ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

威海市七里汤地热田特征及其成因机制

袁星芳, 邢立亭, 贾群龙, 韩忠, 李方舟

袁星芳, 邢立亭, 贾群龙, 等. 威海市七里汤地热田特征及其成因机制[J]. 西北地质, 2023, 56(6): 209-218. DOI: 10.12401/j.nwg.2023050
引用本文: 袁星芳, 邢立亭, 贾群龙, 等. 威海市七里汤地热田特征及其成因机制[J]. 西北地质, 2023, 56(6): 209-218. DOI: 10.12401/j.nwg.2023050
YUAN Xingfang, XING Liting, JIA Qunlong, et al. Characteristics and Genetic Mechanism of Qilitang Geothermal Field in Weihai[J]. Northwestern Geology, 2023, 56(6): 209-218. DOI: 10.12401/j.nwg.2023050
Citation: YUAN Xingfang, XING Liting, JIA Qunlong, et al. Characteristics and Genetic Mechanism of Qilitang Geothermal Field in Weihai[J]. Northwestern Geology, 2023, 56(6): 209-218. DOI: 10.12401/j.nwg.2023050

威海市七里汤地热田特征及其成因机制

基金项目: 国家自然科学基金项目“多级次地下水流系统对北方岩溶大泉动态的影响机制”(42272288),威海市地质勘查项目“威海市七里汤、大英汤地热田资源可行性勘查”(SDGP371000201901000140-A)联合资助。
详细信息
    作者简介:

    袁星芳(1990−),女,高级工程师,主要从事水工环地质工作。E−mail:lywhyxf@163.com

    通讯作者:

    邢立亭(1966−),男,教授,主要从事水文地质教学与研究工作。E−mail:stu_jnedu@126.com

  • 中图分类号: P641.11;P314.1

Characteristics and Genetic Mechanism of Qilitang Geothermal Field in Weihai

  • 摘要:

    为保护威海市七里汤地热温泉,笔者通过地热地质调查、地球物理勘查、地球化学勘查等方法探讨了七里汤地热田的水源、热源、地温场、聚热模式、水热运移通道等要素,建立了地热田成因概念模型,揭示了其成因机制。结果表明:①地热水水化学类型以SO4·HCO3–Ca·Na和HCO3–Na·Ca型水为主,水质动态较为稳定。②热水主要补给来源是大气降水,大气降水入渗后沿着横口–杨格庄深大断裂深循环到地下约为2276 m,水温加热至114.39℃左右,在断裂交汇处再沿着破碎带上涌溢出地表成泉。③入渗地下水沿着断裂构造带往深部运移过程中不断吸取围岩中的热量,地热田温泉成因类型为深循环–对流型。④七里汤等胶东温泉地热田均受断裂控制,地热异常区的面积不大,地热田规模小,虽然胶东温泉地热具有良好的开发市场前景,但必须控制开采,以免过量开采造成资源枯竭、热水温度下降。研究成果对威海地区地热资源开发利用有一定指导意义。

    Abstract:

    In order to protect the Qilitang geothermal hot spring in Weihai City, this paper discusses the elements of the Qilitang geothermal field, such as water source, heat source, geothermal field, heat accumulation model, and water and heat migration channel, through the methods of geothermal geological survey, geophysical exploration and geochemical exploration, and establishes the genetic conceptual model of the geothermal field and reveals its genetic mechanism. The research shows that: ① The chemical types of geothermal water are mainly SO4·HCO3−Ca·Na and HCO3−Na·Ca type water, and the water quality dynamics are relatively stable. ② The main source of hot water recharge is meteoric water, which circulates to about 2276 m underground along the Hengkou−Yanggezhuang deep fracture and is heated to about 114.39 ℃. At the intersection of the faults, springs emerge along the fracture zone. ③ The infiltrated groundwater continuously absorbs heat from surrounding rocks during its deep migration along the fault tectonic belt. The genetic type of hot spring in geothermal field is deep circulation−convection type. ④ Jiaodong hot spring geothermal fields such as Qilitang are controlled by faults. The area of geothermal anomaly is small and the scale of geothermal field is small. Although Jiaodong hot spring geothermal has good market prospects for development, exploitation must be controlled to avoid resource exhaustion and temperature drop of hot water caused by excessive exploitation. The research results have certain guiding significance for the development and utilization of geothermal resources in Weihai area.

  • 高分辨率实景三维建模技术因其多尺度、多学科属性,忠实映射、高保真度等特性而广泛应用于基础测绘及地质调查等技术领域(胡运海,2012万荧等,2016李煜,2017印森林等,2018崔玉福等,2021马建雄等,2022蔡小超等,2022李林等,2022贾俊等,2023)。梁京涛等(2020)开展了基于贴近摄影测量技术的高位崩塌早期识别技术方法研究;闫博等(2020)在地质调查技术领域总结无人机工作流程基础上,对现代沉积、古代构造特征、古代岩体切割关系等方面进行了一些尝试;郑明等(2022)在青藏高原难进入地区开展基于虚拟现实技术的多维度、高精度地质调查实验;刘帅等(2022)基于无人机倾斜摄影技术对露头点实景三维模型建模并绘制地质剖面;常晓艳(2021)在地灾监测技术领域利用无人机倾斜摄影测量技术开展应用研究;刘立等(2022)构建地质灾害隐患三维图,为灾后地质灾害隐患管理、风险分析等提供保障。前人在无人机技术应用领域进行较多研究,但在基于多源数据如智能手机、数字相机、消费级无人机、无人机倾斜摄影等地质剖面建模、剖面测量、剖面投影、剖面制图综合等技术领域涉及较少。笔者在前人研究基础上,基于近景摄影测量和倾斜摄影测量等方法获取高分辨率地质剖面实景三维,结合剖面投影技术和制图综合技术对地质剖面测量和制图进行实验讨论。结果表明,该方法对提高地质剖面作业效率和测量精度有一定现实意义。

    剖面实景三维建模及处理流程(图1)主要包括获取影像、实景三维建模、实景三维剖面测量、剖面制图综合、成果提交等。

    图  1  剖面实景三维建模及处理流程
    Figure  1.  3D modeling and processing flow of geological section

    便携式实景三维采集设备包括普通智能手机、GNSS数字相机、消费级无人机等(图2);大面积作业设备多采用多镜头多旋翼或固定翼无人机。依据工作范围、工作目的、作业方式、工作区状况、剖面制图比例等制定实景三维获取方案。如智能手机、GNSS数字相机、消费级无人机满足地质队员野外典型地质现象观察和建模;多镜头无人机等实现大面积长距离地质剖面摄影及建模任务;高分卫星影像建模实现中小比例尺剖面测量和制图。

    图  2  常见地质剖面实景三维采集工具
    Figure  2.  Common acquisition tools for real 3D geological section

    实景三维建模采用Smart3D等软件进行无人机航片、地面数字相机单独建模或者联合建模。建模坐标信息常采用POS或像控点刺点方式。不同类型设备获取实景三维可利用公共点进行精度互检。实景三维剖面模型可采用通用数据格式实现模型相互转化,常见三维交换格式为如OSGB可实现Smart3D、3Dmax、EPS等软件数据交换。

    实景三维剖面测量主要包括剖面要素测量、剖面投影面选择、剖面投影。剖面要素测量主要包括产状测量、接触界线解译、断层绘制等;剖面投影面选择是指依据剖面主要产状、剖面走向等要素确定剖面的投影面;依据剖面投影结果进行立面测量,完成剖面要素采集。

    在剖面投影及矢量化采集基础上,依照地图制图综合原理对投影至投影面的剖面各种信息进行选取、简化、夸大、位移等进行综合制图。

    基于实景三维的地质剖面成果包括传统纸质图件和新型数字产品,可满足不同比例剖面图的生产,新型数字产品可满足剖面3D打印、数字科普展示、地质三维档案、互联网三维共享等多方面的应用需求,并具有良好的可复用特征。

    实景三维地质剖面测量结果与三维影像分辨率关系密切,便携式摄影测量方法获取实景三维建模质量主要取决于近景摄影分辨率、相片重叠度、近景摄影POS定位精度等。便携式近景设备GNSS基线较短,在GNSS定位精度不高情况下易导致剖面模型要素如方位、长度在内的形变。主要通过以下方法预防和改善:①增加足够密度像控点。②适当增加近景摄影GNSS基线网精度。③增加近景摄影重叠度及相片数量。④增加人工定向、测距标志、抽检要素等。

    无人机作业应采用航线规划并尽量满足贴近摄影要求,获取垂向和倾斜航片。部分实验区高分辨率卫星三维影像可以用于地质剖面宏观要素的解译,从实验精度和效果看,近景摄影测量技术与卫星遥感技术可以形成技术互补和相互验证。

    实景三维是一种精细化建模技术,满足高分辨率地质剖面测量。该技术对岩层产状、接触界线、构造裂隙的观察、解译、统计具有一定优势。依据建模结果可进行产状采集及计算、接触界线解译、裂隙等密图及玫瑰图制作等。三维地质剖面产状测量宜采用三点法直接测量和计算(王俊锋等,2014)。图3为笔者在陕西蓝田县采用外置GNSS数字相机获取的实景三维影像,在三维软件(如EPS)中对构造面理进行实景坐标测量,获得三维坐标并输出,在Struckit软件中完成产状各要素计算,完成倾向玫瑰图、裂隙等密图等绘制。点1-2-3、4-5-6、7-8-9为岩石产状面理,10-11-12为沉积地层与侵入岩接触界线、13-14为岩石中裂隙(图3)。

    图  3  实景三维产状测量图
    (a). 倾向玫瑰图 ;(b).裂隙等密图
    Figure  3.  Real 3D occurrence survey map

    产状测量应避免遮挡、影像拉花、产状面过小等部位。表1为实景三维及罗盘面理测量结果对比,倾向之差≤12°,倾角之差≤10°。依据卢立吉等(2016)方法检查本次实景三维及罗盘产状测量结果,未发现存在显著精度差异。

    表  1  实景三维与罗盘产状测量对比
    Table  1.  Comparison of real 3D and compass attitude measurement
    序号建模方法实景三维 罗盘测量 差值
    倾向倾角倾向倾角倾向倾角
    1 单反相机
    近景摄影
    建模
    113° 44° 118° 41° −5°
    2 134° 74° 133° 77° −3°
    3 121° 45° 124° 50° −3° −5°
    4 106° 57° 113° 51° −7°
    5 109° 59° 102° 61° −2°
    6 125° 41° 114° 47° 11° −6°
    1 无人机摄影
    建模(图5f
    189° 88° 187° 84°
    2 182° 87° 181° 79° −1°
    3 358° 84° 81° −3°
    4 189° 87° 192° 86° −3°
    5 275° 54° 279° 54° −4°
    下载: 导出CSV 
    | 显示表格

    空间点在平面的投影可以看成过经特定点的直线与平面的交点。空间点在平面上的投影问题可概括为直线和平面交点求解(朱鹏先等,2021):

    设非零向量为:

    $$ g = \left( {m,n,p} \right) $$ (1)

    设实景三维体一点为:

    $$ w = \left( {{x_0},{y_0},{z_0}} \right) $$ (2)

    设投影平面S方程为:

    $$ Ax + By + Cz + D = 0 $$ (3)

    设水平面为H

    经过w点的向量g方程为:

    $$ \frac{{x - {x_0}}}{m} = \frac{{y - {y_0}}}{n} = \frac{{z - {z_0}}}{p} $$ (4)

    Am+Bn+Cp≠0时,非零向量与投影面有交点,交点为投影点坐标:

    $$ x = {x_0} - \frac{{m(A{x_0} + B{y_0} + C{z_0} + D)}}{{Am + Bn + Cp}} $$ (5)
    $$ y = {y_0} - \frac{{n(A{x_0} + B{y_0} + C{z_0} + D)}}{{Am + Bn + Cp}} $$ (6)
    $$ z = {z_0} - \frac{{p(A{x_0} + B{y_0} + C{z_0} + D)}}{{Am + Bn + Cp}} $$ (7)

    实景三维与投影面位置关系包括相割、相离、相切等关系(图4)。投影面可依据地质剖面的产状、剖面走向、接触界线等关系设置一个或多个投影面。多投影面可采用分段方式分段投影,不同投影面之间坐标系统存差异。

    图  4  实景三维剖面投影方式
    Figure  4.  Real 3D section projection mode

    实景三维剖面投影主要存在几何体的长度、面积、角度变形,如剖面中岩层厚度、共轭节理夹角、表面积等几何要素都可能存在变形。剖面中长度变形对岩层厚度影响较大,设l 为岩层真厚度, l’ 为岩层投影后厚度,gSSHθ为向量g与岩层面走向夹角,g为平行投影时满足:l’ =l ×cosθ,当θ=0°时长度变形最小,当θ=30°时,长度变形约大于13%。剖面岩层总体走向、断层走向、接触接线走向等与g夹角不建议大于30°。

    SH时实景三维投影垂向变形最小;当g为平行向量且满足gSSH时为正投影,正投影时实景三维剖面在投影面S中横轴整体变形最小。因此,实景三维剖面投影面宜选择正投影。剖面走向方位的选择与岩层走向、接触界线走向、断层走向相协调,避免剖面的长度、角度、面积变形过大。

    实景三维常见测量方法主要为直接测量法和立面图绘制法。直接测量法从实景三维影像中直接测量坐标位置、岩层厚度等利用制图软件直接进行剖面绘制,该方法适合实景三维直接绘制柱状剖面。如黄土高原中生界水平地层(图5b、图5e、图5g)、探槽、土壤样坑、拨土等工程。

    图  5  典型地区地质剖面实景三维
    (a).新疆乌苏东图津河组(C2dt)实景三维;(b).陕西铜川下白垩统宜君组(K1y)实景三维;(c).陕西安康白钨矿探槽实景三维;(d).陕西宝鸡土壤采样坑实景三维;(e).陕西铜川下侏罗统直罗组(J1z)实景三维;(f).陕西西安采石场实景三维;(g).陕西铜川下侏罗统延安组(J1y)实景三维
    Figure  5.  The typical area of real 3D geological section

    立面图是一种平行正投影的结果,投影面与水平面垂直,常用于建筑物外立面绘制(王莫,2015)。常用软件如EPS等提供立面图绘制功能。利用立面图功能,采集三维剖面要素。主要步骤:①依据剖面测量需要,裁剪实景三维。②依据剖面位置、岩层走向、剖面走向等绘制剖面线并构造垂向投影面。③立面模式下进行各要素选取、采集等,依照采集结果进行地质剖面制图综合。

    在现有技术条件下,实景三维剖面精度检验常见方法有像控点(特征点)检验法、标志抽样检验法、激光水平标检验法等。

    像控点(特征点)检验法:在获取实景三维剖面附近按照一定几何间距布设一定数量或一定密度的像控点,利用传统测量仪器如全站仪或CORS等进行测量并获取空间三维坐标,通过空间三维坐标与像控点或特征点的坐标残差分析,以评价实景三维采集精度的方法。该方法在大面积、长距离剖面等较常用。

    标志抽样检验法指依照钢尺、罗盘等传统仪器,对实景三维剖面采集的同位置岩层产状、岩层厚度、裂隙走向、构造面理等进行测量检核,以评价实景三维建模过程层中的整体变形及局部细节建模精度。

    激光水平标检验法:在狭小的空间如土壤探坑、地质探槽等地区,利用激光水平装置制造激光水平线或激光垂向交叉线,激光水平线满足高程相等、满足激光线走向一致等特性,在获取实景三维后通过检验实景三维影像中激光水平线的高程,或者激光标志线的走向特性。

    实景三维影像获取时可利用测量标尺、直角三角形等特定的几何模型构造长度、角度、面积等检验条件进行精度检验。

    与传统遥感解译方式不同,高分辨率实景三维地质剖面分辨率可达毫米级,其地质单元色调和纹理更接近目视效果,依据剖面地质单元几何特征、色调、纹理等通过三维模型直接测量可完成地质剖面制图。剖面制图比例尺理论精度为0.1 mm,表2为实景三维地质剖面制图比例与实景三维分辨率对应表。

    表  2  制图比例与分辨率
    Table  2.  Mapping scale and resolution
    制图比例分辨率(m)制图比例分辨率(m)
    1∶500.0051∶5000.05
    1∶1000.011∶10000.1
    1∶2500.0251∶20000.2
    下载: 导出CSV 
    | 显示表格

    地质剖面制图综合是指将大比例尺剖面图缩编成中小比例尺图的过程,依据用图性质、比例尺等通过简化、概括、抽象等方法舍去次要信息,使得图面层次协调、对象清晰的制图过程(曲平等,2012)。常见地质剖面制图综合方法有逐级缩编法、自动综合法等。低分辨率实景三维不能绘制高于同等比例尺精度地质剖面,高分辨率实景三维影像可以通过制图综合方法绘制中小比例尺剖面图。

    实景三维地质剖面测量应进行最大比例尺测图,依据制图综合原理将大比例尺向中小比例尺逐级缩编。通过制图综合过程中的简化、位移、夸大、合并、分割等方法完成剖面制图综合。

    例如,获取0.01 m分辨率三维影像,应采集1∶100数字剖面,依照制图综合方法逐级完成1∶250、1∶500、1∶1000、1∶2000剖面绘制。剖面绘制过程中,对重要部位进行夸大,非重要部位简化、合并、位移等概括表示。岩层产状、断层走向等要素应在最大分辨率下完成采集,制图综合过程中对密集或次要信息进行抽稀或概略。

    自动综合法是指通过技术手段自动生成任意中小比例尺数据,信息量随着比例尺变化自动增减,信息的压缩与复原和比例尺是自动适应的(赵丽宁等,2001)。随地质剖面显示比例尺变化,断层、产状、岩性花纹、裂隙等剖面信息自适应增减,并呈现信息承载的最优化特征。常见的自动综合算法有优先级法(刘波等,2008)、结点自动删除法(李靖涵,2018)、弯曲简化法(段修梅,2012)、移动平均法等方法对大比例地质剖面进行自动选取、简化等。

    试验区位于陕西省铜川市,出露岩石地层有中三叠统纸坊组(T2z)、上三叠统铜川组(T3t)、胡家组(T3h)、永坪组(T3y)、瓦窑堡组(T3w)、下侏罗统延安组(J1y)、直罗组(J1z)、下白垩统宜君组(K1y)、洛河组(K1l)等。地层产状发育较缓,地质剖面常见为沿沟系发育的垂直剖面,主要岩性为长石石英砂岩、砾岩、泥岩、油页岩、碳质页岩、煤线等。

    本区域实景三维资料获取主要采用大疆精灵4无人机平台,采用垂直及倾斜航线飞行,航高约10~30 m,航向重叠度设置80%,旁向重叠度设置60%。便携式近景GNSS数字相机路线摄影测量补充。完成三叠系、侏罗系、白垩系地质剖面总计约2.6 km。实验对比实景三维影(图5b、图5e、图5g)及地质剖面特征。

    (1)通过GNSS数字相机获取实景三维影像分辨率可达1~5 mm,基本可以识别10~30 mm砾石等要素,如宜君组中大量砾岩。砂岩、泥岩、煤线等要素几何表达清晰可见,岩层产状、岩层厚度等要素测量结果与检查结果吻合较好。实景三维建模应用效果优于同位置肉眼观察,部分人员难以涉足陡崖地形区有显著的测量优势。

    (2)无人机低空摄影可满足大面积长距离剖面的实景三维建模。分辨率可达0.5~5 cm,无人机建模分辨率略低于数字相机,但砂岩、泥岩、煤线等要素较易区分,砂岩中砾石、岩石中垂向节理及小型断裂亦可清晰分辨。实验表明,无人机剖面应用从效率及测量精度上与传统罗盘、钢尺方法无显著区别,与RTK方法(李玲等,2018)地质剖面相比具有显著的效率优势。

    (3)GNSS数字相机近景摄影较无人机摄影具有一定高分辨率优势,其缺点也较明显如:摄影基线网较短且在摄影基线布置不合理情况下易导致三维模型垂向变形较大。无人机建模后,通过与数字影像公共点采集一定密度像控点、无人机影像和数字影像联合建模等方案可减小数字相机或者智能手机影像建模的局部误差。

    试验区位于陕西关中平原区农田,为研究农田表层土壤及植物根系状况,进行土壤取样采样坑实验,实验坑长宽高约1 m×1 m×1 m。采用大疆御无人机及GNSS数字相机进行对比实验(图5d)。无人机航高5~15 m,航向重叠度80%,旁向重叠度60%;GNSS数字相机地表拍摄,相机与目标距离约2~5 m,从不同方向完成采样坑相片150余张。

    通过实验对比,GNSS数字相机与无人机获取探坑几何要素精度基本相当,直线定向、长度变形差异可忽略不计,满足传统采样坑的三维建模精度要求。

    GNSS数字相机实景三维分辨率优于1 mm,实景三维中可见清晰的小麦根须以及杂草根茎。无人机获取实景三维优于5 mm,采样坑土壤含水、土壤成分变化等色调信息实景三维中能较好体现。实景三维土壤采样坑建模结果优于同等距离条件下肉眼观察要素。

    地质探槽、拨土等是地质施工中重要的工作方法和实物依据,三维可视化后具有较好的工程应用价值。实景三维探槽能够较好的复原探槽及矿体或矿化体的赋存位置及其几何形态。可采用普通智能手机或者GNSS数字相机完成建模数据获取。普通智能手机应布设相控或获得GNSS三维坐标。

    试验区位于陕西省宁陕县花岗岩与地层接触部位,因本区域高大植被覆盖较好,无人机完成航摄较为困难。从东、南、西、北、东北、西北、西南、东南等不同方向获取建模相片222张,并从垂向获取探槽壁、探槽底部不同方位的相片,相片重叠度优于90%。数字相机或智能手机与探槽距离约2~10 m。

    综合实验结果显示:①智能手机相片建模分辨率优于1~5 mm,GNSS数字相机分辨率优于1~5 mm。实景三维模型分辨率优于同等条件下肉眼所见。②探槽测量中采用激光水平光源制造激光水平线,三维建模后利用激光水平线验证探槽垂向变形状况(图5c)。实景三维产状测量结果与传统罗盘无显著差异,探槽长度等几何形变可忽略不计。③采用激光水平装置制造垂直或水平相交激光线及交点,或采用激光反光标志等制造相控点,并利用全站仪或CORS测量。标志点作为建模像控点或检验点,GNSS定位困难时,将提高三维建模的几何精度。④白钨矿在紫外光下呈现出浅蓝色萤光,紫外光源激发状态下获取近景相片,重建实景三维模型,有利于立体环境下矿体或矿化体观察和三维空间角度矿体的赋存状态研究。

    航空摄影测量存在困难时可采用高分辨率卫星遥感影像获取三维模型,或采用DEM与正射影像形成三维模型,也可采用三维模型与近景摄影测量等综合方式形成三维模型,完成相应的地质剖面测量、制图综合等。

    试验区位于新疆乌苏博罗克鲁山腹地,出露地层为东图津河组(C2dt)。剖面沿南北向断裂发育,断裂东西两侧崖壁60°~90°近直立状,崖壁高差约400 m。通过高分卫片、DEM、近景摄影测量等综合方法建模获取实景三维(图5)。近景相片分辨率优于20 cm,实景三维中一般的地层界线、构造界线、垂向节理等可清晰解译。东图津河组一段(C2dt1)主要为火山碎屑岩,近景相片中呈深灰色或灰黑色,二段(C2dt2)主要岩性灰岩,近景相片呈乳白色。东图津河组地质剖面总长度约2.8 km,剖面北侧灰岩段逆冲于火山碎屑岩之上;南测灰岩段与火山碎屑岩段之间发育大量的互层或条带。灰岩中穿插大量火山碎屑岩条带,火山碎屑岩条带随高度变化呈现厚度变薄、频次减弱特征(图6)。依实景三维剖面及测量结果推测,东图津河组海陆交互相特征明显(张天继等,2006)。

    图  6  新疆乌苏东图津河组实景三维制图综合剖面
    Figure  6.  Real 3D and Cartographic synthetic section of Dongtujinhe Formation in Wusu, Xinjiang

    实验表明,中高山区或者造山带地质剖面实景三维测量还应参考如下几个步骤和原则:①剖面宏观走向依据岩层的主要产状、接触界线等整体投影形变最小的原则。②实景三维测量先整体后局部。先整体指先绘制剖面的整体界线、地层界线、断层界线等;后局部是指在宏观界线基础上,绘制岩层、裂隙、测量产状等。③剖面的绘制应该按照大比例尺、中比例尺、小比例尺逐级缩编,剖面逐级缩编需要按照制图综合的基本原则完成,对具有特殊意义的地层或非正式填图单元按照一定制图综合原则合理放大、平移、合并等。

    (1)测图精度高、效率高。普通数字相机或智能相机像素目前已达到1亿像素,对应地质剖面分辨率部分优于毫米级。通过测试,部分实景三维剖面整体建模效果优于同位置肉眼观察。

    (2)设备多样,采集方案多样。地质剖面实景三维获取方式多样,长距离、大面积地质剖面可采用多镜头长航时无人机低空采集,地质队员单人携带便携式摄影器材如数字相机、智能手机等可以完成剖面地质调查或路线地质调查典型地质现象的实景三维的获取工作。

    (3)数据共享。实景三维数据基于通用三维建模格式,模型具有良好的几何特征和数据共享特征。实景三维模型存储格式具有精确的几何特征和丰富的纹理特征,可以作为重要工程施工的佐证档案。实景三维与传统的存档相片相比具有精确的可测量性、信息多样性等特征。

    (4)基于多光谱相机的实景三维地质剖面,将为剖面测量和矿物诊断提供良好的制图依据。

    致谢:本次实验过程感谢中国地质调查局西安地质调查中心朱涛高级工程师、西安地质矿产勘查开发院苏英明等工程师参与研究并提出宝贵意见。

  • 图  1   七里汤采样点分布图(a)及典型钻孔地层结构图(b)

    Figure  1.   (a) Qilitang sampling point distribution and (b) typical borehole formation structure

    图  2   七里汤地热田水样点水化学Piper图

    Figure  2.   Water chemical Piper diagram of water sample in Qilitang hot field

    图  3   七里汤地热水化学组分历年含量曲线图

    Figure  3.   Content curve of chemical components in Qilitang geothermal water over the years

    图  4   水位与水温动态历年变化图

    Figure  4.   Dynamics of water level and temperature

    图  5   七里汤地温等值线图

    Figure  5.   Ground temperature contour map of Qilitang

    图  6   钻孔垂向测温图

    Figure  6.   Vertical temperature measurement of borehole

    图  7   水样δ2H−δ18O关系图

    七里汤、大英汤的地热水的氢氧同位素为实测数据,其他数据来自王昕昀(2018

    Figure  7.   Relationship between δ2H and δ18O in water samples

    图  8   胶东半岛硅热流等值线图(据史猛等,2021修改)

    Figure  8.   Isoline map of silicon heat flow in Jiaodong Peninsula

    图  9   SiO2浓度曲线图

    Figure  9.   SiO2 concentration curve

    图  10   胶东地区部分温泉成因示意图

    a. 温泉汤温泉成因示意图(据隋来伦,2020修改);b. 招远温泉成因示意图(钟振楠等,2021);c. 即墨温泉成因示意图(据王昕昀等,2018修改)

    Figure  10.   Schematic diagram of some hot springs in Jiaodong area

    图  11   七里汤地热田成因机制

    Figure  11.   Genetic mechanism of hot field in Qilitang field

    表  1   七里汤田水化学类型表

    Table  1   Chemical types of Qilitang water

    采样编号水化学类型采样编号水化学类型采样编号水化学类型
    Y01HCO3·Cl–Ca·Mg·NaY02Cl·SO4–Ca·MgY03SO4·HCO3–Ca·Na
    Y04Cl·HCO3–Ca·NaY05NO3·Cl–Ca·NaY06NO3–Ca·Na
    Y07Cl·HCO3–Ca·Na·MgY08HCO3·Cl–Ca·NaY09NO3–Ca·Na
    Y10HCO3–Ca·MgY11SO4–Ca·MgY12SO4–Ca·Mg
    Y13NO3·HCO3–Ca·MgY14Cl–Ca·NaY15Cl·HCO3–Ca·Na
    ZK1HCO3·SO4–Na·CaZK2HCO3–Na·CaZK3SO4·HCO3–Ca·Na
    下载: 导出CSV

    表  2   胶东部分温泉热储温度及所处构造表

    Table  2   Temperature and structure of some hot spring heat storage in Jiaodong

    温泉热储温度(℃)循环深度(m)构造部位备注
    威海宝泉汤115.162022.14NW神道口断裂;NE金线顶断裂
    威海温泉汤125.51743NW温泉汤断裂;NE西字城—鲍家山断裂
    文登洪水岚汤135.025532.74NE横口—东柳林断裂
    文登呼雷汤136.61352.69NE青龙河断裂;NW汤西断裂
    文登汤村汤106.327302.85NE昌阳河断裂;NW汤村断裂
    文登大英汤109.181808.79NE米山断裂、NE甸里院断裂
    乳山小汤110.471503.2NE仙姑顶断裂
    牟平龙泉汤109.349653.24NE汤西—龙泉断裂
    牟平于家汤116.33620.15NE桃村断裂、郭城—即墨断裂;NW于家汤断裂
    乳山兴村汤112.619784.65NE朱吴断裂
    即墨东温泉123.87803.84NE青岛断裂、NE郭城—即墨断裂
    栖霞艾山汤117.098568.32NE寨里—杨础断裂
    蓬莱温石汤132.098921.29NE村里集断裂;NW温石汤断裂
    招远东汤温泉127.633634.7NE玲珑断裂;NW招平断裂(招远段)
     注:○表示资料来自于杜桂林等(2012);※表示资料来自于隋来伦等(2020);☆表示资料来自于史猛等(2019a)。
    下载: 导出CSV
  • 陈墨香. 华北地热[M]. 北京: 科学出版社, 1988.
    陈海雯, 宋荣彩, 张超, 等.基于因子分析法的干热岩地热资源热储评价[J]. 成都理工大学学报(自然科学版), 2023, 50(3): 333−350.

    CHENG Haiwen, SONG Rongcai, ZHANG Chao, et al. Geothermal storage evaluation of geothermal resources in hot dry rock based on factor analysis method [J], Journal of Chengdu University of Technology (Science & Technology Edition), 2023, 50(3): 333−350.

    崔煜烽,张杰,殷焘,等. 鲁东地区地热资源分布规律及勘查定井方法探讨[J]. 中国地质调查,2018,5(2):86–92.

    CUI Yufeng, ZHANG Jie, YIN Tao, et al. Discussion on distribution of geothermal resources and locating wells methods of geothermal exploration in Eastern Shandong Province [J]. Geological survey of China, 2018, 5(02): 86-92.

    杜桂林,曹文海,翟滨. 威海市宝泉汤温泉成因及其对断裂和地震活动性的影响[J]. 海洋地质与第四纪地质,2012,32(5):67–71.

    DU Guilin, CAO Wenhai, ZHAI Bin. Genesis of Baoquantang hot spring in Weihai and its influence on faulting and seismic activities[J]. Marine Geology and Quaternary Geology, 2012, 32(5): 67-71.

    黄建军,周阳,滕宏泉,等. 关中盆地西安凹陷地热水赋存特征及其资源量估算[J]. 西北地质,2021,54(1):196–203.

    HUANG Jianjun, ZHOU Yang, TENG Hongquan, et al. On the Occurrence Characteristics and the Estimation of Geothermal Water in Xi'an Sag, Guanzhong Basin[J]. Northwestern Geology, 2021, 54(1): 196-203.

    金秉福,张云吉,栾光忠. 胶东半岛地热资源的特征[J]. 烟台师范学院学报(自然科学版),1999,15(4):297–301.

    JIN Bingfu, ZHANG Yunji, LUAN Guangzhong. 1999, Characteristics of geothermal resources in Jiaodong Peninsula[J]. Yantai Teachers University Journal(Natural Science), 15(4): 297-301.

    敬民. 地热能否烧开“双碳”目标[J]. 中国石油石化,2021,(19):40–41. doi: 10.3969/j.issn.1671-7708.2021.19.014

    JING Min. Can geothermal heat boil "double carbon" target [J]. China Petroleum & Petrochemical Corporation, 2021(19): 40-41. doi: 10.3969/j.issn.1671-7708.2021.19.014

    李攻科,王卫星,李宏,等. 河北汤泉地热田地温场分布及其控制因素研究[J]. 中国地质,2014,41(6):2099–2109.

    LI Gongke, WANG Weixing, LI Hong et al. Temperature distribution and controlling factors of the Tangquan geothermal field in Hebei Province[J]. Geology in China, 2014, 41(6): 2099-2109.

    史猛,张杰,殷焘,等. 胶东半岛中低温对流型地热资源水化学特征分析[J]. 地质学报,2019a,93(S1):138–148.

    SHI Meng, ZHANG Jie, YIN Tao, et al. Hydrochemistry characteristic analysis of low-medium temperature convective geothermal resources in Jiaodong Peninsula[J]. Acta Geologica Sinica, 2019a, 93(S1): 138-148.

    史猛,康凤新,张杰,等. 胶东半岛中低温对流型地热资源赋存机理及找热模型[J]. 地质论评,2019b,65(5):1276–1287.

    SHI Meng, KANG Fengxin, Zhang JIE, et al. Occurrence mechanism and geothermal exploration model of low-medium temperature geothermal systems of convective type in Jiaodong Peninsula[J]. Geological Review, 2019b, 65(5): 1276-1287.

    史猛,康凤新,张杰,等. 胶东半岛不同构造单元深部热流分流聚热模式[J]. 地质学报,2021,95(05):1594–1605. doi: 10.3969/j.issn.0001-5717.2021.05.020

    SHI Meng, KANG Fengxin, ZHANG Jie, et al. Discussion on the deep heat flow diversion-acculturation between uplift and depression in different tectionic units in the Jiaodong Peninula[J]. Acta Geologica Sinica, 2021, 95(05): 1594-1605. doi: 10.3969/j.issn.0001-5717.2021.05.020

    隋来伦,杜桂林,陈其峰. 威海市温泉汤温泉形成模式[J]. 山东国土资源,2020,36(10):40–45.

    SUI Lailun, DU Guilin, CHEN Qinfeng. Formation Mode of Wenquantang Hot Spring in Weihai City[J]. Shandong Land and Resources, 2020, 36(10): 40-45.

    田粟. 威海地区构造型地热田成因机制研究[D]. 济南. 济南大学, 2012. 1-72.

    TIAN Li. Study on the genetic mechanism of tectonic geothermal fields in Weihai area[D]. Jinan: University of Jinan, 2012: 1-72.

    王贵玲,张薇,蔺文静,等. 京津冀地区地热资源成藏模式与潜力研究[J]. 中国地质,2017,44(6):1074–1085. doi: 10.12029/gc20170603

    WANG Guilin, ZHANG Wei, LIN Wenjing, et al. Research on formation mode and development potential of geothermal resources in Beijing-Tianjin-Hebei region[J]. Geology in China, 2017, 44(6): 1074-1085. doi: 10.12029/gc20170603

    王昕昀. 山东半岛西部温泉水化学特征及成因研究[D]. 北京. 中国地质大学(北京), 2018

    WANG Xinyun. Study on chemical characteristics and genesis of spring water in western Shandong peninsula[D]. Beijing: China University of Geosciences, 2018.

    王秀芹,张平平,杨亚宾. 山东半岛蓝色经济区地热资源与开发利用区划[J]. 山东国土资源,2015,31(07):40–44. doi: 10.3969/j.issn.1672-6979.2015.07.010

    WANG Xiuqin, ZHANG Pingping, YANG Yabin. Geothermal Resources and Development and Utilization of Regionalization of Shandong Peninsula Blue Economic Zone[J]. Shandong Land and Resources, 2015, 31(07): 40-44. doi: 10.3969/j.issn.1672-6979.2015.07.010

    杨合群,赵国斌,姜寒冰,等. 西秦岭成矿带矿床成矿系列概论[J]. 西北地质,2022,55(1):114–128.

    YANG Hequn, ZHAO Guobin, JIANG Hanbing, et al. Discussion on the Metallogenic Series of Mineral Deposits in the Metallogenic Belt of West Qinling, China[J]. Northwestern Geology, 2022, 55(1): 114-128.

    杨学明,雷清,聂冀强,等. 太行拱断束地热资源调查评价-基于大地电磁测深结果的分析[J]. 西北地质,2020,53(4):235–245.

    YANG Xueming, LEI Qing, NIE Jiqiang, et al. Investigation and Evaluation of Geothermal Resources of Taihang Arch Fault Cluster Based on the Magnetotelluric Exploration[J]. Northwestern Geology, 2020, 53(4): 235-245.

    张涛. 胶东温泉地热水水化学及同位素特征研究[J]. 山东国土资源,2011,27(12):11–16.

    ZHANG Tao. 2011. Study on hydrochemistry and isotopic characteristics of geothermal water in Jiaodong area[J]. Shandong Land and Resources, 27(12): 11-16.

    钟振楠,康凤新,宋明忠,等. 鲁东招远地热田地热通量及地热成因研究[J]. 地质论报,2021,95(05):1594–1605.

    ZHONG Zhennan, KANG Fengxin, SONG Mingzhong, et al. Study on geothermal flux and geothermal genesis of Zhaoyuan geothermal field in Eastern Shandong geothermal area [J]. Geological Review, 2021, 95(05): 1594-1605.

    周国富,宫丽丽. 京津冀能源消耗的碳足迹及其影响因素分析[J]. 经济问题,2014,(08):27–31.

    ZHOU Guofu, GONG Lili. Factor Analysis of Carbon Footprint of Beijing Tianjin Hebei Province Energy Consumption and Influence [J]. Economic Problems, 2014(08): 27-31.

图(11)  /  表(2)
计量
  • 文章访问数:  98
  • HTML全文浏览量:  17
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-08
  • 修回日期:  2022-10-07
  • 网络出版日期:  2023-10-29
  • 刊出日期:  2023-12-19

目录

/

返回文章
返回