Research on 3D GIS-Based Suitability Evaluation of Engineering Construction of the Quaternary Paleo-channel Sedimentary Area
-
摘要: 基于皖北楚店集、高炉集、江集和望町集4幅1∶5万综合地质调查成果,划定区内第四系地质结构与工程地质分层,控制茆塘期古河道的空间展布特征,融合多源数据与专家经验联合构建三维地质结构模型。综合考虑基础、工程、水文等地质条件,运用Delphi法确定了9项工程建设相关评价因子。基于AHP层次分析法、多因子综合指数评价法建立了评价指标体系与计算模型。通过三维GIS分析评价方法,综合评价区内50m以浅工程建设适宜性,分级圈定了适宜性好、较好、一般等各级区域。利用皮尔逊相关系数法对评价结果和单项因子进行关联分析,揭示了因子影响关系,提出了工程建设过程中需重点关注的因素。Abstract: Based on the 1:50 000 comprehensive geological survey in Chudianji, Gaoluji, Jiangji and Wangdingji of northern Anhui Province,this paper determines the Quaternary geological structure,the engineering geological stratification, and the spatial distribution characteristics of maotang paleo-channel. It also builds a 3D geological structure model on the basis of multi-source data and experts'experience. Considering the geological conditions of foundation, engineering and hydrology, nine evaluation factors related to engineering construction are used in the Delphi method. Based on AHP and multi factor comprehensive index evaluation method, the evaluation index system and calculation model are established. 3D GIS analysis and evaluation method are used to comprehensively evaluate the suitability of shallow engineering construction within 50 meters in the area, and delineated different levels of suitability. Pearson correlation coefficient method is used to analyze the correlation between the evaluation results and individual factors, revealing the influence relationship of factors in the process of engineering construction.
-
Keywords:
- Quaternary /
- 3D GIS /
- variable weight assignment /
- paleo-channel /
- engineering construction
-
秦岭造山带是中央造山带的重要组成部分,构造–岩浆活动强烈,矿产资源丰富,成矿具有多期次、多作用、多成因等特征,是中国重要的有色金属基地之一(张国伟, 2001; 姚书振等, 2002; 杜玉良等, 2003; 谢才富等, 2004; 徐林刚等, 2021;王汉辉等,2023;陈龙龙等,2024;冉亚洲等,2024)。秦岭成矿带是世界第二大卡林型–类卡林型金矿省,为秦岭–西亚全球第三大汞锑矿带的重要组成部分,且蕴含中国最重要的钡矿田和铅锌矿田(陈衍景, 2010a,2010b)(图1)。作为秦岭造山带的主要组成单元,南秦岭地区也赋存众多金、汞锑、铅锌等矿床(薛春纪等, 2005; Zhang et al., 2014; Ma et al., 2020)。自20世纪80年代以来,该区金矿找矿工作取得了较好进展,相继评价了金龙山、烂木沟、淋湘等一批金矿床(刘新会等,2008;沙亚洲等,2013),使南秦岭成为中国微细浸染型金矿床重要矿集区之一。
镇旬盆地是南秦岭成矿带中极具潜力的Au-Hg-Sb-Pb-Zn-Cu多金属成矿带(邹海洋等, 2001; 唐永忠等, 2016; 孟五一等, 2021),盆地南侧发育以泗人沟、关子沟等为代表的志留纪—中泥盆世热水沉积改造型铅锌矿床,北部沿板岩镇断裂发育有金龙山超大型金矿床,盆地中部分布有小河、惠家沟等中小型金矿床及公馆、青铜沟超大型汞锑矿床等,构成沿南羊山断裂东西展布的重要金汞锑成矿带。由于盆地中部存在两个超大型汞(锑)矿(Zhang et al., 2014),导致过去金矿床的调查研究一直被忽视,随着近年汞矿勘查工作的逐渐停止,王庄金矿、老君庙金矿等多个具有大型资源前景金矿床的新发现,使得此区域逐渐具备形成大型金资源基地的潜力。
王庄金矿床是近年地质调查工作新发现的金矿床,对其开展矿物组构、物质组成方面的研究,可以查明该矿床载金矿物类型、是否存在自然金等重要信息,对于该矿床的理论研究、指导下步找矿工作均具有实际意义。
1. 区域地质地球化学特征
王庄金矿床位于南秦岭造山带镇旬裂陷盆地之旬阳盆地晚古生代热水沉积盆地北部。区域古生代地层出露较为齐全,从寒武纪到三叠纪均有出露,中生代地层仅有三叠纪。围绕南羊山断裂带产出的矿床主要赋存于上泥盆统星红铺组(D3x)、中上泥盆统古道岭组(D2-3g)、中泥盆统大枫沟组(D2d)、中泥盆统西岔河组(D2x),而王庄金矿床位于上泥盆统—下石炭统铁山组中(D3C1t),拓展了区内的含矿地层(图2a)。区内的含矿建造主要为中上泥盆统碳酸盐岩和细碎屑岩建造,主要赋矿岩性为灰岩、砂屑灰岩、含泥质粉砂质灰岩、泥质板岩、钙质板岩等,均为碳酸盐岩、细碎屑岩互层,表现为物理化学界面成矿。
王庄金矿位于白石河–冷水河复向斜之砂硐沟背斜的北西端,NW向送驾园断层、干沟台–青沟断层切过背斜转折端,经遥感解译这些断层向北西方向延伸至矿区,构成了褶皱+断层的有利成矿构造样式组合。王庄、小河金矿床构成的弧形构造带与南羊山断裂相交,区内1∶5万水系沉积物异常W-Au-Hg-Sb呈EW向展布,亦受控于南羊山断裂,且含矿地层有一定相似性,成为岩性+构造的有利成矿条件。区内金成矿作用与断裂构造关系密切,与成矿作用有关的断裂多具有先张后压多期活动的特点。NE向主干断裂以及层间破碎带控制金矿床的分布,金矿体多赋存于近EW向次级断裂构造破碎带中,并且沿断裂破碎带常出现膨胀收缩、尖灭再现等特点。
笔者依托在镇旬盆地开展的1∶5万矿产地质调查工作,发现区内金、钨元素EW向展布呈现出西部为钨异常、东部为金钨异常(图2b),矿产的分布由西向东为松树湾钨矿、小河金(钨)矿、王庄金矿、老君庙金矿(图2a),明显存在规律性。金矿床当中金钨异常关系密切,互相嵌合叠加,从宏观层面显示金钨相关性,进而呈现区内W→Au、As(W)→Hg、Sb(Au、W)异常分带。矿区范围未发现岩浆岩出露,但区内1∶5万水系沉积物测量工作显示王庄金矿西部有Cu-Cr-Co-Ni-W异常组合,指示矿区西侧存在隐伏岩体。
2. 矿区地质特征
矿区主要分布有上泥盆统—下石炭统铁山组(D3C1t)、上泥盆统星红铺组(D3x),铁山组以碳酸盐岩为主夹少量细碎屑岩,星红铺组主要为灰岩和浅变质细碎屑岩建造。矿体主要赋存于砂硐沟背斜西沿轴部延伸部位的铁山组中,向西延伸进入星红铺组(图3)。矿体整体呈NE向展布,主体受控于灰岩千枚岩构成的层间破碎带(片理化带),主要矿石矿物毒砂、黄铁矿呈浸染状、星点状分布。
根据目前已见矿槽探、老硐(WZTC16、WZBT02、WZLD02、WZLD04)和钻孔(ZK7-1、ZK7-2、ZK7-3、ZK15-1、ZK103-1、ZK103-2)共10个工程,其中ZK7-1、ZK7-2均见两层矿化体,赋矿地层均为碎裂岩化泥钙质千枚岩,发育强烈的硅化,金属矿物主要为针状毒砂、他形微细粒黄铁矿,呈微细浸染状、星点状分布。结合区内成矿认识,划分为两条矿体,地表出露矿体整体为K1矿体,深部为盲矿体M1(图4)。K2矿(化)体未做深部验证,仅有地表槽探(WZTC07)控制矿化,矿体的产态整体均以舒缓波状展布,K1矿体的整体产状为120°~165°∠30°~40°,由于矿体产态呈波浪状,在波峰和波谷位置倾角较陡,走向与地表垂交,如在WZBT02位置,矿体产状约为236°∠79°。K1矿体EW向在地表延伸约480 m,块段平均品位为1.41×10−6,平均厚度为1.13 m,控制潜在资源为596 kg,M1矿体平均品位为1.51×10−6,平均厚度为5.45×10−6,控制潜在资源为1977 kg,合计控制潜在资源为2.57 t。
3. 矿石矿物及物质组成
王庄金矿矿石类型以碎裂岩化含毒砂泥钙质(碳质)千枚岩型(图5a、图5d)、石英硫化物型(图5a)、毒砂黄铁绢云岩型(图5d)为主,其中以碎裂岩化含毒砂泥钙质(碳质)千枚岩型矿石为主。矿石矿物组成以黄铁矿、含砷黄铁矿、毒砂、闪锌矿、方铅矿、褐铁矿为主,脉石矿物以石英、方解石、高岭石等为主(图5)。矿石结构以细脉状、微细浸染状、似层状为主,金属矿物当中黄铁矿多为胶状集合体、立方体以及他形粒状(图5a、图5b、图5i);毒砂以针柱状结构为主,局部为交代残余结构(图5e、图5h、图5i);闪锌矿以他形围绕前期形成的金属硫化物生长(图5f);黄铜矿较少,为乳滴状,与闪锌矿呈固溶体分离结构(图5f)。矿石构造整体为碎裂状(图5a、图5d),少量矿石存在后期交代重结晶。微细粒含砷黄铁矿化、针状毒砂集合体与金品位关系较为密切,尤其毒砂含量高的矿石,金品位均较高。
王庄金矿载金矿物以毒砂为主,其次为黄铁矿。毒砂主要表现为针状、细柱状,呈细脉状、星点状分布于矿石中,在石英脉中含量较低,零星分布,在石英脉与围岩接触部位富集,呈细脉状,黄铁矿呈微细粒状零星分布。通过显微镜及电子探针分析,在王庄金矿未见自然金,金主要以不可见金形式赋存于毒砂、含砷黄铁矿中,电子探针显示毒砂、黄铁矿中金元素含量均小于1%,最高为0.65%,且可通过显微镜下矿物接触关系判断出毒砂是热液中期产物,毒砂后期有被黄铁矿交代现象,这可能反映了金元素的沉淀富集和毒砂结晶消耗流体中As元素有关。
4. 成矿阶段划分
综合前文矿石矿物宏微观特征表现出矿物组合特征,王庄金矿的成矿过程主要经历3个时期:①沉积成岩期。②热液成矿期。③表生氧化期。根据矿化体、矿物共生组合及其交生关系,可以将热液成矿期划分为4个成矿阶段(图6):I.黄铁矿石英脉成矿早阶段(图5a、图5b、图5f),主要为烟灰色石英脉,表现出顺层产出特征,局部可见少量黄铁矿呈立方体、星点状分布;II.毒砂、黄铁矿、石英脉成矿主阶段(图5a、图5e、图5g、图5h),可见大量针状毒砂、黄铁矿沿石英脉体边部分布,以及在I阶段黄铁矿基础上形成环带;III.石英脉伴少量多金属硫化物阶段(图5f、图5h、图5i),此阶段可见少量闪锌矿、黄铜矿、方铅矿围绕前期毒砂、黄铁矿边部分布,也可见少量黄铁矿交代前期形成的毒砂;IV.碳酸盐岩晚阶段,主要为纯净方解石脉体切割前期形成的石英、金属硫化物脉体。其中与成矿关系密切的为II、III阶段。
5. 采样及实验分析
本次工作主要针对王庄金矿K1、M1矿体控制钻孔ZK7-1、ZK7-2采集矿体及上、下蚀变带样品,磨制探针片30件,在进行详细的显微镜下分析基础上,针对不同阶段的金属硫化物开展电子探针分析。
电子探针分析工作在中国地质调查局西安地质调查中心国土资源部岩浆作用成矿与找矿重点实验室完成,分析仪器为日本电子JXA-8230电子探针仪。仪器主要工作条件为:加速电压20 kv,束斑电流为1×10−8 A,束斑直径为1 um,峰值计数时间20 s,背景计数时间10 s。
6. 讨论
载金矿物中微量元素的组合特征以及赋存状态能反映重要的成因矿物学信息,是研究金矿成矿机理的重要方法手段(杨荣生等, 2009)。微细浸染型金矿的主要载金矿物是黄铁矿、毒砂,金常以“不可见金”形式赋存于载金矿物中(Bowell et al., 1999; Cline et al., 2005; Martin et al., 2005; 陈懋弘等, 2009;葛战林等,2023)。毒砂在热液成矿期普遍含有金,载金黄铁矿以细粒自形含砷黄铁矿为主。通过王庄金矿矿石矿物电子探针分析数据(表1)可以看出,成矿前I阶段的黄铁矿普遍存在贫As、Au,富Fe、S特征,王庄金矿主成矿阶段(II阶段)细粒黄铁矿多为均质结构,具高As、Au,低S、Fe特征,且此阶段生成大量针状毒砂,具有较高的Au显示,表明Au与As存在一定的正相关关系,Au元素的富集和富砷流体密切相关(图7)。
表 1 王庄金矿床矿石中黄铁矿、毒砂电子探针分析结果(%)Table 1. Electron probe analysis results of pyrite and arsenopyrite in Wangzhuang gold deposit (%)样品编号 矿物类型 As Zn Cu Ni Co Fe Sb Ag Bi Pb S Au Total ZK7-1BT4 I-py 0.564 0 0 0.031 0.087 46.08 0 0 0.011 0.101 52.881 0 99.755 I-py 2.508 0.007 0.012 0.022 0.054 44.983 0 0 0 0 53.724 0 101.31 II-py 2.276 0.022 0.068 0.091 0.07 45.351 0 0.006 0 0 50.586 0 98.47 II-py 4.218 0 0 0.01 0.069 45.376 0.021 0.029 0 0.011 50.432 0.01 100.176 II-py 4.055 0.052 0 0.16 0.11 44.676 0.059 0 0.016 0 50.624 0 99.752 II-py 6.68 0 0.01 0.156 0.072 44.272 0.018 0 0 0 46.418 0.018 97.644 Apy 39.466 0 0.028 0.068 0.094 34.134 0.071 0 0 0 24.022 0.037 97.92 Apy 41.206 0 0.04 0 0.045 34.468 0.079 0 0 0.207 23.26 0 99.305 Apy 40.423 0 0.015 0 0.044 34.55 0.08 0.047 0 0 23.111 0.045 98.315 Apy 42.555 0 0 0 0.089 34.585 0.019 0 0 0.049 22.65 0.029 99.976 Apy 41.116 0 0 0.096 0.059 33.959 0.206 0.006 0 0 22.881 0 98.323 Apy 41.975 0 0 0 0.041 34.209 0.022 0 0 0 22.648 0 98.895 Apy 42.433 0.087 0 0 0 34.654 0.07 0.022 0 0.061 21.882 0.091 99.3 Apy 39.188 0.013 0 0 0.07 33.597 0.077 0 0 4.009 22.57 0 99.524 Apy 43.225 0.001 0.012 0 0.027 34.201 0 0.003 0 0 22.102 0.108 99.679 Apy 42.925 0.015 0.01 0.011 0.03 34.03 0.006 0.009 0 0 21.999 0.017 99.052 Apy 44.282 0.051 0 0.066 0.024 34.297 0.036 0.001 0 0.075 21.585 0 100.417 Apy 44 0.022 0.025 0.031 0.007 33.894 0.01 0 0 0 21.782 0 99.771 ZK7-1TZ1 Apy 44.252 0.01 0 0 0.046 33.97 0.019 0 0 0 21.021 0.017 99.335 I-py 0.074 0 0.013 0 0.039 46.113 0.036 0.004 0 0 53.708 0 99.987 I-py 1.247 0.007 0.017 0.082 0.096 45.815 0.025 0.015 0 0.047 52.233 0 99.584 III-py 0.647 0 0 0.106 0.401 44.042 0.032 0.004 0 0 52.629 0.003 97.864 III-py 3.113 0 0.027 0.412 0.199 45.183 0.035 0 0 0 51.119 0 100.088 III-py 2.417 0 0 0.116 0.168 43.772 0.064 0.021 0 0.056 50.495 0 97.109 Apy 42.448 0.057 0.014 0 0.058 34.184 0.04 0 0 0.021 22.439 0.055 99.316 Apy 43.778 0.019 0.052 0.034 0.043 34.3 0 0 0 0.066 21.448 0.119 99.859 Apy 44.609 0.004 0 0 0.022 34.09 0 0.011 0 0 21.386 0.068 100.19 Apy 41.142 0.012 0.034 0 0.059 33.175 0.101 0 0 0 21.17 0.135 95.828 ZK7-1TZ2 I-py 1.99 0.017 0.043 0.382 0.173 45.417 0 0 0 0 51.978 0 100 I-py 0.111 0 0.062 0.018 0.097 44.793 0.034 0.003 0 0 52.656 0 97.774 I-py 2.799 0 0.021 0.084 0.008 45.416 0 0.044 0 0 51.559 0 99.931 I-py 2.776 0 0 0 0.038 45.561 0.022 0.007 0 0 51.232 0 99.636 II-py 1.134 0.045 0.005 0.184 0.277 44.576 0.042 0.037 0 0 52.241 0.02 98.561 II-py 2.444 0 0.023 0.026 0.084 44.845 0 0 0 0 51.637 0.06 99.119 II-py 3.752 0 0.023 0 0.04 45.091 0 0.009 0 0 50.617 0.058 99.59 II-py 3.938 0 0.003 0.999 0.44 44.02 0.017 0 0.012 0 50.332 0 99.761 II-py 1.293 0.003 0 0.153 0.253 42.633 0.013 0.019 0 0.147 50.286 0.003 94.803 Apy 41.809 0 0.026 0.267 0.061 34.506 0.021 0.001 0 0 23.301 0 99.992 Apy 43.142 0 0.045 0 0.044 34.621 0.059 0 0 0.005 22.48 0.012 100.408 Apy 43.085 0.029 0.016 0.019 0.034 34.545 0.036 0 0 0.02 22.4 0.045 100.229 Apy 42.46 0 0 0.129 0.086 34.394 0 0 0 0 22.099 0 99.168 Apy 44.269 0 0 0 0.039 34.351 0.001 0 0 0.072 21.305 0.046 100.083 Apy 44.269 0 0 0 0.039 34.351 0.001 0 0 0.072 21.305 0.046 100.083 Apy 44.197 0 0.001 0 0.048 33.929 0 0.025 0 0 21.38 0 99.58 Apy 40.299 0 0.06 0.051 0.042 33.936 0.001 0.017 0 0.005 21.195 0.021 95.627 Apy 44.005 0 0.025 0.04 0.064 34.026 0 0.031 0 0 20.809 0.037 99.037 ZK7-1TZ3 I-py 0.075 0.036 0 0.012 0.054 46.366 0.024 0 0 0 53.35 0.055 99.972 I-py 0.178 0 0 0 0.058 46.249 0.012 0.012 0 0.066 52.599 0 99.174 II-py 2.805 0 0.005 0 0.045 45.825 0 0 0 0 52.271 0.014 100.965 II-py 1.217 0 0.015 0.059 0.439 45.343 0.018 0.006 0 0.039 52.461 0 99.597 II-py 2.099 0 0.026 0.022 0.034 45.677 0.026 0.002 0 0 51.588 0.041 99.515 II-py 2.331 0 0 0 0.017 45 0.038 0.023 0 0 52.186 0 99.595 II-py 2.97 0 0 0 0.091 45.284 0.021 0 0 0 51.495 0.092 99.953 II-py 2.289 0.037 0 0 0.037 45.099 0.014 0.022 0 0.072 51.426 0.027 99.023 III-py 1.844 0 0 0.396 0.188 44.829 0.027 0 0 0 51.634 0.01 98.928 III-py 2.187 0.002 0.032 0.038 0.052 44.741 0.008 0.035 0 0.004 51.49 0 98.589 II-py 3.836 0.059 0.027 0.024 0.081 44.973 0 0.019 0 0 50.352 0.003 99.374 II-py 4.142 0 0.056 0.128 0.057 44.851 0 0 0 0.143 50.346 0 99.723 II-py 1.738 0 0 0.109 0.092 43.853 0.017 0 0 0.022 50.521 0.064 96.416 Apy 40.827 0.029 0.007 0 0.044 34.922 0.005 0.01 0 0 24.062 0 99.906 Apy 41.213 0 0.009 0.015 0.085 34.878 0.021 0 0 0.031 23.81 0.053 100.115 Apy 41.462 0 0 0.032 0.026 34.819 0.023 0.042 0 0.005 23.347 0.074 99.83 Apy 41.151 0 0.029 0.182 0.038 34.52 0 0 0 0 23.181 0 99.101 Apy 42.363 0.012 0.006 0 0.065 34.737 0 0.025 0 0 23.015 0.017 100.24 Apy 41.994 0.037 0 0 0.048 34.393 0.02 0.003 0 0.071 22.788 0 99.354 Apy 42.254 0.01 0.052 0.003 0.055 34.4 0.012 0 0 0 22.725 0.058 99.569 Apy 42.012 0 0.018 0 0.017 34.526 0.054 0.048 0 0 22.506 0.042 99.223 Apy 41.686 0.004 0 0 0.033 34.073 0.037 0 0 0 22.739 0 98.572 Apy 43.393 0.017 0.018 0.042 0.042 34.4 0 0 0 0 22.301 0.091 100.304 Apy 42.447 0 0.006 0 0.055 33.781 0.003 0.013 0 0.031 22.603 0.14 99.079 Apy 43.158 0 0.01 0.053 0.024 33.841 0.039 0 0 0.005 21.977 0 99.107 Apy 43.05 0 0 0.001 0.018 34.067 0 0 0 0.08 21.499 0.07 98.785 Apy 44.064 0 0 1.328 0.105 32.694 0.004 0.013 0 0 21.542 0.038 99.788 II-py 6.731 0 0.108 0.06 0.099 44.595 0 0.003 0 0.029 49.508 0.035 101.168 ZK7-1TZ4 I-py 0.019 0.044 0 0 0.022 46.858 0.003 0.001 0 0 53.404 0 100.351 I-py 0.035 0 0 0 0.087 46.57 0 0.005 0.018 0 53.513 0 100.228 I-py 0.032 0.034 0 0.088 0.025 46.471 0.012 0.014 0 0 53.252 0 99.928 III-py 0 0 0.044 0.003 0.002 45.485 0 0.002 0 0.044 53.612 0.051 99.243 Apy 43.192 0.027 0.001 0.025 0.031 33.552 0.02 0.014 0 0 21.252 0.074 98.188 I-py 0 0.01 0.024 0.014 0.08 46.771 0.01 0.01 0 0.015 53.489 0.01 100.433 I-py 0 0.032 0 0.056 0.093 45.381 0.012 0 0 0 54.206 0 99.78 I-py 0.284 0.05 0 0.053 0.076 45.338 0.019 0 0 0.018 52.611 0.048 98.497 I-py 0.542 0 0.057 0.115 0.182 45.446 0.003 0.035 0 0 52.781 0.01 99.171 I-py 0.712 0 0.043 0.121 0.198 45.433 0.017 0 0 0.013 52.657 0.01 99.204 ZK7-2TZ01 III-py 0.096 0 0.035 0.065 0.011 45.759 0.004 0.003 0 0.074 53.309 0.127 99.483 III-py 0.099 0 0.05 0.065 0.068 45.586 0.049 0.005 0 0.089 52.903 0 98.914 III-py 0.216 0.068 0.041 0.056 0.109 45.42 0.082 0.016 0 0.177 52.06 0.033 98.278 III-py 0.392 0 0.096 0.111 0.262 44.737 0 0 0 0.201 52.305 0 98.104 III-py 0.254 0.053 0.074 0.098 0.132 44.656 0.021 0.024 0 0.093 51.978 0.003 97.386 III-py 0.078 0 0 0.013 0.079 44.428 0.015 0.009 0.008 0 51.13 0 95.76 ZK7-2TZ1 II-py 0.699 0.015 0.038 0.231 0.089 45.035 0.007 0 0 0.013 53.807 0.027 99.961 II-py 3.577 0.01 0.028 0.333 0.277 44.037 0.036 0.028 0 0.078 50.641 0.145 99.19 Apy 42.003 0.086 0.013 0 0.03 34.207 0.091 0.019 0 0 22.521 0 98.97 Apy 43.236 0.034 0.054 0 0.019 34.148 0.08 0 0 0.018 22.172 0 99.761 Apy 44.022 0 0 0 0.01 33.962 0 0.002 0 0 21.851 0.16 100.007 Apy 42.502 0.078 0.022 0 0.019 33.894 0 0.024 0 0.136 21.289 0.219 98.183 ZK7-2TZ3 III-py 0.138 0.078 0.029 0.081 0.17 46.323 0.026 0.042 0 0.118 53.032 0.093 100.13 III-py 0.052 0.047 0.005 0.484 0.173 46.049 0 0 0 0 53.232 0.066 100.108 III-py 0.137 0 0.077 0.124 0.2 45.586 0.044 0.014 0 0.146 53.093 0 99.421 III-py 0.068 0 35.467 0.137 0.053 29.769 0 0.031 0 0 35.239 0.029 100.793 ZK7-2TZ4 III-py 0.846 0 0 0 0.077 45.429 0.022 0 0 0 52.774 0 99.148 III-py 0.334 0.064 0.06 0.033 0.216 45.29 0.014 0 0 0 51.871 0.03 97.912 III-py 0.139 0.037 0.052 0.072 0.186 44.657 0.043 0 0 0 52.297 0.007 97.49 II-py 4.224 0.017 0.038 0.028 0.062 45.786 0.009 0 0 0 50.672 0.059 100.895 II-py 4.603 0 0.038 0.166 0.046 45.47 0.029 0.012 0 0 50.103 0.042 100.509 II-py 5.055 0.012 0.02 0.08 0.07 45.211 0 0.016 0 0 50.245 0.01 100.719 Apy 40.241 0 0 0 0.08 34.829 0 0 0 0 24.283 0.099 99.532 Apy 39.389 0 0.003 0 0.017 34.577 0.145 0 0 0.01 24.089 0.012 98.242 Apy 41.54 0.016 0 0.018 0.021 34.842 0.025 0 0 0.005 23.595 0.025 100.087 Apy 43.246 0 0.007 0.005 0.046 34.509 0.008 0.016 0 0.023 23.084 0.029 100.973 Apy 42.95 0.01 0 0 0.037 34.584 0.03 0.007 0 0 22.381 0.013 100.012 Apy 44.053 0 0.022 0.087 0.028 34.007 0.006 0 0 0.018 21.841 0.08 100.142 Apy 40.809 0 0.047 0 0.02 33.195 0.069 0 0 0.033 22.249 0.05 96.472 Apy 40.594 0.004 0 0.005 0.069 32.841 0.005 0.002 0 0.044 21.676 0.099 95.339 I-py 0.087 0.003 0 0.084 0.069 46.498 0 0 0 0.028 53.26 0.024 100.053 I-py 0.087 0.014 0 0.018 0.08 46.379 0.002 0.022 0 0.02 53.269 0 99.891 ZK7-2TZ4 II-py 1.816 0 0.017 0 0.019 46.91 0.022 0.001 0 0 52.041 0 100.826 II-py 4.441 0.005 0.018 0.054 0.045 45.129 0.052 0 0 0 51.863 0.073 101.68 II-py 5.265 0 0.025 0.082 0.054 44.116 0.046 0.002 0 0 48.946 0.651 99.187 II-py 7.653 0.025 0.02 0.041 0.029 44.91 0.008 0 0 0 47.849 0.078 100.613 I-py 0 0.034 35.37 0 0.016 30.507 0.004 0.011 0 0 34.809 0 100.751 I-py 0 0.122 35.132 0 0.037 30.009 0.111 0.034 0 0.05 34.712 0.03 100.237 Apy 41.991 0.022 0 0 0.024 34.643 0.038 0.008 0 0 23.15 0.096 99.972 Apy 42.883 0 0.024 0.115 0.016 34.524 0 0.002 0 0 22.324 0.13 100.018 Apy 43.487 0.056 0.004 0.088 0.04 34.272 0.014 0.023 0 0.031 22.091 0.114 100.22 Apy 48.284 0.02 0 0.008 0.067 33.757 0.019 0 0 0.069 20.271 0 102.495 ZK7-2TZ5 I-py 0 0.008 0 0.053 0.049 46.789 0.011 0 0 0 53.767 0 100.677 I-py 0.104 0.05 0 0.006 0.096 45.864 0.016 0.039 0 0 54.041 0.003 100.219 I-py 0 0.017 0.003 0.024 0.065 46.367 0.01 0.033 0 0.045 53.375 0 99.939 I-py 0.11 0 0.031 0.062 0.138 46.232 0.01 0 0 0 53.16 0 99.743 I-py 0.086 0.01 0.071 0.293 0.108 45.409 0.076 0.007 0 0.047 52.865 0 98.972 I-py 0.036 0 0.043 0.077 0.072 45.174 0.04 0 0 0 52.565 0 98.007 I-py 0.106 0.045 0.007 0.515 0.137 44.688 0.026 0 0 0.037 52.62 0 98.181 I-py 0.122 0.038 0.021 0.192 0.117 44.356 0.055 0 0 0.006 51.775 0 96.682 I-py 0.07 0.033 0 0.269 0.129 43.787 0.04 0.018 0 0 50.751 0 95.097 I-py 0.142 0.018 0 0.189 0.138 42.336 0.009 0 0 0.045 49.969 0 92.846 注:由中国地质调查局西安地质调查中心实验室测试。I-py为I阶段黄铁矿;II-py为II阶段黄铁矿;III-py为III阶段黄铁矿;Apy为II阶段毒砂。 图 7 王庄金矿Au、As关系图解(数据来自表1)a. 含砷黄铁矿中Au、As关系散点图;b. 毒砂中As、Au柱状图Figure 7. Relationship diagram of Fe, S, Au and As in Wangzhuang gold depositCo、Ni常以类质同象的形式替代Fe,且Co、Ni含量变化受黄铁矿沉积时的物理化学条件控制,不同环境形成的黄铁矿Co/Ni值不同,通常表现出与岩浆热液流体相关的黄铁矿比值较高(Co/Ni>1)( Zhang et al., 2014; Chen et al., 2020);沉积期的黄铁矿Co/Ni值较低(Co/Ni<1)(Bralia et al., 1979; Cook et al., 2009; Chen et al., 2020)。王庄金矿矿石中黄铁矿Co/Ni值平均为2.03,中位数为1.34,表明大多数成矿主阶段形成的黄铁矿以岩浆流体为主(图8a),通过Co/Ni值与Au元素含量的柱状图可以看出,在Co/Ni<1及1.2<Co/Ni<2.5范围内均存在含金黄铁矿密集区(图8b),反映具有两种成因的黄铁矿,这两个阶段主要对应II、III阶段,II阶段相对于III阶段更富集Au元素。
通过前述研究,王庄金矿矿物组构中金属硫化物存在后期构造变形特征,表现为柱状毒砂被构造作用错断,后又被毒砂穿插进错断裂隙(图5e、图5h),而通过研究发现毒砂均为成矿主阶段产物,表明成矿过程存在强烈的构造变形,是一个复杂的构造热液过程。
旬北地区铁山组Au元素丰度不足以形成这么大范围的Au地球化学异常,区内大面积的 Au地球化学异常不可能来自地层,而前述矿床西侧10 km可能存在隐伏岩体,且区内地球化学异常的展布出现W→Au、As(W)→Hg、Sb(Au、W)变化,表现出由隐伏岩体位置向东呈现中高温向中低温元素的转换,而王庄金矿刚好处于其过渡带位置,结合黄铁矿微量元素特征,表明成矿热液的来源与岩浆存在一定联系。
7. 结论
(1)王庄金矿床矿石矿物中未见明显自然金,矿石中金属矿物组成以黄铁矿、含砷黄铁矿、毒砂、闪锌矿、方铅矿为主,脉石矿物主要为石英、方解石。金主要以不可见金形式存在于毒砂、含砷黄铁矿中,且Au与As表现出正相关关系。
(2)王庄金矿主要经历3个时期:①沉积成岩期。②热液成矿期。③表生氧化期。其热液成矿期可分为4个阶段:I.黄铁矿石英脉成矿早阶段;II.毒砂、黄铁矿、石英脉成矿主阶段;III.石英脉伴少量多金属硫化物阶段;IV.碳酸盐岩晚阶段。主成矿阶段为II阶段,且矿石品位与金属硫化物含量密切相关。
(3)王庄金矿中载金黄铁矿微量元素Co/Ni均值为2.03,中位数为1.34,表明含矿热液来源可能与岩浆热液关系密切。同时结合区内自西向东的中高温到中低温元素的水系沉积物异常变化特征,进一步说明了王庄金矿的形成与区内岩浆作用存在一定关系。
致谢:感谢中国地质调查局西安地质调查中心滕家欣、李宗会等多位专家一直以来对野外工作的指导,才得以在镇旬盆地王庄地区取得找矿突破。
-
夏伟强, 董杰, 何鹏, 等.青岛主城区地下空间开发利用地质因素的影响评价及适宜性分区[J]. 地质学报, 2019, 93(S1):233-240. XIA Weiqiang, DONG Jie, HE Peng, et al.Evaluation and suitability zoning of geological factors affecting the development and utilization of underground space in the main urban area of Qingdao[J]. Acta Geologica Sinica, 2019, 93(s1):233-240.
蒋旭, 王婷婷, 穆静.地下空间开发利用适宜性与资源量的应用研究[J]. 地下空间与工程学报, 2018, 14(05):1145-1153. JIANG Xu, WANG Tingting, MU Jing.Research on the Application of Suitability and Resources in Underground Space Development[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(05):1145-1153.
唐鑫, 刘健, 瞿婧晶, 等.江苏宜兴地下空间开发地质环境适宜性评价[J]. 地质学刊, 2019, 43(04):672-678. TANG Xin, LIU Jian, QU Jingjing, et al.Evaluation of the suitability of geological environment for the development of underground space[J]. Journal of Geology, 2019, 43(04):672-678.
王振宇, 朱太宜, 王星华.长沙城市地下空间开发利用的适宜性评价体系研究[J]. 铁道科学与工程学报, 2019, 16(05):1274-1281. WANG Zhenyu, ZHU Taiyi, WANG Xinghua. Study on suitability evaluation system of Changsha's urban underground space for development and utilization[J]. Journal of Railway Science and Engineering, 2019, 16(05):1274-1281.
李青元, 张洛宜, 曹代勇, 等.三维地质建模的用途、现状、问题、趋势与建议[J]. 地质与勘探, 2016, 52(04):759-767. LI Qingyuan, ZHANG Luoyi, CAO Daiyong, et al.Usage, Status, Problems, Trends and Suggestions of 3D Geological Modeling[J]. Geology and Exploration, 2016, 52(04):759-767.
屈红刚, 潘懋, 刘学清, 等.城市三维地质建模及其在城镇化建设中的应用[J]. 地质通报, 2015, 34(07):1350-1358. QU Honggang, PAN Mao, LIU Xueqing, et al.Urban 3-D geological modeling and its application to urbanization[J]. Geological Bulletin of China, 2015, 34(7):1350-1358.
章梦霞. 三维视角下的城市地下空间开发地质适宜性评价研究[D].北京:中国地质大学(北京), 2019. ZHANG Mengxia.Study on Geological Suitability Evaluation of Urban Underground Space Development from 3D Perspective[D].Beijing:China University of Geosciences (Beijing), 2019.
李静, 赵帅.城市三维地质建模在砂土液化分析中的应用:以通州为例[J]. 中国矿业, 2016, 25(05):164-168+174. LI Jing, ZHAO Shuai.Application of 3D geological modeling in the analysis of sandy soil liquefaction:a case study of Tongzhou[J]. China Mining Magazine, 2016, 25(05):164-168+174.
郝爱兵, 吴爱民, 马震, 等.雄安新区地上地下工程建设适宜性一体化评价[J]. 地球学报, 2018, 39(05):513-522. HAO Aibing, WU Aimin, MA Zhen, et al.A Study of Engineering Construction Suitability Integrated Evaluation of Surface-underground Space in Xiongan New Area[J]. Acta Geoscientica Sinica, 2018, 39(05):513-522.
方寅琛, 龚日祥, 李三凤, 等.基于三维地质模型的地下空间开发适宜性评价——以嘉兴城市地质调查工作为例[J]. 上海国土资源, 2017, 38(02):43-45. FANG Yinchen, GONG Rixiang, LI Sanfeng, et al.Suitability evaluation of underground space development based on a three-dimensional geological model, using the Jiaxing urban geological survey as an example[J]. Shanghai Land & Resources, 2017, 38(02):43-45.
张彩红.基于GIS的银川市建设用地适宜性评价研究[D].北京:中国地质大学(北京), 2019. ZHANG Caihong. Study on Suitability Assessment of Build Landuse in Yinchuan City Based on GIS[D].Beijing:China University of Geosciences (Beijing), 2019.
龙睿, 张发旺, 栾崧, 等.广州市城区地下空间开发利用适宜性评价研究[J]. 西北地质, 2020, 53(04):194-206. LONG Rui, ZHANG Fawang, LUAN Song, et al.Evaluation of Urban Underground Space of Guangzhou City:Its Development and Utilizatio[J]. Northwestern Geology, 2020, 53(04):194-206.
郑长远, 张启兴, 贾君, 等.层次分析法在长江源区生态地质环境质量(脆弱性)评价中的应用[J]. 西北地质, 2010, 43(01):137-145. ZHENG Changyuan, ZHANG Qixing, JIA Jun, et al. The Application of Analytic Hierarchy Process (AHP) in Source Region of the Yangtze River's Geological Environment Quality (Vulnerabilities) Evaluation[J]. Northwestern Geology, 2010, 43(01):137-145.
陶春军, 周天健, 张笑蓉, 等.安徽岳西翠兰产地土壤环境质量及种植适宜性评价研究[J]. 西北地质, 2020, 53(01):261-268. TAO Chunjun, ZHOU Tianjian, ZHANG Xiaorong, et al. Research on Soil Environmental Quality and Planting Suitability Evaluation of Cuilan Producing Area in Yuexi, Anhui Province[J]. Northwestern Geology, 2020, 53(01):261-268.
梁吉业, 冯晨娇, 宋鹏.大数据相关分析综述[J]. 计算机学报, 2016, 39(01):1-18. LIANG Jiye, FENG Chenjiao, SONG Peng.A Survey on Correlation Analysis of Big Data[J]. Chinese Journal of Computers, 2016, 39(01):1-18.
Hu Man, Liu Qiuqiang, Liu Pengyu.Susceptibility Assessment of Landslides in Alpine-Canyon Region Using Multiple GIS-Based Models[J]. Wuhan University Journal of Natural Sciences, 2019, 24(3):257-270.
计量
- 文章访问数: 1892
- HTML全文浏览量: 0
- PDF下载量: 1806