A Review of MC-ICP-MS Fe Isotope Analytical Methods
-
摘要: 多接收电感耦合等离子体质谱(MC-ICP-MS)的应用已在金属稳定同位素分析方法上取得重大突破,促进了金属稳定同位素地球化学的快速发展。铁同位素作为一种新的同位素示踪体系,已广泛应用于主要的地球科学及其分支学科的研究中。目前,MC-ICP-MS对铁同位素的日常测定精度可以达到±0.03‰,但化学纯化和仪器分馏引起的质量偏差很容易引起较大的分析误差。因此,准确获取天然样品的铁同位素组成数据仍然是一个挑战。笔者系统回顾了铁同位素分析技术的发展,详细描述了铁同位素分析过程,包括化学纯化过程、仪器质量歧视校正和基质效应的规避等。
-
关键词:
- 铁同位素 /
- 多接收电感耦合等离子体质谱 /
- 质量歧视校正 /
- 同位素分馏 /
- 基质效应
Abstract: The use of multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) paved the way in the stable isotope analysis of metals, promoting the rapid development of non-traditional stable isotope geochemistry, among which, Fe isotope has received the greatest attention. This surge of study has been fueled largely by the redox-sensitive nature of iron as well as its availability in life. The research on the distribution and isotopic compositions of iron has covered almost all sub-branches of earth science, ranging from biochemistry to geochemistry. The MC-ICP-MS instrument has been demonstrated to be very efficient in determining trace element compositions in a wide variety of applications. However, many questions, such as chemical purification, mass bias correction and efficiently avoid of matrix effects, remain challenging.-
Keywords:
- Fe isotope /
- MC-ICP-MS /
- mass bias calibration /
- isotope fractionation /
- matrix effects
-
-
谭德灿, 朱建明, 王静, 等.同位素双稀释剂法的原理与应用Ⅰ:原理部分[J]. 矿物岩石地球化学通报, 2016, 35(1), 138-145. TAN Decan, ZHU Jianming, WANG Jing, et al. The Principle and Application of Isotopic Double Spike Technique Ⅰ:Principle[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(1):138-145.
项媛馨.华南灵山高分异花岗岩成因及铌钽成矿的Fe-Mg同位素制约[D]. 北京:中国科学院地质与地球物理研究所, 2018. XIANG Yuanxin.Petrogenesis of highly fractionated granites and related Nb-Ta mineralization of Lingshan pluton in the Southeast China:constraints from Fe-Mg isotopes.[D]. Beijing:Institute of Geology and Geophysics Chinese Academy of Sciences, 2018.
何永胜, 胡东平, 朱传卫.地球科学中铁同位素研究进展[J]. 地学前缘, 2015, 22(5), 54-71. HE Yongsheng, HU Dongping, ZHU Chuanwei.Progress of iron isotope geochemistry in geosciences[J]. Earth Science Frontiers, 2015, 22(5), 054-071.
He, Y., Ke, S., Teng, F.Z., et al. High-Precision Iron Isotope Analysis of Geological Reference Materials by High-Resolution MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2015, 39 (3), 341-356.
Heimann, A., Beard, B.L., Johnson, C.M.The role of volatile exsolution and sub-solidus fluid/rock interactions in producing high56Fe/54Fe ratios in siliceous igneous rocks[J]. Geochimica et Cosmochimica Acta, 2008, 72 (17), 4379-4396.
Hoefs, J.Stable isotope geochemistry[M]. Springer, Cham, Switzerland:Springer Iternational Publishing AG, 2018.
Ian, P., & Swainson.From the series editor[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1), 1-iii.
Ilina, S.M., Poitrasson, F., Lapitskiy, S.A., et al. Extreme iron isotope fractionation between colloids and particles of boreal and temperate organic-rich waters[J]. Geochimica et Cosmochimica Acta, 2013, 101, 96-111.
Johnson, C.M., Beard, B.L., Roden, E.E.The Iron Isotope Fingerprints of Redox and Biogeochemical Cycling in Modern and Ancient Earth[J]. Annual Review of Earth and Planetary Sciences, 2008, 36 (1), 457-493.
Korkisch J, Worsfold P J.Handbook of ion exchange resins:their application to inorganic analytical chemistry[M]. Boca Raton, FL:CRC Press, 1989.
Kraus, K.A., Moore, G.E.Anion Exchange Studies.VI.1, 2 The Divalent Transition Elements Manganese to Zinc in Hydrochloric Acid[J]. Journal of the American Chemical Society, 1953, 75 (6), 1460-1462.
Larner, F.Can we use high precision metal isotope analysis to improve our understanding of cancer?[J]. Analytical and Bioanalytical Chemistry, 2016, 408 (2), 345-349.
Malinovsky, D., Stenberg, A., Rodushkin, I., et al. Performance of high resolution MC-ICP-MS for Fe isotope ratio measurements in sedimentary geological materials[J]. J.Anal.At.Spectrom, 2003, 18 (7), 687-695.
Millet, M.A., Baker, J.A., Payne, C.E.Ultra-precise stable Fe isotope measurements by high resolution multiple-collector inductively coupled plasma mass spectrometry with a 57Fe-58Fe double spike[J]. Chemical Geology, 2012, 304-305, 18-25.
Poitrasson, F., Freydier, R.Heavy iron isotope composition of granites determined by high resolution MC-ICP-MS[J]. Chemical Geology, 2005, 222 (1-2), 132-147.
Poitrasson, F., Roskosz, M., Corgne, A.No iron isotope fractionation between molten alloys and silicate melt to 2000℃ and 7.7 GPa:Experimental evidence and implications for planetary differentiation and accretion[J]. Earth and Planetary Science Letters 278, 2009, (3-4), 376-385.
Raiswell, R., Canfield, D.E.The Iron Biogeochemical Cycle Past and Present[J]. Geochemical Perspectives, 2012, 1 (1):1-2.
Rouxel, O., Dobbek, N., Ludden, J., et al. Iron isotope fractionation during oceanic crust alteration[J]. Chemical Geology, 2003, 202 (1-2):155-182.
Schoenberg, R., Blanckenburg, F.von.An assessment of the accuracy of stable Fe isotope ratio measurements on samples with organic and inorganic matrices by high-resolution multicollector ICP-MS[J]. International Journal of Mass Spectrometry, 2005, 242 (2-3):257-272.
Schrenk, W.G., Graber, K., Johnson, R.Flame Photometric Determination of Copper in Mineral Mixes.Ion Exchange Technique for Sample Preparation[J]. Analytical Chemistry, 1961, 33 (1), 106-108.
Schuessler, J.A., Schoenberg, R., Sigmarsson, O.Iron and lithium isotope systematics of the Hekla volcano, Iceland-Evidence for Fe isotope fractionation during magma differentiation[J]. Chemical Geology, 2009, 258 (1-2), 78-91.
Sossi, P.A., Halverson, G.P., Nebel, O., et al,. Combined Separation of Cu, Fe and Zn from Rock Matrices and Improved Analytical Protocols for Stable Isotope Determination[J]. Geostandards and Geoanalytical Research, 2015, 39 (2), 129-149.
Teng, F.Z., Dauphas, N., Helz, R.T., et al. Diffusion-driven magnesium and iron isotope fractionation in Hawaiian olivine[J]. Earth and Planetary Science Letters, 2011, 308 (3-4), 317-324.
Teng, F.Z., Dauphas, N., Huang, S., et al. Iron isotopic systematics of oceanic basalts[J]. Geochimica et Cosmochimica Acta, 2013, 107:12-26.
Walton, H.F.Ion Exchange.[J]. Science, 1962, 138 (3537):133-133.
Weyer, S., Ionov, D.A.Partial melting and melt percolation in the mantle:The message from Fe isotopes[J]. Earth and Planetary Science Letters, 2007, 259 (1-2):119-133.
Weyer, S., Schwieters, J.High precision Fe isotope measurements with high mass resolution MC-ICPMS[J]. International Journal of Mass Spectrometry, 2003, 226 (3):355-368.
White W M.Encyclopedia of Geochemistry (A Comprehensive Reference Source on the Chemistry of the Earth)[J]. Tantalum.2018, 263:1419-1421.
Wiesli, R.A., Beard, B.L., Johnson, C.M.Experimental determination of Fe isotope fractionation between aqueous Fe(II), siderite and "green rust" in abiotic systems[J]. Chemical Geology, 2004, 211 (3-4):343-362.
Williams, H., Peslier, A., Mccammon, C., et al. Systematic iron isotope variations in mantle rocks and minerals:The effects of partial melting and oxygen fugacity[J]. Earth and Planetary Science Letters, 2005, 235 (1-2):435-452.
Wu, B., Amelung, W., Xing, Y., et al. Iron cycling and isotope fractionation in terrestrial ecosystems[J]. Earth-Science Reviews, 2019, 190:323-352.
Zambardi, T., Lundstrom, C.C., Li, X., et al. Fe and Si isotope variations at Cedar Butte volcano; insight into magmatic differentiation[J]. Earth and Planetary Science Letters, 2014, 405:169-179.
Zhu, X.K., Guo, Y., O'Nions, R.K., et al. Isotopic homogeneity of iron in the early solar nebula[J]. Geology, 2001, 412 (6844):311-313.
Albarède, F.Metal Stable Isotopes in the Human Body:A Tribute of Geochemistry to Medicine[J]. Elements, 2015, 11 (4);265-269.
Anbar, A.D., Roe, J.E., Barling, J., et al. Nonbiological fractionation of iron isotopes[J]. Science (New York, N.Y.), 2000, 288 (5463):126-128.
Arnold, G.L., Anbar, A.D., Barling, J., et al. Molybdenum isotope evidence for widespread anoxia in mid-Proterozoic oceans[J]. Science, 2004, 304 (5667):87-90.
Berglund, M., Wieser, M.E.Isotopic compositions of the elements 2009 (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2011, 83 (2):397-410.
Borrok, D.M., Wanty, R.B., Ridley, W.I., et al. Separation of copper, iron, and zinc from complex aqueous solutions for isotopic measurement[J]. Chemical Geology, 2007, 242 (3-4);400-414.
Beard B L, Johnson C M.High precision iron isotope measurements of terrestrial and lunar materials[J]. Geochimica et Cosmochimica Acta, 1999, 63(11-12):1653-1660.
Briat, J., Lobreaux, S.Iron transport and storage in plants[J]. Trends in Plant Science, 1997, 2(5);187-193.
Conway, T.M., Rosenberg, A.D., Adkins, J.F., et al. A new method for precise determination of iron, zinc and cadmium stable isotope ratios in seawater by double-spike mass spectrometry[J]. Analytica Chimica Acta, 2013, 793; 44-52.
Craddock, P.R., Dauphas, N.Iron Isotopic Compositions of Geological Reference Materials and Chondrites[J]. Geostandards and Geoanalytical Research, 2011, 35 (1);101-123.
Dauphas, N., Janney, P.E., Mendybaev, R.A., et al. Chromatographic separation and multicollection-ICPMS analysis of iron.Investigating mass-dependent and-independent isotope effects[J]. Analytical chemistry, 2004, 76 (19):5855-5863.
Dauphas, N., John, S.G., Rouxel, O.Iron Isotope Systematics[J]. Reviews in Mineralogyand Geochemistry, 2017, 82 (1):415-510.
Dauphas, N., Pourmand, A., Teng, F.Z.Routine isotopic analysis of iron by HR-MC-ICPMS:How precise and how accurate?[J]. Chemical Geology, 2009, 267 (3-4):175-184.
Dauphas, N., Rouxel, O.Mass spectrometry and natural variations of iron isotopes[J]. Mass Spectrometry Reviews, 2006, 25 (4):515-550.
Dauphas, N., Teng, F.Z., Arndt, N.T.Magnesium and iron isotopes in 2.7 Ga Alexo komatiites:Mantle signatures, no evidence for Soret diffusion, and identification of diffusive transport in zoned olivine[J]. Geochimica et Cosmochimica Acta, 2010, 74 (11):3274-3291.
Dideriksen, K., Baker, J.A., Stipp, S.Iron isotopes in natural carbonate minerals determined by MC-ICP-MS with a58Fe-54Fe double spike[J]. Geochimica et Cosmochimica Acta, 2006, 70 (1):118-132.
Strelow F.Improved separation of iron from copper and other elements by anion-exchange chromatography on a 4% cross-linked resin with high concentrations of hydrochloric acid[J]. Talanta, 1980, 27(9):727-732.
Fantle, M.S., DePaolo, D.J.Iron isotopic fractionation during continental weathering[J]. Earth and PlanetaryScience Letters, 2004, 228(3-4):547-562.
Gerdes, W.H., Rieman, W.Analysis of brass by anion-exchange chromatography[J]. Analytica Chimica Acta, 1962, 27, 113-118.
-
期刊类型引用(8)
1. 刘妮娜,温凯,飞菲,田开飞,刘松彪,高帅. 西安近断层区黄土动力特性研究. 西安建筑科技大学学报(自然科学版). 2024(04): 544-553 . 百度学术
2. 窦睿音,张文洁,陈晨. 陕西省“三生”空间格局演变与驱动机制研究. 干旱区地理. 2023(02): 264-273 . 百度学术
3. 姜杉钰,王峰. 推动我国城市地质工作深化发展的思考. 自然资源情报. 2023(05): 20-25 . 百度学术
4. 杨忠平,蒋忙舟,张瑞浩,王冠柏,邵明耀. 不同地质条件下地铁振动源强及影响实测与分析. 铁道标准设计. 2023(09): 190-194 . 百度学术
5. 张高锋. 城市地下通道装配式铺盖法施工关键技术. 山西建筑. 2023(21): 92-94 . 百度学术
6. 王潇雅. GIS技术支持下秦岭农村生态环境建设法律问题研究. 智慧农业导刊. 2022(01): 100-103 . 百度学术
7. 张宇. 地下管廊施工衬砌施做时机研究. 黑龙江水利科技. 2022(05): 212-214 . 百度学术
8. 刘哲. 基于时序InSAR技术监测地表形变研究——以西安市为例. 江苏科技信息. 2022(36): 74-76 . 百度学术
其他类型引用(4)
计量
- 文章访问数: 767
- HTML全文浏览量: 15
- PDF下载量: 674
- 被引次数: 12