯冲大洋板片陡角度回转引起的上涌软流圈地幔在弧后盆地边缘(靠近岛弧侧)与上覆亏损地幔楔混合的产物,这表明晚奥陶世柴北缘西段仍处于弧后伸展阶段,同时也说明该时期柴北缘西段陆陆碰撞尚未开始。而造成上述构造环境差异的原因,可能与区内不同地段板块形状不规则有关(吴才来等,2007)。

    此外,作为滩间山群物质组成部分,与弧后伸展环境有关的赛什腾山晚奥陶世富铌玄武岩的发现,表明晚奥陶世晚期(444 Ma)区域内与滩间山群有关的火山–沉积作用仍在继续,即滩间山群形成时代至少可延至晚奥陶世晚期。而前人基于野外地质特征、古生物组合、同位素年龄、构造–热事件和火山–沉积演化等不同研究视角,先后分别对柴北缘滩间山群形成时代进行了厘定,提出中—晚奥陶世(Liang et al.,2014)、奥陶纪(李峰等,20062007江小强等,2020)、晚奥陶世—志留纪(青海地质矿产局,1991)、早奥陶世(李怀坤等,1999赵凤清等,2003)、寒武纪—奥陶纪(王惠初等,2003高晓峰等,2011王侃,2014)、奥陶纪-志留纪(庄儒新,2006)、晚寒武世—晚奥陶世(汪劲草等,2013)、晚寒武世—早奥陶世(张孝攀等,2015)、晚寒武世—早志留世(周宾等,2019周艳龙,2021)等不同观点;而滩间山群形成的构造环境也同样存在诸如大陆裂谷(邬介人,1987)、洋岛或洋脊(赖绍聪等,1996朱小辉等,2015)、岛弧(高晓峰等,2011王侃,2014路增龙等,2020)、弧前盆地(朱小辉,2011)及弧后盆地(孙华山等,2012Sun et al.,2017)等环境的争议;另有部分学者认为滩间山群是洋陆俯冲过程中不同阶段(如岛弧和弧后盆地)(王惠初等,2003史仁灯等,2004Shi et al.,2006汪劲草等,2013张孝攀等,2015)的产物。存在上述争议的原因,笔者认为可能与柴北缘构造带在早古生代及其以后遭受了包括大陆深俯冲在内的多期强烈地质作用改造有关,构造混杂作用导致滩间山群中大量不同时代、不同构造环境成因的岩石混杂堆积在狭长构造带之内,如赛什腾山地区既存在代表大洋早期俯冲的晚寒武世埃达克质英安岩(史仁灯等,2003),又存在与弧后伸展有关的晚奥陶世富铌玄武岩。基于上述分析,笔者认为柴北缘滩间山群是晚寒武世—早中志留世洋陆转换过程中不同时期、不同构造背景下(包括洋岛、岛弧、弧后等)的火山–沉积产物,其经历了自大洋俯冲至陆陆碰撞前的整个俯冲消减过程,因构造混杂导致各类岩石混杂堆积于柴北缘狭长构造带内。

    (1)柴北缘赛什腾山滩间山群变玄武岩具富Na2O、Nb、高TiO2以及低LILE/HFSE和HREE/HFSE的地球化学特征,为富铌玄武岩。

    (2)赛什腾山富铌玄武岩结晶年龄为(444±4)Ma,岩浆源区为尖晶石相二辉橄榄岩,是俯冲大洋板片陡角度回转引起的上涌软流圈地幔在弧后盆地边缘(靠近岛弧侧)与上覆亏损地幔楔混合的产物,表明晚奥陶世柴北缘西段仍处于弧后伸展阶段,陆陆碰撞尚未开始。

    (3)结合前人相关研究,认为柴北缘滩间山群是晚寒武世—早中志留世洋陆转换过程中不同时期、不同构造背景下的火山–沉积产物,其经历了自大洋俯冲至陆陆碰撞前的整个俯冲消减过程,在形成后遭受多次强烈构造作用改造,致使不同构造背景的岩石混杂堆积于狭长构造带内。

  • 敖文昊,张宇昆,张瑞英,等.新元古代扬子北缘地壳增生事件:来自汉南祖师店奥长花岗岩地球化学、锆石LA-ICP-MS U-Pb年代学和Hf同位素证据[J].地质论评,2014,60(6):1393-1408.

    AO Wenhao,ZHANG Yukun,ZHANG Ruiying,et al. eoproterozoic Crustal Accretion of the Northern Margin of Yangtze Plate:Constrains from Geochemical Characteristics,LA-ICP-MS Zircon U-Pb Chronology and Hf Isotopic Compositions of Trondhjemite from Zushidian Area,Hannan Region[J]. Geological Review,2014,60(6):1393-1408.

    敖文昊. 扬子地块北缘大汉山地区新元古代花岗岩岩石学、地球化学、锆石年代学及其地质意义[D].西安:西北大学,2015,1-89.

    AO Wenhao.Petrography,geochemistry,zircon geochronology and geological implications of Neoproterozoic granites in Dahanshan region,northern margin of Yangtze plate[D]. Xi'an:Northwestern University,2015,1-89.

    陈虹,田蜜,武国利,等.南秦岭构造带内早古生代碱基性岩浆活动:古特提斯洋裂解的证据[J].地质论评,2014,60(6):1437-1452.

    CHEN Hong,TIAN Mi,WU Guoli,et al.The Early Paleozoic Alkaline and Mafic Magmatic Events in Southern Qinling Belt,Central China:Evidences for the Break up of the Paleo Tethyan Ocean[J]. Geological Review,2014,60(6):1437-1452.

    邓奇,王剑,汪正江,等.扬子北缘元古宇马槽园群时代归属新证据-对地层对比和古地理格局的启示[J].地质通报,2013,32(4):631-638.

    DENG Qi,WANG Jian,WANG Zhengjiang,et al. New evidence for the age of the Macaoyuan Group on the northern margin of the Yangtze block,South China-implications for stratigraphic correlation and palaeogeographic framework[J]. Geological Bulletin of China,Geological Bulletin of China,2013,32(4):631-638.

    丁振举,文成雄,国阿千,等.西秦岭吴家山群地层时代及物源特征:来自碎屑锆石U-Pb年龄证据[J].地球科学与环境学报,2018,40(2):111-132.

    DING Zhenju,WEN Chengxiong,GUO Aqian,et al. Stratigraphic Ages and Provenance Characteristics of Wujiashan Group in West Qinling,China:Evidences from Detrital Zircon U-Pb Age[J].Journal of Earth Sciences and Environment,2018,40(2):111-132.

    杜远生.西秦岭造山带泥盆纪沉积地质学和动力沉积学研究:西秦岭南带泥盆纪裂陷槽盆地、摩天岭地体沉积特征和盆地格局[J].岩相古地理,1995,15(6):48-61.

    DU Yuansheng. Sedimentary geology and dynamic sedimentology of the devonian strata in theWestQinling orogenic belt:sedimentary charact-Eristics and framework of the devonian rift trough and motianling terrane in the southern belt of the west qinling orogenic belt[J].Lithofacies Palaeogeography,1995,15(6):48-61.

    杜远生,盛吉虎,冯庆来,等.南秦岭勉略古缝合带非史密斯地层和古海洋新知[J].现代地质,1998,12(1):26+28-32.

    DU Yuansheng,SHENG Jihu,FENG Qinglai,et al. new recognition of non-smith stratigraphy and paleoceanography of mianxian-lueyang paleosuture in southern qinling[J]. geoscience,1998,12(1):26+28-32.

    段博林,苏犁,王静,等.扬子板块西北缘新元古代洋县桑溪沟花岗岩成因:Rodina超大陆裂解与地壳重熔[J].地球化学,2018,47(5):506-521.

    DUAN Bolin,SU Li,WANG Jing,et al.Origin of Neoproterozoic complexes in the northwestern margin of the Yangtze plate Sangxigou granite:Breakup of the Rodinia supercontinent and melting of the crust[J]. Geochimica,2018,47(5):506-521.

    段亮.南秦岭与扬子地体西北缘志留-泥盆系碎屑锆石物源分析及构造意义[D].西安:西北大学,2010,1-84.

    DUAN Liang.Detrital zircon provenance of the Silurian and Devonian in South Qingling,and the northwestern margin of Yangtze terrane and its tectonic implications[D]. Xi'an Northwestern University,2010,1-84.

    耿英英. 扬子地块北缘花岗岩SHRIMP锆石U-Pb定年及地球化学特征研究[D].北京:中国地质大学(北京),2010,1-60.

    GENG Yingying.SHRIMP U-Pb zircon gevchrvnology and geochemistry study of Neopraterozoic granites in the northern margin of Yangtze continental[D].Beijiang:China University of Geosciences (Beijing),2010,1-60.

    宫相宽,陈丹玲,赵姣.陕西铜厂闪长岩地球化学、锆石U-Pb定年及Lu-Hf同位素研究[J].西北地质,2013,46(3):50-63.

    GONG Xiangkuan,CHEN Danling,ZHAO Jiao.Studies on Geochemistry,Zircon U-Pb Dating and Lu-Hf Isotope Composition of the Tongchang Diorites,Shaanxi Province[J]. Northwest Geology,2013,46(3):50-63.

    蒋幸福. 扬子克拉通黄陵背斜庙湾蛇绿杂岩成因及大地构造意义[D].武汉:中国地质大学,2014,1-148.

    JIANG Xingfu.Genesis and Tectonic Significance of the Miaowan hiolite Complez in the Huangling Anticline,Yangtze Craton[D]. Wuhan:China University of Geosciences,2014,1-148.

    赖绍聪,李永飞,秦江锋.碧口群西段董家河蛇绿岩地球化学及LA-ICP-MS锆石U-Pb定年[J].中国科学(D辑:地球科学),2007,37(增刊):262-270.

    LAI Shaosong,LI Yongfei,QING Jiangfeng. Geochemistry and LA-ICP-MS Zircon U-Pb Dating of Dongjiahe Ophiolite in the Western Section of Bikou Group[J]. Science in China(Series D:Earth Sciences),2007,37(Suppl.):262-270.

    李瑞保,裴先治,丁仨平,等.西秦岭南缘勉略带琵琶寺基性火山岩LA-ICP-MS锆石U-Pb年龄及其构造意义[J].地质学报,2009,83(11):1612-1623.

    LI Ruibao,PEI Xianzhi,DING Sanping,et al.LA-ICP-MS Zircon U-Pb Dating of the Pipasi Basic Volcanic Rocks Within the Mian-Lue Tectonic Zone in the Southern Margin of West Qinlin and its Geological Implication[J]. Acta Geologica Sinica,2009,83(11):1612-1623.

    李三忠,赖绍聪,张国伟,等.秦岭勉略带康县-高川段现今结构与岩片性质[J].华南地质与矿产,2001,(3):1-8.

    LI Sanzhong,LAI Shaocong,ZHANG Guowei,et al. Slab property and current architexture of the Mianxian-Lueyang suture zone of the Qinling orogenic belt[J].Geology and Mineral Resources of South China,2001,(3):1-8.

    李三忠,张国伟,李亚林,等.秦岭造山带勉略缝合带构造变形与造山过程[J].地质学报,2002,76(4):469-483.

    LI Sanzhong,ZHANG Guowei,LI Yalin,et al. Deformation and Orogeny of the Mian-Lue Suture Zone in the Qinling Orogenic Belt[J]. Acta Geologica Sinica,2002,76(4):469-483.

    李亚林,方维萱,张国伟,等.秦岭勉略构造带组成、变形特征及与成矿关系[J].西北地质科学,2000,21(1):69-76.

    LI Yalin,FANG Weixuan,ZHANG Guowei,et al. Composition and deformation of Mian-Lue suture zone and their relationship with mineralization,Qinling orogenic belt[J]. Northwest Geoscience,2000,21(1):69-76.

    李亚林,李三忠,张国伟.秦岭勉略缝合带组成与古洋盆演化[J].中国地质,2002,29(02):129-134.

    LI Yalin,LI Sanzhong,ZHANG Guowei. Composition of the Mianlue suture zone and its relation with the evolution of the old oceanic basin[J]. Geology In China,2002,29(2):129-134.

    李永飞,赖绍聪,秦江锋,等.碧口火山岩系地球化学特征及Sr-Nd-Pb同位素组成晋宁期扬子北缘裂解的证据[J].中国科学(D辑:地球科学),2007,37(S1):295-306.

    LI Yongfei,LAI Shaocong,QING Jiangfeng,et al. Geochemical Characteristics of Bikou Volcanic Series and Evidence of Sr-Nd-Pb Isotopic Composition for the Cracking of the Northern Margin of Yangtze in Jinning Period[J]. Science in China(Series D:Earth Sciences),2007,37(S1):295-306.

    李佐臣,裴先治,刘战庆,等.扬子地块西北缘后龙门山南华纪-早古生代沉积地层特征及其形成环境[J].地球科学与环境学报,2011,33(2):117-124.

    LI Zuochen,PEI Xianzhi,LIU Zhanqing,et al.Characteristics of Sedimentary Strata and Their Forming Environments of Nanhuan Period-Early Paleozoic of Back-Longmenshan in the Northwest Margin of Yangtze Block[J]. Journal of Earch Sciences and Environment,2011,33(2):117-124.

    林广春.川西石棉花岗岩的锆石U-Pb年龄和岩石地球化学特征:岩石成因与构造意义[J].地球科学(中国地质大学学报),2010,35(4):611-620.

    LIN Guangchun.Zircon U-Pb Age and Petrochemical Characteristics of Shimian Granite in Western Sichuan:Petrogenesis and Tectonic Significance[J]. Earth Science-Journal of China University of Geosciences. 2010,35(4):611-620.

    林振文,秦艳,周振菊,等.南秦岭勉略带铧厂沟火山岩锆石U-Pb年代学及地球化学研究[J].岩石学报,2013,29(1):83-94.

    LIN Zhenwen,QIN Yan,ZHOU Zhenju,et al.Zircon U-Pb dating and geochemistry of the volcanic rocks at Huachanggou area, Mian-Lue suture, South Qinlin[J]. Acta Petrologica Sinica,2013,29(1):83-94.

    凌文黎,高山.西乡群的时代与构造背景:同位素年代学及地球化学制约[J].中国科学(D辑:地球科学),2002,32(2):101-112.

    LING Wenli,GAO Shan. Age and Tectonic Background of Xixiang Group:Constraints of Isotope Chronology and Geochemistry[J]. Science in China(Series D:Earth Sciences),2002,32(2):101-112.

    凌文黎,高山,程建萍,等.扬子陆核与陆缘新元古代岩浆事件对比及其构造意义-来自黄陵和汉南侵入杂岩LA-ICPMS锆石U-Pb同位素年代学的约束[J].岩石学报,2006,22(2):387-396.

    LING WenLi,GAO Shan,CHENG Jianping.et al. Neoproterozoic magmatic events within the Yangtze continental interior and along its northern margin and their tectonic implication:constraint from the ELA-ICPMS U-Pb geochronology of zircons from the Huangling and Hannan complexes[J]. Acta Petrologica Sinica,2006,22(2):387-396.

    刘宝珺,许效松.中国南方岩相古地理图集:震旦纪-三叠纪[M].北京:科学出版社,1994,1-239.

    LIU Baojun,XU Xiaosong. Lithofacies paleogeographic Atlas of South China:Sinian -Triassic[M] Beijing:Science Press,1994,1-239.

    刘淑文.南秦岭古生代盆地演化中幕式流体成岩成矿作用研究[D].西安:长安大学,2006,1-131.

    LIU Shuwen.Research on episodic-fluid diagenesis-mineralization in Paleozoic basins of southern Qinling region[D]. Xi'an:Chang'an University,2006,1-131.

    刘伟,杨晓勇,马志鑫,等.扬子陆块北缘上两地区二长花岗岩成因:锆石U-Pb年代学、Hf同位素及地球化学制约[J].地质学报,2018,92(1):65-76.

    LIU Wei,YANG Xiaoyong,MA Zhixing,et al.Genesis of Monzonitic Granite in the Northern Margin of Yangtze Block:Zircon U-Pb Chronology,Hf Isotope and Geochemical Constraint[J]. Acta Geologica Sinica,2018,92(1):65-76.

    刘泽瑞. 扬子西北缘新元古代汉南酸性杂岩矿物化学研究[D].武汉:中国地质大学,2013,1-79.

    LIU Zerui.Mineralogical constraints on the origin of the Neoproterozoic felsic intrusions in the northwestern margin of the Yangtze Block South China[D].Wuhan:China University of Geosciences,2013,1-79.

    陆松年,李怀坤,陈志宏.塔里木与扬子新元古代热-构造事件特征、序列和时代-扬子与塔里木连接(YZ-TAR)假设[J].地学前缘,2003,10(4):321-326.

    LU Songnian,LI Huaikun,CHEN Zhihong.characteristics,sequence and ages of neoproterozoic thermo-tectonic events between tarim and yangzi blocks-a hypothesis of yangzi-tarim connection[J]. Earth Science Frontiers,2003,10(4):321-326.

    罗金海,周亚军,徐欢,等.南秦岭旬阳盆地东部晚泥盆世岩浆成因钠长岩及其构造意义[J].地质学报,2017,91(2):302-314.

    LUO Jinhai,ZHOU Yajun,XU Huan,et al.Late Devonian Magmtogenic Albitites in the Eastern Xunyang Basin of the South Qinling Orogen and Theire Tectonic Significance[J]. Acta Geologica Sinica,2017,91(2):302-314.

    裴先治.勉略-阿尼玛卿构造带的形成演化与动力学特征[D].西安:西北大学,2001,1-154.

    PEI Xianzhi.Geological Evolution and Dynamics of the Mianlue-Animaqin Tectonic Zone,Central China[D].Xi'an:Northwest University,2001,1-154.

    裴先治,李佐臣,丁仨平,等.扬子地块西北缘轿子顶新元古代过铝质花岗岩:锆石SHRIMP U-Pb年龄和岩石地球化学及其构造意义[J].地学前缘,2009,16(3):231-249.

    PEI Xianzhi,LI Zuochen,DING Sanping,et al. Neoproterozoic Jiaoziding peraluminous granite in the northwest margin of YangtzeBlock:Zircon SHRIMP U-Pb age and geochemistry,and their tectonic significance[J].Earth Science Frontiers,2009,16(3):231-249.

    平先权,郑建平,熊庆,等.扬子西北缘碧口块体花岗质岩体锆石U-Pb年龄、Hf同位素特征及其地质意义[J].吉林大学学报(地球科学版),2014,44(4):1200-1218.

    PING Xianquan,ZHENG Jianping,XIONG Qing,et al. Zircon U Pb Ages and Hf Isotope Characteristics of the Granitic Plutons in Bikou Terrane,Northwestern Yangtze Block, and Their Geological Significance[J]. Journal of Jilin University (Earth Science Edition),2014,44(4):1200-1218.

    盛吉虎,杜远生,冯庆来.南秦岭勉略蛇绿混杂岩带硅质岩沉积环境研究[J].地球科学,1997,22(6):41-44.

    SHENG Jihu,DU Yuansheng,FENG Qinglai.Depositional environments of cherts in the ophiolite Melange belt from mian-lue,shaanxi province[J]. Earth Science,1997,22(6):41-44.

    王梦玺,王焰,赵军红.扬子板块北缘周庵超镁铁质岩体锆石U/Pb年龄和Hf-O同位素特征对源区性质和Rodinia超大陆裂解时限的约束[J].科学通报,2012,57(34):3283-3294.

    WANG Mengxi,WANG Yan,ZHAO Junhong.Zircon U-Pb dating and Hf-O isotopes of the Zhouan ultramafic intrusion in the northern margin of the Yangtze Block,SW China:Constraintson the nature of mantle source and timing of the supercontinent Rodinia breakup[J]. Chinese Science Bulletin,2012,57(34):3283-3294.

    王瑞瑞.南秦岭新元古代-古生代岩浆事件与中生代冷碰撞造山[D].北京:中国地质科学院,2013,1-154.

    WANG Ruirui. Neoproterozoic and Paleozoic magmatic events and Mesozoic cold collisional orogen of South Qinling central China[D].Beijing:Chinese Academy of Geological Sciences,2013,1-154.

    王涛. 南秦岭增生杂岩带构造岩石组合及其形成过程[D].北京:中国地质科学院,2008,1-108.

    WANG Tao.Tectonic-Lithological assemnlages of Southern Qinling accretioonary complex and their formation process[D].Beijing:Chinese Academy of Geological Sciences,2008,1-108.

    王涛,王宗起,闫臻,等.南秦岭大堡组奥陶纪洋岛玄武岩的识别及其构造意义:来自地球化学和年代学证据[J].岩石学报,2009,25(12):3241-3250.

    WANG Tao,WANG Zongqi,YAN Zhen,et al.Identification of the Ordovician oceanic island basalts and their tectonic significance of the Dabao Formation in southern Qinling:Constraints from geochemistry and geochronology of oceanic island basalt[J]. Acta Petrologica Sinica,2009,25(12):3241-3250.

    吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,2004,49(16):1589-1604.

    WU Yuanbao,ZHENG Yongfei.Geogenic Mineralogy of Zircon and its Restriction on U-Pb Age Interpretation[J]. Chinese Science Bulletin,2004,49(16):1589-1604.

    夏林圻,夏祖春,徐学义,等.碧口群火山岩岩石成因研究[J].地学前缘,2007,14(3):84-101.

    XIA Linqi,XIA Zuchun,XU Xueyi,et al.Petrogenesis of the Bikou Group volcanic rocks[J]. Earth Science Frontiers,2007,14(3):84-101.

    向忠金,闫全人,宋博,等.北大巴山超基性、基性岩墙和碱质火山杂岩形成时代的新证据及其地质意义[J].地质学报,2016,90(5):896-916.

    XIANG Zhongjin,YAN Quanren,SONG Bo,et al. New Evidence for the Ages of Ultramafic to Mafic Dikes and Alkaline Volcanic Complexes in the North Daba Mountains and Its Geological Implication[J]. Acta Geologica Sinica,2016,90(5):896-916.

    许光,王坤明,王宗起,等.北大巴山花栎村镁铁质岩地球化学、年代学及其构造环境制约[J].地质通报,2018,37(7):1279-1290.

    XU Guang,WANG Kunming,WANG Zongqi,et al. Geochemistry and geohronology of Hualicun mafic rocks in North Daba Mountain and tectonic control[J]. Geological Bulletin of China,2018,37(7):1279-1290.

    徐大良,彭练红,刘浩,等.南秦岭北缘淅川地区泥盆纪地层的物源及构造背景[J].地球科学,2018,43(7):2234-2248.

    XU Daliang,PENG Lianhong,LIU Hao,et al.Provenance and Tectonic Settings of Devonian Sedimentary Strata in Xichuan Area,Northern Margin of South Qinling Block[J].Earth Science,2018,43(7):2234-2248.

    徐通,裴先治,李瑞保,等.勉略构造带横现河地区张岩沟双峰式火山岩的地球化学特征、LA-ICP-MS锆石U-Pb年龄及其构造意义[J].中国地质,2013,40(6):1777-1792.

    XU Tong,PEI Xianzhi,LI Ruibao,et al.Geochemical characteristics,LA-ICP-MS zircon U-Pb dating and tectonic significance of Zhangyangou bimodal volcanic rocks in Hengxianhe area,Mian-Lue tectonic zone[J]. Geology in China,2013,40(6):1777-1792.

    徐通,裴先治,刘成军,等.南秦岭勉略构造带张儿沟新元古代变安山岩地球化学特征及锆石LA-ICP-MSU-Pb年龄——Rodinia超大陆聚合事件的记录[J].地质论评,2016,62(2):434-450.

    XU Tong,PEI Xianzhi,LIU Chenjun,et al.Geochemical Features and Zircon LA-ICP-MS U-Pb Ages of the Neoproterozoic Zhangergou Metamorphic Andesitic Rocks in the Mianxian-Lueyang Area of South Qinling Orogen:Evidence for Amalgamation of Rodinia Supercontinent[J]. Geological Review,2016,62(2):434-450.

    徐通.秦岭南缘勉略构造带康县-略阳地区组成特征及构造演化研究[D].西安:长安大学,2016,1-136.

    XU Tong.Component Features and Tectonic Evolution of Mianlue Tectonic Zone in Kangxian-Lueyang Area,South of Qinling Orogen[D]. Xi'an:Chang'an University,2016,1-136.

    徐通,裴先治,李瑞保,等.南秦岭勉略构造带黑沟火山岩年代学及地球化学特征——新元古代勉略洋盆存在及俯冲的记录[J].地质论评,2017,63(2):375-394.

    XU Tong,PEI Xianzhi,LI Ruibao,et al. Ages and Geochemical Features of the Heigouxia Volcanic Rocks in the Mianxian-Lüeyang Area of South Qinling Orogen:Evidence for Existence and Subduction of Neoproterozoic Mianxian-Lueyang Ocean[J]. Geological Review,2017,63(2):375-394.

    闫全人,王宗起,闫臻,等.碧口群火山岩的时代-SHRIMP锆石U-Pb测年结果[J].地质通报,2003,22(6):456-458.

    YAN Quanren,WANG Zongqi,YAN Zhen,et al. Geochronology of the Bikou Group volcanic rocks:Newest results from SHRIMP zircon U-Pb dating[J]. Geological Bulletin of China,2003,22(6):456-458.

    闫全人,王宗起,闫臻,等.秦岭勉略构造混杂带康县-勉县段蛇绿岩块-铁镁质岩块的SHRIMP年代及其意义[J].地质论评,2007,53(6):755-764.

    YAN Quanren,WANG Zongqi,YAN Zhen,et al.SHRIMP Analyses for Ophiolitic-Mafic Blocks in the Kangxian-Mianxian Section of the Mianxian-Lueyang Melange:Their Geological Implications[J]. Geological Review,2007,53(6):755-764.

    叶霖,程增涛,陆丽娜,等.陕南勉略宁地区铜厂闪长岩岩石地球化学及SHRIMP锆石U-Pb同位素年代学[J].岩石学报,2009,25(11):220-226.

    YE Lin,CHENG Zengtao,LU Lina,et al. Petrological geochronology and zircon SHRIMP U-Pb of Tongchang diorites, Mianluening area, Southern Shaanxi provience[J]. Acta Petrologica Sinica,2009,25(11):220-226.

    张成立,刘良,王涛,等.北秦岭早古生代大陆碰撞过程中的花岗岩浆作用[J].科学通报,2013,58(23):2323-2329.

    ZHANG Chengli,LIU Liang,WANG Tao,et al.Granitic magmatism related to early Paleozoic continental collision in the North Qinling belt[J]. Chinese Science Bulletin,2013,58(23):2323-2329.

    张国伟,孟庆任,赖绍聪.秦岭造山带的结构构造[J].中国科学(B辑),1995,25(9):994-1003.

    ZHANG Guowei,MENG Qinren,LAI Shaocong. Structure and Structure of Qinling Orogenic Belt[J].Science in China Series B-Chemistry,1995,25(9):994-1003.

    张国伟,孟庆任,于在平,等.秦岭造山带的造山过程及其动力学特征[J].中国科学(D辑:地球科学),1996,26(3):193-200.

    ZHANG Guowei,MENG Qinren,YU Zaiping,et al. Orogenic Process and Dynamics of Qinling Orogenic Belt[J]. Science in China(Series D:Earth Sciences),1996,26(3):193-200.

    张国伟,张本仁,袁学诚,等.秦岭造山带与大陆动力学[M]. 北京:科学出版社,2001,1-855.

    ZHANG Guowei,ZHANG Benren,YUAN Xuecheng,et al. Qinling orogenic belt and continental dynamics[M]. Beijing:Science Press,2001,1-855.

    张国伟,董云鹏,赖绍聪,等.秦岭-大别造山带南缘勉略构造带与勉略缝合带[J].中国科学(D辑:地球科学),2003,33(12):1121-1135.

    ZHANG Guowei,DONG Yunpeng,LAI Shaocong,et al. Mianlue tectonic zone and Mianlue suture zone on southern margin of Qinling-Dabie orogenic belt[J]. Science in China(Series D:Earth Sciences),2003,33(12):1121-1135.

    张国伟,郭安林,姚安平.中国大陆构造中的西秦岭-松潘大陆构造结[J].地学前缘,2004,11(3):23-32.

    ZHANG Guowei,GUO Anlin,YAO Anping. Western Qinling-Songpan continental tectonic node in China's continental tectonic[J]. Earth Science Frontiers,2004,11(3):23-32.

    张国伟,董云鹏,赖绍聪,等.秦岭勉略构造带与中国大陆构造[M].北京:科学出版社,2015,1-510.

    ZHANG Guowei,DONG Yunpeng,LAI Shaocong,et al.The Mianlue Tectonic Zone of the Qinling Orogen and China Continental Tectonics[M].Beijing:Science Press,2015,1-510.

    张宗清,唐索寒,张国伟,等.勉县-略阳蛇绿混杂岩带镁铁质-安山质火山岩块年龄和该带构造演化的复杂性[J]. 地质学报,2005,79(4):531-539.

    ZHANG Zongqing,TANG Suohan,ZHANG Guowei,et al.Ages of Metamorphic Mafic-Andesitic Volcanic Rock Blocks and TectonicEvolution Complexity of M ianxian-Lueyang Ophiolitic Me lange Belt[J].Acta Geologica Sinica,2005,79(4):531-539.

    赵凤清,赵文平,左义成,等.陕南汉中地区新元古代岩浆岩U-Pb年代学[J].地质通报,2006,25(3):383-388.

    ZHAO Fengqing,ZHAO Wenping,ZUO Yicheng,et al. U-Pb geochronology of Neoproterozoic magmatic rocks in Hanzhong,southern Shaanxi,China[J]. Geological Bulletin Of China,2006,25(3):383-388.

    邹先武,段其发,汤朝阳,等.北大巴山镇坪地区辉绿岩锆石SHRIMP U-Pb定年和岩石地球化学特征[J].中国地质,2011,38(2):282-291.

    ZOU Xianwu,DUAN Qifa,TANG Chaoyang,et al. SHRIMP zircon U-Pb dating and lithogeochemical characteristics of diabase from Zhenping area in North Daba Mountain[J]. Geology In China,2011,38(2):282-291.

    BADER T,RATSCHBACHER L,et al.The heart of China revisited,I.Proterozoic tectonics of the Qin mountains in the core of supercontinent Rodinia[J]. Tectonics,2013,32(3):661-687.

    CHEN,L Y,LIU X C,QU,et al.U-Pb Zircon Ages and Geochemistry of the Wuguan Complex in the Qinling Orogen,Central China:implications for the Late Paleozoic Tectonic Evolution between the Sino-Korean and Yangtze Cratons[J]. Lithos,2014,192-195:192-207.

    DONG YUNPENG,LIU XIAOMING,SANTOSH,et al. Neoproterozoic subduction tectonics of the northwestern Yangtze Block in South China:Constrains from zircon U-Pb geochronology and geochemistry of mafic intrusions in the Hannan Massif[J]. Precambrian Research,2011,189(1-2):66-90.

    DONG YUNPENG,LIU XIAOMING,SANTOSH,M,et al.Neoproterozoic accretionary tectonics along the northwestern margin of the Yangtze Block,China:Constraints from zircon U-Pb geochronology and geochemistry[J].Precambrian Research,2012,196-197:247-274.

    DONG YUNPENG,SANTOSH,et al.Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt,Central China[J].Gondwana Research,2016,29(1):1-40.

    HUANG B,ZHOU Y,ZHU R,et al.Discussion on Phanerozoic evolution and formation of continental China,based on paleomagnetic studies[J].Earth Science Frontiers,2008,15(3):348-359.

    LIU,X.C.U-Pb Gircon Agc and Ucochcmical Constraints on Zcctonic Evolution of the Palcozoic Accrctionary Orogcnic Systcm in the Zongbai Orogcn, Central China[J]. Tectooophysics,2013,599(4):67-88.

    MENG QINGREN,ZHANG GUOWEI.Timing of collision of the North and South China blocks:Controversy and reconciliation[J]. Geology,1999,27(2):123-126.

    WANG X C,LI X H,Li W X.et al.The Bikou Basalts in the Northwestern Yangtze Block,South China:Remnants of 820-810 Ma Continental Flood Basalts[J].Geological Society of America Bulletin,2008,120(11-12):1478-1492.

    WU,Y.B.ZHENG,Y. F,et al.Tectonic Evolution of a Compolite Collision Orogen:An Overview on the Qinling Tongbai-Hong'an-Dabi-Sulu Orogenic Belt in Central China[J]. Goodwana Research,2013,23(4):1402-1428.

    YAN,Z,WANG.Ucochcmical Constraints on the Provenance and Depositional Setting of the Devonian Liuling Uroup,East Qinling Mountains,Ccntral China;Im-plications for the Tectonic Evolution of the Qinling Orogenie Be1t[J].Joumal of Sedimentary Research,2012,82(1):9-20.

    YAN Z,FU C L,WANG Z Q,et al. Late Paleozoic Subduction-Accretion along the Southern Margin of the North Qinling Tcrranc,Central China; Evidence from Zircon U-Pb Dating and Geochemistry of the Wuguan Complex[J]. Gondwana Research,2016,30:97-111.

    YANG Z,SUN Z,YANG T,et a1.A long conection 750~380Ma between South China and Australia;paleomagnetic constraints.Earth and Planetary Science Letters,2004,220(3-4):423-434.

    ZHAO J.H,M.f et al.Melting of Newly Formed Mafic Crust for the Formation of Neoproterozoic I-Type Granite in the Hannan Region, South China[J].The journal of Geoloy,2009,117(1):54-70.

    ZHOU M.F,KENNEDY.Neoproterozoic Arc Related Mafic Intrusions along the Northern Margin of South China:Implications for the Accretion of Rodinia[J].The journal of Geology 2002,110(5):611-618.

  • 期刊类型引用(5)

    1. 张炜. 柴北缘中酸性侵入岩成因及其构造意义. 资源信息与工程. 2024(02): 11-14 . 百度学术
    2. 庄玉军,辜平阳,王盼龙,高永伟,彭璇. 柴北缘欧龙布鲁克微陆块西段原“达肯大坂岩群”的沉积时代、源区及其对冈瓦纳大陆重建的制约. 岩石学报. 2024(11): 3609-3622 . 百度学术
    3. 徐盛林,邵兆刚,李冰,陈宣华,王振东,徐大兴,马英,丁伟翠,周鹏超,王叶. 柴达木盆地西部岩石圈电性结构研究. 地质通报. 2024(11): 1907-1920 . 百度学术
    4. 陈宁,曾忠诚,赵端昌,张若愚,李琦,赵江林,王天毅,刘向东. 阿尔金造山带南缘晚奥陶世碱性辉长岩成因及其大地构造意义. 西北地质. 2023(04): 91-102 . 本站查看
    5. 刘嘉情,钟世华,李三忠,丰成友,戴黎明,索艳慧,郭广慧,牛警徽,薛梓萌,黄宇. 基于机器学习和全岩成分识别东昆仑祁漫塔格斑岩–矽卡岩矿床成矿岩体和贫矿岩体. 西北地质. 2023(06): 41-56 . 本站查看

    其他类型引用(0)

计量
  • 文章访问数:  1585
  • HTML全文浏览量:  0
  • PDF下载量:  1695
  • 被引次数: 5
出版历程
  • 收稿日期:  2019-10-11
  • 修回日期:  2019-12-01
  • 网络出版日期:  2022-07-28
  • 发布日期:  2020-06-04

目录

/

返回文章
返回