Exploration Techniques and Methods of the Eco−Geological Survey in Mountainous Region, Southwest China
-
摘要:
生态地质调查以区域地质调查成果为基础,查明调查区生态地质现状和主要生态地质问题,研究生态环境与地质条件之间的联系,并开展生态地质综合评价。笔者利用在大凉山区和三峡库区生态地质调查的探索经验,总结了西南山区生态地质调查与评价思路和技术方法,主要取得以下认识:①地质条件是生态系统的物质基础和孕育环境,地质条件通过制约土壤、水文、地形地貌、动力作用、地质灾害等生态地质条件,而制约生态系统质量和生态环境发展差异。②西南山区成土母质主要是下伏基岩原地风化或风化后近距离迁移形成的,存在明显的岩石−土壤−植被物质传导链条,地质条件是制约该地区生态环境质量的重要因素。③对地质建造和地质构造等地质条件的分析和研究,是在该地区进行生态地质调查的基础。④提出了西南山区生态地质调查的目的任务、工作思路、工作内容、技术路线和主要技术方法。该成果可为西南山区开展生态地质调查提供借鉴案例,同时对生态地质学科的建设和全国生态地质调查方法体系的建立也具有一定支撑作用。
Abstract:Eco−geological survey is a kind of foundational geological survey, which is based on regional geological survey to find out the current situation and the problems of eco−geology, study the relationship between ecological environment and geological conditions, and carry out eco−geology comprehensive evaluation. The purpose is to serve the security and management of natural resources, ecological protection and restoration. Based on the experience of eco−geological survey and exploration in Daliangshan area, this paper summarizes the ideas and technical methods of eco−geological survey and evaluation applicable to the mountainous area in SW China, and mainly obtains the following understandings: ① geological conditions are the material basis of the ecosystem, and geological conditions restrict the quality of the ecosystem and the difference of the ecological environment by restricting the eco−geological conditions such as soil, hydrology, topography, dynamic action and geological disasters. ② The soil forming parent materials in the southwest mountainous area are mainly formed by in−situ weathering or by near migration after weathering, and there is an obvious rock−soil−vegetation material transmission chain, therefore, geological conditions are an important factor restricting the ecological environment quality in this area. ③ The analysis and study of geological formations and structures is the basis of eco−geological survey in this area. ④ The purpose, task, working idea, working content, technical route and main technical methods of eco−geological survey this area put forward. This study can provide a reference case for the eco−geological survey in Southwest China, and also has a certain supporting role for the construction of the ecological geology discipline and the establishment of the eco−geological survey method system of China.
-
钽、铌作为重要的稀有金属,广泛应用于医疗、航天、军工等各种高科技领域(邓攀等,2019)。中国是全球钽铌矿的主要消费国,国内钽铌矿贫矿多、生产成本高,原材料多依靠进口(商俊伟等,2008;蔡肖等,2013;李建康等,2019;任军平等,2021a,2022;朱清等,2023)。近年来,全球主要的钽铌矿供应国卢旺达和巴西等国分别对中国降低钽铌出口量。为了稳定进口渠道,中资企业在资源“走出去”过程中,积极开展南部非洲钽铌资源调查评价工作(邓德伟,2020;杨远东等,2020;孙宏伟等,2021;曾瑞垠等,2023),培育新的生产基地,在莫桑比克也陆续开展一些地质勘查工作,在区域地质背景、成矿规律、资源开发情况等方面取得了一定的认识(王西荣等,2016;任军平等,2021b;徐涛等,2021;王杰等,2022;龚鹏辉等,2023)。上利戈尼亚(Alto Ligonha)地区是莫桑比克乃至全球重要的Ta–Nb–Li–Be–Cs稀有元素成矿带(Hutchinson ,1956;Correia et al.,1971a,1971b;Von Knorring et al.,1987;Dias et al.,2000)。到目前为止,该带发现大型钽–铌矿床3处、中型9处、小型8处、矿(化)点129处,所有矿床(点)类型均为伟晶岩型(Detlef et al.,2012;董津蒙等,2022;唐文龙等,2022)。但该区基础地质工作程度低,地质、地球物理勘探和系统找矿工作因受长期内战在内的多方面因素影响进展缓慢(Barros et al.,1963;Correia et al.,1971a,1971b;Pinna et al.,1993)。世界银行曾出资对莫桑比克北部地区进行高精度航磁、航放测量,本区作为“优选区”被覆盖,区内航测资料的综合找矿研究工作亟待开展。笔者依托中国地质调查局天津地质调查中心承担的项目收集航测数据,在已有成果认识基础上对区内地质构造进行综合推断解释,查明控矿构造展布,分析总结区内已知钽铌矿床航空物探综合异常特征,对全区进行类比找矿预测,圈定钽铌矿远景区,为该地区铌钽矿资源的找矿及科研工作提供重要参考信息。
1. 区域地质矿产概况
研究区地处莫桑比克北部楠普拉省与赞比西亚省交界地带,构造位置处于东非新元古代莫桑比克活动带,中元古代楠普拉地体中。受新元古代—古生代泛非造山事件影响,该带大部分地质单元变形、变质作用强烈(图1)。全区主要由构造史基本相似的角闪岩相正、副片麻岩及赋含稀有元素的伟晶岩组成,包括玛玛拉(Mamala)片麻岩和莫库巴(Mocuba)杂岩组成的赞比西亚(Zambezia)群基底岩石、莫罗奎(Molocue)群变质碎屑岩盖层、库利库伊(Culicui)岩套花岗质正片麻岩等3个岩石单元(图2),泛非期花岗岩类和赋含稀有元素的伟晶岩侵入其中(唐文龙等,2022)。研究区是莫桑比克境内最有经济价值的花岗伟晶岩型钽铌成矿省之一,已产出大量钽精矿,主要以稀有元素副矿物形式富存于花岗伟晶岩中(徐涛等,2016,2021;冉子龙等,2021)。研究区东南部姆艾尼(Muiane)大型钽铌矿床矿石资源量为138万t(Ta2O5),平均品位为0.025% 。Melcher等(2008,2009)获得的花岗伟晶岩型钽铁矿U–Pb年龄为480~440 Ma,与上利戈尼亚泛非期(490 Ma)花岗岩事件密切相关(Jamal et al.,1999)。区内的主要构造纳玛玛逆冲推覆带是上利戈尼亚钽–铌稀有元素成矿带的主要控矿构造,区内已发现的伟晶群主要分布于逆冲推覆带内。
图 1 莫桑比克构造分区图(a)和莫桑比克地质矿产图(b)(据Marques et al.,2000修改)Ⅱ-1. 尼亚萨–津巴布韦成矿省;Ⅱ-2. 莫桑比克成矿省;Ⅱ-3. 鲁伍玛–赞比西–马普托成矿省;Ⅲ-1. 尼亚萨–安格尼亚–津巴布韦成矿带;Ⅲ-2. 津巴布韦–森托奥–巴鲁埃成矿带;Ⅲ-3. 巴洛克–乌南戈成矿带;Ⅲ-4. 莫桑比克成矿带;Ⅲ-5. 森托奥–赞比西成矿带;Ⅲ-6. 森托奥–鲁伍玛–赞比西–马普托成矿带; 1. 第四纪;2. 三叠纪;3. 白垩纪;4. 侏罗纪:灰色云母灰岩、红色砾岩;5. 卡鲁超群:玄武岩;6. 下卡鲁波弗特(Beaufort)组:砾岩和砂岩;7. 下卡鲁埃卡(Ecca)组:砾岩、砂岩和页岩、产煤层;8. 巴鲁瓦(Báruè)杂岩:片麻岩、混合岩、麻粒岩、大理石层、石英岩;9. 卢亚(Luia)组:片麻岩,麻粒岩,混合岩,正片麻岩,大理石层;10. 乌南戈(Unango)组:片麻岩、麻粒岩、花岗岩、正长岩;11. 鲁瑞姆(Lurium)超群:麻粒岩、麻粒状霞石岩、锰白云石、细砾岩;12. 楠普拉(Nampula)超群:片麻岩和花岗二长岩、钠长石和奥长花岗岩混合岩;13. 赞布瓦(Zâmbuè)组:片麻岩和副片麻岩,含石英岩、大理岩;14. 安格尼亚(Angónia)群:花岗质片麻岩,含微量麻粒岩、镁铁质片麻岩、浅色正片麻岩、石英岩、铁闪锌矿、蛇纹岩、霞石片麻岩和石墨化合物;15. 妮皮德(Nipiode)超群:云母片岩、白云母、石英岩和砾岩;16. 斜长岩;17. 乌姆孔多(Umkondo)组:石英岩、页岩、泥质岩、安山岩;18. 格拉齐(Grazi)组:云母石英岩、糜棱岩和石英片麻岩;19. 马斯昆斯(Macequece)组:玄武岩、科马提岩、滑石岩和绿柱石、橄榄岩和蛇纹岩;20. 花岗岩、正长岩和二长岩、霞石正长岩;21. 花岗岩和“后–芬苟瓦(Fíngoè)”正长岩和二长花岗岩;22. 阿池扎(Atchiza)杂岩体:橄榄岩、蛇纹岩、闪长岩;23. 花岗闪长岩和二长花岗岩“前–芬苟瓦(Fíngoè)”;24. 太特(Tete)杂岩体:辉长岩、斜长岩、辉石岩;25. 花岗岩类:正长岩、二长岩;26. 辉长岩;27. 花岗片麻岩;28. 卡鲁系流纹岩(Karoo rhyolite);29. 花岗岩、硅化花岗岩;30. 铌钽矿;31. 铍矿;32. 研究区范围Figure 1. (a) Tectonic map of Mozambique and (b) geological and mineral map of Mozambique图 2 莫桑比克上利戈尼亚地区地质图(据Council for Geoscience,2007修改)1. 莫库巴岩套灰色混合岩;2. 库利库伊岩套眼球状和条纹状花岗质正片麻岩;3. 莫罗奎群变泥质、变砂质和变火山质片麻岩;4. 玛玛拉长英质片麻岩;5. 莫罗奎群基性片麻岩;6. 库利库伊岩套浅色花网质正片麻岩;7. 库利库伊岩套巨晶花岗质片麻岩;8. 莫罗奎群变质超基性片麻岩;9. 库利库伊等粒花岗片麻岩;10. 莫罗奎群含铁石英岩、长石砂岩;11. 欧库瓦杂岩基性麻粒岩;12. 寒武纪花岗岩;13. 钽铌矿;14. 推断断裂构造Figure 2. Geological map of Alto Ligonha region of Mozambique2. 方法原理及数据有效性
研究区的航空磁法测量数据、航空放射性测量数据为天津地质调查中心团队于2020年1月出访莫桑比克期间,从莫桑比克国家地质矿山理事会(INAMI)处收集的网格数据,包含△T异常、U异常、Th异常、K异常,网格化间距为75 m×75 m。研究区地磁倾角为−49.5°,倾角绝对值大于30°,可以进行正常化极,笔者在开展负倾角化极试验合格的基础上,完成本区航磁异常的化极处理工作。数据处理过程参考相关行业标准和中国地质调查局标准,充分保证所生成成果资料的正确合理性。
2.1 航磁异常识别构造、岩体
航磁异常对非磁性矿体直接找矿作用并不明显,但通过数据的深加工,能够挖掘出极具价值的间接找矿信息。地质找矿历来有沿主要成矿断裂构造带和主要控矿岩体进行的工作思路(杨雪等,2015;李侃等,2019;朱雪丽等,2021)。断裂构造与岩浆岩密不可分,为成矿物质提供良好的运移通道和赋矿空间,从而形成复杂的构造–岩浆–成矿体系,而航磁资料在划分断裂构造、圈定火成岩体方面有特殊的优势,有利于寻找岩浆型、热液型、伟晶岩型内生金属矿产(崔志强等,2018;杨学明等,2021)。要通过航磁资料实现精确的划分断裂构造、圈定岩体、隐伏岩体边界就需要对异常数据进行多种转换处理,主要有化极、上延、垂向导数等。垂向一阶导数处理主要用于突出浅部磁性地质体引起的局部异常,有利于研究岩体和局部隆起的地质特征,进一步寻找贵金属、有色金属、稀有金属矿产的成矿有利区。
2.2 航放异常圈定岩体、蚀变带
航空放射性异常信息广泛应用于地质填图及铀矿找矿工作(张万良,2005;陈树军等,2007;范正国,2007),近年来也越来越多的应用到非放射性矿产找矿预测中来(陈中华,2003;张恩等,2014;伍显红等,2019)。岩石中放射性元素的含量与岩石形成时的物理化学条件有关。总体看来,火成岩中放射性元素含量比沉积岩高,其中SiO2含量的增高、地质年龄的渐新都会导致放射性元素含量有规律地增加(表1)。一般放射性含量最高的是酸性岩,最弱的是超基性岩。中性岩的放射性含量约为酸性岩的1/3,基性岩约为酸性岩的1/4~1/5(张万良,2005;陈树军等,2007) 。
表 1 不同岩石类型K、U与Th含量及比值表Table 1. K, U, Th contents and U/Th ratios in various rocks岩石类型 K(%) U(10−6) Th(10−6) U/Th 岩浆岩 超基性岩 0.03 0.003 0.005 0.600 基性岩(玄武岩) 0.83 0.5 3 0.167 中性岩(闪长岩) 2.3 1.8 7 0.257 酸性岩(花岗岩) 3.34 3.5 18 0.194 沉积岩 页岩 2.6 3.7 12 0.308 砂岩 1.07 0.45 1.7 0.265 碳酸盐岩 2.7 2.2 1.7 1.294 黏土 25 1.3 7 0.186 变质岩 角闪岩 3.57 5 0.714 带状片麻岩(深变质) 0.28 0.85 0.329 片麻岩(浅变质) 0.14 4.09 0.034 注:放射性含量来自张万良等(2005)。 K、U、Th元素由于对介质的温度及pH值的变化极为敏感。在成矿作用过程中,根据其地球化学特性的不同,其适应物理、化学环境变化而呈规律性再分布,在矿床上形成有规律分布的扩散晕。成因类型、成矿温度、介质pH值等相同的钽铌矿床,具有相同的表征成矿物理、化学环境的局部放射性异常特征。航空伽玛能谱法找矿实质上是利用K、U、Th元素,通过模拟相似成矿环境、研究成矿规律,寻找非放射性多金属矿产的环境放射性地化标志找矿方法(张恩等,2014)。针对研究区钽铌矿均为低温热液型的特点,为消除K异常作为造岩元素含量普遍较高的影响,突出低温的钾化蚀变带,笔者利用不同温度的热液中Th、U 富集程度不同,选用F参数,即Th、K含量之积与U含量之比来加强成矿弱信息的提取(辛福成等,2007)。
3. 航磁航放异常分布特征
3.1 航磁异常
区域航磁异常场整体表现为西低东高,局部异常条带以北东向延伸为主,并受北西向构造应力错动分段(图3)。西北部低磁异常区(磁异常幅值主体为350~560 nT)基本对应研究区内库利库伊花岗质正片麻岩岩套(Pt2γmglNM)的主要分布范围。东南部“人”字形高磁异常组合(北东向与北西向),磁异常幅值在–100~2400 nT之间急剧变化,主要对应莫洛奎群变泥质、变砂质和变火山质片麻岩(Pt2NMa)和局部出露的基性片麻岩(Pt2NMam)。莫罗奎群变质碎屑岩盖层分布区是区内的主要伟晶岩区和成矿区,其中具有强磁异常表征的是基性片麻岩(Pt2NMam)背景。盖层空间分布严格受纳玛玛逆冲推覆带控制,所引起航磁异常形态的剧烈变化也充分反映了推覆带构造应力演化的强烈性和复杂性。
3.2 航放异常
总体来说,研究区的航放异常整体表现为一定的北东向分带展布特征和区域性的低异常背景场,充分反应区内北东向为主体的构造格局及区内岩性以地质年龄较老的偏中基性岩群为主的特征。F参数(归一化后的K异常)与U异常、Th异常具有较好的正相关关系,异常分布范围与整体形态均有较高的吻合度。主体显示为东南部异常整体幅值低,西北部分两高夹一低(图4)。西侧相对高航放异常区与低磁异常区呼应,对应库利库伊花岗质正片麻岩岩套(Pt2γmglNM)。中部规模最大的航放高值异常带呈北东向转北西向的扫帚形,与库利库伊花岗质片麻岩带(Pt2γπNM)空间展布基本对应。东南角相对平静的低航放异常区与“人”字形高磁异常组合直接对应,共同圈定莫罗奎群变质碎屑岩盖层分布范围,其中的极低放射性异常主要是基性片麻岩(Pt2NMam)的反应。
4. 地质解释与找矿方向
4.1 纳玛玛逆冲推覆带的展布
纳玛玛逆冲推覆带是上利戈尼亚钽–铌稀有元素成矿带主要的控矿构造,已发现的伟晶岩群主要分布于逆冲推覆带内(Cadoppi et al.,1987;Ueda et al.,2012),航磁航放异常解释结果显示该带具有典型的左旋张扭构造特征,构造体系总体走向北东–北北东向。按断裂延展方向可进一步划分为北北东、北东向、北西向、北北西4组。北 东向、北西向2组断裂代表全区主构造方向,宏观上呈现出“网格状”的基本构造样式。北东向为早期主体构造,后期受北西向构造改造,发生错断、平移,区内铌钽矿分布整体受航磁异常推断断裂构造控制,主断裂与次级断裂的交会部位,断裂构造倾角转折部位是成矿有利地段(图3、图5)。从航磁异常场分析,区内主要控矿构造北东向F1断裂表现为高磁异常带与平静磁异常场区的分界线和航放低异常场区的边界。规模最大的北西向F2断裂错断区内多组北东向航磁航放异常,并部分表现为低磁异常条带。该断裂向北西方向水平错动超过20 km,错断了区内主干北东向断裂F1、F4、F5。以此为界,南部北东向正负异常相间的高磁异常条体整体突然截止,北部的北东向异常带存在明显的大规模的西北向水平错动,航磁△T上延2 km异常图(图6)上F2断裂亦有明显反映,从深部验证其构造规模及影响。地质图上莫罗奎群变质碎屑岩盖层的空间展布、相似的航放异常特征也佐证了这一推断。主要控矿构造的北西向错动可能导致F2断裂以北钽–铌矿成矿有利区整体向北西方向水平错动移超过20 km。
4.2 典型矿床的航磁航放异常特征
姆艾尼钽铌矿床是上利戈尼亚稀有元素成带规模最大(大型)的伟晶岩矿之一,其矿床赋存的地质空间位置、形成地质条件、控矿因素在本区极具代表性。笔者针对该矿床进行数据裁剪,单独成图分析,旨在详细掌握矿床航磁航放异常特征(图7)。从姆艾尼钽铌矿床区域地质背景与航空物探异常的对比可以看出,矿床主体分布在航磁化极高异常、航放低异常所共同对应的莫罗奎变质碎屑岩盖层上。其中,与含矿伟晶岩空间关系最为密切的莫罗奎群基性片麻岩(Pt2NMam)岩石磁性更高,航磁垂向一阶导数异常图上表现为幅值变化最大的正负磁异常组合;具有明显的高航放异常和低航磁异常的库利库伊岩套花岗质正片麻岩与成矿表现为负相关关系。从推断断裂构造分布来看,姆艾尼钽铌矿床正处于推断北东向与北北西向断裂构造交汇处,断裂控矿作用明显;航磁场处于北东东向航磁高异常带边界高低磁异常过度的梯级带上;在航放异常场中处于区域低异常场中的局部微弱高异常边部,这也是研究区大多数钽铌矿床空间分布规律:产出在区域航磁化极高异常、航放低异常背景上,局部高磁异常、局部弱放射性异常边部;受北东、北西向断裂构造控制;与成矿相关的地质单元航磁、航放异常特征明显,易于识别。
4.3 找矿方向
通过对上利戈尼亚地区铌钽矿床的地质特征与航磁、航放特征对比研究,发现航磁、航放异常对成矿环境具有较强的指示性,矿床航空异常特征也呈现出一定的规律性,具体可以总结为以下三点:
(1)航磁异常可以识别纳玛玛推覆带内断裂构造的展布。区内北东–北北东向构造体系不仅控制着与稀有元素密切相关的伟晶岩的分布形态,更直接影响着矿床的空间分布,矿脉赋存在断裂构造及其次级构造、断裂交汇部位。航磁异常推断断裂构造是钽–铌矿找矿的重要预测要素。
(2)区内矿产地展布的总体趋势表现出相对的航磁高异常、航放低异常背景特征,主要对应莫罗奎群表壳岩带。由此以航磁△T化极异常等值线图(图3)值域大于700 nT为界,手动提取区域性高磁异常和高低相间磁异常区带。在此基础上,进一步限定航放F参数异常图(图4)上值域整体小于1.6%的片状区域,初步圈定成矿有利区域(图8)。
(3)从区内矿床空间展布来看,航磁垂向一阶导数异常正负伴生,异常变化显著区域构造应力作用明显且多次叠加,更有利成矿,矿床集中分布;航放U、Th、 K、Th/U异常场的区域性低异常区中,相对高异常边界缓冲带是重要的成矿有利区。
基于以上要素,综合圈定找矿远景区五处并主要依据各区内已知矿产地数量及规模,进行远景区分级(表2)。Ⅰ区是区内主要的矿集区,成矿条件优越,成矿潜力巨大(图8)。纳玛玛逆冲推覆带的展布受F2断裂影响,向北西方向水平错动移超过20 km,同时也错断了推覆带上相邻分布的Ⅱ区与Ⅰ区,由此推断Ⅱ区与Ⅰ区成矿相关性最高,找矿潜力次之,可能是区内可拓展的新的主要找矿区域。
表 2 远景区综合情况表Table 2. Prospect summary table编号 面积(km2) 矿床数(个) 地质出露 异常特征 预测等级 Ⅰ 330.9 15 莫罗奎群 低放射性异常,北东磁异常条带状平行展布 一级 Ⅱ 176.5 1 莫罗奎群和
库利库侵入岩低放射性异常,环状和北东向,磁异常条带 二级 Ⅲ 134.9 2 莫罗奎群 低放射性异常,北东北西向磁异常交汇 三级 Ⅳ 36.5 3 欧库瓦杂岩与
库利库侵入岩低放射性异常,磁异常条带北东东向展布 三级 Ⅴ 47.7 3 莫罗奎群 高低磁异常与高低放射性异常过度带 三级 5. 结论
(1)航磁异常解释结果显示,上利戈尼亚地区成矿主要受北东、北西向2组断裂构造组成的“网格状”断裂构造格架所控制。其中,北东向为早期构造,后期受北西向构造改造,发生错断或平移。F2断裂为改变区内构造格局的主要断裂,主要控矿的纳玛玛逆冲推覆带在F2断裂北侧发生大规模的北西向水平错动,移动距离超过20 km。在此断裂体系控制下,区内钽铌矿成矿带整体向北西方向偏移。
(2)通过航磁异常掌握纳玛玛逆冲推覆带区域构造格架及次级断裂构造展布,通过航放异常圈定与成矿相关的莫罗奎群地质体及与本区伟晶岩型钽铌矿矿化相关的低温钾化蚀变带开展找矿预测,笔者共圈定找矿远景区5处。在此基础上,借助重点区域的局部航磁、航放异常边界缓冲带叠加分析可进一步缩小找矿范围。
致谢:本文完成过程中得到中国地质调查局天津地质调查中心张素荣高级工程师的指导;胡婷博士、曹占宁博士等给予诸多帮助并进行有益探讨,审稿专家给论文提出许多宝贵意见,在此一并表示感谢。
-
图 1 西南山区生态地质分区简图(据聂洪峰等,2021b修改)
生态地质分区代号解释见表1
Figure 1. Eco–geological division of mountainous region in SW China
图 2 西南山区大地构造分区简图(据潘桂棠等,2009修改)
Figure 2. Geotectonic division of mountainous region in SW China
图 6 地形–岩石–土壤结构模式图(据贾磊等,2022修改)
Figure 6. Model map of terrain–rock–soil substrate
图 9 长江巫峡生态地质综合剖面图
T2b. 中三叠统巴东组粉砂岩、泥质岩、石灰岩、白云质灰岩等;T1j. 下三叠统嘉陵江组石灰岩、白云岩、白云质灰岩;T1d. 下三叠统大冶组石灰岩、泥质灰岩;P3c-w. 上二叠统长兴组、吴家坪组白云质灰岩、夹硅质碳质页岩,含煤层;P2m-q. 中二叠统茅口组、栖霞组灰岩、泥质灰岩,夹页岩;P2l. 中二叠统梁山组;C2h. 中石炭统黄龙组白云岩、砂质白云岩、白云质灰岩、石灰岩;D3. 上泥盆统(写经寺组、黄家蹬组、云台观组等)石灰岩夹粉砂岩等;S1. 下志留统(罗惹坪组、龙马溪组等)粉砂岩、泥岩夹石灰岩透镜体
Figure 9. Eco–geological profile of Wuxia on the Yangtze River
图 12 西昌地区生态地质评价和生态系统服务功能分区图
a.生态脆弱性评价图;b.生态系统服务重要性评价图;c.生态脆弱性分区图;d.生态系统服务功能分区图;Ⅰ-1. 邛海–泸山生态地质轻度脆弱区;Ⅱ-1. 大兴生态地质轻度脆弱区;Ⅱ-2. 大箐生态地质轻度脆弱区;A.安宁河谷农业功能区;B.西昌城镇功能区;C.邛海–泸山自然景观与水源保护功能小区;D.大兴水土保持与水源涵养功能区;E.大箐水土保持与水源涵养功能区
Figure 12. Ecological geological evaluation and ecosystem service functional district maps in Xichang, Sichuan
表 1 西南地区生态地质分区表(据聂洪峰等,2021b修改)
Table 1 Eco-geological division mountains region in SW China
一级生态地质分区 二级生态地质分区 三级生态地质分区 西南生态
地质大区(Ⅲ)四川盆地生态地质区(Ⅲ1) 四川盆地西部岷山–邛崃褶断低山云杉冷杉林常绿阔叶林生态地质亚区(Ⅲ1-a) 四川盆地北部褶断低山农林复合生态地质亚区(Ⅲ1-c) 四川盆地南缘岩溶常绿–落叶阔叶林生态地质亚区(Ⅲ1-e) 三峡库区褶断溶蚀平行岭谷农林复合生态地质亚区(Ⅲ1-f) 秦巴山地生态地质区(Ⅲ2) 秦岭褶断山地落叶阔叶–针阔混交林生态地质亚区(Ⅲ2-a) 豫西南褶断山地丘陵落叶阔叶林生态地质亚区(Ⅲ2-b) 汉江上游褶断丘陵、冲洪积堆积盆地农业生态地质亚区(Ⅲ2-c) 米仓山–大巴山褶断山地落叶阔叶-针阔混交林生态地质亚区(Ⅲ2-d) 伏牛山褶断山地、溶蚀山地常绿落叶阔叶林生态地质亚区(Ⅲ2-e) 南阳盆地堆积岗坡、冲湖积平原农业生态地质亚区(Ⅲ2-f) 鄂中褶断丘陵、堆积坡岗农林生态地质亚区(Ⅲ2-g) 三峡水库生态地质区(Ⅲ3) 三峡水库褶断低山生态地质亚区(Ⅲ3-a) 武陵–雪峰山生态地质区(Ⅲ4) 鄂西南岩溶中、低山常绿阔叶林生态地质亚区(Ⅲ4-a) 渝东南岩溶中、低石山林草生态地质亚区(Ⅲ4-b) 武陵山地岩溶中、低山常绿阔叶林岩溶生态地质亚区(Ⅲ4-c) 武陵山地东南褶断低山常绿阔叶林生态地质亚区(Ⅲ4-d) 黔东北岩溶中、低山常绿阔叶林–农业生态地质亚区(Ⅲ4-e) 雪峰山褶断中、低山地常绿阔叶林与农业生态地质亚区(Ⅲ4-f) 云贵高原生态地质区(Ⅲ5) 川西南褶断山地偏干性常绿阔叶林生态地质亚区(Ⅲ5-a) 沙鲁里山南部岩溶褶断亚高山半干旱、半湿润暗针叶林生态地质亚区(Ⅲ5-b) 金沙江下游褶断中山干热河谷常绿灌丛–稀树草原生态地质亚区(Ⅲ5-c) 滇中褶断中山滇青冈–元江栲林–云南松林生态地质亚区(Ⅲ5-d) 滇中岩溶低山、丘陵滇青冈–元江栲林–云南松林生态地质亚区(Ⅲ5-e) 乌蒙山岩溶山地云南松林–羊草草甸生态地质亚区(Ⅲ5-f) 乌蒙山褶断中山云南松林–羊草草甸生态地质亚区(Ⅲ5-g) 蒙自、文山岩溶中、低山峡谷云南松、红木荷林、罗浮栲、截果石栎生态地质亚区(Ⅲ5-h) 桂西北褶断中、低山半湿润季风常绿阔叶林生态地质亚区(Ⅲ5-i) 桂中喀斯特常绿、落叶阔叶混交林生态地质亚区(Ⅲ5-j) 桂东北褶断中山湿润常绿阔叶林生态地质亚区(Ⅲ5-k) 黔南褶断山地、盆谷常绿阔叶林生态地质亚区(Ⅲ5-l) 黔中丘原盆地山原中山常绿阔叶林喀斯特脆弱生态地质亚区(Ⅲ5-m) 黔西北喀斯特中山针阔混交林生态地质亚区(Ⅲ5-n) 黔北喀斯特山原中山常绿、落叶阔叶混交林生态地质亚区(Ⅲ5-o) 黔东南褶断山地、丘陵常绿落叶阔叶–农林业生态地质亚区(Ⅲ5-p) 滇中西山地生态地质区(Ⅲ6) 滇西南褶断中山宽谷北热带季雨林生态地质亚区(Ⅲ6-a) 怒江、澜沧江下游喀斯特中低山印栲林、刺斗石栎林生态地质亚区(Ⅲ6-b) 澜沧江、元江中游褶断中山山原刺栲、思茅松林生态地质亚区(Ⅲ6-c) 滇桂南部生态地质区(Ⅲ7) 西双版纳西部褶断山中盆地北热带季雨林生态地质亚区(Ⅲ7-a) 西双版纳东部褶断山中盆地北热带季雨林生态地质亚区(Ⅲ7-b) 滇南褶断中山峡谷热带湿润雨林、山地苔藓林生态地质亚区(Ⅲ7-c) 桂西南褶断中、低山北热带季雨林生态地质亚区(Ⅲ7-d) 桂西南喀斯特北热带季雨林生态地质亚区(Ⅲ7-e) -
曹建华, 袁道先, 章程, 等. 受地质条件制约的中国西南岩溶生态系统[J]. 地球与环境, 2004(01): 1-8 doi: 10.3969/j.issn.1672-9250.2004.01.001 CAO Jianhua, YUAN Daoxian, ZHANG Cheng, et al. Karst ecosystem constrained by geological conditions in Southwest China[J]. Earth and Environment, 2004, 32(1): 1-8. doi: 10.3969/j.issn.1672-9250.2004.01.001
曾琴琴, 王永华, 刘才泽, 等. 四川省南部县土壤地球化学元素分布特征研究[J]. 沉积与特提斯地质, 2021, 41(4): 656-662 ZENG Qinqin, WANG Yonghua, LIU Caize, et al. A study on distribution of elements of soil in Nanbu County, Sichuan Province[J]. Sedimentary Geology and Tethyan Geology, 2021, 41(4): 656-662.
陈莉薇, 徐晓春, 王军, 等. 铜陵相思河流域重金属分布特征研究[J]. 环境科学, 2014, 35(8): 2967-2973 doi: 10.13227/j.hjkx.2014.08.018 CHEN Liwei, XU Xiaochun, WANG Jun, et al. Distribution of Heavy Metals in Xiangsi River Valley of Tongling, China[J]. Environmental Science, 2014, 35(8): 2967-2973. doi: 10.13227/j.hjkx.2014.08.018
陈树旺, 邢德和, 丁秋红, 等. 生态地质调查评价——以辽宁铁岭地区为例[J]. 地质与资源, 2012, 21(6): 540-545 doi: 10.3969/j.issn.1671-1947.2012.06.008 CHEN Shuwang, XING Deru, DING Hongqiu, et al. Ecogeological survey and evaluation: A case study of Tieling area, Liaoning province[J]. Geology and Resources, 2012, 21(6): 540-545. doi: 10.3969/j.issn.1671-1947.2012.06.008
程朋根, 童成卓, 聂运菊, 等. 基于RS与GIS技术的城市生态环境监测与评价系统设计及其应用[J]. 东华理工大学学报(自然科学版), 2015, 38(3): 314-318 CHENG Penggen, TONG Chengzhuo, NIE Yunju, et al. Design and application of urban ecological environment monitoring and evaluation system using remote sensing and GIS[J]. Journal of East China University of Technology (Natural Science), 2015, 38(3): 314-318.
丁永建, 周成虎, 邵明安, 等. 地表过程研究进展与趋势[J]. 地球科学进展, 2013, 28(4): 407-419 DING Yongjian, ZHOU Chenghu, SHAO Mingan, et al. Studies of Earth surface processes: Progress and prospect[J]. Advances in Earth Science, 2013, 28(4): 407-419.
杜华明. 西秦岭地区景观生态风险评价及格局优化研究[J]. 资源环境与工程, 2021, 35(3): 347-354 DU Huaming. Study on Landscape Ecological Risk Assessment and Landscape Pattern Optimization of West Qinling Area[J]. Resources Environment & Engineering, 2021, 35(3): 347-354.
杜尚海, 古成科, 张文静. 随机森林理论及其在水文地质领域的研究进展[J]. 中国环境科学, 2022, 42(9): 4285-4295 doi: 10.3969/j.issn.1000-6923.2022.09.036 DU Shanghai, GU Chengke, ZHANG Wenjing. A review on the progresses in random forests theory and its applications in hydrogeology[J]. China Environmental Sciencece, 2022, 42(9): 4285-4295. doi: 10.3969/j.issn.1000-6923.2022.09.036
方正, 张延飞, 丁木华, 等. 基于RSEI的国家生态文明试验区(江西)生态环境质量变化分析——以抚州市为例[J]. 东华理工大学学报(自然科学版), 2020, 43(3): 271-279 FANG Zheng, ZHANG Yanfei, DING Muhua, et al. Ecological changes analysis based on RSEI in the national ecological civilization experimental area (Jiangxi): a case study of Fuzhou city[J]. Journal of East China Institute of Technology (Natural Science Edition), 2020, 43(3): 271-279.
冯乃琦, 杨晓玲, 张永康, 等. “地质+生态农业”模式的江西省高滩地质文化村建设方向研究[J]. 资源环境与工程, 2022, 36(4): 512-521 FENG Naiqi, YANG Xiaoling, ZHANG Yongkang, et al. Study on the Construction Direction of Gaotan Geological Cultural Village in Jiangxi Province Based on the Model of “Geology + Ecological Agriculture” [J]. Resources Environment & Engineering, 2022, 36(4): 512-521.
冯立, 张鹏飞, 张茂省, 等. 新时期榆林煤矿区生态保护修复与综合治理策略及路径探索[J]. 西北地质, 2023, 56(3): 19−29. doi: 10.3969/j.issn.1000-0941.2007.01.015 FENG Li, ZHANG Pengfei, ZHANG Maosheng, et al. Strategies and Practical Paths for Ecological Restoration and Comprehensive Management in Yulin Coal Mining Area in the New Era[J]. Northwestern Geology, 2023, 56(3): 19−29. doi: 10.3969/j.issn.1000-0941.2007.01.015
古琴, 周爱国, 邢新丽. 荒漠区植被斑块格局演化的生态地质学机制[J]. 中国水土保持, 2007(1): 38-40 doi: 10.3969/j.issn.1000-0941.2007.01.015 GU Qin, ZHOU AiguoXING Xinli. Eco-Geology mechanism of desert vegetation patches pattern evolution[J]. Soil and Water Conservation in China, 2007(1): 38-40. doi: 10.3969/j.issn.1000-0941.2007.01.015
郭纯青, 王莉, 王洪涛. 中国岩溶生态地质研究[J]. 生态环境, 2005, 14(2): 275-281 doi: 10.3969/j.issn.1000-6923.2020.04.035 GUO Chunqing, WANG Li, WANG Hongtao. The Research of karst ecological geology in China[J]. Ecology and Environmental Sciences, 2005, 14(2): 275-281. doi: 10.3969/j.issn.1000-6923.2020.04.035
韩玉, 卢文喜, 李峰平, 等. 浑河流域地表水地下水水质耦合模拟[J]. 中国环境科学, 2020, 40(4): 1677-1686 doi: 10.3969/j.issn.1000-6923.2020.04.035 HAN Yu, LU Wen-xi, LI Fengping, et al. Water quality coupling simulation of surface water and groundwater in Hunhe river basin[J]. China Environmental Sciencece, 2020, 40(4): 1677-1686. doi: 10.3969/j.issn.1000-6923.2020.04.035
何政伟, 黄润秋, 孙传敏, 等. 浅议“生态地质学”[J]. 国土资源科技管理, 2003, 3(20): 69-72 doi: 10.3969/j.issn.1001-6872.2002.02.022 HE Zhengwei, HUANG Runqiu, SUN Chuanmin, et al. He Fenqin, Sun Yujiang, Yi Jianzhong, Liu Shaojun Zhao Yinbing. A brief discussion on “Eco-geology” [J]. Scientific and Technological Management of Land and Resources, 2003, 3(20): 69-72. doi: 10.3969/j.issn.1001-6872.2002.02.022
何政伟, 孙传敏, 吴柏青, 等. 岩石-土壤-植被信息系统建立探讨[J]. 矿物岩石, 2002, 22(2): 100-104 doi: 10.3969/j.issn.1001-6872.2002.02.022 HE Zhangwei, SUN Chuanmin, WU Boqing, et al. Discussion on the establishment of rock-soil-vegetation information system[J]. Journal of Mineralogy and Petrology, 2002, 22(2): 100-104. doi: 10.3969/j.issn.1001-6872.2002.02.022
侯红星, 张蜀冀, 鲁敏, 等. 自然资源地表基质层调查技术方法新经验——以保定地区地表基质层调查为例[J]. 西北地质, 2021, 54(3): 277-288 doi: 10.19751/j.cnki.61-1149/p.2021.03.026 HOU Hongxing, ZHANG Shuji, LU Min, et al. Technology and Method of the Ground Substrate Layer Survey of Natural Resources: Taking Baoding Area as an Example[J]. Northwestern Geology, 2021, 54(3): 277-288. doi: 10.19751/j.cnki.61-1149/p.2021.03.026
胡振琪, 李勇, 陈洋. 黄河泥沙在生态修复中的作用机理与关键技术[J]. 中国矿业大学学报. 2022, 51(1): 1-15 doi: 10.3969/j.issn.1000-3657.2001.11.005 HU Zhenqi, LI Yong, CHEN Yang. The mechanism and key technology of the Yellow River sediment in ecological rehabilitation[J]. Journal of China University of Mining & Technology, 2022, 51(1): 1-15. doi: 10.3969/j.issn.1000-3657.2001.11.005
黄润秋. 生态环境地质的基本特点与技术支撑[J]. 中国地质, 2001, 28(11): 20-24 doi: 10.3969/j.issn.1000-3657.2001.11.005 HUANG Runqiu. Basic characteristics and technical support of the eco-environmental geology[J]. Geology in China, 2001, 28(11): 20-24. doi: 10.3969/j.issn.1000-3657.2001.11.005
黄振兴, 李满根, 封志兵, 等. 基于遥感生态指数的生态环境质量变化分析——以抚州市东乡区为例[J]. 东华理工大学学报(自然科学版), 2022, 45(1): 60-66 doi: 10.19751/j.cnki.61-1149/p.2021.04.019 HUANG Zhenxing, LI Mangen, FENG Zhibing, et al. Ecological Environment Change in Dongxiang District based on Remote Sensing Ecological Index[J]. Journal of East China University of Technology (Natural Science), 2022, 45(1): 60-66. doi: 10.19751/j.cnki.61-1149/p.2021.04.019
姬华伟, 任蕊, 陈继平, 等. 关中不同类型土壤硒含量特征及其对玉米籽粒硒含量的影响[J]. 西北地质, 2021, 54(4): 239-249 doi: 10.19751/j.cnki.61-1149/p.2021.04.019 JI Huawei, REN Rui, CHEN Jiping, et al. Characteristics of Selenium Content in Different Soil Types in Guanzhong and Its Influence on Selenium Content of Corn Grain[J]. Northwestern Geology, 2021, 54(4): 239-249. doi: 10.19751/j.cnki.61-1149/p.2021.04.019
贾磊, 刘洪, 欧阳渊, 等. 基于地质建造的南方山地-丘陵区地表基质填图单元划分方案——以珠三角新会–台山地区为例[J]. 西北地质. 2022, 55(4): 140-157 JIA Lei, LIU Hong, OUYANG Yuan, et al. Division scheme of surface substrate mapping units based on geological formations research, mountainous-hilly area in South China ——exemplified by Xinhui – Taishan area, Pearl River Delta[J]. Northwestern Geology. 2022, 55(4): 140-157.
江新胜, 崔晓庄, 卓皆文, 等. 华南扬子陆块西缘新元古代康滇裂谷盆地开启时间新证据[J]. 沉积与特提斯地质, 2020, 40(3): 31-37 doi: 10.16258/j.cnki.1674-5906.2015.03.027 JIANG Xinsheng, CUI Xiaozhuang, ZHOU Jiewen, et al. 2020. New evidence for the opening time of the Neoproterozoic Kangdian rift basin, western Yangtze Block, South China. Sedimentary Geology and Tethyan Geology, 2020, 40(3): 31-37. doi: 10.16258/j.cnki.1674-5906.2015.03.027
蒋洪强, 吴文俊, 姚艳玲, 等. 耦合流域模型及在中国环境规划与管理中的应用进展[J]. 生态环境学报, 2015, 24(3): 539-546 doi: 10.16258/j.cnki.1674-5906.2015.03.027 JIANG Hongqiang, WU Wenjun, YAO Yanling, et al. Coupling watershed environmental model with optimizing method to provide least cost alternatives in environmental planning and management[J]. Ecology and Environmental Sciences, 2015, 24(3): 539-546. doi: 10.16258/j.cnki.1674-5906.2015.03.027
蒋惠忠, 邹立芝, 李绪谦, 等. 四平地区生态地质环境的研究[J]. 吉林大学学报(地球科学版), 2002, 32(1): 87-91 doi: 10.13278/j.cnki.jjuese.2002.01.021 JIANG Huizhong, ZOU Lizhi, LI Xuqian, et al. Circumstance assessment of eco-geological environment in siping district[J]. Journal of Jilin University (Earth Science Edition), 2002, 32(1): 87-91. doi: 10.13278/j.cnki.jjuese.2002.01.021
金雄伟, 马国桃, 张林奎, 等. 藏南扎西康矿集区土壤盐渍化空间分布及成因分析[J]. 沉积与特提斯地质, 2020, 40(4): 83-94 doi: 10.19826/j.cnki.1009-3850.2020.06006 JIN Xiongwei, MA Guotao, ZHANG Linkui, et al. Spatial distribution and genesis of the surface soil’s salinization in Zhaxikang mine area, southern Tibet[J]. Sedimentary Geology and Tethyan Geology, 2020, 40(4): 83-94. doi: 10.19826/j.cnki.1009-3850.2020.06006
居字龙, 袁航, 张小波, 等. 县域生态地质调查土壤重金属污染评价及来源分析——以红安县为例[J]. 资源环境与工程, 2022, 36(1): 124-131 doi: 10.16536/j.cnki.issn.1671-1211.2022.01.021 JU Zilong, YUAN Hang, ZHANG Xiaobo, et al. Evaluation and Source Analysis of Soil Heavy Metal Pollution in County Ecological Geological Survey: Take Hong'an County as an Example[J]. Resources Environment & Engineering, 2022, 36(1): 124-131. doi: 10.16536/j.cnki.issn.1671-1211.2022.01.021
李保杰, 顾和和, 纪亚洲. 矿区土地生态风险时空分异研究[J]. 中国矿业大学学报. 2015, 44(3): 573-580 LI Baojie, GU Hehe, JI Yaya. Study of spatial-temporal change of land eco-risk in mining area[J]. Journal of China University of Mining & Technology, 2015, 44(3): 573-580.
李富, 欧阳渊, 陈敏华, 等. 物探方法在泥炭调查中的应用研究[J]. 合肥工业大学学报(自然科学版), 2021a, 44(9): 1137-1143 LI Fu, OUYANG Yuan, CHEN Minhua, et al. Application of geophysical prospecting in peat investigation[J]. Journal of Hefei University of Technology(Natural Science), 2021a, 44(9): 1137-1143.
李富, 欧阳渊, 刘洪, 等. 高密度电阻率法与地质雷达法在土壤厚度调查中应用效果 ——以西昌市土壤厚度调查为例[J]. 华北地质, 2021b, 44(1): 27-32 doi: 10.3969/j.issn.1671-1211.2014.01.001 LI Fu, OUYANG Yuan, LIU Hong, et al. Application of high density resistivity and geological radar in soil thickness survey: A case study of the soil thickness survey in Xichang[J]. North China Geology, 2021b, 44(1): 27-32. doi: 10.3969/j.issn.1671-1211.2014.01.001
李金发. 为生态文明服务的地质调查工作[J]. 资源环境与工程, 2014, 28(1): 1-4 doi: 10.3969/j.issn.1671-1211.2014.01.001 LI Jinfa. The geological survey for ecological civilization[J]. Resources Environment & Engineering, 2014, 28(1): 1-4. doi: 10.3969/j.issn.1671-1211.2014.01.001
李金发. 认清经济新形势 顺应改革新趋势——加快中国地质调查工作的调整与改革[J]. 中国地质调查, 2016, 3(1): 1-6 doi: 10.3969/j.issn.1000-3665.2004.02.028 LI Jinfa. Recognizing the new economic situation and conforming to the new trend of reform -- accelerating the adjustment and reform of geological survey in China[J]. Geological Survey of China, 2016, 3(1): 1-6. doi: 10.3969/j.issn.1000-3665.2004.02.028
李瑞敏, 侯春堂, 王轶. 农业地质研究进展及主要研究问题[J]. 水文地质工程地质, 2004, 31(2): 110-113 doi: 10.3969/j.issn.1000-3665.2004.02.028 LI Ruimin, HOU Chuntang, WANG Yi. A disscussion on the agro-geology[J]. Hydrogeology & Engineering Geology, 2004, 31(2): 110-113. doi: 10.3969/j.issn.1000-3665.2004.02.028
李廷栋. 加强地球表层系统的研究和地质制图工作[J]. 第四纪研究, 1999, 20(3): 191-196 doi: 10.3321/j.issn:1001-7410.1999.03.001 LI Tingdong. Strengthening study and geological mapping of the earth surface system[J]. Quaternary Sciences, 1999, 20(3): 191-196. doi: 10.3321/j.issn:1001-7410.1999.03.001
李樋, 李佑国, 刘洪, 等. 西昌普诗地区侏罗系小坝组-紫色土剖面重金属迁移富集特征初探及生态风险评价[J]. 矿物学报, 2023, 43(1): 125-136 doi: 10.1016/j.chnaes.2022.01.005 LI Tong, LI Youguo, LIU Hong, et al. Migration and enrichment characteristics of heavy metals in purple soil profile and ecological risk assessment in Pushi clastic rock area, Xichang[J]. Acta Mineralogica Sinica, 2023, 43(1): 125-136. doi: 10.1016/j.chnaes.2022.01.005
李樋, 刘洪, 李佑国, 等. 基于地统计学及GIS的西昌地区中生代红层区紫色土营养元素空间变异性及影响因素研究[J]. 地球科学进展, 2022, 37(6): 627-640 LI Tong, LIU Hong, Li Youguo, et al. Study on Spatial Variability and Influencing Factors of Nutrient Elements in Purple Soil in Mesozoic Red Layer Region in Xichang Area Based on Geostatistics and GIS[J]. Advances in Earth Science, 2022, 37(6): 627-640.
李樋, 刘小念, 刘洪, 等. 基于地质建造的土壤营养元素空间分布特征研究—以大凉山区为例[J]. 安全与环境工程, 2021a, 28(6): 127-137 LI Tong, LIU Xiaonian, LIU Hong, et al. Study on Spatial Distribution Characteristics of Soil Nutrient Elements Based on Geological Construction—Take Daliangshan Region as an Example[J]. Safety and Environmental Engineering, 2021a, 28(6): 127-137.
李樋, 刘小念, 刘洪, 等. 西昌普诗地区中-下白垩统小坝组岩石-紫色土剖面稀土元素地球化学特征分析[J/OL]. 沉积与特提斯地质, 2021b, 1−15. DOI: 10.19826/j. cnki. 1009-3850.2021. 06002. LI Tong, LIU Xiaonian, LIU Hong, et al. Geochemistry of rare earth elements of purple soil layers in the middle-lower cretaceous Xiaoba Formation, Pushi area, Xichang [J/OL]. Sedimentary Geology and Tethyan Geology, 2021b, 1-15. DOI: 10.19826/j.cnki.1009-3850.2021.06002.
李万钰, 陈晓勇, 易洁, 等. 基于遥感生态指数的赣江新区生态质量评价[J]. 东华理工大学学报(自然科学版), 2020, 43(1): 83-89 LI Wanyu, CHEN Xiaoyong, YI Jie, et al. Ecological quality assessment in Ganjiang new district based on remote sensing ecological index[J]. Journal of East China University of Technology (Natural Science), 2020, 43(1): 83-89.
李文华. 我国西南山区生态建设的几个问题[J]. 云南畜牧兽医, 2000(1): 1-2 LI Wenhua. Some problems of ecological construction in southwest mountainous areas of china[J]. Yunnan Journal of Animal Science and Veterinary Medicine, 2000(1): 1-2.
李文明, 李健强, 徐永, 等. 西北生态地质调查研究进展与展望[J]. 西北地质, 2022, 55(3): 108-119 LI Wenming, LI Jianqiang, XU Yong, et al. Progress and Prospects of Ecological Geological Survey in Northwest China[J]. Northwestern Geology, 2022, 55(3): 108-119.
李仰春, 杨宗喜, 杨建锋. 生态地质调查新使命: 服务生态保护与修复[N]. 中国矿业报, 2018-06-12 doi: 10.14026/j.cnki.0253-9705.1999.09.014 LI Yingcun, YANG Zongxi, YANG Jianfeng. New mission of eco-geological survey: serving ecological protection and restoration[N]. China Mining News, 2018-06-12. doi: 10.14026/j.cnki.0253-9705.1999.09.014
林景星, 王绍芳, 翟红, 等. 生态环境地质学概述[J]. 环境保护, 1999, (9): 37-39 doi: 10.14026/j.cnki.0253-9705.1999.09.014 LIN Jingxing, WANG Shaofang, ZHAI Hong, et al. An Outline on the Ecological Environmental Geology[J]. Ecology and Natural Conservation, 1999, (9): 37-39. doi: 10.14026/j.cnki.0253-9705.1999.09.014
林景星, 张静, 史世云, 等. 生态环境地质学一21 世纪新兴的地球学科[J]. 地质通报, 2003, 22(7): 459 -469. LIU Hong, HUANG Hanxiao, LI Guangming, et al. Factor analysis in geochemical survey of the Shangxu gold deposit, northern Tibet[J]. Geology in China, 2015, 42(4): 1126-1136.
刘洪, 黄瀚霄, 李光明, 等. 因子分析在藏北商旭金矿床地球化学勘查中的应用[J]. 中国地质, 2015, 42(4): 1126-1136 doi: 10.19388/j.zgdzdc.2021.06.06 LIU Hong, HUANG Hanxiao, LI Guangming, et al. Factor analysis in geochemical survey of the Shangxu gold deposit, northern Tibet[J]. Geology in China, 2015, 42(4): 1126-1136. doi: 10.19388/j.zgdzdc.2021.06.06
刘洪, 黄瀚霄, 欧阳渊, 等. 新构造活动的生态地质环境效应讨论——以扬子西缘西昌市为例[J]. 中国地质调查, 2021, 8(6): 63-77 doi: 10.19388/j.zgdzdc.2021.06.06 LIU Hong, HUANG Hanxiao, OUYANG Yuan, et al. Discussion on the eco-geo-environment effects of Neotectonic activities: A case study of Xichang City in western Yangtze block[J]. Geological Survey of China, 2021, 8(6): 63-77. doi: 10.19388/j.zgdzdc.2021.06.06
刘洪, 黄瀚霄, 欧阳渊, 等. 基于地质建造的土壤地质调查及应用前景分析—以大凉山区西昌市为例[J]. 沉积与特提斯地质, 2020, 40(1): 91-105 doi: 10.3969/j.issn.0001-5717.2023.02.022 LIU Hong, HUANG Hanxiao, OUYANG Yuan, et al. Soil's geologic investigation in Daliangshan, Xichang, Sichuan[J]. Sedimentary Geology and Tethyan Geology, 2020, 40(1): 91-105. doi: 10.3969/j.issn.0001-5717.2023.02.022
刘洪, 李文昌, 欧阳渊, 等. 基于地质建造的西南山区生态地质编图探索与实践——以邛海-泸山地区为例[J]. 地质学报, 2023, 97(2): 623-638 doi: 10.3969/j.issn.0001-5717.2023.02.022 LIU Hong, LI Wenchang, OUYANG Yuan, et al. Exploration and ractice of the compilation of ecological geology series maps based on Geological Formations research, mountainous region in Southwest China ——exemplified by Qionghai-Lushan area, western margin of Yangtze Block[J]. Acta Geologica Sinica, 2023, 97(2): 623-638. doi: 10.3969/j.issn.0001-5717.2023.02.022
刘洪, 夏祥标, 黄瀚霄, 等. 西藏冈底斯成矿带西段学修玛尔幅水系沉积物地球化学统计分析与找矿前景[J]. 桂林理工大学学报, 2019, 39(4): 847-855 LIU Hong, XIA Xiangbiao, HUANG Hanxiao, et al. Geochemical statistics analysis of stream sediment and prospecting potential of Xuexiumaer area in western Gangdese metallogenic belt, Tibet[J]. Journal of Guilin University of Technology, 2019, 39(4): 847-855.
刘建宇, 聂洪峰, 肖春蕾, 等. 2010—2018年中国北方沙质荒漠化变化分析[J]. 中国地质调查, 2021, 8(6): 25-34 doi: 10.19658/j.issn.1007-2802.2021.40.061 LIU Jianyu, NIE Hongfeng, XIAO Chunlei, et al. Evolution of sandy desertification in North China from 2010 to 2018[J]. Geological Survey of China. 2021, 8(6): 25-34. doi: 10.19658/j.issn.1007-2802.2021.40.061
刘媛媛, 马腾飞, 陈旸, 等. 表生地球化学反应的尺度效应[J]. 矿物岩石地球化学通报, 2021, 40(5): 1107-1120 doi: 10.19658/j.issn.1007-2802.2021.40.061 LIU Yuanyuan, MA Tengfei, CHEN Min, et al. Scaling Behavior of Surficial Geochemical Reactions[J]. Mineral and rock geochemistry Bulletin, 2021, 40(5): 1107-1120. doi: 10.19658/j.issn.1007-2802.2021.40.061
刘子金, 徐存东, 朱兴林, 等. 干旱荒漠区人工绿洲土壤盐碱化风险综合评估与演变分析[J]. 中国环境科学, 2022, 42(1): 367-379 doi: 10.3969/j.issn.1000-6923.2022.01.039 LIU Zijin, XU Cundong, ZHU Xinglin, et al. Comprehensive assessment and evolution analysis of soil salinization in artificial oasis in arid desert area[J]. China Environmental Sciencece, 2022, 42(1): 367-379. doi: 10.3969/j.issn.1000-6923.2022.01.039
卢耀如. 国土地质-生态环境综合治理与可持续发展——黄河与长江流域防灾兴利途径讨论[J]. 中国地质灾害与防治学报, 1998(S1): 95-103 LU Yaoru. Sustainable Development and Comprehensive Harness on Territory Geo-ecological Environment--The Ways for Promoting Benefits and Taking Precautions Against Natural Hazards in the Valley of Yellow River and Yangtze River[J]. The Chinese Journal of Geological Hazard and Control. 1998(S1): 95-103.
倪忠云. 西藏曲水—桑日地区生态地质环境承载力研究[D]. 成都: 成都理工大学, 2011: 1−155. doi: 10.19388/j.zgdzdc.2021.06.01 NI Zhongyun. Study on the Eco-geological Environmental Carrying Capacity of Qushui-Sangri Area in Tibet[D]. Chengdu: Chengdu University of Technology, 2011: 1−155. doi: 10.19388/j.zgdzdc.2021.06.01
聂洪峰, 肖春蕾, 任伟祥, 等. 生态地质研究进展与展望[J]. 中国地质调查, 2021a, 8(6): 1-8 doi: 10.19388/j.zgdzdc.2021.06.01 NIE Hongfeng, XIAO Chunlei, REN Weixiang, et al. Progress and prospect of ecogeological research[J]. Geological Survey of China, 2021a, 8(6): 1-8. doi: 10.19388/j.zgdzdc.2021.06.01
聂洪峰, 肖春蕾, 戴蒙, 等. 生态地质调查工程进展与主要成果[J]. 中国地质调查, 2021b, 8(1): 1-12 doi: 10.19388/j.zgdzdc.2021.01.01 NIE Hongfeng, XIAO Chunlei, DAI Meng, et al. Progresses and main achievements of ecogeological survey project[J]. Geological Survey of China, 2021b, 8(1): 1-12. doi: 10.19388/j.zgdzdc.2021.01.01
聂洪峰, 肖春蕾, 郭兆成. 探寻生态系统运行与演化的秘密——生态地质调查思路及方法解读[J]. 国土资源科普与文化, 2019, 6(4): 4-13 NIE Hongfeng, XIAO Chunlei, GUO Zhaocheng. Exploring the secret of ecosystem operation and evolution -- an interpretation of the ideas and methods of Eco-geological survey[J]. Popular science and culture of land and resources, 2019, 6(4): 4-13.
欧阳渊, 张景华, 刘洪, 等. 基于地质建造的西南山区成土母质分类方案——以大凉山区为例[J]. 中国地质调查, 2021, 8(6): 50-62 OUYANG Yuan, ZHANG Jinghua, LIU Hong, et al. Classification of soil parent materials in mountain areas of Southwest China based on geological formations: A case study of Daliangshan region[J]. Geological Survey of China, 2021, 8(6): 50-62.
潘桂棠, 肖庆辉, 陆松年, 等. 中国大地构造单元划分[J]. 中国地质, 2009, 36(1): 1-28 PAN Guitang, XIAO Qinghui, LU Songnian, et al. Subdivision of tectonic units in China[J]. Geology in China, 2009, 36(1): 1-28.
彭建兵, 兰恒星. 略论生态地质学与生态地质环境系统[J]. 地球科学与环境学报, 2022, 44(6): 877-893 PENG Jianbing, LAN Hengxing. Ecological Geology and Eco-geological Environment System[J]. Journal of Earth Sciences and Environment, 2022, 44(6): 877-893.
钱学森. 论地理科学[M]. 杭州: 浙江教育出版社, 1994, 36−46 QIAN Xuesen. On the geographical sciences[M]. Hangzhou: Zhejiang Education Press, 1994, 36−46.
任纪舜, 牛宝贵, 赵磊, 等. 地球系统多圈层构造观的基本内涵[J]. 地质力学学报, 2019, 25(5): 607-612 REN Jishun, NIU Baowei, ZHAO Lei, et al. Basic ideas of the multisphere tectonics of earth system[J]. Journal of Geomechanics, 2019, 25(5): 607-612.
石建省, 马荣, 马震. 区域地球多圈层交互带调查探索研究[J]. 地球学报, 2019, 40(6): 767-780 SHI Jiansheng, MA Rong, MA Zhen. Regional investigation of the earth’s critical zone[J]. Acta Geoscientica Sinica, 2019.40(6): 767-780.
孙立广, 杨仲康. 人类世生态地质学研究方法及应用研究[J]. 沉积学报, 2017, 35(5): 958-967 doi: 10.14027/j.cnki.cjxb.2017.05.008 SUN Liguang, Yang Zhangkang. New Research Methods and Their Applications in Anthropocene Ecogeology[J]. Acta Sedimentologica Sinica, 2017, 35(5): 958-967. doi: 10.14027/j.cnki.cjxb.2017.05.008
孙枢. 对我国全球变化与地球系统科学研究的若干思考[J]. 地球科学进展, 2005, 20(1): 6-10 doi: 10.3321/j.issn:1001-8166.2005.01.003 SUN Su. Some Thoughts of Global Change and Earth System Science Studies in China[J]. Advances in Earth Science, 2005, 20(1): 6-10. doi: 10.3321/j.issn:1001-8166.2005.01.003
陶于祥, 毛建仁, 孙玉华, 等. 生态环境地质学初探[J]. 江苏地质, 1998, 22(3): 60-65 TAO Yuxiang, MAO Jianren, SUN Yuhua, et al. Preliminary discussion about eco environmental geology[J]. Jiangsu Geology, 1998, 22(3): 60-65
王长生, 王大可. 试论1∶5万生态地质调查[J].中国区域地质, 1997, 16(01): 57−60. WANG Changsheng, WANG Dake. On the 1:50000 ecological geological investigation[J]. Regional Geology of China, 1997, 16(01): 57−60.
王果. 土壤学[M]. 北京: 高等教育出版社, 2009 WANG Guo. Soil Science[M]. Beijing: Higher Education Press, 2009.
王京彬, 卫晓锋, 张会琼, 等. 基于地质建造的生态地质调查方法——以河北省承德市国家生态文明示范区综合地质调查为例[J]. 中国地质, 2020, 47(6): 1611-1624 doi: 10.12029/gc20200601 WANG Jingbing, WEI Xiaofeng, ZHANG Huiqiong, et al. The eco - geological survey based on geological formation, exemplified by integrated geological survey of National Ecological Civilization Demonstration Area in Chengde City, Hebei Province[J]. Geology in China, 2020, 47(6): 1611-1624. doi: 10.12029/gc20200601
王化齐, 尹立河, 李彦娥, 等. 宁夏沿黄生态经济区生态系统服务价值及其提升对策[J]. 西北地质, 2023, 56(3): 196−203. doi: 10.12029/gc20200601 WANG Huaqi, YIN Lihe, LI Yan’e, et al. Ecological System Service Value Assessment and Improving Countermeasures in Ningxia Yellow River Ecological Economic Zone[J]. Northwestern Geology, 2023, 56(3): 196−203. doi: 10.12029/gc20200601
王立全, 王保弟, 李光明, 等. 东特提斯地质调查研究进展综述[J]. 沉积与特提斯地质, 2021, 41(2): 283-296 WANG Liquan, WANG Baodi, LI Guangming, et al. Major progresses of geological survey and research in East Tethys: An overview[J]. Sedimentary Geology and Tethyan Geology, 2021, 41(2): 283-296.
王宁涛, 彭轲, 黎清华, 等. 基于RS和GIS的地质灾害易发性定量评价: 以湖北省五峰县为例[J]. 地学前缘, 2012, 19(6): 221-229 WANG Ningtao, PENG Ke, LI Qinghua, et al. Quantitative evaluation of geological disaster liability based on RS & GIS analysis: A case study of Wufeng County[J]. Earth Science Frontiers, 2012, 19(6): 221-229.
王鹏, 刘拓, 邱德明. 基于局部惩罚型变权的建设用地生态适宜性空间模糊评价——以陕西延安宝塔区为例[J]. 西北地质, 2021, 54(1): 232−241. WANG Peng, LIU Tuo, QIU Deming. Spatial Fuzzy Assessment of Ecological Suitability for Urban Land Use Based on Local Penalty Variable Weights: A Case Study of Yan'an Baota District[J]. Northwestern Geology, 2021, 54(1): 232−241.
王乔林, 宋云涛, 王成文, 等. 滇西地区土壤重金属来源解析及空间分布[J]. 中国环境科学, 2021, 41(8): 3693-3703 WANG Qiaolin, SONG Yuntao, WANG Chengwen, et al. Source identification and spatial distribution of soil heavy metals in Western Yunnan[J]. China Environmental Sciencece, 2021, 41(8): 3693-3703.
王尧, 张茂省, 陈华军, 等. 佳芦河流域山水林田湖草沙生态保护修复实践研究[J]. 西北地质, 2023, 56(3): 121−128. WANG Yao, ZHANG Maosheng, CHEN Huajun, et al. Ecological Protection–Restoration Practice of Mountains Rivers Forests Farmlands Lakes Grasslands Sands in the Jialu River Basin[J]. Northwestern Geology, 2023, 56(3): 121−128.
王颖维, 张亚峰, 钱信禹, 等. 南水北调中线工程丹江源地区生态地质格局动态演变[J]. 西北地质, 2023, 56(3): 129−140. WANG Yingwei, ZHANG Yafeng, QIAN Xinyu, et al. Dynamic Evolution of Eco−geological Pattern: Taking Danjiangyuan Area of Central Line Project of South−to−North Water Diversion[J]. Northwestern Geology, 2023, 56(3): 129−140.
汪振立. “生态地质”课程教学初探[J]. 中国地质教育, 2012, 21(1): 17-20 WANG Zhenli. Preliminary Study on Teaching the Course of Ecological Geology[J]. Chinese Geological Education, 2012, 21(1): 17-20.
汪振立, 邓通德, 王瑞敏, 等. 岩石-土壤-脐橙系统中稀土元素迁聚特征[J]. 中国地质, 2009, 36(6): 1382-1394 WANG Zhenli, DENG Tongde, WANG Ruimin, et al. Characteristics of migration and accumulation of rare earth elements in the rock-soil-navel orange system[J]. Geology in China, 2009, 36(6): 1382-1394.
卫晓锋, 孙厚云, 张竞, 等. 承德特色林果资源的生态地球化学过程及其品质提升意义[J]. 水文地质工程地质, 2020, 47(6): 99-108 WEI Xiaofeng, SUN Houyunm, Zhang Jing, et al. Eco-geochemical process of characteristic forest fruit resources and its significance of quality improvement in Chengde city[J]. Hydrogeology and Engineering Geology, 2020, 47(6): 99-108.
吴中海, 张会平. 新构造与环境[J]. 地质力学学报, 2021, 27(2): 157-158 WU Zhonghai, ZHANG Huiping. Neotectonics and environment[J]. Journal of Geomechanics, 2021, 27(2): 157-158.
肖春蕾, 郭艺璇, 薛皓. 密西西比河流域监测、修复管理经验对我国流域生态保护修复的启示[J]. 中国地质调查, 2021a, 8(6): 87-95 XIAO Chunlei, GUO Yixuan, XUE Hao. Implications of the Mississippi River watershed monitoring and restoration for the watershed ecological protection and restoration in China[J]. Geological Survey of China, 2021a, 8(6): 87-95.
肖春蕾, 聂洪峰, 刘建宇, 等. 生态-地质作用模式: 诠释表生地质过程与生态特征的耦合[J]. 中国地质调查, 2021b, 8(6): 9-16 Xiao Chunlei, Nie Hongfeng, Liu Jianyu, et al. Ecological and geological interaction model: The coupling of supergene geological processes and ecological characteristics [J]. Geological Survey of China, 2021b, 8(6): 9-16.
谢亚军, 梁越, 肖红伟, 等. 中国陆地生态系统叶凋落物分解的格局及控制因素[J]. 东华理工大学学报(自然科学版), 2018, 41(3): 271-276 XIE Yajun, LIANG Yue, XIAO Hongwei, et al. Pattern and controlling factors of terrestrial leaf litters decomposition in China [J]. Journal of East China University of Technology (Natural Science), 2018, 41(3): 271-276.
胥勤勉, 袁桂邦, 辛后田, 等. 平原区1: 5万区域地质调查在生态文明建设中的作用——以渤海湾北岸为例[J]. 地质调查与研究, 2014, 37(2): 85-89 XU Qinmian, YUAN Guibang, XIN Houtian, et al. Functions of 1: 50 000 regional geological survey in ecological civilization construction: a case study on northern coast of Bohai Bay [J]. Geological Survey and Research, 2014, 37(2): 85-89.
徐嘉兴, 赵华, 李钢, 等. 矿区土地生态评价及空间分异研究[J]. 中国矿业大学学报. 2017, 46(1): 192-200 XU Jiaxing, ZHAO Hua, LI Gang, et al. Land ecological assessment and its spatial variation in coal mining area [J]. Journal of China University of Mining & Technology, 2017, 46(1): 192-200.
许向宁, 黄润秋. 川西安宁河流域生态地质环境动态演化分析[J]. 水文地质工程地质, 2004, 31(5): 31-34 doi: 10.12029/gc20180602 XU Xiangning, HUANG Runqiu. An analysis of dynamic evolution of the eco-geological environment in the Anninghe River watershed in western Sichuan Province [J]. Hydrogeology & Engineering Geology, 2004, 31(5): 31-34. doi: 10.12029/gc20180602
严明书, 黄剑, 何忠庠, 等. 地质背景对土壤微量元素的影响——以渝北地区为例[J]. 物探与化探, 2018, 42(1): 199-205 YAN Mingshu, HUANG Jian, HE Zhongxiang, et al. The influence of geological background on trace elements of soil, a case study of Yubei area [J]. Geophysical and Geochemical Exploration, 2018, 42(1): 199-205.
杨建锋, 张翠光. 地球关键带: 地质环境研究的新框架[J]. 水文地质工程地质, 2014, 41(3): 98-106 YANG Jianfeng, ZHANG Cuiguang. Earth's critical zone: a holistic framework for geo-environmental researches [J]. Hydrogeology & Engineering Geology, 2014, 41(3): 98-106.
杨巍然. 地球表层系统与中国区域大地构造的研究发展[J]. 地学前缘, 2006, 13(6): 102-110 YANG Weiran. Earth surface system and research history of the regional geotectonics of China [J]. Earth Science Frontiers, 2006, 13(6): 102-110.
杨志. 陕北榆神矿区生态地质环境特征及煤炭开采影响机理研究[D]. 徐州: 中国矿业大学, 2019 YANG Zhi. Study on the Characteristics of Eco-geological Environment and the Mining Effect Mechanism in Yushen Coal Mine District of Northern Shaanxi[D]. Xuzhou: China University of Mining and Technology, 2019.
袁国礼,侯红星,刘建宇, 等.服务生态文明的生态地质调查工作方法浅析——以地表基质调查为例[J].西北地质, 2023, 56(03): 30−38. YUAN Guoli, HOU Hongxing, LIU Jianyu, et al. Introduction to the Methods of Ecology−Geological Survey for Servicing Ecological Civilization: Example from Ecology−Supporting Sphere Survey[J]. Northwestern Geology, 2023, 56(3): 30−38.
殷志强, 李瑞敏, 李小磊, 等. 地质资源环境承载能力研究进展与发展方向[J]. 中国地质, 2018, 45(6): 1103-1115 doi: 10.12029/gc20180602 YIN Zhiqiang, LI Ruimin, LI Xiaolei, et al. Research progress and future development directions of geo-resources and environment carrying capacity [J]. Geology in China, 2018, 45(6): 1103-1115. doi: 10.12029/gc20180602
殷志强, 秦小光, 张蜀冀, 等. 地表基质分类及调查初步研究[J]. 水文地质工程地质, 2020a, 47(6): 8-14 YIN Zhiqiang, QIN Xiaoguang, ZHANG Shuji, et al. inary study on classification and investigation of surface substrate [J]. Hydrogeology & Engineering Geology, 2020a, 47(6): 8-14.
殷志强, 卫晓锋, 刘文波, 等. 承德自然资源综合地质调查工程进展与主要成果[J]. 中国地质调查, 2020b, (3): 1-12 YIN Zhiqiang, WEI Xiaofeng, LIU Wenbo, et al. Progresses and main achievements of comprehensive geological survey project of natural resources in Chengde [J]. Geological Survey of China, 2020 b, (3): 1-12.
尹福光, 潘桂棠, 孙志明. 西南三江构造体系及演化、成因[J].沉积与特提斯地质, 2021, 41(2): 265−282. YIN Fuguang, PAN Guitang, SUN Zhiming. Genesis and evolution of the structural systems during the cenozoic in the Sanjiang orogenic belt, Southwest China[J]. Sedimentary Geology and Tethyan Geology, 2021, 41(2): 265−282.
于俊博, 周传芳, 梁中恺, 等. 重要生态功能区土壤化学元素的空间分布模式——以大兴安岭松岭区为例[J]. 中国地质调查, 2021, 8(6): 105-113 YU Junbo, ZHOU Chuanfang, LIANG Zhongkai, et al. Spatial distribution patterns of soil chemical elements in important ecological function areas: A case study in Songling area of the Greater Khingan Mountains [J]. Geological Survey of China, 2021, 8(6): 105-113.
张慈, 赵银兵, 欧阳渊, 等.青藏高原东缘地质环境对植被覆盖度的影响研究: 以冕宁县为例[J/OL]. 沉积与特提斯地质, 2023, 1−11. DOI: 10.19826/j.cnki.1009-3850.2021.03010. ZHANG Ci, ZHAO Yinbing, OUYANG Yuan, et al. Influence of Geological Environment on Vegetation Coverage in the Eastern Edge of Qinghai-Tibet Plateau: a Case Study of Mianning[J/OL]. Sedimentary Geology and Tethyan Geology, 2023, 1−11.
张甘霖, 宋效东, 吴克宁. 地球关键带分类方法与中国案例研究[J]. 中国科学: 地球科学, 2021, 51(10): 1681-1692. ZHANG Ganlin, SONG Xiaodong, WU Kening. A classification scheme for Earth’s critical zones and its application in China [J]. Science China Earth Sciences, 2021, 64(10): 1709–1720.
张昊, 张强, 左小, 等. 生态环境保护性的采选充系统设计及应用[J]. 中国矿业大学学报. 2021, 50(3): 548-557 ZHANG Hao, ZHANG Qiang, ZUO Xiao, et al. Design and application of mining-separating-backfilling system for mining ecological and environmental protection [J]. Journal of China University of Mining & Technology, 2021, 50(3): 548-557.
张景华, 欧阳渊, 陈远智, 等. 基于无人机遥感的四川省昭觉县农业产业园土地适宜性评价[J]. 中国地质, 2021a, 48(6): 1710-1719 ZHANG Jinghua, OUYANG Yuan, CHEN Yuanzhi, et al. Land suitability evaluation of agricultural industrial park based on UAV remote sensing in Zhaojue County of Sichuan Province [J]. Geology in China, 2021 a, 48(6): 1710-1719.
张景华, 欧阳渊, 刘洪, 等. 西昌市生态地质特征与脆弱性评价[M]. 武汉: 中国地质大学出版社. 2020. ZHANG Jinghua, OUYANG Yuan, LIU Hong, et al. Ecological Geology characteristics and vulnerability assessment of Xichang City[M]. Wuhan: China University of Geosciences Press, 2020.
张景华, 欧阳渊, 刘洪, 等. 基于主控要素的生态地质脆弱性评价——以四川省西昌市为例[J]. 自然资源遥感, 2021b, 33(4): 181-191 ZHANG Jinghua, OUYANG Yuan, LIU Hong, et al. Eco-geological vulnerability assessment based on major controlling factors: A case study of Xichang City, Sichuan Province [J]. Remote Sensing for Natural Resources, 2021, 33(4): 181-191.
张景华, 欧阳渊, 刘洪, 等. 西昌市1989—2018年林地草地湿地动态变化特征分析[J]. 中国地质调查, 2021c, 8(6): 135-143 ZHANG Jinghua, OUYANG Yuan, LIU Hong, et al. Analysis of the dynamic change characteristics of forest land, grassland and wetland in Xichang City from 1989 to 2018 [J]. Geological Survey of China, 2021c, 8(6): 135-143.
张景华,张建龙,欧阳渊,等.基于形成机理的石漠化敏感性评价: 以贵州省黔西县为例[J/OL].沉积与特提斯地质, 2023, 1−11[2023-04-19]. DOI: 10.19826/j.cnki.1009-3850.2021.07005. ZHANG Jinghua,ZHANG Jianlong,OUYANG Yuan, Gao Hui, Liu Hong, Liu Xiaoxia. Sensitivity evaluation of karst rock desertification based on its formation mechanism: An example from Qianxi County of Guizhou Province[J/OL]. Sedimentary Geology and Tethyan Geology, 1−11[2023-04-19]. https://doi.org/10.19826/j.cnki.1009-3850.2021.07005.
张丽, 夏炎, 陈琪, 等. 基于地球关键带科学的土壤生态系统服务评价方法研究[J]. 南京大学学报(自然科学), 2021, 57(3): 345-355 ZHANG Li, XIA Yan, CHEN Qi, et al. Research on soil ecosystem service assessment method based on Earth's Critical Zone science [J]. Journal of Nanjing University (Natural Sciences), 2021, 57(3): 345-355.
张连凯, 季宏兵, 刘秀明, 等. 热带地区碳酸盐岩上覆红色风化壳的成因机理及元素演化[J]. 中国地质, 2021, 48(2): 651-660 ZHANG Liankai, JI Hongbing, LIU Xiuming, et al. Genetic mechanismand elemental evolution of weathering laterite crust overlying carbonate rocks in tropical areas [J]. Geology in China, 2021, 48(2): 651-660.
张恋, 王宇飞, 罗建林, 等. 地层岩性对植物群落分布特征的影响[J]. 中国地质调查, 2021, 8(6): 78-86 ZHANG Lian, WANG Yufei, LUO Jianlin, et al. The effects of lithology on the plant community distribution characteristics [J]. Geological Survey of China, 2021, 8(6): 78-86.
张林, 李来新, 马东民, 等. 2022. 景观格局及生态系统服务价值响应——以千阳县为例. 西北地质, 55(1): 274-283 ZHANG Lin, LI Laixin, MA Dongmin, et al. On the Landscape Pattern Change and the Ecological Service Value Response: Taking Qianyang County as an Example [J]. Northwestern Geology, 2022, 55(1): 274-283.
张腾蛟, 刘洪, 欧阳渊, 等. 中高山区土壤成土母质理化特征及主控因素初探——以西昌市为例[J]. 沉积与特提斯地质, 2020, 40(1): 106-114. ZHANG Tengjiao, LIU Hong, OUYANG Yuan, et al. A preliminary discussion on the physical and chemical characteristics and main controlling factors of soil and parent material in the middle and high mountain area——take Xichang as an example [J]. Sedimentary Geology and Tethyan Geology, 2020, 40(1): 106-114.
张腾蛟, 刘洪, 欧阳渊, 等. 不同地质建造类型的生态环境功能特征——以西昌地区为例[J]. 中国地质调查, 2021, 8(6): 35-49 ZHANG Tengjiao, LIU Hong, OUYANG Yuan, et al. Ecological environment function of different geological formations: A case study of Xichang area [J]. Geological Survey of China, 2021, 8(6): 35-49.
张亚丽, 张志敏, 张继军, 等. 安康西部农田土壤硒形态及农作物富硒特征. 西北地质, 2021, 54(3): 229-235 ZHANG Yali, ZHANG Zhimin, ZHANG Jijun, et al. Soil Selenium Speciation in Cropland of Western Ankang and the Characteristics of Crop Selenium Enrichment [J]. Northwestern Geology, 2021, 54(3): 229-235.
张永双, 郭长宝, 李向全, 等. 川藏铁路廊道关键水工环地质问题: 现状与发展方向[J]. 水文地质工程地质, 2021, 48(5): 1-12 ZHANG Yongshuang, GUO Changbao, LI Xiangquan, et al. Key problems on hydro-engineering-environmental geology along the Sichuan-Tibet Railway corridor: current status and development direction [J]. Hydrogeology & Engineering Geology, 2021, 48(5): 1-12.
张永双, 孙璐, 殷秀兰, 等. 中国环境地质研究主要进展与展望[J]. 中国地质, 2017, 44(5): 901-912 ZHANG Yongshuang, SUN Lu, YIN Xiulan, et al. Progress and prospect of research on environmental geology og China: a review [J]. Geology in China, 2017, 44(5): 901-912.
张振平. 中国优质烤烟生态地质背景区划研究[D]. 杨凌: 西北农林科技大学, 2004 doi: 10.1360/TB-2021-1051 ZHANG Zhenping. Study of Ecological and Geological Zonization for the Production of High-quality Flu-cured Tobacco of China[D]. Yangling: Northwest A & F University, 2004. doi: 10.1360/TB-2021-1051
赵银兵, 倪忠云, 欧阳渊, 等. 生态地质环境承载力研究进展[J]. 沉积与特提斯地质, 2022, 42(4): 529-541 ZHAO Yinbing, NI zhongyun, OUYANG Yuan, et al. Research progress of eco-geological environment carrying capacity [J]. Sedimentary Geology and Tethyan Geology. 2022, 42(4): 529-541.
赵银兵. 面向矿产资源开发的地质生态环境研究—以甘孜藏族自治州东部为例[D]. 成都: 成都理工大学, 2009 doi: 10.1016/j.geomorph.2020.107305 ZHAO Yinbing. Study on Geo-ecological Environment Based on Mineral Resources Development- Case Study in Eastern Ganzi[D]. Chengdu: Chengdu University of technology, 2009. doi: 10.1016/j.geomorph.2020.107305
中国地质调查局成都地质调查中心. 大凉山区生态地质调查成果报告[R]. 中国地质调查局成都地质调查中心, 2022. doi: 10.1007/BF00770603 Dickinson W W, Dunbar G B, Mc Leod H. Heavy metal history from cores in Wellington Harbour, New Zealand [J]. Environmental Geology, 1996, 27(1): 59-69. doi: 10.1007/BF00770603
周爱国, 孙自永, 徐恒力, 等. 地质环境生态适宜性评价指标体系研究[J]. 地质科技情报, 2021, 40(2): 71-74 ZHOU Aiguo, SUN ziyong, XU Hengli, et al. Study of indexes for assessment of geoenvironmental ecology suitability [J]. Geoogical Science and Technology Information, 2021, 40 (2): 71-74.
朱朝晖, 宋明义, 覃兆松, 等. 土壤地质单位的建立与研究--以浙江省为例[J]. 中国地质, 2004, 31(S1): 51-61 ZHU Chaohui, SONG Mingyi, QIN Zhaosong, et al. Establishment and study of soil-geological units: a case study of Zhejiang Province [J]. Geology in China, 2004, 31(S1): 51-61.
朱鹏, 张轶群, 陈建昌, 等. 某废弃矿山生态破坏与环境修复研究[J]. 东华理工大学学报(自然科学版), 2016, 39(4): 341-346 doi: 10.1016/j.geoderma.2019.113884 ZHU Peng, ZHANG Yiqun, CHEN Jianchang, et al. Study on the design scheme of ecological environment restoration and management for one abandoned mine [J]. Journal of East China University of Technology (Natural Science), 2016, 39(4): 341-346. doi: 10.1016/j.geoderma.2019.113884
朱日祥, 侯增谦, 郭正堂, 等. 宜居地球的过去、现在与未来——地球科学发展战略概要[J]. 科学通报, 2021, 66(35): 4485-4490 doi: 10.1360/TB-2021-1051 ZHU Rixiang, HOU Zengqian, GUO Zhengtang, et al. Summary of “the past, present and future of the habitable Earth: Development strategy of Earth science” [J]. Chinese Science Bulletin, 2021, 66(35): 4485-4490. doi: 10.1360/TB-2021-1051
朱裕生. 基础地质调查的新任务--关于地质--生态环境调查新概念的探讨[J]. 中国区域地质, 1999, 18(2): 122-126 doi: 10.3103/S0145875212050043 ZHU Yushang. A new task of fundamental geological investigations-A discussion of the new concept of geological-ecological mapping [J]. Geological Bulletin of China, 1999, 18(2): 122-126. doi: 10.3103/S0145875212050043
Bonfatti B R, Demattê J A M, Marques K P P, et al. Digital mapping of soil parent material in a heterogeneous tropical area [J]. Geomorphology, 2020, 367: 107305. doi: 10.1016/j.geomorph.2020.107305
Dickinson W W, Dunbar G B, Mc Leod H. Heavy metal history from cores in Wellington Harbour, New Zealand [J]. Environmental Geology, 1996, 27(1): 59-69. doi: 10.1007/BF00770603
Dmitrievich P A, Aleksandrovich P I. Engineering-geological or geoecological processes and phenomena; their development in the present-day environment [J]. Vestnik Mgsu, 2012, (9): 191-196.
Giardino J R, Houser C. Principles and dynamics of the critical zone. In: Shroder J J F, eds. Developments in Earth Surface Processes [J]. Amsterdam: Elsevier, 2015, 1−13. doi: 10.5194/hess-14-25-2010
Gruber F E, Baruck J, Mair V, et al. From geological to soil parent material maps - a random forest-supported analysis of geological map units and topography to support soil survey in south tyrol [J]. Geoderma, 2019, 354, 113884. doi: 10.1016/j.geoderma.2019.113884
Kellaway G A. Environmental geology of Bath, England [J]. Environmental Geology, 1995, 26(3): 189-191. doi: 10.1007/BF00768741
Korolev V A, Buslaeva O V A. system of proper environmental geology categories [J]. Moscow University Geology Bulletin, 2012, 67(5): 298-307. doi: 10.3103/S0145875212050043
Kucha H, Martens A, Ottenburgs R, et al. Primary minerals of Zn-Pb mining and metallurgical dumps and their environmental behavior at Plombières, Belgium [J]. Environmental Geology, 1996, 27(1): 1-15. doi: 10.1007/BF00770598
Kumar A, Deshmukh B. A review on ‘Geo-ecological Studies’-An interdisciplinary approach for evaluation and sustainable management of 'Geo-ecosystems' [J]. Journal of the Geological Society of India, 2015, 86−91. doi: 10.1126/science.add2541
Li Tong, Li Yuoguo, Liu Hong, et al. Chemical weathering intensity and geochemical characteristics of Cretaceous terrigenous clastic rock-purple soil profiles in the Pushi area, Xichang [J]. Geological Journal, 2022, 1−18. (on line).
Lin H S. Earth’s Critical Zone and hydropedology: Concepts, characteristics, and advances [J]. Hydrology and Earth System Sciences, 2010, 14: 25-45. doi: 10.5194/hess-14-25-2010
National Research Council, USA. Basic Research Opportunities in Earth Sciences[M] . Washington D C: National Academy Press, 2001, 1−154. doi: 10.1016/S1872-5791(09)60017-8
Panda D, Subramanian V. Panigrahy R C. Geochemical fractionation of heavy metals in Chilka Lake (east coast of India)-a tropical coastal lagoon [J]. Environmental Geology, 1995, 26(4): 199-210. doi: 10.1007/BF00770470
Sun Xiyong, Zhang Ruijiang, Huang We, et al. The response between glacier evolution and eco-geological environment on the Qinghai-Tibet Plateau [J]. China Geology, 2019.2, 1-7. doi: 10.31035/cg2018078
Swennen R, Keer I V, Vos W D. Heavy metal contamination in overbank sediments of the Geul river (East Belgium): Its relation to former Pb-Zn mining activities [J]. Environmental Geology, 1994, 24(1): 12-21. doi: 10.1007/BF00768072
Tristan S, Laurent H, Patrice R, , et al. Hundred million years of landscape dynamics from catchment to global scale [J]. Science, 2023, 379, 918–923. doi: 10.1126/science.add2541
Trofimov V T , Ziling D G , Averkina T I . Geoecology as a term and interdisciplinary sciense[J].Vest Mosk Univ Geologiya, 1994a, 49(5): 43−55.
Trofimov V T. Theoretical methodological basis of creation of ecological geological maps [J]. Earth Science Frontiers, 2008, 15(6): 199-207. doi: 10.1016/S1872-5791(09)60017-8
Trofimov V T. The ecological-geological system, its types and position in the structure of an ecosystem [J]. Moscow University Geology Bulletin, 2009, 64(2): 111-115. doi: 10.3103/S0145875209020057
Trofimov V T. Ecological-geological conditions and factors of their formation [J]. Moscow University Geology Bulletin, 2010, 65(1): 54-57. doi: 10.3103/S0145875210010060
Trofimov V T. Current state, tasks, and problems of the further development of ecological geology [J]. Moscow University Geology Bulletin, 2013, 68(3): 155-164. doi: 10.3103/S0145875213030083
Trofimov V T, Andreeva T V. Ecological geological systems and their types, position in the ecosystems structure and tasks of the investigation [J]. Earth Science Frontiers, 2010, 17(2): 425-438.
Trofimov V T, Ziling D G. Ecological geology in the program of "Universities of Russia" [J]. Geoecologiya, 1994b, 3: 117-120.
Ulrikh D V, and Butakova M D. Soil-cement of normal hardening on the basis of the argillaceous raw material and copper ore processing of waste in eco-geology and construction [J]. Procedia Engineering, 2016, 150, 1510-1515. doi: 10.1016/j.proeng.2016.07.099
Vartanyan, G. The Geological Environment and Ecosystems. Geology and Ecosystems [J]. Springer US, 2006: 9−14.
Williams M A J, Balling R C, Interactions of desertification and climate[M]. London and New York: Arnold and Halsted Press (co-publishers), 1995: 1−300.
Wilson M J. The importance of parent material in soil classification: A review in a historical context[J]Catena, 2019, 182, 104131. doi: 10.1016/j.catena.2019.104131
Zhang Ganlin , Zhu Yongguan, Shao Mingan. Understanding sustainability of soil and water resources in a critical zone perspective [J]. Science China Earth Sciences, 2019, 602: 1716-1718.