Mineralogical Characteristics and Metallogenic Indication of Gold−Bearing Sulfides in the Jinpenliang Gold Deposit, Zhashui−Shanyang Ore Cluster Area, South Qinling
-
摘要:
金盆梁金矿床位于南秦岭柞水−山阳金多金属矿集区北部,矿体呈近东西向赋存于上泥盆统桐峪寺组的沉积建造中,受左行韧性断层控制。关于矿石矿物学与金成矿过程尚缺乏系统的认识。基于岩矿相学鉴定、背散射电子图像(BSE)、能谱(EDS)及电子探针分析(EPMA)等方法,查明矿石组构与载金硫化物毒砂、黄铁矿、辉锑矿及白铁矿的矿物学特征,探讨金的赋存状态与成矿物理化学条件,初步厘定矿床成因类型。结果显示,热液成矿期的金矿化以微细浸染型为主,可划分为黄铁矿−毒砂−硅化(Ⅰ)、石英−辉锑矿−白铁矿±锑氧化物(Ⅱ)及方解石−石英(Ⅲ)3个阶段。不同载金硫化物的“不可见金”赋存状态差异显著,由毒砂的晶格金Au+,到早世代黄铁矿(Py-1)的晶格金Au+−纳米金Au0,至晚世代黄铁矿(Py-2)和白铁矿的纳米金Au0。金属矿物组合由毒砂−黄铁矿至辉锑矿−白铁矿,成矿流体由较高温的相对自然金不饱和状态,逐渐演化为相对低温的自然金饱和状态。金盆梁金矿床形成于较高硫逸度的中高温、中浅成环境,属于卡林型金矿床。
Abstract:The Jinpenliang gold deposit is located in the northern part of the Zhashui−Shanyang ore cluster area, South Qinling. The E−W trending main orebodies, occurring in sedimentary rocks of the Upper Devonian Tongyusi Formation, are strictly controlled by the left−lateral ductile faults. To date, there is still insufficient understanding of the ore mineralogy and gold mineralization processes. In this paper, we obtain data from a variety of experimental methods, such as petrographic identification, Back−Scattered Electron imaging (BSE), Energy Dispersive Spectrometry (EDS), and Electron Probe Micro−Analysis (EPMA), to determine the mineralogical characteristics of gold−bearing sulfides (arsenopyrite, pyrite, stibnite, and marcasite), and discuss the chemical states of Au and physicochemical conditions for gold mineralization. The results show that the micro−disseminated gold mineralization in hydrothermal period can be divided into three stages: pyrite−arsenopyrite−silicification stage (Ⅰ), quartz−stibnite−marcasite±antimony oxides stage (Ⅱ), and calcite−quartz stage (Ⅲ). The occurrence states of “invisible gold” vary greatly among different gold−bearing sulfides, from Au+ in arsenopyrite to Au+ and Au0 in early generation pyrite (Py-1), then to Au0 in late generation pyrite (Py-2) and marcasite. The metal mineral assemblage changes from arsenopyrite−pyrite to stibnite−marcasite, while the ore−forming fluid gradually evolves from relatively high−temperature solutions unsaturated with respect to native gold to low−temperature solutions saturated with respect to native gold. The Jinpenliang gold deposit is a Carlin−type gold deposit, which was formed in a medium−high temperature and shallow−moderate depth with logf(S2) ranging from −8.5 to −4.5.
-
Keywords:
- occurrence state of gold /
- arsenopyrite geothermometer /
- EPMA /
- gold−bearing sulfides /
- Jinpenliang /
- south Qinling
-
勘查地球化学经过80多年的发展,在矿产勘探中的地位愈发重要(王学求,2003;崔晓亮等,2011;赵武强等,2014;刘啟能等,2018;张荣等,2021;史冬岩等,2024)。水系沉积物测量和土壤地球化学测量是两种比较经典的地球化学勘查手段(邓兴智等,2016;李本茂等,2017;郝玉军等,2017;张辉等,2018;刘永胜等,2023)。水系沉积物测量的直接性、高效性和经济性特点在矿产勘查中发挥了巨大作用,找到了众多矿床(张运强等,2015;赵娟等,2017;廖国忠等,2018;余元军等,2019)。土壤地球化学测定可以较快缩小找矿范围,较为准确确定异常源位置,具有显著找矿效果(杨笑笑等,2018;李新鹏等,2019;孙双俊等,2020)。为了进一步缩小找矿靶区,笔者在1∶5万水系沉积物测量所获得的较好HS$ {}_{甲\text{1}}^{29} $Sb(AsAgAu)综合异常基础上,采用土壤地球化学测量、1∶1 万综合剖面测量与槽探等验证方法,发现了4处蚀变岩型的破碎蚀变脉,圈定了3条锑工业矿体,规模为中型。
1. 地质背景
矿区坐落于青海省果洛藏族自治州默德县北侧,处于秦祁昆造山系与西藏–三江造山系接触带,默德–马丁增生楔与可可西里森潘周缘前陆盆地的交汇处。划属成矿带为北梵蒂冈卡拉–马尔康Au-Ni-Pt-Fe-Mn-Pb-Zn-Li-Be-白云母,成矿亚带为龙洼–昌马河Au-Sb(稀土、W、Sn)。地质构造演化特征:早期以拉张–裂陷–沉降和沉积作用为主;晚期经历了俯冲、挤压褶皱造山作用和深层次韧性剪切向浅层次脆性破裂演变等过程。地层以活动型内陆海二叠纪—三叠纪沉积地层为主,岩浆活动非常微弱。
矿区主要从老到新出露地层有石炭系—中二叠系布青山群(CP2B)、早三叠系昌马河组下段(T1c1)、早三叠系昌马河组上段(T1c2)、中三叠系甘德组(T2g)。石炭系—中二叠系布青山群(CP2B)岩性以石英长石砂岩、板岩为主,含灰色生物碎屑灰岩。早三叠系昌马河组下段(T1c1)以浅灰色长石硬砂岩为主,硬砂质长石石英砂岩夹粉砂岩夹板岩为辅;上段(T1c2)以浅绿色硬砂质长石石英砂岩与粉砂质板岩互层为主,夹少量含凝灰岩的砂岩板岩。中三叠系甘德组(T2g)以灰色岩屑长石砂岩、细砂–粉砂岩夹黑色板岩与灰绿色片理化长石砂岩为主,含杂砂岩夹板岩千枚岩及灰岩透镜体。
矿区断裂构造和褶皱构造发育,有一组位于中部玛多北山,西端被红层盆地覆盖,东端向斗格方向延伸,呈NW向的玛多–斗格涌断裂带,其次受印支期构造变形,发育有纲加郞向斜、夺尔贡玛背斜构造,而岩浆岩不发育(图1)。
2. 地球化学特征
2.1 水系沉积物地球化学特征
1∶5万水系沉积物测量发现HS$ {}_{甲\text{1}}^{29} $Sb(AsAgAu)综合异常(图2),异常受控于昆仑山口–甘德区域性深大断裂带,大场金锑矿床与其受控于同一构造带。主元素为Sb,区域背景值为3.14×10−6,呈不规则状,NW向分布,面积约为12 km2,包括72个异常点,其异常下限为4×10−6,峰值为33.48×10−6,均值为7.26×10−6。异常北部和南部有两处内带浓集中心。伴生元素Au,区域背景值为1.21×10−9,异常呈NW向带状展布,面积近3 km2,由32个异常点组成,异常下限为2×10−9,峰值为4.17×10−9,均值为2.5×10−9。此外,在该异常区域中,As区域背景值为20.01×10−6,异常规模较大,具有二级浓度分带;Ag区域背景值为56.10×10−9,其中单点异常强度高,可达
1249 ×10−9。该异常具有面积大和Sb、Au平均值高特点,并伴生大面积As异常及其他多元素异常,元素组合好。主元素Sb、Au在北部套合较好,在浓集中心发现了3条碎裂蚀变带。2.2 土壤地球化学特征
2.2.1 统计参数特征
在1∶5万水系沉积物测量的HS$ {}_{甲1}^{29} $Sb(AsAgAu)综合异常区,进一步缩小找矿范围,布设1∶1万土壤测量进行查证。土壤测量网度为100 m×20 m,采集残坡积层(B、C层)中细粒物质,混入的岩石碎块、植物根系均给予剔除。采样粒度为−20~+80目。共采集样品
2742 件,包含重复样137件。重复样品合格率为91.7%,分析结果可靠。检测元素是Au、Ag、Cu、As、Sb、Pb、Zn。通过参考区域水系沉积物的异常下限,结合矿区地质地球化学特征最终确定异常下限(迟清华等,2007),获得土壤地球化学测定参数(表1)和元素对数分布图(图3)。Au、Sb变异系数高,分异显著,而As、Sb富集系数高,富集显著(表1)。表 1 土壤地球化学测量数据统计Table 1. Statistics of soil geochemical measurements元素 最大值(Cmax) 最小值(Cmin) 背景值(Ca) 标准离差(S) 变化系数(Cv) 异常下限(T) 富集系数(Ca/克拉克值) Au 30.06 0.31 1.4 1.24 0.88 2 0.35 Ag 530 26.3 58.3 22.9 0.39 85 0.78 As 100 6.6 21.6 5.34 0.25 30 12.00 Cu 393.7 6.62 28.2 8.35 0.29 35 0.47 Pb 67.7 4.6 21.3 3.6 0.16 27 1.52 Sb 50 1.1 4.5 5.8 1.29 5.5 22.50 Zn 270.9 19.9 79.5 14.8 0.18 95 1.14 注: 2742 件样品,Au、Ag含量为10−9,其他元素含量为10−6。2.2.2 元素组合特征
元素亲和性在地质体内具体表现为元素组合(戚长谋,1997;向文帅等,2024),R型聚类可以分析成矿活动中元素的地球化学行为相似度(邓军等,2000;刘永胜等,2023)。将土壤地球化学样品测定结果,通过元素R型聚类分析(图4),认为元素相关系数>0.3时,存在3种元素组合,为As-Sb-Au、Cu-Pb-Zn和Ag。其中,As-Sb-Au为与低温成矿流体活动有关的前缘元素组合,Cu-Pb-Zn为中温元素组合,Ag反映特殊地球化学特点,推测为与热液矿床相关的一套元素组合。
2.2.3 异常特征
1∶1万土壤地球化学测量圈定出6处综合异常(图5),矿区NW方向HT1综合异常NAP值较大,元素组合复杂,呈不规则状,元素组合以Sb、Au为主,Sb异常的浓度分带清晰,中带内带较寛,具有1个浓集中心。其中,Sb1异常面积最大为0.46 km2,平均强度为13.87×10−6,最高强度为50×10−6,变异系数为0.98,外、中、内三带齐全;Au异常浓度分带清晰,具有两个浓集中心,其中Au1异常面积为0.105 km2,平均强度为3.73×10−9,最高强度为30.06×10−9,变异系数为1.16,外、中、内3条谱带齐全(图6)。该综合异常强度高,元素组合相对简单,发育成早三叠统昌马河组上段(T1c2)与中三叠系甘德组(T2g)地层界线夺尔贡马背斜南翼与马德–斗格涌出断裂二次断裂交叉部位的破碎腐蚀变岩体,处于有利的成矿部位,与西北部夺尔贡玛锑金矿点不远,推测为有进一步工作评价意义的矿致异常。
2.3 异常查证成果
对HT-1(Au-Sb-AS-Ag)异常进行1∶
10000 路线地质调查,发现多处辉锑矿化硅化蚀变岩转石,随后对矿化点进行稀疏槽探工程揭露控制,发现Ⅵ、Ⅶ、Ⅷ、Ⅸ号破碎蚀变岩脉(图5),均为蚀变岩型,其中Ⅶ、Ⅷ、Ⅸ号破碎蚀变岩脉中见辉锑矿。VI号蚀变脉体由9条探槽控制,蚀变带长约为500 m,产状约为210°~275°∠55°~73°。岩石成分主要为隐晶质石英,次为少量砂岩碎块。矿化以褐铁矿化常见,见少量辉锑矿化。其中,褐铁矿化在石英及砂岩团块表面、裂隙间较为发育,在强硅化蚀变岩的表面矿化较好,地表风化呈黑褐色。辉锑矿多呈团块状、细脉状,具金属光泽。蚀变主要为强硅化,呈致密块状,呈无色–褐色,以细粒–微细粒状石英为主。可见少量金矿化品位显示,矿化较弱,品位为0.11×10−6~0.15×10−6;没有锑矿化品位显示。
Ⅶ号蚀变脉体由4条探槽控制,蚀变带长约为120 m,宽约为0.8~1.0 m,产状约为230°~245°∠40°~75°。蚀变带内以砂岩和石英为主,含少量黏土矿物,矿化蚀变类型为辉锑矿化和褐铁矿化。辉锑矿化多位于砂岩层间破碎带内,呈团块状、脉状、放射状及针状,呈微细粒状,具金属光泽,品位为0.5%~1%;褐铁矿呈薄层状,在砂岩、石英表面和裂隙内较为发育。两个工程见矿,矿体产出于砂岩和片岩接触部位,长约为75 m,Sb品位为5.08%~11.04%,矿体厚度为0.83~1.08 m。
Ⅷ号蚀变脉体由9条探槽控制,地表延伸约为650 m,宽约为1~5 m,最宽达26 m,产状约为240°~250°∠55°~73°,沿走向产状变化大。蚀变带出露于砂岩的层间破碎带内,岩石较为破碎而呈碎块状、黏土状,以砂岩、石英为主,含少量泥质片岩。矿化蚀变以辉锑矿化为主,褐铁矿化也较为普遍,其中辉锑矿化主要呈脉状、团块状,少量为针状、放射状,品位约为1%。蚀变以硅化为主,以石英团块和隐晶质石英为主。7个工程见矿,控制矿体长度为552 m,Sb品位为0.98%~22.02%,矿体厚度为0.62~3.68 m。Ⅷ1号矿体由TC607-TC611及TC701等工程控制,长约为592 m,厚度约为1~2.5 m,最大厚度为23 m,平均厚度为2.0 m(图7)。Sb品位为0.57%~5.56%,最高品位为32.91%,平均品位为5.46%。根据推算,334预测资源量为
9831 t。Ⅸ号蚀变脉体由5条探槽控制,地表延伸长度约为245 m,宽为2~4 m,最宽为30 m,产状约为221°~225°∠35°~45°,以缓倾为主,产状不稳定,局部反倾。蚀变位于砂岩层间破碎带内,岩石多呈破碎状和泥质,以砂岩和石英为主,含少量泥质;矿化蚀变以辉锑矿化为主,露头中可见辉锑矿化,探槽中仅1个工程中可见明显矿化现象,其他探槽未见显示。辉锑矿主要呈脉状、团块状,少量以针状、放射状产出,含量约为1%。1个工程见矿,控制长度为193 m,Sb品位为0.98%~22.02%,矿体厚度为0.62~3.68 m。
3. 成矿规律与找矿方向
研究区内已发现的矿体和矿化体集中分布于昆仑山口–甘德断裂带内或旁侧,该断裂规模大、切割深,为深源的含矿热液和流体提供了运移通道(马彦青等,2013)。断裂带内及旁侧派生的次级断裂主要表现为NW向、NE向和近EW向,次级构造的规模基本框定了矿化带的规模,次级断裂形成的破碎带内普遍发育硅化、褐铁矿化、绢云母化等,区内的辉锑矿化也大多发育在这些破碎带内,是成矿物质的沉淀及富集的有利场所。
区内矿(化)体赋存于早—中三叠世昌马河组中,与昆仑山口–甘德断裂带密切相关。结合前人对北巴颜喀拉造山带的研究和区域内大场金矿、东大滩金矿成矿时间的研究成果,初步认为本区主要成矿时期为印支造山晚期。
区内的蚀变主要为硅化和褐铁矿化,少量黄铁矿化和绢云母化,矿化以辉锑矿化为主,具有“黄铁绢英岩化”热液蚀变特征。此外,区内的昌马河组中Sb、Au等成矿元素背景值非常高。因此认为区内成矿物质来源一方面来自于深源的含矿热液本身,另一方面来自于地层岩石中的成矿物质活化补充。
研究区位于北巴颜喀拉–马尔康Au-Ni-Pt-Fe-Mn-Pb-Zn-Li-Be-白云母成矿带内,带内成矿地质环境优越,已发现的典型矿床有东大滩锑金矿床、大场金锑特大型矿床、加给陇洼中型金锑矿床(何书跃等,2023)。在区内,三叠纪地层为区内的最主要地层,也是发育最为广泛的地层单位,这为区内的成矿作用提供了丰富的物质来源。此外,NE向、NW向、近EW向控矿构造发育良好,从区内土壤地球化学异常分布形态来看,其主要受NE向和近EW向次级断裂构造控制。
结合研究区和区域上的成矿事实,初步认为本区找矿方向应为构造控矿的中低温热液矿床,主攻矿种为Sb、Au,矿床成因类型为构造蚀变岩型,以Sb、Au元素为主异常元素的1∶1万土壤地球化学综合异常分布地区是较为有利的找矿靶区。早—中三叠世昌马河组地层为本区提供了丰富的成矿物质来源,昆仑山口–甘德断裂带内及其旁侧的次级构造为成矿流体的运移和沉淀成矿提供了空间和场所,区域上的松潘–甘孜洋/海盆(古特提斯洋)向北俯冲碰撞为该区提供了足够的能量。综合认为,本预查区具备成矿所需的物质场、空间场和能量场,其成矿条件非常有利,找矿前景非常好。
4. 结论
(1)区内地球化学主异常元素为Sb和Au,反映了中低温热液成矿作用,矿化总体呈现西强、北东弱的趋势。Sb、Au为本区成矿潜力大的优势成矿元素,As、Cu、Pb、Zn、Ag与Sb、Au矿化关系密切,为重要的找矿指示元素。
(2)区内主要成矿时期为印支晚期,成矿物质来源为深部含矿热液和地层成矿物质的活化,矿床成因类型为构造蚀变岩型。
(3)本区新发现破碎蚀变岩型中型锑矿1处,矿体受断层破碎带控制;结合矿区所处成矿条件和异常发育情况,建议在矿区外围有利地段开展1∶1万土壤测量。
-
图 1 秦岭造山带构造单元(a)及柞水–山阳矿集区地质图(b)(据Ding et al.,2022修改)
1. 第四系;2. 石炭系;3. 泥盆系;4. 下古生界;5. 前寒武系;6. 晚侏罗—早白垩世花岗岩;7. 中—晚三叠世花岗岩;8. 新元古代花岗岩;9. 新元古代闪长岩;10. 辉长–辉绿岩;11. 角闪岩;12. 卡林型金矿床;13. 热水沉积改造型银矿床;14. 热水沉积改造型铜矿床;15. 热水沉积改造型铁矿床;16. 岩浆分结型铁矿床;17. 矽卡岩–斑岩型铜矿床;18. 断层;19. 地质界线;20. 地名
Figure 1. (a) Tectonic framework of the Qinliong orogen and (b) geological map of the Zhashui–Shanyang ore district cluster
图 2 金盆梁金矿床地质图(据苏选民等,2012)
1. 下石炭统二峪河组上亚组下段;2. 下石炭统二峪河组下亚组上段;3. 上泥盆统(未分);4. 上泥盆统桐峪寺组第六岩性段;5. 上泥盆统桐峪寺组第五岩性段上亚段;6. 上泥盆统桐峪寺组第五岩性段下亚段;7. 上泥盆统桐峪寺组第四岩性段上亚段;8. 二长花岗岩;9. 闪长玢岩脉;10. 云斜煌斑岩脉;11. 矿体及编号;12. 矿化体;13. 断层及编号;14. 地名
Figure 2. Geological map of the Jinpenliang gold deposit
图 3 金盆梁金矿床典型矿体与矿石照片
a. 主矿体赋存于粉砂质板岩的断裂中,石英–辉锑矿细脉切穿毒砂–黄铁矿化蚀变岩;b. 受左行韧性剪切作用,石英–辉锑矿脉呈浅黄色透镜状产出;c. 矿体远端的方解石–石英脉;d. 毒砂–黄铁绢英岩型矿石;e. 石英–辉锑矿脉型矿石;f. 方解石–石英脉手标本;g. 毒砂、黄铁矿呈微细浸染状,见自形毒砂沿边部交代他形粗粒黄铁矿;h. 辉锑矿呈半自形晶,含少量白铁矿;i. 方解石细脉切穿粗粒石英;j-l. Ⅰ~Ⅲ阶段的非金属矿物特征;Py. 黄铁矿;Apy. 毒砂;Stb. 辉锑矿;Mrc. 白铁矿;Q. 石英;Cal. 方解石;Ser. 绢云母
Figure 3. Photos of typical orebodies and ores of the Jinpenliang gold deposit
图 8 金盆梁金矿床毒砂、黄铁矿及白铁矿Au–As关系图(拟合曲线据Reich et al.,2005)
Apy. 毒砂;Py-1. 早世代黄铁矿;Py-2. 晚世代黄铁矿;Mrc. 白铁矿
Figure 8. Correlation of Au–As values in arsenopyrite, pyrite, and marcasite from the Jinpenliang gold deposit
图 9 毒砂地质温度计的logf(S2)–t图解(据Sharp et al.,1985;Zhang et al.,2018)
Apy. 毒砂;Py. 黄铁矿;Po. 磁黄铁矿;Lo. 斜方砷铁矿
Figure 9. Logf(S2) vs. t equilibria diagram of arsenopyrite geothermometer
表 1 金盆梁金矿床矿石类型与硫化物特征表
Table 1 Ore types and sulfide characteristics of the Jinpenliang gold deposit
矿石类型 金属硫化物 特征描述 素描图 毒砂–黄铁绢英岩型 Apy 毒砂(Apy)呈亮白色针柱状、菱形、茅状自形晶,常见晶面裂纹与孔隙;呈独立放射状或沿早世代黄铁矿边部交代形成毒砂–黄铁矿集合体 Py-1 早世代黄铁矿(Py-1)呈浅黄色–黄白色中粗粒他形晶,孔隙与裂纹发育;内部结构均一,增生环带不明显,边部多被自形–半自形毒砂交代浸蚀 Py-2 晚世代黄铁矿(Py-2)呈黄白色细粒自形–半自形晶,孔隙与裂纹较少,内部为均质结构;多独立产出,偶见内部包含自形毒砂颗粒 石英–辉锑矿脉型 Stb 辉锑矿(Stb)反射色为白色–灰白色,多色性极为显著,多呈半自形针柱状、粒状晶,易磨光,常见擦痕。可见白铁矿、黄锑矿(Cvn)等交代辉锑矿 Mrc 白铁矿(Mrc)呈浅黄白色自形板柱状晶,以似节理状的密集条纹切面为鉴别特征,大多沿辉锑矿边部或内部交代产出,极少数独立赋存于石英中 表 2 金盆梁金矿床载金硫化物电子探针分析结果表(%)
Table 2 EMPA data (%) of Au–bearing sulfides in the Jinpenliang gold deposit
测点号 矿物 Au S Pb Bi Ag Cd Sb Te Se As Zn Cu Ni Co Fe Mn Ti Total 计算化学式 JPL-gb6-1 毒砂
(Apy)− 19.49 − 0.03 − − 0.10 − − 46.05 0.09 0.02 0.05 0.03 35.12 0.04 0.04 101.06 Fe1.03As1.01S JPL-gb6-2 − 20.86 − − − 0.03 0.79 − − 43.05 − 0.00 − − 35.48 0.03 0.00 100.24 Fe0.98As0.88S JPL-gb6-3 0.10 19.99 − − − 0.03 0.33 − − 44.33 − − − 0.03 35.55 0.01 − 100.36 Fe1.02As0.95S JPL-gb6-6 0.03 19.44 − − 0.02 0.06 0.09 − − 45.44 0.07 − − 0.08 35.41 − 0.03 100.68 Fe1.05As1.00S JPL-gb6-8 0.13 19.21 − − − 0.06 0.53 − − 45.55 0.02 − − 0.10 35.62 − − 101.21 Fe1.06As1.01S JPL-gb6-10 0.47 19.92 − − 0.06 − − − − 44.31 0.01 0.07 0.03 0.09 35.50 − − 100.45 Fe1.02As0.95S JPL-gb6-11 0.16 19.44 − 0.15 0.01 − 0.01 − − 45.66 0.02 − 0.10 0.09 35.73 − − 101.36 Fe1.06As1.01S JPL-gb6-13 0.03 20.53 0.06 − 0.06 0.07 0.99 − − 43.59 0.03 − 0.05 0.05 35.52 0.01 0.03 101.03 Fe0.99As0.91S JPL-gb6-16 − 19.81 − − 0.02 0.05 0.55 − − 44.27 0.00 0.11 0.00 0.07 35.44 − − 100.33 Fe1.03As0.96S JPL-gb6-18 − 19.55 0.05 − 0.05 0.01 0.61 − − 44.69 0.01 − − 0.04 35.63 − − 100.65 Fe1.05As0.98S JPL-gb6-19 0.03 20.43 − − − 0.01 0.78 − − 43.57 − 0.01 − 0.05 35.16 − 0.03 100.07 Fe0.99As0.91S JPL-gb6-4 早世代
黄铁矿
(Py-1)− 52.37 0.04 − 0.02 − − − 0.02 0.01 − − 0.07 0.14 47.18 0.02 − 99.86 Fe0.52S JPL-gb6-7 0.05 51.61 − − 0.01 − − − − 1.75 − − − 0.09 46.59 − − 100.09 Fe0.52S JPL-gb6-9 − 51.39 0.14 − 0.05 − − − 0.03 0.06 0.11 0.11 0.03 0.09 47.04 0.00 − 99.05 Fe0.53S JPL-gb6-14 0.30 52.14 − − 0.04 − 0.00 − − 0.01 0.06 0.05 0.26 0.05 46.25 − 0.02 99.18 Fe0.51S JPL-gb6-15 − 52.55 0.01 0.02 − − − − − 0.04 − − 0.20 0.15 46.77 − 0.02 99.75 Fe0.51S JPL-gb6-5 晚世代
黄铁矿
(Py-2)− 52.31 − − − 0.01 − − − 1.18 0.06 − − 0.05 46.12 − − 99.74 Fe0.51S JPL-gb6-12 − 51.95 − − 0.01 − 0.06 − − 0.70 0.04 − − 0.12 46.59 − 0.03 99.50 Fe0.51S JPL-gb6-17 − 52.18 0.12 − − 0.03 0.01 − − 0.45 0.06 − 0.01 0.04 47.01 − 0.01 99.91 Fe0.52S JPL-gb6-20 0.25 50.67 − − − − − − − 3.04 − 0.13 0.05 0.04 46.02 − − 100.21 Fe0.52S JPL-gb5-1 辉锑矿
(Stb)− 27.27 − 0.01 − − 71.58 − − 0.09 0.05 0.04 − − 0.00 0.05 − 99.10 Sb0.69S JPL-gb5-4 − 28.66 − 0.15 − 0.03 71.03 0.04 − 0.07 − − 0.05 − 0.04 − − 100.06 Sb0.65S JPL-gb5-5 0.26 27.64 0.09 − − − 71.08 − − 0.11 − 0.01 − − 0.02 0.00 0.00 99.22 Sb0.68S JPL-gb5-7 − 28.68 0.17 − 0.12 0.03 71.05 − 0.01 0.12 − − 0.03 − − − − 100.20 Sb0.65S JPL-gb4-1 − 28.32 − 0.13 0.03 0.02 70.92 0.04 0.01 0.09 − 0.06 0.02 0.00 0.03 0.01 − 99.69 Sb0.66S JPL-gb4-4 − 28.98 − − − − 71.52 0.02 − 0.16 − 0.03 − − 0.02 − − 100.74 Sb0.65S JPL-gb4-5 − 27.36 0.40 − − 0.07 71.89 0.06 − 0.09 0.03 0.07 0.13 0.06 0.00 − − 100.16 Sb0.69S JPL-gb4-6 0.29 27.97 − − − 0.02 71.24 0.01 − 0.16 0.09 0.01 − − − 0.01 − 99.79 Sb0.67S JPL-gb4-9 0.04 28.90 0.12 − − 0.06 70.78 0.02 − 0.21 0.05 − 0.06 0.01 − − − 100.24 Sb0.64S JPL-gb4-10 − 29.03 − 0.06 − − 71.02 0.07 0.01 0.11 − 0.07 0.04 − 0.01 0.01 − 100.43 Sb0.64S JPL-gb4-11 − 28.73 − − 0.01 0.04 70.49 0.12 − 0.11 − 0.04 − − − − − 99.54 Sb0.65S JPL-gb4-12 0.15 28.31 − − 0.03 0.07 71.26 0.00 0.00 0.11 − 0.03 0.00 0.01 0.04 − 0.02 100.04 Sb0.66S JPL-gb4-2 白铁矿
(Mrc)0.16 52.84 − − − − 0.20 − − − 0.17 − 0.12 0.16 46.49 0.03 − 100.18 Fe0.51S JPL-gb4-3 0.05 52.61 − 0.09 0.06 0.01 1.27 − 0.00 0.11 0.02 − 0.15 0.12 46.49 0.02 0.00 100.98 Fe0.51S JPL-gb4-7 0.14 48.73 − − 0.01 0.00 4.54 − 0.01 0.03 − − 0.05 0.22 41.19 − − 94.90 Fe0.49S JPL-gb4-8 − 48.14 − − − 0.02 3.88 − 0.01 − 0.02 − 0.09 0.22 41.43 − 0.04 93.86 Fe0.49S JPL-gb5-3 0.07 52.97 − − − 0.01 0.25 − − 0.02 0.04 − 0.13 0.24 45.87 − − 99.61 Fe0.50S JPL-gb5-6 − 52.27 − − − − 0.13 − − − − 0.09 − 0.14 45.56 − − 98.19 Fe0.50S JPL-gb5-8 0.07 52.57 − − − 0.08 0.09 − 0.03 − 0.04 − 0.08 0.17 45.89 0.05 − 99.06 Fe0.50S JPL-gb5-9 − 53.65 − − 0.03 − − − 0.00 0.01 0.07 − 0.16 0.09 46.80 0.01 − 100.83 Fe0.50S 注:“−”表示低于检出限。 -
陈衍景, 张静, 张复新, 等. 西秦岭地区卡林—类卡林型金矿床及其成矿时间、构造背景和模式[J]. 地质论评, 2004, 50(2): 134-152 doi: 10.3321/j.issn:0371-5736.2004.02.004 Chen Yanjing, Zhang Jing, Zhang Fuxin, et al. Carlin and Carlin-like gold deposit in western Qinling Mountains and their metallogenic time, tectonic setting and model[J]. Geological Review, 2004, 50(2): 134-152. doi: 10.3321/j.issn:0371-5736.2004.02.004
丁坤. 南秦岭柞-山矿集区典型金矿床成矿作用与成矿动力学背景[D]. 西安: 长安大学, 2020 DING Kun. Metallogenesis and metallogenic dynamics background of typical gold deposits in Zha-shan ore concentration area, South Qinling[D]. Xi’an: Chang’an University, 2020
丁坤, 王瑞廷, 刘凯, 等. 南秦岭柞水-山阳矿集区夏家店金矿床黄铁矿微量元素和氢、氧、硫同位素对矿床成因的制约[J]. 现代地质, 2021, 35(6): 1622-1632 DING Kun, WANG Ruiting, LIU Kai, et al. Pyrite trace element, hydrogen, oxygen, and sulfur isotope geochemistry of the Xiajiadian gold deposit in Zhashui-Shanyang orefield, south Qinling orogen, and its metallogenic constraints[J]. Geoscience, 2021, 35(6): 1622-1632.
丁坤, 王瑞廷, 王智慧, 等. 南秦岭柞水-山阳矿集区王家坪金矿床地质特征及矿床成因探讨[J]. 西北地质, 2022, 55(1): 167-178 DING Kun, WANG Ruiting, WANG Zhihui, et al. Geological characteristics and genesis of the Wangjiaping gold deposit in Zhashui-Shanyang ore concentration area of south Qinling[J]. Northwestern Geology, 2022, 55(1): 167-178.
方维萱, 芦继英. 陕西银硐子-大西沟菱铁银多金属矿床热水沉积岩相特征及成因[J]. 沉积学报, 2000, 18(3): 431-438 FANG Weixuan, LU Jiying. Genesis and characteristics of hydrothermal sedimentary facies Forsiderite-silver-polymetallic deposits in Yindongzi and Daxigou, Shanxi, China[J]. Acta Sedimentologica Sinica, 2000, 18(3): 431-438.
高菊生, 王瑞廷, 张复新, 等. 南秦岭寒武系黑色岩系中夏家店金矿床地球化学特征[J]. 中国地质, 2006, 33(6): 1371-1378 GAO Jusheng, WANG Ruiting, ZHANG Fuxin, et al. Geology and geochemistry of the Xiajiadian gold deposit in the Cambrian black rock series in the South Qinling[J]. Geology in China, 2006, 33(6): 1371-1378.
葛战林, 郝迪, 张晓星, 等. 东秦岭大蛇沟钨矿区赋矿围岩成因: 锆石U-Pb年代学和地球化学证据[J]. 现代地质, 2021, 35(6): 1633-1650 GE Zhanlin, HAO Di, ZHANG Xiaoxing, et al. Petrogenesis of host rocks in the Dashegou tungsten orefield, East Qinling Orogen: Evidences from zircon U-Pb geochronology and geochemistry[J]. Geoscience, 2021, 35(6): 1633-1650.
胡楚雁. 黄铁矿的微量元素及热电性和晶体形态分析[J]. 现代地质, 2001, 15(2): 238-241 HU Chuyan. Characteristics of trace elements, thermoelectricity and crystal form of pyrite[J]. Geoscience, 2001, 15(2): 238-241.
胡文宣, 张文兰, 胡受奚, 等. 含金毒砂中晶格金的确定及其形成机理研究[J]. 地质学报, 2001(3): 410-418 HU Wenxuan, ZHANG Wenlan, HU Shouxi, et al. Determination of structural gold in Au-bearing arsenopyrite and its formation mechanism[J]. Acta Geologica Sinica, 2001(3): 410-418.
华曙光, 王力娟, 贾晓芳, 等. 陕西镇安丘岭卡林型金矿金的赋存状态和富集机理[J]. 地球科学(中国地质大学学报), 2012, 37(5): 989-1002 HUA Shuguang, WANG Lijuan, JIA Xiaofang, et al. Occurrence and enrichment mechanism of gold in the Qiuling Carlin-type gold deposit, Zhen’an county, Shaanxi province, China[J]. Earth Science-Journal of China University of Geosciences, 2012, 37(5): 989-1002.
姜寒冰, 杨合群, 赵国斌, 等. 西秦岭成矿带区域成矿规律概论[J]. 西北地质, 2023, 56(2): 187−202. JIANG Hanbing, YANG Hequn, ZHAO Guobin, et al. Discussion on the Metallogenic Regularity in West Qinling Metallogenic Belt, China[J]. Northwestern Geology, 2023, 56(2): 187−202.
李九玲, 亓锋, 徐庆生. 矿物中呈负价态之金—毒砂和含砷黄铁矿中“结合金”化学状态的进一步研究[J]. 自然科学进展, 2002, 12(9): 952-958 LI Jiuling, QI Feng, XU Qingsheng. The negative valence gold in mineral: A further study on the chemical state of “bound gold” in arsenian pyrites and arsenopyrites[J]. Progress in Natural Science, 2002, 12(9): 952-958.
李平, 陈隽璐, 张越, 等. 商丹俯冲增生带南缘土地沟–池沟地区侵入岩形成时代及地质意义[J]. 西北地质, 2023, 56(2): 10−27. LI Ping, CHEN Junlu, ZHANG Yue, et al. The Formation Age of Intrusions from Tudigou–Chigou Region in Southern Margin of Shangdan Subduction–Accretion Belt and Its Geological Significance. Northwestern Geology, 2023, 56(2): 10−27.
李雪松, 姚志亮, 王小平, 等. 陕西省柞水县金盆梁金多金属矿勘探(1500 m标高以下)工作总结[R]. 西安: 西安西北有色物探总队有限公司, 2021. 刘家军, 刘冲昊, 王建平, 等. 西秦岭地区金矿类型及其成矿作用[J]. 地学前缘, 2019, 26(5): 1-16 LIU Jiajun, LIU Chonghao, WANG Jianping, et al. Classification and mineralization of the gold deposit in the western Qinling region, China[J]. Earth Science Frontiers, 2019, 26(5): 1-16.
刘凯, 王瑞廷, 樊忠平, 等. 秦岭造山带柞水-山阳矿集区夏家店金矿床成矿时代及其地质意义[J]. 矿床地质, 2019, 38(6): 1278-1296 LIU Kai, WANG Ruiting, FAN Zhongping, et al. Metallogenic age of Xiajiadian gold deposit in the Zhashui-Shanyang ore concentration, Qinling orogenic belt and its geological significance[J]. Mineral Deposits, 2019, 38(6): 1278-1296.
刘仕玉, 刘玉平, 叶霖, 等. 滇东南都龙超大型锡锌多金属矿床黄铁矿LA-ICPMS微量元素组成研究[J]. 岩石学报, 2021, 37(4): 1196-1212 doi: 10.18654/1000-0569/2021.04.14 LIU Shiyu, LIU Yuping, YE Lin, et al. LA-ICPMS trace elements of pyrite from the super-large Dulong Sn-Zn polymetallic deposit, southeastern Yunnan, China[J]. Acta Petrologica Sinica, 2021, 37(4): 1196-1212. doi: 10.18654/1000-0569/2021.04.14
刘英俊, 马东升. 金的地球化学[M]. 北京: 科学出版社, 1991 LIU Yingjun, MA Dongsheng. The Geochemistry of gold[M]. Beijing: Science Press, 1991.
毛景文. 西秦岭地区造山型与卡林型金矿床[J]. 矿物岩石地球化学通报, 2001, 20(1): 11-13 MAO Jingwen. Geology, distribution and Classification of gold deposits in the western Qinling belt, central China[J]. Bulletin of Mineralogy, Petrology and Geochemisty, 2001, 20(1): 11-13.
陕西省地质调查院. 中国区域地质志·陕西志[M]. 北京: 地质出版社, 2017 Shaanxi Institute of Geological Survey. The regional geology of China, Shaanxi Province[M]. Beijing: Geological Publishing House, 2017.
沈关文, 张良, 孙思辰, 等. 江南造山带万古金矿床含金硫化物组构与金沉淀机制[J]. 岩石学报, 2022, 38(1): 91-108 doi: 10.18654/1000-0569/2022.01.07 SHEN Guanwen, ZHANG Liang, SUN Sichen, et al. Textures of gold-bearing sulfides and gold precipitation mechanism, Wangu gold deposit, Jiangnan Orogen[J]. Acta Petrologica Sinica, 2022, 38(1): 91-108. doi: 10.18654/1000-0569/2022.01.07
苏选民, 马秋峰, 韩玉信. 陕西省柞水县金盆梁金多金属矿普查2012年总结[R]. 西安: 陕西省地质矿产勘查开发局第二综合物探大队, 2012. 孙宁岳, 李国武, 申俊峰, 等. 黄铁矿精细结构与晶胞参数的关系及其标型意义[J]. 西北地质, 2022, 55(4): 333−342. SUN Ningyue, LI Guowu, SHEN Junfeng, et al. Relationship between Fine Structure and Cell Parameters of Pyrite and Their Typomorphic Significance[J]. Northwestern Geology, 2022, 55(4): 333−342.
汪超, 王瑞廷, 刘云华, 等. 陕西商南三官庙金矿床地质特征、金的赋存状态及矿床成因探讨[J]. 矿床地质, 2021, 40(3): 491-508 WANG Chao, WANG Ruiting, LIU Yunhua, et al. Geological characteristics, modes of occurrence of gold and genesis of San’guanmiao gold deposit, Shangnan, Shaanxi Province[J]. Mineral Deposits, 2021, 40(3): 491-508.
王瑞廷, 冀月飞, 成欢, 等. 南秦岭柞水-山阳矿集区金铜矿床成矿规律与找矿方向[J]. 现代地质, 2021, 35(6): 1487-1503 WANG Ruiting, JI Yuefei, CHENG Huan, et al. Metallogenic regularities and future prospecting direction of gold-copper deposits in the Zhashui-Shanyang orefield, Southern Qinling Orogen[J]. Geoscience, 2021, 35(6): 1487-1503.
王宗起, 闫全人, 闫臻, 等. 秦岭造山带主要大地构造单元的新划分[J]. 地质学报, 2009, 83(11): 1527-1546 WANG Zongqi, YAN Quanren, YAN Zhen, et al. New division of the main tectonic units of the Qinling Orogenic Belt, Central China[J]. Acta Geologica Sinica, 2009, 83(11): 1527-1546.
吴发富, 王宗起, 闫臻, 等. 秦岭山阳-柞水地区燕山期中酸性侵入岩地球化学特征、锆石U-Pb年龄及Lu-Hf同位素组成[J]. 岩石学报, 2014, 30(2): 451-471 WU Fafu, WANG Zongqi, YAN Zhen, et al. Geochemical characteristics, zircon U-Pb ages and Lu-Hf isotopic composition of the Yanshanian intermediate-acidic plutons in the Shanyang-Zhashui areas, Qinling Orogenic Belt[J]. Acta Petrologica Sinica, 2014, 30(2): 451-471.
谢桂青, 任涛, 李剑斌, 等. 陕西柞山盆地池沟铜钼矿区含矿岩体的锆石U-Pb年龄和岩石成因[J]. 岩石学报, 2012, 28(1): 15-26 XIE Guiqing, REN Tao, LI Jianbin, et al. Zircon U-Pb age and petrogenesis of ore-bearing granitoid for the Chigou Cu-Mo deposit form the Zhashan basin, Shaanxi Province[J]. Acta Petrologica Sinica, 2012, 28(1): 15-26.
熊潇, 朱赖民, 张国伟, 等. 南秦岭柞水-山阳矿集区小河口矽卡岩型铜矿床矿物化学及其成矿意义[J]. 岩石学报, 2019, 35(8): 2597-2614 doi: 10.18654/1000-0569/2019.08.16 XIONG Xiao, ZHU Laimin, ZHANG Guowei, et al. Mineral chemistry of the Xiaohekou skarn copper deposit in the Zhashui-Shanyang ore cluster area, South Qinling and its metallogenic significance[J]. Acta Petrologica Sinica, 2019, 35(8): 2597-2614. doi: 10.18654/1000-0569/2019.08.16
闫臻, 王宗起, 陈雷, 等. 南秦岭山阳-柞水矿集区构造-岩浆-成矿作用[J]. 岩石学报, 2014, 30(2): 401-414 YAN Zhen, WANG Zongqi, CHEN Lei, et al. Tectono-magmatism and metallogeneses of Shanyang-Zhashui ore concentration area in Qinling Orogen[J]. Acta Petrologica Sinica, 2014, 30(2): 401-414
员媛娇, 范成龙, 吕喜平, 等. 电子探针和LA-ICP-MS技术研究内蒙古浩尧尔忽洞金矿床毒砂矿物学特征[J]. 岩矿测试, 2022, 41(2): 211-225 YUAN Yuanjiao, FAN Chenglong, LYU Xiping, et al. Application of EPMA and LA-ICP-MS to study mineralogy of arsenopyrite from the Haoyaoerhudong gold deposit, Inner Mongolia, China[J]. Rock and Mineral Analysis, 2022, 41(2): 211-225.
张博, 李诺, 陈衍景. 热液矿床金的赋存状态及研究方法[J]. 地学前缘, 2018, 25(5): 251-265 ZHANG Bo, LI Nuo, CHEN Yanjing. Occurrence state of gold in hydrothermal deposits and related research methods[J]. Earth Science Frontiers, 2018, 25(5): 251-265.
张国伟, 郭安林, 董云鹏, 等. 关于秦岭造山带[J]. 地质力学学报, 2019, 25(5): 746-768 ZHANG Guowei, GUO Anlin, DONG Yunpeng, et al. Rethinking of the Qinling Orogen[J]. Journal of Geomechanics, 2019, 25(5): 746-768.
张嘉升, 潘爱芳, 樊会民, 等. 陕西柞水地区金盆梁金矿区水系沉积物地球化学特征与找矿方向[J]. 地球科学与环境学报, 2014, 36(4): 55-63 doi: 10.3969/j.issn.1672-6561.2014.04.005 ZHANG Jiasheng, PAN Aifang, FAN Huimin, et al. Geochemical characteristics of stream sediment in Jinpenliang gold mining area of Zhashui area, Shaanxi and its prospecting direction[J]. Journal of Earth Science and Environment, 2014, 36(4): 55-63. doi: 10.3969/j.issn.1672-6561.2014.04.005
张然, 肖志斌, 付超, 等. 胶东地区新立金矿中金矿物和载金黄铁矿成因矿物学特征及地质意义[J]. 岩矿测试, 2022, 41(6): 997-1006 doi: 10.3969/j.issn.0254-5357.2022.6.ykcs202206011 ZHANG Ran, XIAO Zhibin, FU Chao, et al. Genetic mineralogy and geological significance of gold minerals and gold-bearing pyrites from the Xinli gold deposit in the Jiaodong area[J]. Rock and Mineral Analysis, 2022, 41(6): 997-1006. doi: 10.3969/j.issn.0254-5357.2022.6.ykcs202206011
张亚峰, 陈国超, 杨玲, 等. 西秦岭凤县北部罗汉寺岩组沉积时代和源区特征: 来自LA-ICP-MS锆石U-Pb年龄证据[J]. 地质学报, 2022, 96(3): 805-823 ZHANG Yafeng, CHEN Guochao, YANG Ling, et al. A study of the provenance and sedimentary age of the Luohansi Formation in the Fengxian County, eastern part of West Qinling Orogenic belt: Evidence from LA-ICP-MS zircon U-Pb ages[J]. Acta Geologica Sinica, 2022, 96(3): 805-823.
赵静, 梁金龙, 韩波. 水银洞金矿与阳山金矿载金矿物成分分析及金的赋存状态[J]. 科技通报, 2017, 33(1): 24-31 doi: 10.13774/j.cnki.kjtb.2017.01.006 ZHAO Jing, LIANG Jinlong, HAN Bo. The component analyses of Au-Bearing minerals and the occurrence of gold in Shuiyindong and Yangshan Carlin-type gold deposits, China[J]. Bulletin of Science and Technology, 2017, 33(1): 24-31. doi: 10.13774/j.cnki.kjtb.2017.01.006
赵珊茸, 边秋娟, 凌其聪. 结晶学及矿物学[M]. 北京: 高等教育出版社, 2004 ZHAO Shanrong, BIAN Qiujuan, LING Qicong. Crystallography and mineralogy[M]. Beijing: Higher Education Press, 2004.
周学武, 李胜荣, 鲁力, 等. 辽宁丹东五龙矿区石英脉型金矿床的黄铁矿标型特征研究[J]. 现代地质, 2005, 19(2): 231-238 doi: 10.3969/j.issn.1000-8527.2005.02.011 Zhou Xuewu, Li Shengrong, Lu Li, et al. Study of pyrite typomorphic characteristics of Wulong quartz-vein-type gold deposit in Dandong, Liaoning Province, China[J]. Geoscience, 2005, 19(2): 231-238. doi: 10.3969/j.issn.1000-8527.2005.02.011
朱赖民, 郑俊, 熊潇, 等. 南秦岭柞水-山阳矿集区园子街岩体岩石地球化学与成矿潜力探讨[J]. 地学前缘, 2019, 26(5): 189-205 ZHU Laimin, ZHENG Jun, XIONG Xiao, et al. Petrogeochemistry and mineralization potential of the Yuanzijie intrusion in the Zhashui-Shanyang ore deposit cluster in southern Qinling[J]. Earth Science Frontiers, 2019, 26(5): 189-205.
Arehart G B, Chryssoulis S L, Kesler S E. Gold and arsenic in iron sulfides from sediment-hosted disseminated gold deposits; implications for depositional processes[J]. Economic Geology, 1993, 88(1): 171-185. doi: 10.2113/gsecongeo.88.1.171
Bateman R, Hagemann S. Gold mineralisation throughout about 45 Ma of Archaean orogenesis: Protracted flux of gold in the Golden Mile, Yilgarn craton, Western Australia[J]. Mineralium Deposita, 2004, 39(5-6): 536-559. doi: 10.1007/s00126-004-0431-2
Bralia A, Sabatini G, Troja F. A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems: Evidences from southern Tuscany pyritic deposits[J]. Mineralium Deposita, 1979, 14(3): 353-374.
Cabri L J, Newville M, Gordon R A, et al. Chemical speciation of gold in arsenopyrite[J]. The Canadian Mineralogist, 2000, 38(5): 1265-1281. doi: 10.2113/gscanmin.38.5.1265
Choi S G, Youm S J. Compositional variation of arsenopyrite and fluid evolution at the Ulsan deposit, southeastern Korea: A low-sulfidation porphyry system[J]. The Canadian Mineralogist, 2000, 38(3): 567-583. doi: 10.2113/gscanmin.38.3.567
Cline J S, Hofstra A H, Muntean J L, et al. Carlin-type gold deposit in Nevada: Critical geologic characteristics and viable model[J]. Economic Geology, 2005, 100th Anniversary Volume: 451−484.
Cook N J, Chryssoulis S L. Concentrations of “Invisible Gold” in the common sulfides[J]. The Canadian Mineralogist, 1990, 28(1): 1-16.
Deditius A P, Utsunomiya S, Renock D, et al. A proposed new type of arsenian pyrite: Composition, nanostructure and geological significance[J]. Geochimica et Cosmochimica Acta, 2008, 72(12): 2919-2933. doi: 10.1016/j.gca.2008.03.014
Ding K, Yang X Q, Wang H, et al. Geochronology and geochemistry of the granite porphyry from the Qinglingou gold deposit, South Qinling, China: Implication for petrogenesis and mineralization[J]. Minerals, 2022, 12(6): 707. doi: 10.3390/min12060707
Fleet M E, Chryssoulis S L, Maclean P J, et al. Arsenian pyrite from gold deposits: Au and As distribution investigated by SIMS and EMP, and color staining and surface oxidation by XPS and LIMS[J]. The Canadian Mineralogist, 1993, 31(1): 1-17.
Fleet M E, Mumin A H. Gold-bearing arsenian pyrite and marcasite and arsenopyrite from Carlin Trend gold deposits and laboratory synthesis[J]. American Mineralogist, 1997, 82(1-2): 182-193. doi: 10.2138/am-1997-1-220
Fougerouse D, Reddy S M, Aylmore M, et al. A new kind of invisible gold in pyrite hosted in deformation-related dislocations[J]. Geology, 2021, 49(10): 1225-1229. doi: 10.1130/G49028.1
Goldfarb R J, Berger B R, George M W, et al. Tellurium[A]. In: Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply[R]. Reston: U. S. Geological Survey, 2017, R1−R14.
Gopon P, Douglas J O, Auger M A, et al. A nanoscale investigation of Carlin-type gold deposits: An atom-scale elemental and isotopic perspective[J]. Economic Geology, 2019, 114(6): 1123-1133. doi: 10.5382/econgeo.4676
Groves D I, Goldfarb R J, Gebre-Mariam M, et al. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types[J]. Ore Geology Reviews, 1998, 13(1): 7-27.
Gu X X, Zhang Y M, Ge Z L, et al. Mineralization and genesis of the orogenic gold system in the Kalamaili area, East Junggar, Xinjiang, northwestern China[J]. GSA Bulletin, 2023.
Hofstra A H, Cline J S. Characteristics and models for Carlin-type gold deposits[J]. Reviews in Economic Geology, 2000, 13: 163-220.
Kretschmar U, Scott S D. Phase relations involving arsenopyrite in the system Fe-As-S and their application[J]. The Canadian Mineralogist, 1976, 14(3): 364-386.
Lentz D R. Sphalerite and arsenopyrite at the Brunswick No. 12 massive-sulfide deposit, Bathurst Camp, New Brunswick: Constraints on P-T evolution[J]. The Canadian Mineralogist, 2002, 40(1): 19-31. doi: 10.2113/gscanmin.40.1.19
Liang Q L, Xie Z J, Song X Y, et al. Evolution of invisible au in arsenian pyrite in carlin-type Au deposits[J]. Economic Geology, 2021, 116(2): 515-526. doi: 10.5382/econgeo.4781
Liu J J, Dai H Z, Zhai D G, et al. Geological and geochemical characteristics and formation mechanisms of the Zhaishang Carlin-like type gold deposit, western Qinling Mountains, China[J]. Ore Geology Reviews, 2015, 64: 273-298. doi: 10.1016/j.oregeorev.2014.07.016
Loftus-Hills G, Solomon M. Cobalt, nickel and selenium in sulphides as indicators of ore genesis[J]. Mineralium Deposita, 1967, 2(3): 228-242.
Ma Y B, Zhu L M, Lu R K, et al. Geology and in-situ sulfur and lead isotope analyses of the Jinlongshan Carlin-type gold deposit in the Southern Qinling Orogen, China: Implications for metal sources and ore genesis[J]. Ore Geology Reviews, 2020, 126: 103777. doi: 10.1016/j.oregeorev.2020.103777
Mao J W, Qiu Y M, Goldfarb R J, et al. Geology, distribution, and classification of gold deposits in the western Qinling belt, central China[J]. Mineralium Deposita, 2002, 37: 352-377. doi: 10.1007/s00126-001-0249-0
Palenik C S, Utsunomiya S, Reich M, et al. “Invisible” gold revealed: Direct imaging of gold nanoparticles in a Carlin-type deposit[J]. American Mineralogist, 2004, 89(10): 1359-1366. doi: 10.2138/am-2004-1002
Reich M, Kesler S E, Utsunomiya S, et al. Solubility of gold in arsenian pyrite[J]. Geochimica et Cosmochimica Acta, 2005, 69(11): 2781-2796. doi: 10.1016/j.gca.2005.01.011
Sharp Z D, Essene E J, Kelly W C. A re-examination of the arsenopyrite geothermometer: Pressure considerations and applications to natural assemblages[J]. The Canadian Mineralogist, 1985, 23(4): 517-534.
Shenberger D M, Barnes H L. Solubility of gold in aqueous sulfide solutions from 150 to 350 °C[J]. Geochimica et Cosmochimica Acta, 1989, 53(2): 269-278. doi: 10.1016/0016-7037(89)90379-7
Simon G, Kesler S E, Chryssoulis S. Geochemistry and textures of gold-bearing arsenian pyrite, Twin Creeks, Nevada: Implications for deposition of gold in Carlin-type deposits[J]. Economic Geology, 1999a, 94(3): 405-421. doi: 10.2113/gsecongeo.94.3.405
Simon G, Huang H, Penner-Hahn J E, et al. Oxidation state of gold and arsenic in gold-bearing arsenian pyrite[J]. American Mineralogist, 1999b, 84(7-8): 1071-1079. doi: 10.2138/am-1999-7-809
Su W C, Zhang H T, Hu R Z, et al. Mineralogy and geochemistry of gold-bearing arsenian pyrite from the Shuiyindong Carlin-type gold deposit, Guizhou, China: Implications for gold depositional processes[J]. Mineralium Deposita, 2012, 47(6): 653-662. doi: 10.1007/s00126-011-0328-9
Wu X, Delbove F. Hydrothermal synthesis of gold-bearing arsenopyrite[J]. Economic Geology, 1989, 84(7): 2029-2032. doi: 10.2113/gsecongeo.84.7.2029
Zhang B, Li N, Shu S P, et al. Textural and compositional evolution of Au-hosting Fe-S-As minerals at the Axi epithermal gold deposit, Western Tianshan, NW China[J]. Ore Geology Reviews, 2018, 100: 31-50. doi: 10.1016/j.oregeorev.2017.08.002
Zhang Z Y, Wang Y H, Zhang F F, et al. Origin of high Ba-Sr granitoids at Chigou in central China and implications for Cu mineralization: Insights from whole-rock geochemistry, zircon U-Pb dating, Lu-Hf isotopes and molybdenite Re-Os systematics[J]. Ore Geology Reviews, 2021, 138: 104416. doi: 10.1016/j.oregeorev.2021.104416