The Magmatic Record in the Peridotites from Yushigou, Qilian Orogen and the Petrogenesis of the Ophiolite-Type Chromitites
-
摘要: 祁连山玉石沟蛇绿岩型铬铁矿是典型的高铬型铬铁矿床.通过对玉石沟铬铁矿和橄榄岩围岩进行原位定距离采样研究表明:全岩高的MgO和低的SiO2含量指示这些蛇纹石化橄榄岩不是简单的部分熔融残余,而是经历了后期的熔体再富集作用.玉石沟近矿橄榄岩尖晶石(Cr#>65)和铬铁矿尖晶石的矿物包裹体化学特征反映矿体和围岩形成于俯冲带上覆岩石圈地幔.距离矿体由近及远,赋矿围岩尖晶石化学成分(Cr#=43.9~77.2,TiO2=0.06%~0.34%)无规律变化.这说明高铬型铬铁矿体成矿所需铬并非来源于围岩,而是与玻安质熔体渗滤有关.尖晶石含水矿物包裹体仅赋存在玉石沟铬铁矿尖晶石与硅酸盐矿物接触部位附近可能揭示了玉石沟铬铁矿体的成因:成矿铬尖晶石在上侵的含水熔体与周围方辉橄榄岩的反应过程中形成聚集.Abstract: The origin of ophiolite-type chromites remain poorly understood despite the great effort over the years. We have sampled podiform chromites and its host peridotites at certain intervals in Yushigou ophiolite, which is well-known for its high-Cr chromites in the Early Paleozoic Qilian suture zone. The very high MgO and low SiO2 content of these serpentinized peridotites reflect that they are too depleted to be residues of partial melting. Both the chromites and peridotites may have undergone multi-processes of melt refertilization. Compared with global abyssal peridotites, their spinels have very high Cr# (>65). Furthermore, the uniform chemical characteristics of chromite-hosted silicate mineral inclusions suggest that the orebody may have formed in the suprasubduction zones setting. With irregular changes of spatial distribution in Cr# from 77.2 to 43.9 and TiO2 from 0.34% to 0.06%, the spinels in host peridotites show that formation of the high-Cr chromites have a boninitic melt affinity instead of originating from the host peridotites. The hydrous mineral inclusions only occur near the outer edge of chromian spinels and silicate minerals may provide evidence for our hypothesis: chromite ore formation results from interaction of hydrous melt with harzburgitic ambience during ascent.
-
Keywords:
- podiform chromite /
- inclusions /
- boninitic melt /
- water /
- Yushigou
-
-
冯益民, 何世平. 北祁连蛇绿岩的地质地球化学研究[J]. 岩石学报, 1995, 11: 125-145. FENG Yiming, HE Shiping. Research for geology and geoehemistry of several ophiolites in the North Qilian Mountains, China[J]. Acta Petrologica Sinica, 1995, 11: 125-145(in Chinese with English abstract).
胡振兴, 牛耀龄, 刘益, 等. 中国蛇绿岩型铬铁矿的研究进展及思考[J]. 高校地质学报, 2014, 20(1): 9-27. HU Zhenxing, NIU Yaoling, LIU Yi, et al. Petrogenesis of Ophiolite-type Chromite Deposits in China and Some New Perspectives[J]. Geological Journal of China Universities, 2014, 20(1): 9-27(in Chinese with English abstract).
饶万祥, 胡沛青, 沈娟. 祁连山玉石沟蛇绿岩套地幔橄榄岩成因[J]. 西北地质, 2012, 45(z1): 78-81. RAO Wanxiang, HU Peiqing, SHEN Juan.Petrogenesis of mantle peridotites from Yushigou ophiolite, Qilian[J]. Northwestern Geology, 2012, 45(z1): 78-81(in Chinese).
史仁灯, 杨经绥, 吴才来, 等. 北祁连玉石沟蛇绿岩形成于晚震旦世的SHRIMP年龄证据[J]. 地质学报, 2004, 78(5): 649-657. SHI Rendeng, YANG Jingsui, WU Cailai, et al. First SHRIMP dating for the formation of the late Sinian Yushigou ophiolite, north Qilian mountains[J]. Acta Geologica Sinica, 2004, 78(5): 649-657(in Chinese with English abstract).
童海奎, 张顺桂, 芦文泉. 北祁连托莱山超基性岩带玉石沟地区地球化学特征[J]. 西北地质, 2012, 45(1): 118-123. TONG Haikui, ZHANG Shungui, LU Wenquan. Geochemical Characteristics of Ultramafic Belt in Tuolaishan, Yushigou area, Northern Qilian[J]. Northwestern Geology, 2012, 45(1): 118-123(in Chinese with English abstract).
肖序常, 陈国铭, 朱志直. 祁连山古蛇绿岩带的地质构造意义[J]. 地质学报, 1978, 52(4): 281-295. XIAO Xuchang, CHEN Guoming, ZHU Zhizhi. A preliminary study on the Tectonics of ancient ophiolites in the Qilian mountain, northwest China[J]. Acta Geologica Sinica,1978, 52(4): 281-295(in Chinese with English abstract).
姚培慧. 中国铬矿志[M]. 北京: 冶金工业出版社, 1996. YAO Peihui (chief editor). Records of Chinese Chromite Deposits[M]. Beijing: Metallurgical Industry Press, 1996(in Chinese).
周会武, 李志林. 玉石沟铬铁矿床的成因[J]. 甘肃地质学报, 1995, 4(1): 44-53. ZHOU Huiwu, LI Zhilin. Genesis of Yushigou chromite deposit[J]. Acta Geologica Gansu, 1995, 4(1): 44-53(in Chinese with English abstract).
[BP(]Abe N. Petrology of podiform chromitite from the ocean floor at the 15. DEG. 20'N FZ in the MAR, Site 1271, ODP Leg 209[J]. Journal of Mineralogical and Petrological Sciences, 2011, 106(2): 97-102.
AHMED AH, ARAI S, ATTIA AK. Petrological characteristics of podiform chromitites and associated peridotites of the Pan African Proterozoic ophiolite complexes of Egypt [J]. Mineralium Deposita, 2001, 36(1): 72-84.
AKMAZ RM, UYSAL I, Saka S. Compositional variations of chromite and solid inclusions in ophiolitic chromitites from the southeastern Turkey: Implications for chromitite genesis[J]. Ore Geology Reviews, 2014, 58: 208-224.
ARAI S, MATSUKAGE K, ISOBE E, et al. Concentration of incompatible elements in oceanic mantle: effect of melt/wall interaction in stagnant or failed melt conduits within peridotite[J]. Geochimica et Cosmochimica Acta, 1997, 61(3): 671-675.
ARAI S. CONVERSION of low-pressure chromitites to ultrahigh-pressure chromitites by deep recycling: A good inference[J]. Earth and Planetary Science Letters, 2013, 379: 81-87.
BORISOVA AY, CEULENEER G, KAMENETSKY VS, et al. A New View on the Petrogenesis of the Oman Ophiolite Chromitites from Microanalyses of Chromite-hosted Inclusions[J]. Journal of Petrology, 2012, 53(12): 2411-2440.
Boudier F, Al-Rajhi A. Structural control on chromitite deposits in ophiolites: the Oman case[J]. Geological Society, London, Special Publications, 2014, 392(1): 263-277.
BÜCHL A, BRÜGMANN G, BATANOVA VG. Formation of podiform chromitite deposits: implications from PGE abundances and Os isotopic compositions of chromites from the Troodos complex, Cyprus[J]. Chemical geology, 2004, 208(1): 217-232.
EDWARDS SJ, PEARCE JA,FREEMAN J. New insights concerning the influence of water during the formation of podiform chromitite [J]. In: Dilek Y, Moores E, Elthon D. and Nicolas A. (Eds.) Ophiolites and Oceanic Crust: New Insights from Field Studies and the Ocean Drilling Program. Geological Society of America, Special Paper, 2000, 349: 139-147.
GONZÁLEZ-JIMÉNEZ JM, GRIFFIN WL, PROENZA JA, et al. Chromitites in ophiolites: how, where, when, why? Part II. The crystallisation of chromitites [J]. Lithos, 2014, 189: 140-158.
HART SR, ZINDLER A. In search of a bulk-Earth composition[J]. Chemical Geology, 1986, 57(3): 247-267.
JAGOUTZ E, PALME H, BADDENHAUSEN H, et al. The abundances of major, minor and trace elements in the earth's mantle as derived from primitive ultramafic nodules [J]. Proceedings of 10th Lunar Planetary Science Conference. Geochimica et Cosmochimica Acta Supplements, 1979, 10: 2031-2051.
KAMENETSKY VS, CRAWFORD AJ, MEFFRE S. Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks[J]. Journal of Petrology, 2001, 42(4): 655-671.
LEBLANC M, CEULENEER G. Chromite crystallization in a multicellular magma flow: evidence from a chromitite dike in the Oman ophiolite[J]. Lithos, 1992, 27(4): 231-257.
MA Q, ZHENG JP, GRIFFIN WL, et al. Triassic “adakitic” rocks in an extensional setting (North China): Melts from the cratonic lower crust[J]. Lithos, 2012, 149: 159-173.
MARCHESI C, GARRIDO CJ, GODARD M, et al. Petrogenesis of highly depleted peridotites and gabbroic rocks from the Mayarí-Baracoa Ophiolitic Belt (eastern Cuba)[J]. Contributions to Mineralogy and Petrology, 2006, 151(6): 717-736.
MATSUKAGE K, ARAI S. Jadeite, albite and nepheline as inclusions in spinel of chromitite from Hess Deep, equatorial Pacific: their genesis and implications for serpentinite diapir formation[J]. Contributions to mineralogy and petrology, 1998, 131(2-3): 111-122.
MATVEEV S, BALLHAUS C. Role of water in the origin of podiform chromitite deposits[J]. Earth and Planetary Science Letters, 2002, 203(1): 235-243.
MCELDUFF B, STUMPFL EF. The chromite deposits of the Troodos complex, Cyprus-evidence for the role of a fluid phase accompanying chromite formation[J]. Mineralium Deposita, 1991, 26(4): 307-318.
MELCHER F, GRUM W, SIMON G, et al. Petrogenesis of the ophiolitic giant chromite deposits of Kempirsai, Kazakhstan: a study of solid and fluid inclusions in chromite[J]. Journal of Petrology, 1997, 38(10): 1419-1458.
MORISHITA T, TANI K, SHUKUNO H, et al. Diversity of melt conduits in the Izu-Bonin-Mariana forearc mantle: Implications for the earliest stage of arc magmatism[J]. Geology, 2011a, 39(4): 411-414.
MORISHITA T, DILEK Y, SHALLO M, et al. Insight into the uppermost mantle section of a maturing arc: The Eastern Mirdita ophiolite, Albania[J]. Lithos, 2011b, 124(3): 215-226.
NIU YL. Mantle melting and melt extraction processes beneath ocean ridges: evidence from abyssal peridotites[J]. Journal of Petrology, 1997, 38(8): 1047-1074.
NIU YL. Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges[J]. Journal of Petrology, 2004, 45(12): 2423-2458.
NIU YL. Generation and evolution of basaltic magmas: some basic concepts and a new view on the originof Mesozoic-Cenozoic basaltic volcanism in eastern China[J]. Geological Journal of China Universities, 2005, 11(1): 9-46.
NIU YL, HÉKINIAN R. Spreading-rate dependence of the extent of mantle melting beneath ocean ridges[J]. Nature,1997, 385: 326-329.
NIU YL, LANGMUIR CH, KINZLER RJ. The origin of abyssal peridotites: a new perspective[J]. Earth and Planetary Science Letters, 1997, 152(1): 251-265.
PARKINSON IJ, PEARCE JA. Peridotites from the Izu-Bonin-Mariana forearc (ODP Leg 125): evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting[J]. Journal of Petrology, 1998, 39(9): 1577-1618.
PAYOT BD, ARAI S, DICK HJ, et al. Podiform chromitite formation in a low-Cr/high-Al system: An example from the Southwest Indian Ridge (SWIR)[J]. Mineralogy and Petrology, 2013, 108(4): 1-17.
PAYOT BD, ARAI S, TAMAYO RA, et al. Textural Evidence for the Chromite-Oversaturated Character of the Melt Involved in Podiform Chromitite Formation[J]. Resource Geology, 2013, 63(3): 313-319.
PEARCE JA, BARKER PF, EDWARDS SJ, et al. Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic[J]. Contributions to Mineralogy and Petrology, 2000, 139(1): 36-53.
PROENZA J, GERVILLA F, MELGAREJO J, et al. Al-and Cr-rich chromitites from the Mayarí-Baracoa ophiolitic belt (eastern Cuba); consequence of interaction between volatile-rich melts and peridotites in suprasubduction mantle[J]. Economic Geology, 1999, 94(4): 547-566.
SHI RD, GRIFFIN WL, O'REILLY SY, et al. Melt/mantle mixing produces podiform chromite deposits in ophiolites: Implications of Re-Os systematics in the Dongqiao Neo-tethyan ophiolite, northern Tibet[J]. Gondwana Research, 2012, 21(1): 194-206.
SONG SG, NIU YL, SU L, et al. Tectonics of the North Qilian orogen, NW China[J]. Gondwana Research, 2013, 23(4): 1378-1401.
SONG SG, SU L, NIU YL, et al. CH4 inclusions in orogenic harzburgite: Evidence for reduced slab fluids and implication for redox melting in mantle wedge[J]. Geochimica et Cosmochimica Acta, 2009, 73(6): 1737-1754.
TALKINGTON RW, WATKINSON DH, WHITTAKER PJ, et al. Platinum-group minerals and other solid inclusions in chromite of ophiolitic complexes: occurrence and petrological significance[J]. Tschermaks mineralogische und petrographische Mitteilungen, 1984, 32(4): 285-301.
TAMURA A, ARAI S, ISHIMARU S, et al. Petrology and geochemistry of peridotites from IODP Site U1309 at Atlantis Massif, MAR 30°N: micro-and macro-scale melt penetrations into peridotites[J]. Contributions to Mineralogy and Petrology, 2008, 155(4): 491-509.
TAMURA A, MORISHITA T, ISHIMARU S, et al. Geochemistry of spinel-hosted amphibole inclusions in abyssal peridotite: insight into secondary melt formation in melt-peridotite reaction[J]. Contributions to Mineralogy and Petrology, 2014, 167(3): 1-16.
WALTER MJ. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere[J]. Journal of Petrology, 1998, 39(1): 29-60.
XU YJ, DU YS, CAWOOD PA, et al. Provenance record of a foreland basin: Detrital zircon U-Pb ages from Devonian strata in the North Qilian Orogenic Belt, China[J]. Tectonophysics, 2010, 495(3): 337-347.
YANG JS, ROBINSON PT, DILEK Y. Diamonds in ophiolites[J]. Elements, 2014, 10(2): 127-130.
ZACCARINI F, GARUTI G, PAOENZA-FERNÁNDEZ JA, et al. Chromite and platinum group elements mineralization in the Santa Elena Ultramafic Nappe (Costa Rica): geodynamic implications[J]. Geologica Acta, 2011, 9(3): 407-423.
ZHOU MF, ROBINSON PT. High-Cr and high-Al podiform chromitites, Western China: relationship to partial melting and melt/rock reaction in the upper mantle[J]. International Geology Review, 1994, 36(7): 678-686.
ZHOU MF, ROBINSON PT, MALPAS J, et al. REE and PGE geochemical constraints on the formation of dunites in the Luobusa Ophiolite, Southern Tibet[J]. Journal of Petrology, 2005, 46(3): 615-639.
ZHOU MF, ROBINSON PT, SU BX, et al. Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits: The role of slab contamination of asthenospheric melts in suprasubduction zone envrionments[J]. Gondwana Research, 2014, 26(1): 262-283.
ABE N. Petrology of podiform chromitite from the ocean floor at the 15°20'N FZ in the MAR, Site 1271, ODP Leg 209[J]. Journal of Mineralogical and Petrological Sciences, 2011, 106(2): 97-102.
计量
- 文章访问数: 2706
- HTML全文浏览量: 0
- PDF下载量: 2666