ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

印度达尔瓦尔克拉通绿岩带BIF型铁矿地质特征及成因分析

成功, 孙卫宾, 李尚林, 罗彦军, 李丹

成功, 孙卫宾, 李尚林, 等. 印度达尔瓦尔克拉通绿岩带BIF型铁矿地质特征及成因分析[J]. 西北地质, 2016, 49(4): 136-145.
引用本文: 成功, 孙卫宾, 李尚林, 等. 印度达尔瓦尔克拉通绿岩带BIF型铁矿地质特征及成因分析[J]. 西北地质, 2016, 49(4): 136-145.
CHENG Gong, SUN Weibin, LI Shanglin, et al. Geological Characters and Genesis Analysis of Greenstone-type BIF Iron Deposits in Dharwar Craton, India[J]. Northwestern Geology, 2016, 49(4): 136-145.
Citation: CHENG Gong, SUN Weibin, LI Shanglin, et al. Geological Characters and Genesis Analysis of Greenstone-type BIF Iron Deposits in Dharwar Craton, India[J]. Northwestern Geology, 2016, 49(4): 136-145.

印度达尔瓦尔克拉通绿岩带BIF型铁矿地质特征及成因分析

基金项目: 

澳洲-印度克拉通重要矿床地质背景与成矿规律研究(1212011120325),南亚地区基础地质图件编制与成矿地质背景研究(1212011120333)

详细信息
    作者简介:

    成功(1972-),男,讲师,硕士生导师,在职博士,主要从事遥感及地质找矿等研究。E-mail:417375394@qq.com

  • 中图分类号: P617

Geological Characters and Genesis Analysis of Greenstone-type BIF Iron Deposits in Dharwar Craton, India

  • 摘要: 印度铁矿储量约占全球的7%,矿石类型以前寒武纪BIF铁矿为主,其中产于绿岩带以及绿片岩相岩石中的BIF型铁矿是印度最重要的铁矿类型。南印度地盾达尔瓦尔克拉通发育众多绿岩带,绿岩带中发育大规模BIF铁矿,BIF铁矿属于不同的地层序列,有不同的岩石组合关系。笔者对吉德勒杜尔加绿岩带和库斯赫塔吉绿岩带BIF地球化学分析表明,根据Al2O3含量,BIF分为页岩BIF(Al2O3≥2%)和石英岩BIF(Al2O3≤2%),BIF呈石英氧化物相,碳酸盐相和硫化物相BIF主量和微量元素表明BIF为陆源碎屑沉积和火山碎屑沉积共同作用形成;稀土元素表明BIF铁矿呈Ce负异常和Eu正异常。达尔瓦尔克拉通测年数据表明,经过2.7~2.65 Ga和2.58~2.54 Ga两期主要的火山作用,2.7~2.6 Ga和2.58~2.52 Ga 2个阶段的大陆增生作用,形成了达尔瓦尔克拉通和绿岩带。BIF成矿来源上,AMOR的高温热液提供大量的Fe和SiO2,海洋中生物光合作用提供了O2,在化学沉积和碎屑沉积共同作用下,形成了BIF铁矿。
    Abstract: India takes up about 7% of iron ore reserves in the world, which is dominated by Precambrian BIF iron. In which, the BIF iron ores occurred within greenstone belt or green schist serve as the most important type of iron deposits in India. The greenstone belts were well developed in Dharwar Craton and South India Shield, where a lots of BIF iron deposits were developed in different strata sequences and rock association.The geochemical characters of BIF deposits in Chitradurga and Kushtagi greenstone belts have been analyzed and discussed in this paper. The results show that these BIFs can be classified into shaleand quartz BIFs by using the limit of 2% Al2O3 content. And these BIFs show three lithofacies, such as quartzoxide, carbonate or sulfides phases. The major and trace elements geochemistry show that these BIFs were formed by the joint action of terrigenous clastic and volcanic clastic sedimentary. The rare earth elements geochemistry shows that these BIFs have negative Ceanomalies and positive Eu anomalies.The dating data of Dharwarcraton suggest that two major volcanisms occurred in 2.7~2.65 Ga and 2.58~2.54 Ga, and two stages continental accretions happened in 2.7~2.6 Ga and 2.58~2.52 Ga, which caused the formation of Dharwarcraton and related greenstone belts. As for the ore-forming materials source of these BIFs deposits, the Feand SiO2 were came from the high-temperature hydrothermal of AMOR, the O2 was sourced from marine biological photosynthesis, and these BIF deposits were formed by the combined action of chemical and clastic sediments under this environment.
  • 翟明国. 华北克拉通的形成演化与成矿作用[J]. 矿床地质, 2010 (1): 24-36.

    ZHAI Mingguo.Tectonic evolution and metallogenesis of North China Craton[J]. Mineral Deposits, 2010 (1): 24-36.

    张连昌,翟明国,万渝生,等. 华北克拉通前寒武纪 BIF 铁矿研究: 进展与问题[J]. 岩石学报,2012,28(11): 3431-3445.

    ZHANG LC, ZHAI MG, WAN YS, et al. Study of the Precambrian BIF-iron depositsin the North China Craton: Progresses and questions[J]. Acta Petrologica Sinica, 2012, 28(11): 3431-3445.

    沈保丰,翟安民,杨春亮,等. 中国前寒武纪铁矿床时空分布和演化特征[J]. 地质调查与研究,2005,28(4): 196-206.

    SHEN Baofeng, ZHAI Anmin, YANG Chunliang, et al.TemporalSpatial Distribution and Evolutional Charactersof Precambrian Iron Deposits in China[J].Geological Survey and Research, 2005, 28(4): 196-206.

    CHARDON D, JAYANANDA M, PEUCAT J J. Lateral constrictional flow of hot orogenic crust: insights from the Neoarchean of south India, geological and geophysical implications for orogenicplateaux[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(2):1-24.

    JAYANANDA, M.,CHARDON, D., PEUCAT, J.-J., CAPDEVILA, R.. 2.61 Gapotassic granites and crustal reworking in the western Dharwarcraton, southern India: tectonic,geochronologic and geochemical constraints[J]. Precambrian Research,2006,150(1-2):1-26.

    DEY S. Evolution of Archaean crust in the Dharwarcraton: The Nd isotope record[J]. Precambrian Research, 2013, 227(4): 227-246.

    PEUCAT J J, JAYANANDA M, CHARDON D, et al. The lower crust of the Dharwar Craton, Southern India: patchwork of Archeangranuliticdomains[J]. Precambrian Research, 2013, 227(4): 4-28.

    CHADWICK B, VASUDEV VN, HEGDE GV. The Dharwarcraton, southern India, interpreted as the result of Late Archaean oblique convergence[J]. Precambrian Research, 2000, 99(1): 91-111.

    PEUCAT J J, BOUHALLIER H, FANNING CM, et al. Age of the Holenarsipur greenstone belt, relationships with the surrounding gneisses (Karnataka, South India)[J]. The Journal of Geology, 1995,103(6): 701-710.

    SARMA DS, FLETCHER IR, RASMUSSEN B, et al. Archaean gold mineralization synchronous with late cratonization of the Western Dharwar Craton, India: 2.52 Ga U-Pb ages of hydrothermal monazite and xenotime in gold deposits[J]. Mineralium Deposita, 2011, 46(3): 273-288.

    CHARDON D, PEUCAT JJ, JAYANANDA M, et al. Archean granite-greenstone tectonics at Kolar (south India): Interplay of diapirism and bulk inhomogeneous contraction during juvenile magmatic accretion[J]. Tectonics, 2002, 21(3): 7-1-7-17.

    JAYANANDA M, PEUCAT JJ, CHARDON D, et al. Neoarchean greenstone volcanism, Dharwarcraton, southern India: constraints from SIMS zircon geochronology and Nd isotopes[J]. Precambrian Research, 2013, 227: 55-76.

    JAYANANDA M, MOYEN JF, MARTIN H, et al. Late Archaean (2550-2520 Ma) juvenile magmatism in the Eastern Dharwarcraton, southern India: constraints from geochronology, Nd-Sr isotopes and whole rock geochemistry[J]. Precambrian Research, 2000, 99(3): 225-254.

    MANIKYAMBA C, KERRICH R. Geochemistry of black shales from the Neoarchaean Sandur Superterrane, India: first cycle volcanogenic sedimentary rocks in an intraoceanic arc-trench complex[J]. Geochimicaet Cosmochimica Acta, 2006, 70(18): 4663-4679.

    MANIKYAMBA C, KHANNA TC. Crustal growth processes as illustrated by the Neoarchaeanintraoceanicmagmatism from Gadwal greenstone belt, Eastern DharwarCraton, India[J]. Gondwana Research, 2007, 11(4): 476-491.

    NUTMAN AP, CHADWICK B, KRISHNA RAO B, et al. SHRIMP U/Pb zircon ages of acid volcanic rocks in the Chitradurga and Sandur groups, and granites adjacent to the Sandur schist belt, Karnataka[J]. Journal of the Geological Society of India,1996,47(2): 153-164.

    NAQVI SM, SAWKAR RH, RAO DVS, et al. Geology, geochemistry and tectonic setting of Archaeangreywackes from Karnataka nucleus, India[J]. Precambrian research, 1988, 39(3): 193-216.

    NAQVI SM, KHAN R MK, Manikyamba C, et al. Geochemistry of the NeoArchaean high-Mg basalts, boninites and adakites from the Kushtagi-Hungund greenstone belt of the Eastern DharwarCraton (EDC); implications for the tectonic setting[J]. Journal of Asian Earth Sciences, 2006, 27(1): 25-44.

    KHAN RMK, NAQVI SM. Geology, geochemistry and genesis of BIF of Kushtagi schist belt, Archaean Dharwar Craton, India[J]. Mineralium Deposita. 1996,1(1-2):123-133.

    BAN M, MOLLER P. Rare earth element systematics of the chemically precipitated component in Early Precambrian iron formations and the evolution of the terrestrial atmosphere-hydrosphere-lithosphere system[J]. Geochimicaet Cosmochimica Acta, 1993, 57(10): 2239-2249.

    RAO TG, NAQVI SM. Geochemistry, depositional environment and tectonic setting of the BIF's of the Late Archaean Chitradurga Schist Belt, India[J]. Chemical Geology, 1995, 121(1): 217-243.

    MOYEN JF, MARTIN H, JAYANANDA M, et al. Late Archaean granites: a typology based on the DharwarCraton (India)[J]. Precambrian Research, 2003, 127(1): 103-123.

    BALAKRISHNAN S, RAJAMANI V, HANSON G N. U-Pb Ages for Zircon and Titanite from the Ramagiri Area, Southern India: Evidence for Accretionary Origin of the Eastern Dharwar Craton during the Late Archean[J]. The Journal of geology, 1999, 107(1): 69-86.

    SEYFRIED WE, JANECKY DR. Heavy metal and sulfur transport during subcritical and supercritical hydrothermal alteration of basalt: Influence of fluid pressure and basalt composition and crystallinity[J]. GeochimicaetCosmochimica Acta, 1985, 49(12): 2545-2560.

    DRAGANIC IG, BJERGBAKKE E, DRAGANIC ZD, et al. Decomposition of ocean waters by potassium-40 radiation 3800 Ma ago as a source of oxygen and oxidizing species[J]. Precambrian Research, 1991, 52(3): 337-345.

    KLEIN C. Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins[J]. American Mineralogist, 2005, 90(10): 1473-1499.

    GROSS G A. A classification of iron formations based on depositional environments[J]. The Canadian Mineralogist, 1980, 18(2): 215-222.

计量
  • 文章访问数:  2264
  • HTML全文浏览量:  0
  • PDF下载量:  2443
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-11
  • 修回日期:  2016-05-31
  • 网络出版日期:  2022-07-28
  • 发布日期:  2016-12-04

目录

    /

    返回文章
    返回