ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

太白岩体南缘铜(钼)矿化地质特征及找矿标志

侯满堂, 严臻, 高怀雄

侯满堂, 严臻, 高怀雄. 太白岩体南缘铜(钼)矿化地质特征及找矿标志[J]. 西北地质, 2010, 43(1): 75-85.
引用本文: 侯满堂, 严臻, 高怀雄. 太白岩体南缘铜(钼)矿化地质特征及找矿标志[J]. 西北地质, 2010, 43(1): 75-85.
HOU Man-tang, YAN Zhen, GAO Huai-xiong. Mineralization, Geological Features, and Prospecting Indicators of the Copper(Molybdenum) in Southern Margin of Taibai Rock-Mass[J]. Northwestern Geology, 2010, 43(1): 75-85.
Citation: HOU Man-tang, YAN Zhen, GAO Huai-xiong. Mineralization, Geological Features, and Prospecting Indicators of the Copper(Molybdenum) in Southern Margin of Taibai Rock-Mass[J]. Northwestern Geology, 2010, 43(1): 75-85.

太白岩体南缘铜(钼)矿化地质特征及找矿标志

Mineralization, Geological Features, and Prospecting Indicators of the Copper(Molybdenum) in Southern Margin of Taibai Rock-Mass

  • 摘要: 在太白岩体南缘发现了铜(钼)矿,圈出铜矿体2个,铜矿化体1个,钼矿化体5个。铜矿体长度245~445 m,平均厚度2.03~2.81 m,平均Cu品位1.57%~1.67%;钼矿化体长度50 m,厚度2.03~2.81 m,Mo品位0.01%~0.54%。铜钼矿化受岩体岩石、构造及蚀变带的三重控制。总结出了岩体、构造、围岩蚀变、氧化物及硫化物露头是寻找铜钼矿的重要标志。对矿区矿石中辉钼矿采用Re-Os法同位素年龄测试,获得模式年龄119.3~123.7 Ma数据,说明本区铜钼矿化形成于燕山晚期。依据矿体与含矿岩体的关系、赋存状态、矿物组分及矿石的结构构造等因素,结合区域上铜钼矿化形成规律,初步认为该矿成因类型可能为与区域性花岗斑岩活动有关的热液型。这一结论对在本区寻找与花岗斑岩活动有关的热液型铜钼矿有着重要的现实意义。
    Abstract: In the southern margin Taibai rock-mass,the copper(molybdenum)ore has been found.There are 2 copper ore bodies,one copper-based body and 5 molybdenum mineralized bodies.The length of the Copper ore body is 245~445 m,with an average thickness of 2.03~2.81 m and an average grade of 1.57% to 1.67%.The length of molybdenum mineralized body is 50m,with a thickness of 2.03~2.81 and a grade of 0.01%~0.54%.The mineralizattion of copper-molybdenum is controlled by three factors: rock,structure,and alteration.We use the mining ore molybdenite Re-Os method to testiso topic age and obtain the age of 119.3~123.7 Ma for the copper-molybdenum mineralization in this area formed in the late Yanshan. In the southern margin Taibai rock-mass,the copper(molybdenum)ore has been found.There are 2 copper ore bodies,one copper-based body and 5 molybdenum mineralized bodies.The length of the Copper ore body is 245~445 m,with an average thickness of 2103~2181 mand an average grade of 1.57% to 1.67%.The length of molybdenum mineralized body is 50m,with a thickness of 2.03~2.81m and a grade of 0.01%~0.54%.The mineralizattion of copper-molybdenum is controlled by three factors: rock,structure,and alteration.We use the mining ore molybdenite Re-Os method to test isotopic age and obtain the age of 119.3~123.7 Ma for the copper-molybdenum mineralization in this area formed in the late Yanshan.
  • 滑坡是一种破坏性事件,往往对人类生命、财产和生存环境构成严重威胁,严重制约着人类的可持续发展。据统计,发展中国家因滑坡造成的死亡率高达95%,造成的经济损失占国民生产总值的1%~2%(Youssef et al., 2022)。作为发展中国家,中国山区占国土面积的70%,地质环境条件复杂、构造活动强烈、工程建设规模大,滑坡多发且分布较广(刘光旭等,2014)。

    中国西北部的黄土覆盖区生态极其脆弱,土壤结构松散,降水集中,水土流失严重,已成为全国最容易发生滑坡的地区(孙萍萍等,2022)。此外,滑坡对当地社会经济的发展和人类安全构成极大威胁(韩玲等,2019)。因此,滑坡预测对该区域滑坡的防治具有重要意义。然而,传统的野外调查难以满足滑坡预测的要求。随着地理信息技术(GIS)的发展,滑坡易发性分区的研究结合了许多统计学方法,即统计指数(Abedini et al., 2018)、逻辑回归(Thai et al., 2018)、确定性因素(Li et al., 2017)、层次分析法(张向营等,2018)、频率比(Abedini et al., 2018)、熵权法(Jaafari et al., 2014)和证据权法。虽然统计学方法和GIS技术可以很好地结合起来,更适合大面积研究,但滑坡易发性分区是一种典型的复杂非线性问题,所以统计学方法得到的结果往往精度较低。因此,越来越多的机器学习方法被引入,如人工神经网络(谢振华等,2017)、核逻辑回归(Chen et al., 2020)、随机森林(Behnia et al., 2018)、支持向量机(武雪玲等,2016韩玲等,2019) 、朴素贝叶斯(Sameen et al., 2020)和决策树(Kim et al., 2018)。机器学习模型的性能通常取决于训练数据的质量和数量,并且对建模过程中的参数十分敏感。随机划分的数据、不同的研究规模和不同的数据分辨率都会对训练数据产生影响(Bazi et al., 2021)。此外,对于哪种方法最适合研究区开展滑坡易发性分区,目前还没有明确的结论。

    近年来,混合模型的出现为滑坡易发性分区研究提供了更多的选择,也可探索出更加科学合理的结果。这些模型包括频率密度耦合核函数逻辑回归模型(FR-KLR)(张庭瑜等,2020)、确定性系数耦合径向基神经网络模型(CF-RBFNN)(Li et al., 2017)等。此外,也有学者利用分形理论对滑坡进行研究,但目前研究的主要方向是用分形维数来描述滑坡的空间分布,几乎没有对滑坡易发性分区进行过研究。

    由于评估方法会对滑坡易发性分区结果产生很大影响,探索和研究分区模型是一项重要的工作,并且将分形维数与IOE和SVM融合的研究鲜有报道。因此,本研究基于分形维数和两种原始模型(IOE、SVM),分别构建两种混合模型(F-IOE、F-SVM)对宝鸡市北部典型黄土覆盖区进行滑坡易发性分区研究。研究结果可为研究区以及类似区域的灾害防治提供理论依据,并且相关图件的发布也可为当地的防灾减灾工作提供决策支持。

    研究区位于陕西省宝鸡市北部典型黄土覆盖区,面积约2451 km2,地理坐标介于E 107°00′01″~107°45′08″和N 34°29′22″~34°50′38″。由南向北横跨黄土台地和黄土高原两大地貌类型。黄土台地海拔750~950 m,相对高差小于200 m,黄土高原地区海拔900~1700 m,相对高差100~300 m。研究区域内发育一条水系,即千河,水流方向为WN—ES,最终流入渭河。

    研究区气候类型属暖温带大陆性气候,年平均气温和月平均气温分别为12 ℃和25 ℃,年平均降水量为653 mm,降雨期主要集中在6~9月,近十年平均月最大降雨量为103 mm。由于黄土遇水易塌陷,故该区域容易发生地质灾害。研究区横跨黄土高原、鄂尔多斯盆地和秦岭造山带,由南向北跨越3个构造单元,区域内发育7条断裂带,其中F1-F5断裂走向为NW—SE,F6-F7断裂走向为W—E。根据《陕西省区域地质志》来看,研究区未发生破坏性地震(陕西省地质矿产局,1989)。

    包含滑坡数量、位置和规模信息的滑坡编录图是滑坡易发性分区研究的基础。根据野外调查、前期地质资料、1980~2017年的历史滑坡数据以及航空遥感数据,共提取地质灾害179处,其中堆积层滑坡166处、基岩滑坡13处。滑坡周界面积的最大、最小和平均尺寸分别为2.2×104 m2、1.1×103 m2、8.3×103 m2。由于近90%的滑坡周界面积不超过10000 m2,因此采用质心法将多边形转化为点,然后将这些点映射到研究区的滑坡编录图中(图1)。

    图  1  研究区位置图(a)和滑坡编录图(b)
    Figure  1.  (a)Location of study area and(b) landslide inventory map

    为了建立滑坡易发性分区模型并获得滑坡易发性分区图(LSM),训练和测试数据集的制备是重要且必要的步骤。由于建立滑坡易发性模型必须同时存在正样本和负样本,本研究将179个滑坡样本全部作为正样本。此外,根据地质资料和野外观测数据分析,研究区滑坡一般不会发生在坡度小于5°的区域 (张茂省等,2019),因此将这些区域定义为非滑坡区(Pandey et al., 2020)。在非滑坡区随机生成相同数量的非滑坡点作为负样本,然后将179个滑坡点以70%与30%的比例随机分为两组,同时将179个非滑坡点按照相同的比例分为两组。最后,将70%(250个)的样本用来构建模型,30%(108个)的样本用于模型测试。

    由于单一的模型会因数据的随机性而出现过拟合的现象(Mahdadi et al., 2018),因此为了减少随机选择对滑坡易发性分区模型性能的影响,将所有滑坡点以7∶3的比例随机划分30次,并对每组训练数据集进行10折交叉验证。保留最稳定的训练数据集检测多重共线性问题、确定滑坡影响因子和建立滑坡易发性分区模型。

    滑坡的发生受区域地质环境、水文、气象和构造运动等一系列条件因素的影响,影响因子的选择和分类将直接影响滑坡易发性分区的准确性(Hong et al., 2017)。本研究在实地调查和以往研究的基础上,共考虑了12个内部和外部的影响因子,包括坡度、坡向、高程、降雨量、平面曲率、距河流的距离、土地利用类型、距道路的距离、距断层的距离、归一化植被指数(NDVI)、地层岩性和剖面曲率。

    滑坡与坡度的关系密切,坡度直接影响坡内应力分布及有效面。研究区的坡度信息由分辨率为30 m的DEM数据计算得出,并以5°的等间隔划分为6类(图2a)。坡向被认为是另一个重要的因素,它通过影响土壤的蒸发量、植被的生长和侵蚀来影响边坡的稳定性。研究区的坡向信息也从DEM中提取,并重分为9类(图2b)。同样地,从DEM中提取高程数据,按照1000 m的间隔重分为7类(图2c)。

    图  2  各影响因子图
    (a).坡度;(b).坡向;(c).高程;(d).距河流的距离;(e).距断层的距离;(f).距道路的距离;(g).降雨量;(h).地层岩性;(i).NDVI;(j).土地利用类型;(k).平面曲率;(l).剖面曲率
    Figure  2.  Map of various Conditioning factors

    许多学者发现河流侵蚀在滑坡发生中起重要作用(Kumar et al., 2017)。在本研究中,距河流的距离被认为是重要的影响因素之一,并以100 m的等间隔生成了5个不同的缓冲区(图2d)。构造作用也是影响滑坡发生的重要因素。构造作用不仅是单一滑坡发生的必要条件,也是区域滑坡发生的直接控制因素。因此,以距断层的距离作为影响因子,利用ArcGIS软件以1000 m的相等间隔生成5个不同的缓冲区(图2e)。此外,研究发现道路建设需要开挖大量的边坡,这很可能在研究区产生潜在的滑坡。因此,滑坡易发性分区的另一个条件因素是距道路的距离,以100 m的等间隔生成了4个不同的道路缓冲区(图2f)。根据以往的文献,降雨量对滑坡的稳定性有很大影响(Bui et al., 2017)。本研究使用的降雨数据提取自当地气象台提供的2007~2017年的年平均降雨量。将降雨数据按照150 mm的等间隔分为5类(图2g)。地层岩性决定了机械强度、耐候性和应力分布,进而影响边坡的稳定性和侵蚀强度。根据研究区(表1)的内容,将地层岩性重新划分为6组(图2h)。

    表  1  研究区地层岩性单元表
    Table  1.  Lithological units of study area
    类别地质年代编码主要地层岩性
    A 新进纪 Q4 砂,砾石,黄土
    更新纪 Q3 黄土,砾石
    B 上新统 N2 砂土
    中新统 N1 石英砂,黏土
    C 晚白垩纪 K1 泥岩,砂质泥岩,泥质砂岩
    D 早侏罗纪 J3 块状聚集物,粘胶岩,粉砂质泥岩
    中侏罗纪 J2 石质,泥岩,粉质泥岩
    晚侏罗纪 J1 粉砂岩,煤层
    E 早三叠纪 T3 泥岩,页岩,煤层
    中三叠纪 T2 中细砂岩,粉砂岩,泥岩
    晚三叠纪 T1 石质,细砂岩,粉砂岩,砂质泥岩
    F 二叠纪 P 砂质泥岩,细砂岩,粉砂岩
    下载: 导出CSV 
    | 显示表格

    植被对滑坡的发生也有显著影响(Arabameri et al., 2018)。NDVI一直被用作反映地表植被覆盖程度的重要指标,本研究利用ENVI软件,基于GF-2多光谱遥感影像计算NDVI,采用自然断点法(图2i)将NDVI分为5类。土地利用类型通常被认为是滑坡发生的基本影响因素之一,本研究利用ArcGIS软件将土地利用类型分为5组(图2j)。此外,基于DEM数据计算出平面曲率和剖面曲率,并分别使用自然断点法(图2k图2l)分为5个部分。最后,为了保持数据分辨率的统一,基于ArcGIS软件,将这12个影响因子图全部重采样为30 m空间分辨率。

    本研究主要包括4个部分:第1部分是基础数据的制备,包括滑坡编录图的构建、滑坡影响因子的分析以及训练和测试数据集的准备;第2部分涉及滑坡影响因子的潜在多重共线性问题的判断、滑坡影响因子的优化以及分形维数的计算;第3部分主要建立了4种滑坡易发性分区模型,即熵权模型(IOE)、基于分形维数的熵权模型(F-IOE)、支持向量机模型(SVM)和基于分形维数的支持向量机模型(F-SVM)。然后根据上述4种模型生成研究区的滑坡易发性分区图;第4部分是利用统计学指标评价滑坡易发性模型的性能,并根据ROC特征曲线对这4种模型的泛化性进行比较。接下来简要介绍本研究中采用的方法。

    多重共线性是指由于影响因子之间存在高度相关性,模型被扭曲或难以估计(Islam et al., 2011)。为了检测多重共线性的存在,本研究引入了方差膨胀因子(VIF)。VIF表示影响因子之间存在潜在多重共线性问题时的方差与不存在潜在多重共线性问题时的方差之比,VIF的倒数是公差(TOL)。通常,VIF值与影响因子之间的多重共线性问题的强度成正比。当VIF>10且TOL<0.1时,认为数据集中存在潜在的多重共线性问题。

    在滑坡易发性分区制图中,并非所有影响因子在建模中都具有相同的预测能力,并且可能存在噪声,这将使结果产生误差。因此,可以计算信息增益率(IG)来定量反映每个影响因子对滑坡易发性模型的贡献,IG值越高,表明滑坡易发性映射的预测能力越高(Chen et al., 2017)。如果IG值等于0,这意味着影响因子没有预测能力,应放弃。IG值计算公式如下:

    $$ Entropy(D) = - \sum\limits_{k = 1}^{\left| y \right|} {{p_k}} \log _2^{{p_k}} $$ (1)

    其中:D是训练数据集;熵(D)表示训练数据集的熵;yD中的物种数;$ p_{k} $表示Dk类的比例。然后使用表示影响因子之一的s将训练数据集划分为Dvv=1,2,3,···,m),并通过等式(2)计算增益(Ds)。

    $$ Gain(D,s) = Entropy(D) - \sum\limits_{v - 1}^{\left| m \right|} {\dfrac{{\left| {{D_v}} \right|}}{D}} Entropy({D_v}) $$ (2)

    调节因子的IG值计算为:

    $$ IG(D,s) = - \frac{{Gain(D,a)}}{{IV(a)}} $$ (3)

    其中:IV(s)可通过等式(4)获得。

    $$ IV(s) = - \sum\limits_{v = 1}^m {\frac{{\left| {{D_m}} \right|}}{{\left| D \right|}}} {\log _2}_{}^{\tfrac{{\left| {{D_m}} \right|}}{{\left| D \right|}}} $$ (4)

    分形维数是分形理论中用来定量描述分形特征和几何复杂性的参数(Shuren et al., 2005)。本研究引入分形维数来表示滑坡的聚类程度和滑坡系统的复杂性。在当前研究中,使用ArcGIS软件将研究区域划分为边长为r的n个网格。然后将r值减少一半。在本研究中,r值分别设定为10000 m、5000 m、2500 m、1250 m、625 m和312.5 m。计算滑坡点位于不同边长的每个网格中的网格数(Nr),分形维数计算示意图见图3。然后,使用最小二乘法拟合直线,如下所示:

    图  3  分形维数计算示意图
    Figure  3.  The schematic about the calculation of fractal dimensions
    $$ \ln {N_r} = a + {f_j}\ln r $$ (5)

    其中:$ a $是1个参数;$ {f_j} $表示分形维数(Bouboulis et al., 2006)。最后,通过盒计数技术测量每个影响因子的分形维数,并将其作为滑坡易发性建模的输入数据。

    IOE作为二元线性统计分析模型被广泛应用(Li et al., 2019)。原始IOE模型通过计算滑坡的频率比来计算每个影响因子的权重,以建立滑坡易发性模型。具体计算过程如下:

    $$ F{R_{ij}} = \frac{{{b_{ij}}}}{{{a_{ij}}}} $$ (6)
    $$ {P_{ij}} = \frac{{F{R_{ij}}}}{{\displaystyle \sum\nolimits_{j = 1}^{{N_j}} {F{R_{ij}}} }} $$ (7)
    $$ {H_j} = - \sum\limits_{i = 1}^{{N_j}} {{P_{ij}}} {\log _2}{P_{ij}},j = 1,2,3,...,n $$ (8)
    $$ {H_{j\max }} = {\log _2}{N_j} $$ (9)
    $$ {I_j} = \frac{{{H_{j\max }} - {H_j}}}{{{H_{j\max }}}} $$ (10)
    $$ {W_j} = {I_j} \times F{R_{ij}} $$ (11)

    其中:$ {a_{ij}} $和$ {b_{ij}} $分别代表像元百分比和滑坡百分比;$ {N_j} $是影响因子的分类数;FRij是滑坡发生的频率;$ {H_j} $和$ {H_{j\max }} $是熵值,$ {W_j} $代表影响因子的综合评分。对于新的混合模型(F-IOE),使用每个因子的分形维数$ {f_j} $代替$ {H_j} $作为建模数据。影响因子的最终权重由F-$ {W_j} $表示(贾俊等,2023)。

    支持向量机(SVM)被认为是解决二值分类问题的有效监督学习算法(Wang et al., 2021)。支持向量机模型的基本理论是在特征空间中找到最佳分离超平面,该超平面可以最大化训练数据集中滑坡和非滑坡数据之间的样本间隔(Balogun et al., 2021),可以使用以下数学公式表示:

    $$ P = \frac{1}{2}{\left\| w \right\|^2} $$ (12)

    约束条件为:

    $$ y{}_i\left( {\left( {w \times {x_i}} \right) + b} \right) \geqslant 1 $$ (13)

    其中:$ b $为标量;$ {\left\| w \right\|^2} $是超平面法向量的范数。引入拉格朗日乘数法则求极值($ {\lambda _i} $),生成辅助函数如下:

    $$ L = \frac{1}{2}{\left\| w \right\|^2} - \sum\limits_{i - 1}^n {{\lambda _i}} \left( {{y_i}\left( {\left( {w \times {x_i}} \right) + b} \right) - 1} \right) $$ (14)

    对于不可分离的情况,引入松弛变量$ \xi_{t} $(i=1,2,···n),等式(12)和等式(13)可以用如下代替:

    $$ {y_i}\left( {\left( {w \times {x_i}} \right) + b} \right) \geqslant 1 - {\xi _i} $$ (15)
    $$ L = \frac{1}{2}{\left\| w \right\|^2} + C\sum\limits_{i = 1}^n {{\xi _i}} \text{,} \left( {C = - \frac{1}{{vn}}} \right) $$ (16)

    其中:C为约束系数;$ v $∈(0,1]代表误分类罚值。此外,非线性决策边界可以使用核函数$ K\left(x_{i}, x_{j}\right) $运算。本研究采用径向基函数(RBF)进行滑坡易发性建模,其数学公式如下:

    $$ K\left( {{x_i},{x_j}} \right) = \exp \left( { - \delta {{\left\| {{x_i} - {x_j}} \right\|}^2}} \right) \text{,} \delta > 0 $$ (17)

    其中:δ 说明了高斯核函数的宽度。

    同样,使用分形维数$ {f_j} $替换每个影响因子的原始数值数据作为输入数据,然后应用等式(12)在高维空间中使用超平面对输入数据进行分类。最后,构建一种新的混合模型(F-SVM)。

    本研究采用3种统计指标,即阳性预测率(Positive Prediction Rate, PPR)、阴性预测率(Negative Prediction Rate, NPR)和准确性(Accuracy, ACC)来评估滑坡易发性制图的结果。采用PPR评价滑坡易发性模型对滑坡的预测能力,采用NPR评价滑坡易发性模型对非滑坡的预测能力。采用ACC测量滑坡易发性分区的准确性。这3个统计指标的计算过程如下:

    $$ PPR = \frac{{TP}}{{TP + FP}} $$ (18)
    $$ NPR = \frac{{TN}}{{TN + FN}} $$ (19)
    $$ ACC = \frac{{TP + TN}}{{TP + TN + FP + FN}} $$ (20)

    其中:TP全名为真阳性;TN全名为真阴性,表示正确分类的像素数;FP的全名为假阳性;FN的全名为假阴性,表示未正确分类的像素数(杨光等,2019)。一般来说,ACC值越大,滑坡易发性分区的精度越高(Pham et al., 2021)。

    对4种模型(IOE、F-IOE、SVM和F-SVM)获得的分类结果进行比较评估是一个重要的部分(张文龙等,2023)。在本研究中,引入了ROC曲线来比较这4种滑坡易发性模型,揭示了使用合成法的灵敏度和特异度值的关系。它为连续变量设置几个不同的临界值,以计算一系列灵敏度和特异度,然后绘制以灵敏度作为Y轴1-特异度作为X轴的曲线。曲线下面积(简称AUC)用于比较本研究中每个模型的性能。AUC值范围为0~1。如果AUC=1,则表明滑坡和非滑坡的分类完全正确(Lombardo et al., 2020)。相反,如果AUC=0,则分类完全错误。计算公式如下:

    $$ \text { 灵敏度 }=\frac{T P}{T P+F N} $$ (21)
    $$ 1-\text { 特异度 }=1-\frac{T N}{T N+F P} $$ (22)
    $$ A U C=\frac{(\Sigma T P+\Sigma T N)}{P+N} $$ (23)

    其中:P和N分别表示研究区域内滑坡和非滑坡的总数。

    在本研究中,VIF和TOL被用于检测影响因子之间潜在的多重共线性问题。从计算结果(表2)可以看出,VIF的最大值为NDVI(VIF=1.675),公差的最小值为土地利用类型(公差=0.650)。所有影响因子的VIF和TOL不在潜在的多重共线性问题阈值内(VIF>10,TOL<0.1),表明这12个影响因子中不存在多重共线性问题。

    表  2  影响因子的VIF和TOL表
    Table  2.  Variance inflation factors (VIF) and tolerances of each conditioning factor
    影响因子TOLVIF
    坡度0.9341.071
    坡向0.9261.080
    高程0.6561.525
    距河流的距离0.9081.101
    距道路的距离0.8771.141
    距断层的距离0.9161.092
    NDVI0.5971.675
    土地利用类型0.6501.538
    地层岩性0.8141.228
    降雨量0.8141.229
    平面曲率0.9121.096
    剖面曲率0.9251.082
    下载: 导出CSV 
    | 显示表格

    本研究通过10折交叉验证计算平均信息增益率(AM)来选择影响因子。从图4可以看出,所有影响因子的AM中,高程的最高(0.598),其次是坡度和坡向的相同(0.299),距河流的距离(0.253),降雨量(0.230),土地利用类型(0.210),距道路的距离(0.184),距断层的距离和NDVI的相同(0.115),剖面曲率(0.046)和地层岩性(0.023)。然而,平面曲率的AM值为0,这表明平面曲率因子对建模的贡献为0,可能会造成干扰。因此,在后续建模和评估中排除平面曲率。

    图  4  各影响因子的平均信息增益率图
    Figure  4.  Average Information Gain ratio of each conditioning factor

    根据分形理论,为了计算影响因子的分形维数,研究区滑坡的空间分布必须满足分形特征(自相关性)。根据上述方法,使用公式(5)获得研究区内滑坡的空间分形维数。从图5可以看出,研究区滑坡的空间分维数为1.9032,R20.9649,这表明滑坡的空间分布具有明显的分形特征和显著的自相关性。因此,继续计算每个影响因子的空间分维是有意义的,每个因子的分维数$ {f_j} $见表3

    图  5  对数图和线性方程图
    Figure  5.  Logarithmic graphs and linear equations
    表  3  影响因子与滑坡的空间关系表
    Table  3.  Spatial relationship between influencing factors and landslides
    影响因子等级fjFRijPijHjHjmaxIjWjF-Wj
    坡度(°)<50.07720.30350.03672.28572.58500.11580.15950.1201
    5~100.19060.87090.1053
    10~150.22850.91240.1104
    15~200.23721.15180.1393
    20~250.16821.94270.2350
    >250.22843.08640.3733
    坡向水平0.00000.00000.00002.90043.16990.08500.07320.0946
    0.04590.60970.0787
    东北0.03170.35640.0460
    0.22390.98020.1266
    东南0.15671.03640.1338
    0.14291.13870.1470
    西南0.19901.02150.1319
    西0.22601.62480.2098
    西北0.12510.97710.1262
    高程(m)<8500.58032.90850.40242.46662.80740.12140.12530.1279
    850~9500.33461.18980.1646
    950~10500.21310.72020.0996
    1050~11500.10090.55490.0768
    1150~12500.09420.57380.0794
    1250~13500.16060.86300.1194
    13500.20920.41740.0578
    距河流的距离(m)<2000.39982.27380.47032.01542.32190.13200.12770.1009
    200~4000.22200.83360.1724
    400~6000.05390.44640.0923
    600~8000.07060.86410.1787
    >8000.19420.41710.0863
    距断层的距离(m)<20000.43581.22160.22752.28832.32190.01450.01550.1263
    2000~40000.27251.23430.2299
    4000~60000.32861.14960.2141
    6000~80000.39921.11910.2084
    80000.29510.64450.1200
    距道路的距离(m)<1000.48661.14760.53021.37232.00000.31390.16980.1030
    100~2000.14070.77090.3562
    200~3000.13340.24580.1130
    >3000.00000.00000.0000
    下载: 导出CSV 
    | 显示表格

    使用IOE和F-IOE模型的最终计算数据见表3。如结果所示,每个影响因子的IOE值和分形维数具有基本相同的趋势。最大$ {W_j} $(0.3646)属于NDVI,其次是土地利用类型(0.2462),距道路的距离(0.1698),最小$ {W_j} $(0.0155)属于距断层的距离。最大F-$ {W_j} $(0.1388)属于剖面曲率,其次是NDVI(0.1337),降雨量(0.1319),最小F-$ {W_j} $(0.0946)属于坡向。

    从以上数据可以看出,NDVI在IOE和FIOE模型的建模过程中具有很高的权重。造成这种现象的原因是研究区水土流失严重,降雨不足。基于IOE和F-IOE模型计算滑坡易发性指数(LSI)。LSI值在0到1之间,越接近1,滑坡发生的概率越高,反之亦然。最后,将LSIIOE和LSIF-IOE划分为5个区间,以生成滑坡易发性图(LSM),同时也通过自然断点法分为5类区域:极低易发区(0.09400.2084)、(0.10470.1945);低易发区(0.20840.2646)、(0.19450.2783);中易发区(0.26460.3228)、(0.27830.3834);高易发区(0.32280.3893)、(0.38340.5022);极高易发区(0.38930.6244)、(0.50220.7214)(图6a图6b)。

    图  6  滑坡易发性图
    (a).IOE 模型(LSM);(b).F-IOE 模型(LSM);(c).SVM 模型(LSM);(d).F-SVM 模型(LSM)
    Figure  6.  Landslide susceptibility map using

    在建立基于RBF核函数的支持向量机和F-SVM模型之前,C和δ的确定对于建模至关重要。为了获得准确且稳定的结果,基于Python环境,利用10折交叉验证和网格搜索法,确定了SVM和F-SVM的C和δ分别为(256,0.1250)和(512,0.0165)。然后计算SVM和F-SVM模型的LSI,输出范围为0~1,越接近1,滑坡发生的概率越高,反之亦然。最后,将LSISVM和LSIF-SVM划分为5个区间,生成LSM,并通过自然断点法将其分为5类:极低易发区(0.01450.2459)、(0.07400.3061);低易发区(0.24590.3695)、(0.30610.3962);中易发区(0.36950.5161)、(0.39620.4967);高易发区(0.51610.6974)、(0.49670.6802);极高易发区(0.69740.9983)、(0.68020.9574)(图6c图6d)。

    基于训练数据集,利用3种统计学指标(PPR、NPR和ACC)对滑坡易发性模型的性能进行评估,结果见表4。从PPR和NPR的计算结果可以看出,F-SVM模型的最高值分别为88.72%和94.02%。说明在本研究中,F-SVM模型对滑坡是否发生的预测能力最强。从ACC计算结果来看,F-SVM模型的值也最高(91.20%),其次是SVM模型(89.20%)、F-IOE模型(87.60%)和IOE模型(84.80%)。

    表  4  模型性能评价统计指标计算结果表
    Table  4.  Calculation result of statistical indicators for model performance evaluation
    指标模型
    IOESVMF-IOEF-SVM
    真阳性108113110118
    真阴性104110109110
    假阳性21151615
    假阴性1712157
    PPR(%)83.7288.2887.3088.72
    NPR(%)85.9590.1687.9094.02
    ACC(%)84.8089.0087.6091.20
    下载: 导出CSV 
    | 显示表格

    使用测试数据集和3种统计指标完成了模型测试,计算结果如表5所示。从PPR和NPR的计算结果可以看出,F-SVM模型的值最高,分别为92.73%和94.34%。

    表  5  模型测试评价统计指标计算结果表
    Table  5.  Calculation result of statistical indicators for model validation evaluation
    指标模型
    IOESVMF-IOEF-SVM
    真阳性4852110118
    真阴性4748109110
    假阳性761615
    假阴性62157
    PPR(%)87.2789.6686.2192.73
    NPR(%)88.6896.0092.0094.34
    ACC(%)87.9692.5988.8993.52
    下载: 导出CSV 
    | 显示表格

    这表明,在目前的研究中,F-SVM模型在这4种模型中对滑坡和非滑坡发生的分类性能最好。对于ACC指标,F-SVM模型的值也最高(93.52%),其次是SVM模型(92.59%)、F-IOE模型(88.89%)和IOE模型(87.96%)。总的来说,这4种模型的性能对于研究区域的滑坡易发性分区相对可靠。此外,根据统计测试方法的结果,F-SVM模型在所有指标上得分最高,具有更好的分类能力。在本研究中,两种混合模型的性能都优于其原始模型。

    本研究通过绘制ROC曲线,计算AUC值来对比滑坡易发性模型泛化性。基于训练和测试数据集计算的AUC值分别如图7a图7b所示。从基于训练数据集的ROC曲线来看,F-SVM模型的AUC值最高(0.8527),其次是SVM模型(0.8153)、IOE模型(0.8057)和F-IOE模型(0.8054)。从基于测试数据集的ROC曲线来看,F-SVM模型的AUC值最高(0.9761),其次是F-IOE模型(0.8591)、SVM模型(0.7946)和IOE模型(0.7434)。结果表明,F-SVM在训练和测试数据集中表现出最强的泛化性,并且测试数据集中的AUC值明显高于其他模型。

    图  7  滑坡易发性模型的ROC曲线图
    (a)训练数据集;(b)测试数据集
    Figure  7.  ROC curves for landslide susceptibility models

    在本研究中,基于滑坡编录图,在陕西省宝鸡市北部黄土覆盖区应用了4种滑坡易发性模型,即IOE、F-IOE、SVM、F-SVM模型,并进行了滑坡易发性分区。结果表明,两种混合模型(F-IOE、F-SVM)对于滑坡具有更好的分类能力。虽然许多学者已经使用分形维数从微观和宏观上研究了滑坡,但基本上没有使用分形维数作为输入数据建立混合模型的研究。由于分形维数反映了滑坡更真实的空间分布,分形维数表示的不确定性不等于随机性,分形维数与影响因子之间不存在线性关系。因此,通过使用分形维数作为输入数据构建混合模型,可以实现比普通混合模型更好的效果。另一方面,分形维数可以作为未来研究中影响因子优选的指标。在滑坡易发性建模过程中,尺度和数据分辨率的差异可能会产生一些不确定性。在区域滑坡易发性分区中,通常需要选择一系列在时空尺度上具有不同变化率的影响因子。例如,降雨量和坡度最有可能发生变化,但地层岩性变化的可能性最小。在大尺度上,影响因子的空间总体特征往往更受关注,相反,在小尺度下,影响因子在空间中的整体特征通常被视为约束条件,而细节信息则更受关注。随着空间尺度的增加,变化率高的因子所带来的影响将减少甚至消除,而变化率低的因子所带来的影响将保持甚至更突出。这些原因都将导致滑坡易发性分区的结果具有不确定性,因此,笔者将更加关注尺度变化对滑坡易发性分区的影响。

    从模型性能的评估结果来看,用分形维数构建的两种混合模型(F-IOE、F-SVM)的PPR、NPR和ACC值高于其原始模型(IOE、SVM)。同样,从模型测试的结果来看,两种混合模型的上述3个统计学指标也高于其原始模型。

    图7b可以看出,两种混合模型的AUC值分别为0.8591(F-IOE)和0.9761(F-SVM),显著高于原始模型。因此,构建以分形维数为输入数据的混合模型来研究滑坡易发性比原始模型更有优势。然而,研究区域不足以反映整个方法的普遍适用性,需要结合更多的区域进行研究。

    (1)本研究基于179个滑坡样本点,随机选择70%的滑坡点进行训练,其余30%的滑坡点用于测试。选择了12个影响因子,包括坡度、坡向、高程、距河流的距离、距道路的距离、距断层的距离、NDVI、土地利用类型、地层岩性、降雨量、平面曲率和剖面曲率。多重共线性诊断结果表明,影响因子之间不存在潜在的多重共线性问题,然后计算影响因子的信息增益率,排除了平面曲率因素的影响。

    (2)构建了两种原始分类模型,即IOE和SVM模型。同时,计算每个影响因子的分形维数,并将其作为输入数据来构建两种混合模型,即F-IOE和F-SVM模型。最终使用自然断点法将滑坡易发性分区图分为5类:极低易发区、低易发区、中易发区、高易发区和极高易发区。最后,使用3种统计学指标(PPR、NPR和ACC)来评估模型的性能,并使用ROC曲线来比较这4种模型的泛化性。

    (3)4种模型的ACC值都高于80%,这表明所有模型的分类结果都可靠,并且两种混合模型的ACC值都高于其原始模型。此外,从基于测试数据集的ROC曲线来看,结果相似,F-IOE模型和F-SVM模型的AUC值分别为0.85910.9761,高于IOE模型(0.7434)和SVM模型(0.7946)。

    (4)本研究的结果表明混合模型在滑坡易发性分区中的可靠性高,可以减少野外滑坡详细调查的工作量,为更精准、有效的滑坡灾害预测预警提供数据支撑,同时,相关图件的发布也可为当地的防灾减灾工作提供决策支持。

  • 期刊类型引用(3)

    1. 李光明,杨玉飞,唐亚明,王小浩,尹春旺,冯凡,周永恒. 数据驱动模型评价滑坡易发性的对比研究:以黄河中游流域为例. 西北地质. 2025(02): 51-65 . 本站查看
    2. 王新刚,王道正,王家鼎,黄强兵,胡胜,连宝琴,辜超颖. 黄土高原泥流灾变机理研究进展与发展趋势. 西北地质. 2025(02): 1-15+345 . 本站查看
    3. 王家政,辛鹏,曹生鸿,李先臣,郭丹丹. 降雨诱发黄土滑坡–泥流的规律及阈值曲线研究. 西北地质. 2025(02): 102-110 . 本站查看

    其他类型引用(0)

计量
  • 文章访问数:  2469
  • HTML全文浏览量:  0
  • PDF下载量:  3603
  • 被引次数: 3
出版历程
  • 发布日期:  2010-03-04

目录

/

返回文章
返回