ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    高级检索

    人工智能神经网络在岩性识别、孔隙度和渗透率预测中的应用——以十红滩铀矿床为例

    Application of Artificial Intelligence Neural Networks in Lithology Identification and Porosity and Permeability Prediction——An example from Shihongtan uranium deposit

    • 摘要: 分析了传统测井解释方法的局限性。从神经网络的机理、特点出发,提出了一种基于人工智能神经网络技术的岩性识别、孔隙度和渗透率预测方法。首先选取适当的测井资料向量组成一个训练模式对,由多个训练模式对构成一个学习样本集。通过神经网络的学习,使网络记住这些特征并形成预测模型,最后根据预测模型计算相应参数。以十红滩地区的找矿目的层为对象,进行了岩性分析与对比,预测了孔隙度与渗透率,并与实测值进行了对比。上述实例分析表明,该方法用于砂岩型铀矿预测岩性、孔隙度和渗透率具有一定的可行性。与传统方法相比,该方法不需要建立具体的解释模型和计算公式,有较好的适应性和预测精度。基于人工智能神经网络技术的岩性识别、孔隙度和渗透率预测方法具有较高的实用价值。

       

      Abstract: By analyzing the limitations of the traditional logging data interpretation methods,we proposed an artificial-intellig ence-neural-net work-based method for lithology identification and porosity and permeability prediction according to the mechanisms and charact eristics of neural net works.Atraining patter matching from properlogging data vectors is selected first,and then alearning sample union from several training pattern matchings is constituted,making the networks remember this characteristics and format the prediction model by learning this sam pleunion;finally,the required parameters calculated.Lithology identification,and porosity and permeability prediction of the main set of uraniumore body occurring in Shihongtan uranium deposit with this method are consistent with real documentation.Practical application of this approach shows that it is feasible for sandst one uranium deposit.Compared with traditional methods,the approach does not require establishing concrete interpretation model and computational formula. As aresult,a better adaptability and higher accuracy of prediction are obtained.The approach is valuable practice.

       

    /

    返回文章
    返回