Early Identification of Hidden Dangers of Loess Landslide Based on Time Series InSAR: A Case Study of Southwest Bailuyuan
-
摘要:
中国黄土滑坡灾害频发且分布广泛,传统的地质灾害调查对于地处高位、形变特征不明显和隐蔽型的滑坡隐患难以有效识别,是滑坡灾害监测预警成功率低的主要原因之一。如何有效超前判识别地质灾害隐患是地质灾害防治工作的前提和基础,时序InSAR技术在此领域具有良好的应用潜力,但如何更好地将InSAR技术融入到滑坡灾害相关研究中仍处于探索阶段。笔者以西安市白鹿塬西南区为研究区,在高精度三维倾斜摄影、ALOS-2雷达影像集等数据基础上,以时序InSAR技术反演得到104处地表形变明显区域;结合黄土滑坡易发指数、航拍影像和野外核查,快速识别黄土滑坡及隐患23处,其中包括新识别的滑坡隐患20处和在册的滑坡灾害3处,通过与传统地灾调查数据比对和实地调查核实验证了时序InSAR方法探测结果的优势和有效性,并构建了基于高精度InSAR和DEM数据的黄土滑坡隐患早期识别方法。
Abstract:Loess landslide disasters occur frequently and are widely distributed in China. Traditional geological hazard surveys are difficult to effectively identify hidden landslide hazards that are located at high altitudes, have unclear deformation characteristics, and are hidden. This is also one of the main reasons for the low success rate of landslide hazard monitoring and warning. How to effectively identify geological hazard hazards beyond prejudgment is the premise and foundation of geological hazard prevention and control work. Time series InSAR technology has good application potential in this field, but how to better integrate InSAR technology into landslide disaster related research is still in the exploratory stage. The author takes the southwest area of Bailuyuan in Xi’an City as the research area, and on the basis of high−precision 3D oblique photography, ALOS-2 radar image set, and other data, uses time-series InSAR technology to invert 104 areas with obvious surface deformation. By combining the susceptibility index of loess landslides, aerial images, and field verification, 23 loess landslides and hidden dangers were quickly identified, including 20 newly identified landslide hazards and 3 registered landslide disasters. The advantages and effectiveness of the time−series InSAR method detection results were verified through comparison with traditional geological disaster investigation data and on−site investigation verification. A high−precision InSAR and DEM data based early identification method for loess landslide hazards was constructed.
-
大别造山带是中国研究程度较高的高压−超高压变质带之一,也是2个陆−陆碰撞造山后,中生代的岩浆活动之最强烈地区(Ma et al.,1998)。前人的研究表明,大别造山带在早白垩世发生了大规模岩浆活动(120~138 Ma) (李曙光等,1999;Jahn et al.,1999;Xu et al.,2007;穆可斌等,2019;张凯等,2020) , 侵入的岩体主体为中酸性岩,镁铁−超镁铁质岩次之,大量与其年代相近的中酸性、基性脉岩穿切岩体(王世明等,2010)。中基性岩脉的研究对于了解区域的壳幔相互作用及构造环境具有十分重要的意义。
基性岩浆能反映地幔源区性质,成因环境和形成演化过程,能为底侵以及壳幔岩浆相互作用提供可靠信息,对大别地区镁铁–超镁铁质岩石为碰撞后侵入岩的认识已逐渐统一(Hacker et al.,1995;Hacker et al.,1998 ;葛宁洁等,1999;赵子福等,2003),但对于大别基性岩岩浆来源存在较大分歧: ①认为地幔和地壳混合形成(戚学祥等,2002)。②由俯冲的扬子岩石圈地幔部分熔融产生(赵子福等,2003; Zhao et al.,2005 )。上述岩浆来源的地质构造背景,前人将之归纳成3种观点:①观点认为陆−陆碰撞造山后环境形成于三叠纪时期(Chen et al.,2002;Xu et al.,2007)。②认为不是三叠纪时期的陆−陆碰撞,可能与中国东部的岩石圈发生减薄构造事件有关,是由太平洋板块在晚中生代时期西向俯冲导致的(任志等,2014;刘清泉等,2015)。③认为可能与岩石的部分熔融有关,该部分熔融是由地幔柱在早白垩世时期对岩石圈热扰动所引起的 (赵子福等,2004)。针对大别基性岩的岩浆源区性质及大地构造背景的认识还存在的差异,笔者以翔实的野外观察为基础,通过研究大悟地区出露的闪长玢岩脉地球化学特征,结合野外闪长玢岩脉穿切花岗斑岩脉的地质事实,分析闪长玢岩的岩浆源区性质及所处大地构造环境,探讨大别造山带的壳−幔相互作用。
1. 区域地质背景
秦岭–大别造山带是扬子地块在三叠纪时期与华北地块发生俯冲–碰撞,而产生的高压–超高压变质带,东被郯城–庐江断裂所截,北连华北克拉通,南为扬子地块(图1)。在大悟地区早白垩世时期基性脉岩侵位分布广泛,种类较多,包括辉绿(玢)岩、煌斑岩、辉长岩、闪长玢岩等,有的基性脉岩切割或穿插晚中生代时期的中酸性岩体,基性岩脉的走向分布主要为北东东,北西向脉岩占据部分,岩脉倾角均较陡,与其围岩的接触界线清晰(王世明等,2010)。
图 1 大别山地区构造简图(据索书田等,1993修改)1. 新元古代木兰山−张八岭蓝片岩带;2. 中元古代随县千枚岩带;3. 古元古代—中元古代大悟−宿松−连云港含磷岩带;4. 新太古代桐柏−大别−胶南杂岩带;5. 燕山期花岗岩;6. 断裂Figure 1. Structural sketch of Dabie Mountain area闪长玢岩脉分布规模小,出露宽度为10~25 cm,延伸长度一般为1~3 m,围岩岩性主要为马吼岭群白云钠长石英变粒岩(图2a),个别闪长玢岩脉交截花岗斑岩脉(图2b)。
2. 岩相学和矿物学特征
闪长玢岩表现为黑色或黑褐色,具斑状结构,呈块状构造。斑晶成份几乎为暗色矿物,少量基性斜长石,斑晶总量约为20%,暗色矿物绝大多数被碳酸盐矿物、绿泥石交代为残余柱状、六边形假象(属角闪石),极少数被绿泥石、白云母交代为残余片状假象(属黑云母)。基性斜长石发生交代作用被碳酸盐矿物所取代,呈现出残余柱状构造的型式。
基质总量约为80%,成分主要由具碳酸盐化、钠黝帘化残余自形小板条状的基性斜长石组成,许多玻璃质充填三角形空隙格架内,无序分布(在单偏光下显浅褐色,外形呈隐晶集合体,在正交偏光下显黑色并具均质性全消光)、暗色矿物及少量的铁质矿物(种类有磁铁矿和钛铁矿)、微量的石英而组成变余间隐间粒结构的特征(图2c)。岩石中还可见一颗外形呈不规则状的杏仁体,沿其内充填着粗大粒状的石英晶体(图2d)。
3. 样品采集及分析测试方法
野外采集新鲜的闪长玢岩样品,在自然资源部武汉矿产资源检测中心完成样品的主量元素、微量元素及稀土元素的测试,利用X射线荧光光谱分析熔铸玻璃片法分析主量元素,分析仪器的型号为XRF-1500,对于分析精度要求精于1%,FinningMAT公司生产的等离子质谱仪(ICP−MS)测定样品中的微量元素、稀土元素,分析精度要求高于5%。
4. 岩石地球化学特征
4.1 主量元素特征
闪长玢岩 (样品D2073/1、D2073/2、D2073/3、D2073/4、D2073/5和D4078/4)的主量元素和微量元素分析结果显示,SiO2含量为49.97%~55.01%,属于基性−中基性成分,样品号为D2073/2、D2073/3的SiO2含量较高,可能与脉岩侵位过程中与花岗斑岩发生交代作用有关。MgO含量为4.63%~5.49%,Al2O3含量为14.01%~14.65%,P2O5 含量为0.52%~0.80%,CaO 含量为 4.70%~6.17%,K2O含量为3.41%~4.39%,Na2O含量为1.82%~3.86%,岩石富碱,K2O/Na2O值为 0.41~1.11(表1)。样品中MgO含量与SiO2 含量相反,随之增高而降低,Al2O3、P2O5含量随SiO2含量增高而升高,表现出岩浆分异演化的一般规律。
表 1 闪长玢岩主量元素、微量元素、稀土元素分析结果表Table 1. Analysis results of major elements, trace elements and rare earth elements of diorite porphyrite样号 D2073/1 D2073/2 D2073/3 D2073/4 D2073/5 D4078/4 BZK21-02 BZK21-03 BZK21-04 岩性 闪长玢岩 Na2O 1.82 3.78 3.86 2.12 3.57 1.92 4.41 4.6 3.21 MgO 5.38 4.81 4.63 5.16 4.78 5.49 2.24 2.7 3.39 Al2O3 14.04 14.47 14.65 14.11 14.52 14.01 15.18 15.23 17.05 SiO2 49.97 54.64 55.01 52.23 52.06 50.04 52.12 53.24 56.12 P2O5 0.52 0.79 0.8 0.58 0.61 0.54 0.35 0.59 0.51 K2O 4.39 3.41 3.69 3.49 3.52 4.26 3.1 2.93 4.73 CaO 5.93 4.7 5.06 4.65 4.91 6.17 3.33 4.72 1.86 TiO2 1.23 1.15 1.14 1.09 1.12 1.22 0.82 0.84 0.87 MnO 0.15 0.1 0.1 0.11 0.13 0.16 0.32 0.38 0.17 Fe2O3 2.28 0.93 0.93 0.91 0.96 2.37 9.31 6.64 7.45 FeO 5.4 0.79 0.79 0.81 0.8 5.25 4.22 3.9 5.24 H2O+ 3.14 0.28 0.16 0.19 0.25 3.28 CO2 5.25 4.28 LOST 7.83 4.68 3.62 4.57 3.91 7.55 8.27 7.56 4.53 Th 6.72 12.1 12.09 12.05 12.11 5.98 21 19.96 25 Nb 13.94 20.73 20.12 20.69 20.41 12.25 14.6 13.63 17.1 Ta 1.07 1.14 1.14 1.12 1.15 0.81 0.92 0.89 1.1 Sr 625.32 1102.02 1112.55 1107.05 1109.42 670.4 213 254.17 363 Zr 218.8 262.66 258.98 259.13 260.32 223.3 241 229.39 280 Hf 5.09 5.96 5.93 5.95 5.91 5.57 6 5.81 7.17 Eu 1.96 2.53 2.52 2.55 2.57 2.15 1.65 1.52 1.83 Yb 1.46 1.32 1.27 1.31 1.29 1.69 2.23 2.12 2.5 La 45.68 81.43 81.61 81.47 81.58 53.09 44.9 27.19 45.4 Ce 91.52 151.97 153.01 152.03 152.86 97.71 90.9 56.98 95.2 Pr 11.72 16.39 16.31 16.47 16.53 13.37 10.5 6.85 11 Nd 45.71 59.27 59.76 59.35 59.61 51.32 39.6 27.05 42.2 Sm 7.57 9.54 9.31 9.42 9.51 8.57 7.2 5.98 7.6 Eu 1.96 2.53 2.52 2.55 2.53 2.15 1.65 1.52 1.83 Gd 5.89 6.6 6.92 6.83 6.97 6.81 5.28 5.03 5.98 Tb 0.82 0.79 0.78 0.79 0.77 0.96 0.76 0.72 0.82 Dy 3.87 3.88 3.87 3.86 3.89 4.4 4.21 3.86 4.69 Ho 0.7 0.65 0.66 0.64 0.66 0.82 0.83 0.73 0.87 Er 1.69 1.71 1.71 1.75 1.73 2.01 2.29 2.13 2.51 Tm 0.24 0.23 0.22 0.25 0.22 0.28 0.34 0.3 0.38 Yb 1.46 1.32 1.27 1.31 1.29 1.69 2.23 2.12 2.5 Lu 0.22 0.19 0.2 0.18 0.21 0.27 0.35 0.32 0.4 Y 17.3 19.48 19.02 19.43 19.29 20.79 24.7 22.45 26.9 总和 236.35 355.98 357.17 356.33 357.65 264.24 235.74 163.23 248.28 LREE/HREE 9.45 13.62 13.97 13.64 13.79 8.75 6.34 4.48 6.06 (La/Yb)N 21.09 21.18 41.59 43.32 41.93 42.64 13.57 8.65 12.24 δEu 0.87 0.84 0.91 0.93 0.92 0.93 0.81 0.87 0.89 注:主量元素含量%,稀土与微量元素含量10−6 。 4.2 稀土元素特征
闪长玢岩稀土总量为219.04×10−6~338.08×10−6。其中,轻重稀土比为13.29~20.74,平均值为17.05。Zr含量为218.8×10−6~262.66×10−6,Y含量为17.3×10−6~20.79×10−6 (表1),Nb异常值0.16~0.25,(La/Yb)N值为21.21~43.34,表明闪长玢岩轻稀土富集,轻、重稀土分异程度较大,整体表现为右倾型,较陡(图3a)。其中,样品的δEu值为0.84~0.93,负异常不明显,说明斜长石结晶分异作用较弱(刘军等,2022)。大悟地区的闪长玢岩样品脉稀土配分模式总体同安徽庐枞地区的闪长玢岩类似,显示为右倾型特征,稀土模式表明LREE富集、HREE亏损,但庐枞盆地的样品稀土配分更平缓。
图 3 闪长玢岩球粒陨石标准化稀土配分模式(a)和原始地幔标准化微量元素蛛网图(b)庐枞盆地样品转引自汪晶等(2014);球粒陨石和原始地幔标准化值据Mcdonough等(1995)Figure 3. (a) Normalized REE distribution pattern of diorite porphyrite chondrite and(b) primitive mantle normalized trace element spider web4.3 微量元素特征
微量元素蛛网图显示闪长玢岩的微量元素分配型式整体变化趋势相近(图3b),亏损高场强元素Nb、Ta、Hf、Ti,富集元素Gd、Nd、Sr、Th,可能与俯冲板片形成的熔体有关。庐枞盆地闪长玢岩的蛛网图也表现出亏损高场强元素Nb、Ta、Hf、Ti,大离子亲石元素Th等富集,Sr元素不同程度亏损,可能受到了地幔交代作用和斜长石的分离结晶作用的影响(汪晶等,2014)。
5. 讨论
5.1 成岩时代
野外出露特征显示闪长玢岩脉晚期侵入至花岗斑岩体中,因此其形成时代应该略晚于或晚于该花岗斑岩结晶年代。曹正琦(2016)通过锆石U–Pb定年测试获得研究区花岗斑岩的侵位年龄为(130.8±1.8)Ma,本研究中的闪长玢岩岩浆结晶年龄应晚于花岗斑岩侵位年龄。范裕等(2010)在宁芜盆地中利用LA–ICP–MS同位素定年方法获得闪长玢岩中同位素锆石U–Pb年龄为(130.2±2.0)Ma。黄丹峰等(2010)在大别山北缘利用SHRIMP同位素定年方法得到闪长玢岩中同位素锆石U–Pb年龄为(129.1±2.2)Ma。综上所述,西大别大悟地区闪长玢岩的形成很可能约为130 Ma。
5.2 脉岩成因
闪长玢岩的岩石地球化学烧失量为3.62%~7.83%,表明样品遭受一定程度蚀变。Nb、Ti、Zr等不相容元素具有活动性小,对岩石风化、交代和蚀变等作用过程反应不灵敏,利用与其他元素的图解,讨论相关元素的活动特点(Gibson et al.,1982),可以为岩石源区地幔性质和成分提供信息。
脉岩是母岩浆的代表,能有效反映源区物质组成(Westerman et al.,2003),闪长玢岩脉具有较低SiO2含量(49.97%~55.01%)、MgO含量(4.63%~5.49%),较高Al2O3含量(14.01%~14.65%)、 FeO*含量(1.63%~7.45%),壳源混染会使岩浆中SiO2含量明显增高、降低MgO值,但脉岩的SiO2−MgO不相关,说明壳源混染对脉岩影响不大。其次脉岩中微量元素、稀土元素含量变化不大,表明脉岩的岩浆在上升时没有受到壳源混染作用的干扰。轻稀土富集,轻、重稀土分异的程度较大,整体表现为较陡右倾型,(La/Yb)N值为21.21~43.34,δEu值为0.84~0.93,负异常不明显,表明在岩浆源区没有残留斜长石,而存在石榴子石和金红石残留,说明脉岩的岩浆来自深度较大(俞胜等,2022)。 Mg#值为60.17~90.19,大于下地壳的熔融产物Mg#值<40(Rapp et al.,1995); Nb/Ta值为13.06~18.47,大于地壳平均值(11.4)(Rudnik et al.,2003),接近于地幔值(17. 5±2) (Hofmann,1988;Green,1995);Zr/Hf值为40.09~44.05,接近于地幔值(36.7),样品投点均接近于Zr–Y图解的富集地幔区域(图4),表明脉岩的岩浆源区可能来自于富集地幔,与安徽庐枞盆地闪长玢岩的Sr–Nd–Pb同位素特征反映富集地幔岩浆源区的认识较为一致(汪晶等,2014)。
图 4 闪长玢岩Zr−Y判别图解(据Maitre et al.,1989)Figure 4. Zr−Y discrimination diagram of diorite porphyrite从三叠纪开始,扬子板块俯冲碰撞华北板块后,区域岩石圈地幔成分变化较大,早白垩世时期,中国东部岩石圈拉张构造事件对大别造山带产生影响,大量镁铁–超镁铁质岩体侵位至西大别地区,其同位素显示出富集特征(εNd(t)<−12),Zr−Y判别图解显示闪长玢岩样品均靠近富集地幔(图4)。以上特征表明区域岩浆源区为富集地幔(王世明等,2010)。
微量元素蛛网图分配型式的变化趋势表现为整体相近,亏损不相容元素Nb、Ta、Hf、Ti;富集亲石元素Sr,其中不相容元素Nb、Ta的亏损是由板块俯冲时岩浆喷发造成(Gill,1981),脉岩Nb异常值范围0.16~0.25,Nb的负异常特征通常被认为是俯冲带上火山岩或者陆壳岩石的明显特征(Jahn et al.,1999),微量元素特征可能是与俯冲板片作用相关的岩石圈地幔部分熔融有关(Pearce et al.,1995;彭松柏等,2016),与庐枞盆地中受古板块俯冲交代作用影响而形成的火山岩类似(袁峰等,2008),岩石中Sr含量为625.32×10−6~1112.55×10−6,明显高于地幔值(17.8×10−6)(Taylor et al.,1985),暗示脉岩的岩浆源区受到了俯冲板片流体交代作用的影响,使Sr含量增高(McCulloch et al.,1991),深俯冲大陆岩石圈可能在上地幔顶部滞留几十甚至上百个百万年之后,才形成熔融岩浆(赵子福等,2004)。从闪长玢岩的野外空间分布形态(图2a、图2b),间接反映了地区断裂构造结构面力学性质和断裂结构特征,大致可以辨别该脉岩充填的裂隙具剪张性,符合镁铁质岩浆贯入长英质岩浆结晶度及流变学特征的4个阶段混合模式,第一阶段为长英质岩浆结晶;第二阶段为花岗质岩浆近处于固态,在应力作用下产生岩石裂隙;第三阶段为具流变特征的基性岩浆注入到已经形成的花岗岩石裂隙,并在局部与其发生化学反应,形成具两者特性的复合岩墙,闪长玢岩呈角砾或锯齿状斑块产出;第四阶段为花岗质岩石已经固结,同时较为连续的基性岩墙(Fernandez et al.,1991)。区域深部的岩浆源区可能存在镁铁质和花岗质2种类型岩浆,前者可能稍晚侵位至后者,两者进一步进行混合作用。
综上所述,闪长玢岩脉的地球化学特征综合显示其岩浆来源于富集地幔,但俯冲而来的板片流体与其发生交代作用,使基性脉岩兼具俯冲作用的地球化学特征,该脉岩的岩浆源区可能受到了富集地幔与俯冲板片流体交代作用的影响,花岗斑岩、闪长玢岩为造山后伸展−拉张环境下形成的脉岩组合 。
5.3 构造环境
脉岩是研究深部岩石圈动力演化过程的重要“探针”(Poland et al.,2004),脉岩一般认为是岩浆在区域性地壳在拉张作用下而形成,对研究区域构造演化具有十分重要的意义(Halls,1982),闪长玢岩脉岩地球化学特征为中基性岩,TiO2–K2O–P2O5判别图解显示样品均落于大陆玄武岩区(图5a),TiO2–Zr(P2O5×10000)图解显示脉岩样品属于拉斑玄武岩系列(图5b),与庐枞盆地的样品均为板内玄武岩(图5c),Th/Nb值为0.48~0.60,Nb/Zr值为0.05~0.08,符合大陆拉张带玄武岩特征(0.27<Th/Nb<0.67,Nb/Zr>0.04)(孙书勤等,2003);且脉岩样品均落于Th/Hf−Ta/Hf图解的大陆拉张带玄武岩区(图5d)。
图 5 TiO2−K2O−P2O5判别图解(a)(Pearce,1975); TiO2−Zr(P2O5×10000)判别图解(b)(Winchester et al.,1976);Ti−Zr判别图解(c)(Pearce et al.,1973);Th/Hf−Ta/Hf判别图解(d)(据汪云亮等,2001)Ⅰ.板块发散边缘区(N−MORB);Ⅱ1.大洋岛弧玄武岩;Ⅱ2.陆缘岛弧及陆缘火山弧玄武岩;Ⅲ.大洋板内洋岛、海山玄武岩区及T−MORB、E−MORB区;Ⅳ1.陆内裂谷及陆缘裂谷拉斑玄武岩区;Ⅳ2.陆内裂谷碱性玄武岩区;Ⅳ3.大陆拉张带(或初始裂谷)玄武岩区;Ⅴ.地幔热柱玄武岩区Figure 5. (a) Discriminant diagram of TiO2−K2O−P2O5, (b) Discriminant diagram of TiO2−Zr (P2O5×10000),(c) Ti−Zr discriminant diagram, and (d) Th/ Hf−Ta/Hf discrimination diagram大别地区位于华北板块与扬子板块之间,是苏鲁−大别超高压变质带的重要组成部分,经历了洋−陆碰撞、陆−陆碰撞等构造演化过程。前人研究显示,大别地区的高压与超高压榴辉岩相反映了扬子地块陆壳向北俯冲至华北陆块之下, 240~220 Ma是其变质作用发生的重要时期,即大别造山带形成时间 (Li et al. ,1993; Hacker et al.,1998 ;李曙光等,2005;刘福来等,2006);碰撞造山导致地壳增厚(Leech et al. ,2001),随后出现应力松弛,区域应力状态从挤压转换到伸展,由伸展作用所引起的花岗岩侵位,通常会稍晚于区域地壳部分熔融,所以加厚地壳部分熔融作用发生时间通常被当作区域构造体制开始转换时间的最低值(David et al.,2001 ;Whitney et al.,2003)。马昌前等(2003)通过研究大别地区镁铁质岩石侵位年代学和花岗岩侵位年代学以及分别分析其岩石地化综合特征,认为135 Ma是区域地壳构造体制的转换时间。吴元保等(2001)以北大别地区岩石发生混合岩化时的年代学证据为依据,分析认为(137±4)Ma是大别地区从挤压向伸展发生转换的时间;并提出早白垩世大别造山带发生伸展垮塌,发生大量中酸性花岗岩侵位。吴开彬等(2013)通过对比西大别石鼓尖岩体、天堂寨岩体、薄刀峰岩体的Sr同位素比值及结晶年龄,将其分为三期,第一期石鼓尖岩体具同构造侵位变形特征,反映了挤压环境;第二期天堂寨岩体,变形发育在接触带和剪切带内,暗示着大别造山带的伸展垮塌;第三期薄刀尖岩体无变质变形,被认为是形成于大别造山带垮塌之后,反映了伸展环境。根据笔者对岩石地球化学特征研究及野外地质特征,认为大悟地区闪长玢岩为板内拉斑玄武岩系列,反映了大陆拉张构造环境,结合闪长玢岩脉侵位时代为早白垩世。因此,大悟地区早白垩世闪长玢岩形成于造山后大陆拉张环境,与前人认为大别造山带伸展时期较为一致(吴开彬等,2013)。
6. 结论
(1)岩石地球化学特征显示,闪长玢岩属于中基性岩,为大陆拉斑玄武岩系列;稀土元素有较高的总量,稀土配分模式显示强烈富集轻稀土的右倾型,亏损不相容元素Nb、Ta、Hf、Ti;大离子亲石元素Sr富集。
(2)研究区闪长玢岩脉的岩浆源区可能受到了俯冲板片流体交代作用的影响,地球化学特征综合显示其可能来源于富集地幔;
(3)脉岩野外地质特征及前人研究资料表明,闪长玢岩侵位于早白垩世,为大别造山后伸展−拉张环境下形成的脉岩。
致谢:衷心感谢中国地质调查局西安地质调查中心陈隽璐正高级工程师对论文写作的指导!
-
图 2 白鹿塬地质剖面示意图(李宝田等,2021)
Figure 2. Geological profile of Bailuyuan
表 1 ALOS-2数据参数表
Table 1 ALOS-2 data parameters
影像采集时间 影像数量 雷达波长 轨道方向 空间分辨率 视角 垂直基线分布范围 极化方式 2020-01-18-2021-09-11 19景 23 cm 升轨 10 m 32° 91 m HH+HV 表 2 新识别滑坡隐患和历史滑坡灾害活动性分类表
Table 2 Classification of newly identified landslide hazards and activities of historical landslide hazards
类型 划分标准 活动性 统计 历史滑坡灾害(点位信息) 年变形量<10 mm/yr 稳定 HP1~HP7、HP8~HP24、HP26~HP28(共26个) 年变形量>10 mm/yr 复活/活动 HP8、HP25、HP29(共3个) 滑坡隐患(识别范围) 年变形量>10 mm/yr 活动 X1~X2、X4~X8、X10~X13、X15~X23(共20处) 复活/活动 X3、X9、X14(共3处) -
陈思名. 基于InSAR技术的潜在滑坡早期识别方法研究[D]. 西安: 长安大学, 2022 CHEN Siming. Research on Early Identification Method of Potential Landslides Based on InSAR Technology[D]. Xi’an: Chang’an University, 2022.
廖明生, 王腾. 时间序列InSAR技术与应用[M]. 北京: 科学出版社, 2014 LIAO Mingsheng, WANG Teng. Time Series InSAR Technology and Applications[M]. Beijing: Science Press, 2014.
惠明强. 基于数值模拟的地下水位上升条件下区域性斜坡稳定性研究-以西安白鹿塬为例[D]. 西安: 长安大学, 2020 HUI Mingqiang. Study on the stability of regional slope under the condition of rising groundwater level based on numerical simulation: a case study of Bailuyuan in Xi’an[D]. Xi’an: Chang’an University, 2020.
李宝田, 刘文红. 白鹿塬黄土滑坡发育类型及成因机制研究[J]. 中外公路, 2021(S02): 041 doi: 10.14048/j.issn.1671-2579.2021.S2.009 LI Baotian, LIU Wenhong. Research on the Development Types and Genetic Mechanisms of Loess Landslides in Bailuyuan[J]. Sino Foreign Highway, 2021(S02): 041. doi: 10.14048/j.issn.1671-2579.2021.S2.009
李萍, 王秉纲, 李同录. 自然类比法在黄土路堑边坡设计中的应用研究[J]. 公路交通科技, 2009, 26(02): 1-5 doi: 10.3969/j.issn.1002-0268.2009.02.001 LI Ping, WANG Binggang, LI Tonglu. Research on the Application of Natural Analogy in the Design of Loess Cutting Slopes[J]. Highway Transportation Technology, 2009, 26(02): 1-5. doi: 10.3969/j.issn.1002-0268.2009.02.001
彭建兵, 王启耀, 庄建琦等. 黄土高原滑坡灾害形成动力学机制[J]. 地质力学学报, 2020, 26(05): 714-730 doi: 10.12090/j.issn.1006-6616.2020.26.05.059 PENG Jianbing, WANG Qiyao, ZHUANG Jianqi, et al. The dynamic mechanism of landslide disasters in the Loess Plateau[J]. Journal of Geomechanics, 2020, 26(05): 714-730. doi: 10.12090/j.issn.1006-6616.2020.26.05.059
孙萍萍, 张茂省, 贾俊, 等. 中国西部黄土区地质灾害调查研究进展[J]. 西北地质, 2022, 55(03): 96-107 doi: 10.19751/j.cnki.61-1149/p.2022.03.007 SUN Pingping, ZHANG Maosheng, JIA Jun, et al. Progress in Geological Hazard Investigation and Research in Loess Regions of Western China[J]. Northwest Geology, 2022, 55(03): 96-107. doi: 10.19751/j.cnki.61-1149/p.2022.03.007
许强, 董秀军, 李为乐. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报(信息科学版), 2019, 44(07): 957-966 XU Qiang, DONG Xiujun, LI Weile. Early identification, monitoring and warning of major geological hazard hazards based on the integration of space and earth[J]. Journal of Wuhan University (Information Science Edition), 2019, 44(07): 957-966.
张毅. 基于InSAR技术的地表变形监测与滑坡早期识别研究[D]. 兰州: 兰州大学, 2018 ZHANG Yi. Research on Surface Deformation monitoring and Early Landslide Identification Based on InSAR Technology[D]. Lanzhou: Lanzhou University, 2018.
张路, 廖明生, 董杰, 等. 基于时间序列InSAR分析的西部山区滑坡灾害隐患早期识别——以四川丹巴为例[J]. 武汉大学学报(信息科学版), 2018, 43(12): 2039-2049 ZHANG Lu, LIAO Mingsheng, DONG Jie, et al. Early identification of landslide hazards in western mountainous areas based on time series InSAR analysis: A case study of Danba, Sichuan[J]. Journal of Wuhan University (Information Science Edition), 2018, 43(12): 2039-2049.
周超. 集成时间序列InSAR技术的滑坡早期识别与预测研究[D]. 北京: 中国地质大学, 2018 ZHOU Chao. Research on Early Identification and Prediction of Landslides by Integrating Time Series InSAR Technology[D]. Beijing: China University of Geosciences, 2018.
张林梵, 王佳运, 张茂省, 等. 基于BP神经网络的区域滑坡易发性评价[J]. 西北地质, 2022, 55(02): 260-270 ZHANG Linfan, WANG Jiayun, ZHANG Maosheng, et al. Evaluation of regional landslide susceptibility based on BP neural network[J]. Northwest Geology, 2022, 55(02): 260-270.
Agliardi F, Crosta G B, Frattini P, et al. Giant non-catastrophic landslides and the long-term exhumation of the European Alps[J]. Earth & Planetary Sciences Letters, 2013, 365: 263-74.
Lin X Y, Zhang L F, Yang Z, et al. Inversion analysis of the shear strength parameters for a high loess slope in the limit state[J]. Journal of Mountain Science, 2021, 18(01): 252-264. doi: 10.1007/s11629-020-6142-z
Zhang Z L, Zeng Q M, Jiao J. Deformations monitoring in complicated-surface areas by adaptive distributed Scatterer InSAR combined with land cover: Taking the Jiaju landslide in Danba, China as an example[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 186.
-
期刊类型引用(1)
1. 秦志军,汪兴韦,周豹,刘嘉,杜文洋,曾小华,李奥冰,张维康. 大别造山带双庙关金矿床成矿时代与成矿背景. 西北地质. 2024(01): 207-218 . 本站查看
其他类型引用(0)