Lithologic Mapping and Alteration Information Extracting Based on ASTER Spectral Signature: An Example from Nianzha Gold Deposit
-
摘要: 基于ASTER光谱特征进行岩性解译和蚀变信息提取在找矿勘查方面有着广泛应用,但在国内鲜有报道。以雅鲁藏布江缝合带念扎金矿为研究区,通过对与Fe3+、Fe2+、Al-OH、Mg-OH、硅酸盐、碳酸盐等成分相关特征的矿物光谱特征分析,运用“波段比值法+假彩色合成法”进行细致的岩性单元分类与地质填图,运用“地质遥感剖面+最优密度分割法”定量圈定与矿化有关的蚀变带范围,结合已有的控矿构造信息,提供推测找矿有利区2处。研究结果表明,基于ASTER光谱特征的岩性填图和蚀变信息提取方法进行找矿预测,在西藏高海拔地区具有天然的适用性,可以准确指示岩性和蚀变的关键找矿标志,是西藏地区快速有效找矿勘查的重要手段,也为区带内其他相同类型的金矿床研究提供借鉴。Abstract: Lithologic interpretation and alteration information extracting based on ASTER spectral analysis have been widely used in ore exploration.The authors carried out the study in Nianzha gold deposit of Yarlung Zangbo suture zone.Minerals components such as Fe3+, Fe2+, Al-OH, Mg-OH, silicate and carbonate were analyzed based on ASTER spectrum. This paper used "band radio method + false color synthesis" for lithologic classification and geological mapping and quantitatively delineated the range of mineralization-relatedalteration zone and two prospecting target areas with the "geologic-remote sensing profiles + best density seperation method". The results show that lithological mapping and alteration information extracting based on aster spectral are suitable for prospecting prediction in high altitude areas of Tibet, which can accurately indicate the key prospecting indicators of lithology and alteration.It proves to be an important means of rapid and effective ore exploration in Tibet, and provides reference for other deposits of the same type in the belt.
-
-
侯增谦,杨竹森,徐文艺,等. 青藏高原碰撞造山带:I.主碰撞造山成矿作用[J]. 矿床地质, 2006, 25(4):337-358. HOU Zengqian, YANG Zhuseng, XU Wenyi, et al. Metallogenesis in Tibetan collisional orogenic belt:I. Mineralization in main collisional orogenic setting[J]. Mineral Deposits, 2006, 25(4):337-358.
侯增谦,王二七. 印度-亚洲大陆碰撞成矿作用主要研究进展[J]. 地球学报, 2008, 29(3):20-37. HOU Zengqian, WANG Erqi. Metallogenesis of the Indo-Asian collisional orogen:new advances[J]. Acta Geoscientica Sinica, 2008, 29(3):20-37.
胡敬仁. 中华人民共和国区域地质调查报告-日喀则市幅(H45C003004)[M]. 武汉:中国地质大学出版社, 2014:86-190. HU Jingren. Regional Geological survey report of the People's Republic of China-Xigaze (H45C003004)[M]. Wuhan:China University of Geosciences Press, 2014:86-190.
李华健,王庆飞,杨林,等. 青藏高原碰撞造山背景造山型金矿床:构造背景、地质及地球化学特征[J]. 岩石学报, 2017, 33(7):2189-2201. LI Huajian, WANG Qingfei, YANG Lin, et al. Orogenic gold deposits formed in Tibetan collisional orogen setting:Geotectonic setting, geological and geochemical features[J]. Acta Petrologica Sinica, 2017, 33(7):2189-2201.
刘庆生. 有序岩石遥感信息的最优分割[J]. 国土资源遥感, 1999,10(2):50-54. LIU Qingsheng. Optimum segmentation of sequential rock remote sensing information[J]. Remote Sensing for Land & Resources, 1999,10(2):50-54.
妙超. 新疆博格达南缘化探与遥感信息综合应用及找矿预测[J]. 西北地质, 2015, 48(1):213-220. MIAO Chao. Comprehensive application of geochemical prospecting and remote sensing information in prospecting of the Southern of Bogda, Xinjiang[J]. Northwestern Geology, 2015, 48(1):213-220.
裴英茹. 青藏高原南部造山型金矿地质特征及成矿机制[D]. 北京:中国地质大学(北京), 2016. PEI Yingru. Geological characteristics and metallogenic mechanism of orogenic gold deposit in the southern area of Tibetan Plateau[D]. Beijing:China University of Geoscience (Beijing), 2016.
宿虎,陈美媛,张丹青,等. 高植被覆盖区遥感矿化蚀变信息提取方法研究——以甘肃省西河县大桥-石峡地区为例[J]. 西北地质, 2020, 53(1):146-161. SU Hu, CHEN Meiyuan, ZHANG Danqing, et al. Study on the Method of Extracting Information of Mineralization Alteration by using Remote Sensing in High Vegetation Coverage Area-Taking Daqiao-Shixia Area of Xihe County, Gansu Province For Example[J]. Northwestern Geology, 2020, 53(1):146-161.
孙晓明,韦慧晓,翟伟,等. 藏南邦布大型造山型金矿成矿流体地球化学和成矿机制[J]. 岩石学报, 2010, 26(6):1672-1684. SUN Xiaoming, WEI Huixiao, ZHAI Wei, et al. Ore-forming fluid geochemistry and maeallogenic mechanism of Bangu large scale orogenic gold deposit in southern Tibet, China[J]. Acta Petrologica Sinica, 2010, 26(6):1672-1684.
田淑芳,詹骞.遥感地质学[M]. 北京:地质出版社,2013:1-324. TIAN Shufang, ZHAN Qian. Remote sensing geology[M]. Beijing:Geological Publishing House, 2013:1-324.
王庆飞,邓军,赵鹤森,等. 造山型金矿研究进展:兼论中国造山型金成矿作用[J]. 地球科学, 2019, 44(6):2155-2186. WANG Qingfei, DENG Jun, ZHAO Hesen, et al. Review on Orogenic Gold Deposits[J]. Earth Science, 2019, 44(6):2155-2186.
王庆飞,邓军,翁伟俊,等. 青藏高原新生代造山型金成矿系统[J]. 岩石学报, 2020, 36(5):1315-1353. WANG Qingfei, DENG Jun, WENG Weijun, et al., Cenozoic orogenic gold system in Tibet[J]. Acta Petrologica Sinica, 2020, 36(5):1315-1353.
温春齐,多吉,范小平,等. 西藏西部马攸木金矿床成矿流体的特征[J]. 地质通报, 2006, 25(1-2):261-266. WEN Chunqi,DUO Ji,FAN Xiaoping,et al. Characteristics of ore fluids of the Mayun gole deposit, weatern Tibet, China[J]. Geological Bulletin of China, 2006, 25(1-2):261-266.
吴德文,张远飞,朱谷昌. 遥感图像岩石信息提取的最优密度分割方法[J]. 国土资源遥感, 2002, 13(4):51-54. WU Dewen, ZHANG Yuanfei, ZHU Guchang. The best density separation method for extracting rock information from remote sensing image[J]. Remote Sensing for Land & Resources, 2002, 13(4):51-54.
闫颖,陈有炘,孟勇,等. 遥感技术在东天山大黑山地区地质填图中的应用[J]. 西北地质, 2015,48(2):231-237. YAN Yin, CHEN Youxin, MENG Yong, et al. Application of Remote Sensing Technique in the Geologic Mapping of Daheishan Region, Eastern Tianshan[J]. Northwestern Geology, 2015,48(2):231-237.
张守林. 基于ETM数据矿化蚀变信息定量提取方法研究[D]. 北京:中国地质大学(北京), 2006. ZHANG Shoulin. A study on methods used to quantitatively extract mineralized alteration information from ETM data[D]. Beijing:China University of Geoscience (Beijing), 2006.
张雄. 青藏高原雅鲁藏布江缝合带造山型金矿成矿作用研究[D]. 北京:中国地质大学(北京), 2017. ZHANG Xiong. Mineralization of orogenic gold deposits in the Indus-Yarlung Tsangpo suture zone of Tibetan Plateau[D]. Beijing:China University of Geoscience(Beijing), 2017.
张雄,赵晓燕,杨竹森. 念扎金矿床热历史:锆石U-Pb、(U-Th)/He及磷灰石裂变径迹年代学的制约[J]. 地球科学, 2019, 44(06):2039-2051. ZHANG Xiong, ZHAO Xiaoyan, YANG Zhusen. Thermal History of Nianzha Gold Deposit:Constraints from Zircon U-Pb, (U-Th)/He and Apatite Fission Track Geochronology[J]. Earth Science, 2019, 44(06):2039-2051.
Chung Sunlin, Chu Meifei, Zhang Yuquan, et al. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism[J]. Earth Science Reviews, 2005, 68(3-4):173-196.
Ding Lin, Kapp P, Wan Xiaoqiao. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet[J]. Tectonics, 2005, 24(3):0278-7407.
Hunt G R, Salisbury J W, Lenhoff CJ. Visible and near infrared spectra of minerals and rocks. VI. Additional silicates[J]. Modern Geology, 1973, 4:85-106.
Hunt G R. Near-infrared (1.3-2.4) μm spectra of alteration minerals-Potential for use in remote sensing[J]. Geophysics, 1979, 44(12):1974-1986.
Mars J C, Rowan L C. Regional mapping of phyllic-and argillic-altered rocks in the Zagros magmatic arc, Iran, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and logical operator algorithms[J]. Geosphere, 2006, 2(3):161-186.
Mars J C, Rowan L C. Aster spectral analysis and lithologic mapping of the khanneshin carbonatite volcano, Afghanistan[J]. Geosphere, 2011, 7(1):276-289.
Phillips N, Powell R. A practical classification of gold deposits, with a theoretical basis[J]. Ore Geology Reviews, 2015,65(3):568-573.
Rockwell B W, Hofstra A H. Identification of quartz and carbonate minerals across northern Nevada using Aster thermal infrared emissivity data-implications for geologic mapping and mineral resource investigations in well-studied and frontier areas[J]. Geosphere, 2008, 4(1):218-246.
Rowan L C, Mars J C. Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data[J]. Remote Sensing of Environment, 2003, 84(3):350-366.
Rowan L C, Mars J C, Simpson C J. Lithologic mapping of the Mordor, NT, Australia ultramafic complex by using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)[J]. Remote Sensing of Environment, 2005, 99(1-2):105-126.
Wang Qingfei, Groves D I, Deng Jun, et al. Evolution of the Miocene Ailaoshan orogenic gold deposits, southeastern Tibet, during a complex tectonic history of lithosphere-crust interaction[J]. Mineralium Deposita, 2020, 55:1085-1104.
Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1):211-280.
-
期刊类型引用(7)
1. 胡官兵,廖志坚,刘舫,李懿,李政. 纳米比亚哈达普铜铅金属矿普查区遥感地质解译与应用. 地质与勘探. 2025(01): 211-220 . 百度学术
2. 王生礼,李志军,余杰,司永强. 模糊逻辑模型在珠勒地区遥感找矿中的应用. 科学技术与工程. 2024(01): 134-142 . 百度学术
3. 王平平,王婷,赵慧,姚虎,尹艺霖. 基于ASTER和WorldView-3数据在新疆坡北地区蚀变矿物信息提取对比研究. 新疆地质. 2024(01): 127-132 . 百度学术
4. 裴秋明,沈家乐,王世明,房大任,高永璋,李典,马少兵. 多源遥感卫星数据在脉状萤石矿床中的找矿预测应用:以内蒙古水头萤石矿床为例. 西北地质. 2024(04): 121-134 . 本站查看
5. 王平平,张月阳,赵慧,姚虎. 基于ASTER数据的新疆若羌区蚀变矿物信息提取方法. 地质学刊. 2024(03): 273-278 . 百度学术
6. 姚宏岗. 不同植被覆盖区无人机遥感影像矿化蚀变特征识别. 矿产勘查. 2023(02): 229-236 . 百度学术
7. 周传芳,陈卓,孙彦峰,梁中恺,杨长保,姜平,冯嘉,杜海双. 遥感在大兴安岭森林覆盖区地质矿产调查中的应用——以黑龙江洛古河1∶5万区域地质矿产调查工作为例. 地质与资源. 2022(05): 632-641+613 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 1191
- HTML全文浏览量: 2
- PDF下载量: 1006
- 被引次数: 7