Petrogenesis of Magmatic Rocks and Adakite of Alkaline Series from Danghenanshan Area in Central Qilian Belt: Implications for Crust-Mantle Interaction in Subduction Zone
-
摘要: 碱性系列岩浆岩和埃达克岩是通常产生于汇聚板块边缘的特殊岩石类型,记录了俯冲物质与地幔橄榄岩相互作用的过程。笔者对中祁连南缘党河南山地区贾公台杂岩体和鸡叫沟岩体进行了岩石学、地球化学和锆石U-Pb年代学研究。LA-ICP-MS锆石U-Pb定年表明,鸡叫沟岩体中的二长闪长岩形成于(467±4.7)Ma,贾公台岩体花岗闪长岩形成于(445±4.3)Ma。地球化学分析结果表明,鸡叫沟杂岩体中角闪辉石岩、辉长岩和二长闪长岩整体上具有富K、富Na的特征,均属于碱性系列岩浆岩,具有钾玄岩特征;岩体中不同岩石类型具有相似的微量元素配分型式,富集Sr、Nb、LILE和LREE等,岩浆源区存在金红石残留,其形成过程与弧地幔楔底部富碱的俯冲沉积物和地幔橄榄岩混合、熔融有关。贾公台花岗闪长岩属于中钾钙碱性系列,Na2O/K2O值大于2.5,样品具有高Sr(>400×10-6)、低Y(<7×10-6)的特征,高Sr/Y值(>70)和La/Yb值(>22)具有高硅埃达克岩特征,与俯冲洋壳的榴辉岩相部分熔融有关,源区存在石榴子石残留特征。党河南山碱性岩浆岩-埃达克岩组合指示了俯冲物质深部熔融的特点(大于50~100 km),揭示了该地区强烈的壳幔相互作用过程,表明俯冲沉积物和俯冲洋壳可以为弧岩浆侵入体形成提供直接的物质来源,进一步说明俯冲物质和地幔橄榄岩相互作用可能是岛弧地壳生长的方式之一。Abstract: Magmatic rocks and adakite of alkaline series, often at the convergent plate boundaries, witness the interaction process between subduction material and mantle peridotite. This investigation of zircon U-Pb dating and whole-rock geochemistry of the Jiagongtai and Jijiaogou plutons in the western Central Qilian belt provides new insights into crust-mantle interaction in subduction zone. LA-ICP-MS zircon dating shows that monzodiorite of the Jijiaogou pluton and granodiorite of the Jiagongtai pluton formed at about (467±4.7) Ma and (445±4.3) Ma, respectively.The compositions of Jijiaogou pluton are alkaline series with the characteristics of shoshonite. The different rock types of Jijiaogou pluton have similar trace element patterns and are enriched in Sr、Nb、LILE and LREE, which shows residual rutile in the magma source. The Jijiaogou alkaline series rocks are generated from hybrid alkali-rich subduction sediments and mantle peridotite at the sub-arc mantle wedge. The Jiagongtai granodiorite is medium potassium calc-alkaline series, with Na2O/K2O greater than 2.5; the samples show the characteristics of high Sr (>400×10-6), low Y (<7×10-6), high ratios of Sr/Y (>70) and La/Yb (>22). The Jiagongtai pluton represents high-SiO2 adakite, formed by partial melting of the subducted oceanic crust under eclogite-facies condition, and left garnet residue in the source. The alkaline magma and adakite in Danghenanshan indicate the characteristic of deep melting of subducted materials (greater than 50~100 km) and intense crust-mantle interaction in the source. It further indicates that subducted sediments and oceanic crust can provide a direct material source for the formation of arc magma, and the interaction between subduction material and mantle peridotite may be one of the ways of arc crust growth.
-
-
戴霜, 刘博, 闫宁云,等. 南祁连党河南山地区中酸性浅成侵入体和岩脉岩石地球化学特征及其与金矿成矿关系[J]. 地球科学与环境学报, 2016, 38(6):753-765. DAI Shuang, LIU Bo, YAN Ningyun, et al. Geochemical Characteristics of Intermediate-acid Hypabyssal Intrusions and Dykes in Danghenanshan Area of South Qilian and Its Implications on the Gold Mineralization[J]. Journal of Earch Sciences and Environment, 2016, 38(6):753-765.
范俊杰, 路彦明, 丛润祥, 等. 祁连山西段党河南山北坡3个不同特征的金矿床研究[J].地质找矿论丛, 2008, 23(1):48-53. FAN Junjie, LU Yanming, CONG Runxiang, et al. Study on 3 gold deposits varied in characteristics at the north slope of the Danghe Nanshan Mountain in the west Qilian Mountains[J]. Contributions to Geology and Mineral Resources Research, 2008, 23(1):48-53.
冯益民, 何世平. 北祁连蛇绿岩的地质地球化学研究[J].岩石学报,1995(S1):125-140. FENG Yimin, HE Shiping. Research for Geology and Geochemistry of SeveralOphiolites in the North Qilian Mountains, China[J].Acta Petrologica Sinica, 1995(S1):125-140.
冯益民, 何世平. 祁连山大地构造与造山作用[M]. 北京:地质出版社. 1996. FENG Yimin, HE Shiping. Geotectonics and orogeny of the Qilian Mountains, China[M]. Beijing:Geological Publishing House, 1996.
付长垒, 闫臻, 郭现轻, 等. 拉脊山口蛇绿混杂岩中辉绿岩的地球化学特征及SHRIMP锆石U-Pb年龄[J]. 岩石学报, 2014, 30(6):1695-1706. FU Changlei, YAN Zhen, GUO Xianqing, et al. 2014. Geochemistry and SHRIMP zircon U-Pb age of diabases in the Lajishankou ophiolitic mélange, South Qilian terrane[J]. Acta Petrologica Sinica, 2014,30(6):1695-1706.
计波, 黄博涛, 李向民, 等. 南祁连西北缘肃北红庙沟地区早奥陶世花岗岩年代学、地球化学特征及其地质意义[J].西北地质, 2019, 52(04):63-75. JI Bo, HUANG Botao, LI Xiangmin, et al. Geochronology and Geochemical Characteristics of the Early Ordovician Granite from Hongmiaogou Area in Northwest Margin of South Qilian and Its Geological Significance[J]. Northwestern Geology, 2019, 52(4):63-75.
李厚民, 王崇礼, 刘志武, 等. 南祁连党河南山北坡两个不同特征的金矿床[J].矿床地质, 2003, 22(2):191-198. LI Houmin, WANG Chongli, LIU Zhiwu, et al. Two Different Kinds of Gold Deposits on Northern Slope of Danghenanshan Area in South Qilian Mountains[J]. Mineral Deposits, 2003,22(2):191-198.
李五福, 张新远, 王春涛, 等. 祁连山哈拉湖地区奥陶纪岛弧火山岩及其构造意义[J]. 地质通报, 2019, 38(8):1287-1296. LI Wufu, ZHANG Xinyuan, WANG Chuntao, et al. Ordovician island arc volcanic rocks in Halahu area of Qilian Mountain and their tectonic significance[J]. Geological Bulletin of China, 2019, 38(8):1287-1296.
刘博, 戴霜, 张翔, 等. 南祁连党河南山地区加里东期碰撞后的地壳伸展:来自煌斑岩的证据[J]. 兰州大学学报:自然科学版, 2016, 52(2):153-160. LIU Bo, DAI Shuang, ZHANG Xiang, et al. Post-caledonian collisional extension in the crust of the Danghe'nanshan area, south Qilian Mountains:evidence from the geochemistry of lamprophyres[J]. Journal of Lanzhou University:Natural Sciences, 2016, 52(2):153-160.
刘志武, 王崇礼, 石小虎. 南祁连党河南山花岗岩类特征及其构造环境[J].现代地质, 2006, 20(4):545-554. LIU Zhiwu, WANG Chongli, SHI Xiaohu. Granitoids Characteristics and Tectonic Setting of Danghenanshan Area in South Qilian Mountains[J]. Geoscience, 2006, 20(4):545-554.
刘志武, 王崇礼.南祁连党河南山花岗岩类地球化学及其金铜矿化[J].地质与勘探, 2007, 43(1):64-73. LIU Zhiwu, WANG Chongli. Granitoid geochemistry and gold-copper mineralization in the Danghe Nanshan area, Southern Qilian Mountains[J]. Geology and Exploration, 2007, 43(1):64-73.
路彦明, 范俊杰, 赵新峰,等. 甘肃黑刺沟金矿床地质特征及类型归属[J]. 黄金地质, 2004, 10(3):1-6. LU Yanming, FAN Junjie, ZHAO Xinfeng, et al. Geological features and types of the Heicigou gold deposit, Gansu[J]. Gold Geology, 2004, 10(3):1-6.
罗志文, 张志诚, 李建锋, 等. 中南祁连西缘肃北三个洼塘地区古生代两类花岗质侵入岩年代学及其地质意义[J]. 岩石学报, 2015, 31(1):176-188. LUO Zhiwen, ZHANG Zhicheng, LI Jianfeng, et al. Geochronology of two kinds of Paleozoic granitic plutons from Sangewatang in Subei, the western margin of Central-South Qilian and their geological implications[J]. Acta Petrologica Sinica, 2015, 31(1):176-188.
宋述光, 吴珍珠, 杨立明, 等. 祁连山蛇绿岩带和原特提斯洋演化[J].岩石学报, 2019, 35(10):2948-2970. SONG Shuguang, WU Zhenzhu, YANG Liming., et al. Ophiolite belts and evolution of the Proto-Tethys Ocean in the Qilian Orogen[J]. Acta Petrologica Sinica, 2019, 35(10):2948-2970.
谭文娟, 杨合群, 姜寒冰, 等. 祁连成矿省成矿系列概论[J].地质科技情报, 2013, 32(3):135-146. TAN Wenjuan, YANG Hequn, JIANG Hanbing, et al. Introduction on Metallogenic Series of Qilian Metallogenic Province[J]. Geological Science and Technology Information, 2013, 32(3):135-146.
王宝华. 甘肃党河南山贾公台金矿成矿模式探讨[J].甘肃地质, 2013, 22(2):50-55. WANG Baohua. Geological characteristics of Jiagongtai gold deposit in Subei County of Gansu Province[J]. Gansu Geology, 2013, 22(2):50-55.
王强, 郝露露, 张修政, 等. 汇聚板块边缘的埃达克质岩:成分和成因[J].中国科学:地球科学, 2020, 50(12):1845-1873. WANG Qiang, HAO Lulu, ZHANG Xiuzheng, et al. Adakitic rocks at convergent plate boundaries:Compositions and petrogenesis[J]. Science China:Earth Sciences, 2020, 50(12):1845-1873.
吴才来, 杨经绥, 杨宏仪,等. 北祁连东部两类I型花岗岩定年及其地质意义[J]. 岩石学报, 2004, 20 (3):425-432. WU Cailai, YANG Jingsui, YANG Hongyi, et al. Dating of two types of granite from north Qilian, China[J]. Acta Petrologica Sinica, 2004, 20 (3):425-432.
夏林圻,李向民,余吉远,等. 祁连山新元古代中-晚期至早古生代火山作用与构造演化[J].中国地质, 2016, 43(04):1087-1138. XIA Linqi, LI Xiangmin, YU Jiyuan, et al. Mid-Late Neoproterozoic to Early Paleozoic volcanism and tectonic evolution of the Qilian Mountain[J]. Geology in China, 2016, 43(04):1087-1138.
张建新, 于胜尧, 李云帅, 等. 原特提斯洋的俯冲、增生及闭合:阿尔金-祁连-柴北缘造山系早古生代增生/碰撞造山作用[J]. 岩石学报, 2015, 31(12):3531-3554. ZHANG Jianxin, YU Shengyao, LI Yunshuai, et al. Subduction, accretion and closure of Proto-Tethyan Ocean:Early Paleozoic accretion/collision orogeny in the Altun-Qilian-North Qaidam orogenic system[J]. Acta Petrologica Sinica, 2015, 31(12):3531-3554.
张莉莉, 戴霜, 张翔, 等. 南祁连党河南山地区鸡叫沟复式岩体岩石地球化学特征及构造环境[J]. 兰州大学学报:自然科学版, 2013, 49(6):733-740. ZHANG Lili, DAI Shuang, ZHANG Xiang, et al. Lithogeochemistry of Jijiaogou intrusive complex in the Danghenanshan area, South Qilian Mountain and its tectonic implications[J]. Journal of Lanzhou University:Natural Sciences, 2013, 49(6):733-740.
张翔, 张莉莉, 汪禄波, 等.党河南山乌里沟中酸性岩体锆石U-Pb年龄-地球化学特征及与金矿成矿关系[J].成都理工大学学报:自然科学版, 2015, 42(5):596-607. ZHANG Xiang, ZHANG Lili, WANG Lubo, et al. Zircon U-Pb geochronology and geochemical characteristics of neutral-acidic intrusions of Wuligou in South Qilian Mountains:their implications on forming gold deposit[J]. Journal of Chengdu University of Technology:Science & Technology Edition, 2015, 42(5):596-607.
赵虹, 党犇, 王崇礼. 甘肃南祁连党河南山中奥陶世火山岩的地球化特征[J].现代地质, 2004, 18(1):64-69. ZHAO Hong, DANG Ben, WANG Chongli. The Geochemical characteristics of Ordovician volcanic rocks in southern Danghe Mountain in Southern Qilian Mountains, Gansu Province[J]. Geoscience, 2004, 18(1):64-69.
赵虹, 金治鹏, 党犇, 等. 甘肃党河南山北坡早古生代火山岩时代探讨[J].西安工程学院学报, 2001, 23(3):26-29. ZHAO Hong, JIN Zhipeng, DANG Ben, et al. Recognizing the time of early Paleozoic volcanic rock in the north slope of Danghe southern Mountain in Subei County, Gansu Province[J]. Journal of Xi'an Engineering University, 2001, 23(3):26-29.
郑英,陈光庭,张小永,等.中祁连苏里地区奥陶纪石英闪长岩地球化学特征及年代学意义[J].西北地质,2017, 50(4):9-17. ZHENG Ying,CHEN Guangting,ZHANG Xiaoyong,et al.Geochemical Characteristics and Chronology Significance of Ordovician Quartz Diorite from Suli Area in Middle Qilian Mountains[J]. Northwestern Geology,2017,50(4):9-17.
甘肃省地质局区测二队.1:20盐池湾区域地质调查报告[R].1969-1973. Behn M D, Kelemen P B, Hirth G, et al. Diapirs as the source of the sediment signature in arc lavas[J]. Nature Geoscience, 2011, 4(9):641-646.
Cao Y T, Liu L, Chen D L,et al. Partial melting during exhumation of Paleozoic retrograde eclogite in North Qaidam, western China[J]. Journal of Asian Earth Sciences, 2017, 148(15):223-240.
Castro A, Gerya T, García-Casco A, et al. Melting relations of MORB-sediment mélanges in underplated mantle wedge plumes:Implications for the origin of cordilleran-type batholiths[J]. Journal of Petrology, 2010, 51(6):1267-1295.
Codillo E A, Roux V L, Marschall H R. Arc-like magmas generated by mélange-peridotite interaction in the mantle wedge[J]. Nature Communications, 2018, 9:2864.
Cruz-Uribe A M, Marschall H R, Gaetani G A, et al. Generation of alkaline magmas in subduction zones by partial melting of mélange diapirs-An experimental study[J]. Geology, 2018, 46(4):343-346.
Davidson J, Turner S, Handley H, et al. Amphibole "sponge" in arc crust?[J]. Geology, 2007, 35(9):787-790.
Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 1990, 347(6294):662-665.
Donald G A M, Katsura T. Chemical composition of Hawaian lavas[J]. Journal of Petrology, 1964, 5:82-133.
Foley S. Petrological characterization of the source components of potassic magmas:geochemical and experimental constraints[J]. Lithos, 1992, 28(3-6):187-204.
Fu C, Yan Z, Aitchison J C, et al. Abyssal and Suprasubduction Peridotites in the Lajishan Ophiolite Belt:Implication for Initial Subduction of the Proto-Tethyan Ocean[J]. The Journal of Geology, 2019, 127(4):393-410.
Fu C, Yan Z, Wang Z, et al. Lajishankou Ophiolite Complex:Implications for Paleozoic Multiple Accretionary and Collisional Events in the South Qilian Belt[J]. Tectonics, 2018, 37(5-6):1321-1346.
Gao Z, Zhang H F, Yang H, et al. Back-arc basin development:Constraints on geochronology and geochemistry of arc-like and OIB-like basalts in the Central Qilian block (Northwest China)[J]. Lithos, 2018b, 310-311:255-268.
Gao Z, Zhang H F, Yang H, et al. Geochemistry of Early Paleozoic boninites from the Central Qilian block, Northwest China:Constraints on petrogenesis and back-arc basin development[J]. Journal of Asian Earth Sciences, 2018a, 158(JUN.1):227-239.
Gehrels G, Kapp P, DeCelles P,et al. Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen[J]. Tectonics, 2011, 30:TC5016.
Gill J B. Orogenic andesites and plate tectonics[M]. Springer-Verlag, 1981.
Gómez-Tuena, Arturo, Mori L, Straub S M. Geochemical and petrological insights into the tectonic origin of the Transmexican Volcanic Belt[J]. Earth-Science Reviews, 2018,413(12):153-181.
Grove T L, Till C B. H2O-rich mantle melting near the slab-wedge interface[J]. Contributions to Mineralogy and Petrology, 2019, 174(10):80.
Hacker B R, Kelemen P B, Behn M D. Differentiation of the continental crust by relamination[J]. Earth & Planetary Science Letters, 2011, 307(3-4):501-516.
Hastie A R, Mitchell S F, Kerr A C, et al. Geochemistry of rare high-Nb basalt lavas:Are they derived from a mantle wedge metasomatised by slab melts?[J]. Geochimica Et Cosmochimica Acta, 2011, 75(17):5049-5072.
Kay S M, Rapela C W. Plutonism from Antarctica to Alaska[J]. Geological Society of America Special Paper, 1990, 244:233-255.
Kelemen P B, Hanghaj K, Greene A R. One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust[J]. Treatise on Geochemistry (second edition) 2014, 4:794-806.
Kimura J I, Gill J B, Kunikiyo T, et al. Diverse magmatic effects of subducting a hot slab in SW Japan:Results from forward modeling[J]. Geochemistry Geophysics Geosystems, 2014, 15(3):691-739.
Koenig S, Schuth S. Deep melting of old subducted oceanic crust recorded by superchondritic Nb/Ta in modern island arc lavas[J]. Earth and Planetary Science Letters, 2011, 301(1-2):265-274.
Le Bas M J, Le Maitre R W, Streckeisen A, et al. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram[J]. Jour. Petrol, 1986,27(3):745-750.
Liu Y, Hu Z, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1):34-43.
Li M, Wang C, Li R, et al. Identifying late Neoproterozoic-early Paleozoic sediments in the South Qilian Belt, China:A peri-Gondwana connection in the northern Tibetan Plateau[J]. Gondwana Research, 2019, 76:173-184.
Mallik A, Nelson J, Dasgupta R. Partial melting of fertile peridotite fluxed by hydrous rhyolitic melt at 2-3 GPa:implications for mantle wedge hybridization by sediment melt and generation of ultrapotassic magmas in convergent margins[J]. Contributions to Mineralogy and Petrology, 2015, 169(5):1-24.
Marschall H R, Schumacher J C. Arc magmas sourced from melange diapirs in subduction zones[J]. Nature Geoscience, 2012, 5(12):862-867.
Martin H, Smithies R H, Rapp R, et al. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid:relationships and some implications for crustal evolution[J]. Lithos, 2005, 79(1-2):1-24.
Nielsen S G, Marschall H R. Geochemical evidence for mélange melting in global arcs[J]. Science Advances, 2017, 3(4):e1602402.
Peccerillo A, Taylor S R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy & Petrology, 1976, 58(1):63-81.
Peccerillo A. Multiple mantle metasomatism in central-southern Italy:Geochemical effects, timing and geodynamic implications[J]. Geology, 1999, 27(4):315-318.
Vermeesch P. Isoplot R:A free and open toolbox for geochronology[J]. Geoscience Frontiers, 2018, 9(5):1479-1493.
Plank T, Langmuir C H. The chemical composition of subducting sediment and its consequences for the crust and mantle[J]. Chemical Geology, 1998, 145(3-4):325-394.
Rapp R P, Shimizu N, Norman M D, et al. Reaction between slab-derived melts and peridotite in the mantle wedge:experimental constraints at 3.8 GPa[J]. Chemical Geology, 1999, 160(4):335-356.
Ryan J G, Chauvel C. The Subduction-Zone Filter and the Impact of Recycled Materials on the Evolution of the Mantle[J]. The Mantle and Core, 2014, 3:479-508.
Schmidt M W, Poli S. Devolatilization During Subduction[J]. Treatise on Geochemistry (Second Edition), 2014, 4:669-701.
Schmidt M W, Vielzeuf D, Auzanneau E. Melting and dissolution of subducting crust at high pressures:the key role of white mica[J]. Earth & Planetary Science Letters, 2004, 228(1-2):65-84.
Song S G, Niu Y L, Su L., et al. Tectonics of the North Qilian orogen, NW China[J]. Gondwana Research, 2013, 23(4):1378-1401.
Song S G, Niu Y L, Su L, et al. Continental orogenesis from ocean subduction, continent collision/subduction, to orogen collapse, and orogen recycling:The example of the North Qaidam UHPM belt, NW China[J]. Earth Science Reviews, 2014, 129:59-84.
Song S G, Yang L M, Zhang YQ,et al. Qi-Qin Accretionary Belt in Central China Orogen:Accretion by trench jam of oceanic plateau and formation of intra-oceanic arc in the Early Paleozoic Qin-Qi-Kun Ocean[J]. Science Bulletin, 2017, 62(15):1035-1038.
Straub S M, Gomez-Tuena A, Stuart F M, et al. Formation of hybrid arc andesites beneath thick continental crust[J]. Earth & Planetary Science Letters, 2011, 303(3-4):337-347.
Sun, McDonough. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42(1):313-345.
Ulmer P. Partial melting in the mantle wedge-The role of H2O in the genesis of mantle-derived ‘arc-related’ magmas[J]. Physics of The Earth and Planetary Interiors, 2001, 127(1):215-232.
Walowski K J, Wallace P J, Hauri E H, et al. Slab melting beneath the Cascade Arc driven by dehydration of altered oceanic peridotite[J]. Nature Geoscience, 2015, 8(5):404-408.
Wang C, Li R S, Smithies R H, et al. Early Paleozoic felsic magmatic evolution of the western Central Qilian belt, Northwestern China, and constraints on convergent margin processes[J]. Gondwana Research, 2017, 41:301-324.
Wang T, D Wang, Wang Z, et al. Geochemical and geochronological study of early Paleozoic volcanic rocks from the Lajishan accretionary complex, NW China:Petrogenesis and tectonic implications[J]. Lithos, 2018,314-315:323-336.
Wolf M B, Wyllie P J. Dehydration-melting of amphibolite at 10 kbar:the effects of temperature and time[J]. Contributions to Mineralogy & Petrology, 1994, 115(4):369-383.
Workman R K, Hart S R. Major and trace element composition of the depleted MORB mantle (DMM)[J]. Earth & Planetary Science Letters, 2005, 231(1-2):53-72.
Xia L Q, Xia Z C, Xu X Y. Magmagenesis in the Ordovician backarc basins of the Northern Qilian Mountains, China[J]. Geological Society of America Bulletin, 2003, 115(12):1510-1522.
Xiao W J, Windley B F, Yong Y,et al. Early Paleozoic to Devonian multiple-accretionary model for the Qilian Shan, N W China[J]. Journal of Asian Earth Sciences, 2009, 35(3-4):323-333.
Xiong X L, Adam J, Green T H. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt:Implications for TTG genesis[J]. Chemical Geology, 2005, 218:339-359.
Yan Z, Aitchison J, Fu C, et al. Hualong Complex, South Qilian terrane:U-Pb and Lu-Hf constraints on Neoproterozoic micro-continental fragments accreted to the northern Proto-Tethyan margin[J]. Precambrian Research, 2015, 266:65-85.
Yan Z, Fu C, Aitchison J C, et al. Early Cambrian Muli arc-ophiolite complex:a relic of the Proto-Tethys oceanic lithosphere in the Qilian Orogen, NW China[J]. International Journal of Earth Sciences, 2019, 108(4):1147-1164.
Yang L M, Song S G, Su L, et al. Heterogeneous Oceanic Arc Volcanic Rocks in the South Qilian Accretionary Belt (Qilian Orogen, NW China)[J]. Journal of Petrology, 2019a, 60(1):85-116.
Yang L M, Su L, Song S G, et al. Interaction between oceanic slab and metasomatized mantle wedge:Constraints from sodic lavas from the Qilian Orogen, NW China[J]. Lithos, 2019b, 348-349.
Yang W R, Deng Q L, Wu X L. Major Characteristics of the Lajishan Orogenic Belt of the South Qilian Mountains and Its Geotectonic Attribute[J]. Acta Geologica Sinica, 2010(1):110-117.
Yu S Y, Peng Y B, Zhang J X, et al. Tectono-thermal evolution of the Qilian orogenic system:Tracing the subduction, accretion and closure of the Proto-Tethys Ocean[J]. Earth-Science Reviews, 2021,215:10357.
Zhang Y Q, Song S G, Yang L M, et al. Basalts and picrites from a plume-type ophiolite in the South Qilian Accretionary Belt, Qilian Orogen:Accretion of a Cambrian Oceanic Plateau?[J]. Lithos, 2017, 278-281:97-110.
Zhao G J, Wang C, Zhu X H, et al. Intraoceanic back-arc magma diversity:Insights from a relic of the Proto-Tethys oceanic lithosphere in the western Qilian Orogen, NW China[J]. Chemical Geology, 2020,550:119756.
McDonald G A, Katsura T. Chemical composition of Hawaiian Lavas[J]. Jurnal of Petrology,1964,5:82-133.
计量
- 文章访问数: 577
- HTML全文浏览量: 6
- PDF下载量: 457