The Susceptibility Evaluation of Loess Landslide Based on Weighted Information Value Method—Taking 1: 50 000 Map of Maiji District of Tianshui City As an Example
-
摘要: 在1:5万天水市麦积区幅地质灾害野外调查工作的基础上,针对研究区黄土滑坡,选取高程、坡度、工程地质岩组、植被归一化指数、距断裂距离、距水系距离和距道路距离等作为评价因子;采用加权信息量模型按照网格划分,基于ArcGIS平台进行易发性评价。根据评价结果,可将1:5万麦积区幅划分为极高易发区、高易发区、中易发区和低易发区4个等级,分布面积分别为97.29 km2、124.71 km2、94.99 km2和121.73 km2。通过ROC曲线对该评价结果进行验证,评价精度为75.04%,表明该评价具有较好的准确性。其评价结果可为该地区进行地质灾害防治规划、重大工程规划建设提供科学依据。Abstract: Based on the field work of 1:50,000 geological hazard survey, the elevation,slope,engineering geological rock group, normalized difference vegetative index, distance to faults, distance to water system and distance to roads are selected as evaluation factors in the study area, and the weighted information value model is used to evaluate the susceptibility based on ArcGIS platform according to grid division. According to the evaluation results, the study area could be divided into four classes:very high susceptibility area, high susceptibility area, medium susceptibility area and low susceptibility area, with the distribution areas of 97.29 km2, 124.71 km2, 94.99 km2and 121.73 km2. The evaluation results are verified by ROC curve and demonstrate that evaluation accuracy come to 75.04%. The evaluation results could provide a scientific basis for geological disaster prevention and control planning, major project planning and construction.
-
Keywords:
- geological hazard /
- the susceptibility evaluation /
- weighted Information model /
- GIS /
- Maiji area
-
-
吴玮江, 王念秦.甘肃滑坡灾害[M].兰州:兰州大学出版社, 2006:1. WU Weijiang, WANG Nianqin. Landslide Hazards in Gansu, China[M]. Lanzhou:Lanzhou University Press, 2006:1.
唐亚明.陕北黄土滑坡风险评价及检测预警技术方法研究[D].中国地质大学(北京), 2012:75. TANG Yaming. Methods on risk assessment and monitor & early-warning for the loess landslide in north of Shannxi[D]. China University of Geosciences, 2012:75.
张晓东, 刘湘南, 赵志鹏, 等.信息量模型、确定性系数模型与逻辑回归模型组合评价地质灾害敏感性的对比研究[J].现代地质, 2018, 32(3):602-610. ZHANG Xiaodong, LIU Xiangnan, ZHAO Zhipeng, et al. Comparative Study of Geological Hazards Susceptibility Assessment:Constraints from the Information Value+Logistic Regression Model and the CF+Logistic Regression Model[J]. Geoscience, 2018, 32(3):602-610.
王哲, 易发成.基于层次分析法的绵阳市地质灾害易发性评价[J].自然灾害学报, 2009, 18(1):14-23. WANG Zhe, YI Facheng. AHP-based evaluation of occurrance easiness of geological disasters in Mian yang City[J]. Journal of Natural Disasters, 2009, 18(1):14-23.
沈芳, 黄润秋, 苗放, 等.区域地质环境评价与灾害预测的GIS技术[J].山地学报, 1999, 17 (3):338-342. SHEN Fang, HUANG Runqiu, MIAO Fang, et al. Regional Geoenvironmental Evaluation And Geohazards Prognosis With GIS[J]. Journal of Mountain Science, 1999, 17(3):338-342.
赵海卿, 李广杰, 张哲寰.吉林省东部山区地质灾害危害性评价[J].吉林大学学报(地球科学版), 2004, 34(1):119-124. ZHAO Haiqing, LI Guangjie, ZHANG Zhehuan. Probability analysis of geological disaster in the mountainous area in east Jilin[J]. Journal of Jilin University, 2004, 34(1):119-124.
向喜琼, 黄润秋.基于GIS的人工神经网络模型在地质灾害危险性区划中的应用[J].中国地质灾害与防治学报, 2000, 11(3):23-27. XIANG Xiqiong, HUANG Runqiu. Application of GIS-based artificial neural networks on assessment of geohazardsrisk[J]. The Chinese Journal of Geological Hazard and Control, 2000, 11(3):23-27.
吴常润, 赵冬梅, 刘澄静, 等.基于GIS和信息量模型的陇川县滑坡易发性评价[J].西北地质, 2020, 53(2):308-320. WU Changrun, ZHAO Dongmei, LIU Chengjing, et al. Landslide Susceptibility Assessment of Longchuan County Based on GIS and Information Value Model[J]. Northwestern Geology, 2020, 53(2):308-320.
牛全福, 冯尊斌, 张映雪, 等.基于GIS的兰州地区滑坡灾害孕灾环境敏感性评价[J].灾害学, 2017, 32(3):29-35. NIU Quanfu, FENG Zunbin, ZHANG Yingxue, et al. Susceptibility Assessment of Disaster Environment for Landslide Hazard based on GIS in Lanzhou Area[J]. Journal of Catastrophology, 2017, 32(3):29-35.
樊芷吟, 苟晓峰, 秦明月, 等.基于信息量模型与Logistic回归模型耦合的地质灾害易发性评价[J].工程地质学报, 2018, 26(2):340-347. FAN Zhiyin, GOU Xiaofeng, QIN Mingyue, et al. Information and Logistic Regression Models Based CouplIng Analysis For Susceptibility of Geological Hazards[J]. Journal of Engineering Geology, 2018, 26(2):340-347.
邱维蓉, 吴帮玉, 潘学树, 等.几种聚类优化的机器学习方法在灵台县滑坡易发性评价中的应用[J].西北地质, 2020, 53(1):222-233. QIU Weirong, WU Bangyu, PAN Xueshu, et al. Application of Several Cluster-optimization-based Machine Learning Methods in Evaluation of Landslide Susceptibility in Lingtai County[J]. Northwestern Geology, 2021, 53(1):222-233.
王高峰, 郭宁, 邓兵, 等.不同组合模型区域滑坡易发性及精度分析[J].西北地质, 2021, 54(2):259-272. WANG Gaofeng, GUO Ning, DENG Bing, et al. Analysis of Landslide Susceptibility and Accuracy in Different Combination Models[J]. Northwestern Geology, 2021, 54(2):259-272.
杨为民, 张春山, 向灵芝, 等.西秦岭北缘断裂带天水段地震地质灾害调查评价成果报告[R].北京:中国地质科学院地质力学研究所, 2016. 孟庆华.秦岭山区地质灾害风险评估方法研究-以陕西凤县为例[D].北京:中国地质科学院, 2011:62. MENG Qinghua. Study on the Methods of Geo-hazards Risk Assessment in Qinling Mountain-A case studyof Feng County, Baoji City, Shaanxi Province[D]. Beijing:Chinese Academy of Geological Sciences, 2011:62.
杜国梁, 张永双, 吕文明, 等.基于加权信息量模型的藏东南地区滑坡易发性评价[J].灾害学, 2016, 31(2):226-234. DU Guoliang, ZHANG Yongshuang, LÜ Wenming, et al. Landslide Susceptibility Assessment Based on Weighted Information Value Model in Southeast Tibet[J], Journal of Catastrophology, 2016, 31(2):226-234.
薛强, 张茂省, 李林, 等. 基于斜坡单元与信息量法结合的宝塔区黄土滑坡易发性评价[J].地质通报, 2015, 34(11):2108-2115. XUE Qiang, ZHANG Maosheng, LI lin, et al. Loess landslide susceptibility evaluation based on slope unit and information value method in Bao-ta District, Yan'an[J]. Geological Bulletin of China, 2015, 34(11):2108-2115.
石菊松, 徐瑞春, 石玲, 等.基于RS和GIS技术的清江隔河岩库区滑坡易发性评价与制图[J].地学前缘, 2007, 14(6):119-128. SHI Jusong, XU Ruichun, SHI Ling, et al. ETM+imagery and GIS-based landslide susceptibility mapping for the regional area of Geheyan reservoir on the Qingiang River, Hubei Province, China[J]. Earth Science Frontiers, 2007, 14(6):119-128.
张春山, 韩金良, 孙炜锋, 等.陕西陇县地质灾害危险性分区评价[J].地质通报, 2008, 27(11):1795-1801. ZHANG Chunshan, HAN Jinliang, SUN Weifeng, et al. Assessments of geohazard danger zoning in Longxian County, Shaanxi, China[J]. Geological Bulletin of China, 2008, 27(11):1795-1801.
孙炜锋, 谭明轩, 王继明, 等.陕西宝鸡地区千阳县地质灾害易发性评价[J].地质通报, 2008, 27(11):1846-1853. SUN Weifeng, TAN Mingxuan, WANG Jiming, et al. Geohazard susceptibility evaluation of Qianyang County, Baoji area, Shaanxi, China[J]. Geological Bulletin of China, 2008, 27(11):1846-1853.
唐亚明, 张茂省, 李林, 等.滑坡易发性危险性风险评价例析[J].水文地质工程地质, 2011, 38(2):125-129. TANG Yaming, ZHANG Maosheng, LI Lin, et al. Discrimination to the landslide susceptibility[J]. Engineering Geology, 2011, 38(2):125-129.
Guo C B, Montgomery D R, Zhang Y S, et al. Quantitative assessment of landslide susceptibility along the Xianshuihe fault zone, Tibetan Plateau, China[J]. Geomorphology, 2015, 248:93-110.
Ohlmacher G C, Davis J C. Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA[J]. Engineering Geology, 2003, 69(3/4):331-343.
Zhang Y S, Yang Z H, Guo C B, et al. Predicting landslide scenes under potential earthquake scenarios in the Xianshuihe fault zone, Southwest China[J]. Journal of Mountain Science, 2017, 14(7):1262-1278.
Chung C J F, Fabbri A G. Validation of spatial prediction modelsfor landslidehazard mapping[J]. Natural Hazards, 2003, 30(3):451-472.
JADDA M, SHAFRI H Z M, MANSOR S B. PFR model and GiT for landslide susceptibility mapping:A case study from Central Alborz, Iran[J]. Natural Hazards, 2011, 57(2):395-412.
Shannon C E.A mathematical theory ofcommunication[J]. Bell Labs Technical Journal, 1948, 27(4):623-656.
计量
- 文章访问数: 329
- HTML全文浏览量: 4
- PDF下载量: 237