ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    高级检索

    基于机器学习和全岩成分识别东昆仑祁漫塔格斑岩–矽卡岩矿床成矿岩体和贫矿岩体

    刘嘉情, 钟世华, 李三忠, 丰成友, 戴黎明, 索艳慧, 郭广慧, 牛警徽, 薛梓萌, 黄宇

    刘嘉情, 钟世华, 李三忠, 等. 基于机器学习和全岩成分识别东昆仑祁漫塔格斑岩–矽卡岩矿床成矿岩体和贫矿岩体[J]. 西北地质, 2023, 56(6): 41-56. DOI: 10.12401/j.nwg.2023155
    引用本文: 刘嘉情, 钟世华, 李三忠, 等. 基于机器学习和全岩成分识别东昆仑祁漫塔格斑岩–矽卡岩矿床成矿岩体和贫矿岩体[J]. 西北地质, 2023, 56(6): 41-56. DOI: 10.12401/j.nwg.2023155
    LIU Jiaqing, ZHONG Shihua, LI Sanzhong, et al. Identification of Mineralized and Barren Magmatic Rocks for the Pophryry−Skarn Deposits from the Qimantagh, East Kunlun: Based on Machine Learning and Whole−Rock Compositions[J]. Northwestern Geology, 2023, 56(6): 41-56. DOI: 10.12401/j.nwg.2023155
    Citation: LIU Jiaqing, ZHONG Shihua, LI Sanzhong, et al. Identification of Mineralized and Barren Magmatic Rocks for the Pophryry−Skarn Deposits from the Qimantagh, East Kunlun: Based on Machine Learning and Whole−Rock Compositions[J]. Northwestern Geology, 2023, 56(6): 41-56. DOI: 10.12401/j.nwg.2023155

    基于机器学习和全岩成分识别东昆仑祁漫塔格斑岩–矽卡岩矿床成矿岩体和贫矿岩体

    基金项目: 国家自然科学青年基金项目(42203066)和山东省自然科学青年基金项目(ZR2020QD027)联合资助。
    详细信息
      作者简介:

      刘嘉情(1999−),女,硕士研究生,岩石学、矿物学、矿床学专业。E−mail:liujiaqing11292022@163.com

      通讯作者:

      钟世华(1989−),男,博士,副教授,从事地质大数据与成矿研究。E−mail:zhongshihua@ouc.edu.cn

    • 中图分类号: P62;P588.1

    Identification of Mineralized and Barren Magmatic Rocks for the Pophryry−Skarn Deposits from the Qimantagh, East Kunlun: Based on Machine Learning and Whole−Rock Compositions

    • 摘要:

      东昆仑祁漫塔格成矿带是中国西北地区重要的铜钼铁铅锌多金属成矿带,发育卡尔却卡、野马泉、维宝、乌兰乌珠儿等许多与花岗岩类有关的斑岩−矽卡岩矿床。随着新一轮找矿突破战略行动的开展,进一步加强对祁漫塔格成矿带花岗岩成矿潜力的研究,已成为推动该地区金属矿产储量增长的重要突破口。为此,笔者在系统收集祁漫塔格成矿带典型斑岩−矽卡岩多金属矿床成矿岩体和贫矿岩体(即非成矿岩体)的全岩主量和微量元素数据基础上,选取28种常见的全岩地球化学特征,借助机器学习算法——随机森林,开展机器学习模型训练,建立能够识别该地区斑岩−矽卡岩多金属矿床成矿岩体和非成矿岩体的新方法。根据模型评价指标,笔者训练得到的随机森林分类模型准确率为0.90,证明该方法能够有效识别成矿岩体和非成矿岩体。该研究为祁漫塔格成矿带斑岩−矽卡岩多金属矿床的找矿勘查提供了新思路,将极大地提高找矿效率、降低找矿经济和人力成本,从而更好的服务新一轮找矿突破战略行动。相关机器学习代码已上传至GitHub,地址为https://github.com/ShihuaZhong/2023-Qimantagh-RF-whole-rock-classifier

      Abstract:

      The Qimantagh Orogenic Belt in the East Kunlun is an important Cu−Mo−Fe−Pb−Zn polymetallic mineralization belt in the northwest of China, and many porphyry-skarn deposits that are genetically related to granitoids are founded, such as Kaerqueka, Yemaquan, Weibao, and Wulanwuzhuer. With the development of a new round of strategic action to find mineral breakthroughs, further strengthening the study of granite mineralization potential in the Qimantagh Orogenic Belt has become an important breakthrough to promote the growth of metal mineral reserves in the region. In this paper, based on the systematic collection of whole−rock major and trace element data of mineralized and barren magmatic rocks of typical porphyry−skarn polymetallic deposits in the Qimantagh Orogenic Belt, 28 common whole-rock geochemical features are selected, and the machine learning algorithm (Random Forest) is used for the training of the machine learning model to establish a machine learning model capable of identifying the mineralized and barren magmatic rocks of porphyry−skarn polymetallic deposits in the region. A new method is developed to identify the mineralized and barren magmatic rocks in the porphyry−skarn polymetallic deposits in this area. According to the model evaluation metric, the accuracy of the Random Forest classification model trained in this paper is 0.90, which proves that the method can effectively recognize mineralized and barren magmatic rocks. This study provides a new idea for the prospecting and exploration of porphyry−skarn polymetallic deposits in the Qimantagh Orogenic Belt, which will greatly improve the efficiency of prospecting, reduce the economic and labor costs of prospecting, and thus better serve the new round of strategic action of prospecting and breakthrough. The machine learning code has been uploaded to GitHub at https://github.com/ShihuaZhong/2023-Qimantagh-RF-whole-rock-classifier.

    • 大兴安岭地区分布着面积十分巨大的岩浆岩带,其中三分之二由火山岩组成,规模如此之大的火山岩分布,其形成原因一直是众多地质学者研究的热点问题。大兴安岭作为兴蒙造山带重要组成部分,在晚古生代经历了古亚洲的闭合,随后在中生代发生了比较典型的隆起事件,在白垩纪该构造隆起达到高潮,众多学者认为该时期大兴安岭处于伸展构造环境下(葛文春等,2001孟恩等,2011Jahn et al., 2001邵济安等,2002林强等,2003Wang et al., 2006Zhang et al., 2008),但对于中-晚侏罗世构造环境研究还没有形成统一认识,主要包括挤压构造背景(赵书跃等,2004刘俊杰等,2006)和造山后伸展构造背景(陈志广等,2006孟恩等,2011程银行等,2013王杰等,2014李鹏川等,2016)等。近年来,随着研究的深入,在大兴安岭地区获得了大量的火山岩年龄数据,但研究大部分围绕大兴安岭北段,而对于中南段研究较少。钓鱼台地区位于内蒙古东部,大兴安岭中段,靠近兴安地块和松嫩地块的结合部位,其构造位置和地质特征均具有代表性。因此,笔者选取内蒙古东部钓鱼台地区的满克头鄂博组火山岩进行岩石学、年代学和地球化学等方面开展相关研究工作,以期厘定该地区火山岩的形成时代、岩浆来源和构造背景,结合前人的研究成果,为大兴安岭中段在中—晚侏罗世的地质演化提供新的证据。

      研究区位于内蒙古自治区乌兰浩特市西北部,南为乌兰浩特市,东为扎赉特旗,西为阿尔山市,研究区区域大地构造属于天山–兴蒙造山带,大兴安岭弧盆系,东乌旗-多宝山岛弧范围内,研究区靠近兴安地块和松嫩地块的结合部位,贺根山-嫩江-黑河板块缝合带位于研究区南部(图1a)。研究区主构造线方向为NE向,古生代与中生代构造线方向总体一致,均为NE向,主要缘于西伯利亚板块东南缘古生代主构造线在本区一改近EW向构造格局所致,因此构造特色显著。断裂构造为研究区主要的构造形迹,其次为褶皱构造。研究区地层出露主要以晚古生界和中生界为主,除了部分地层为碎屑岩沉积外,其余大部分为火山岩沉积,区内岩浆岩较发育,整体呈NE向展布,与区域内主构造线一致,侵入时代主要为白垩纪,以酸性岩类为主。地层单位由老至新划分为古生界石炭系格根敖包组(C2g),中生界侏罗系玛尼吐组(J3mn)、满克头鄂博组(J3m)(图1b)。

      图  1  钓鱼台地区地质简图(a据刘晨等,2017改编)
      1.第四系;2.晚侏罗系玛尼吐组;3.晚侏罗系满克头鄂博组;4.晚石炭系格根敖包组;5.花岗斑岩;6.流纹斑岩;7.正长花岗岩;8.锆石采集点;9.地球化学样品采集点;10.构造
      Figure  1.  Geological sketch of the Diaoyutai area

      本次工作主要对钓鱼台地区满克头鄂博组流纹质凝灰岩进行研究,该组主要分布于工作区西部的门德沟-托欣河一带,总体呈NE向展布,出露面积约为84.07 km2。该组为一套陆相酸性火山岩组合,其角度不整合于格根敖包组及晚三叠世中细粒二长花岗岩之上,与上覆玛尼吐组为整合接触。下部主要岩性为凝灰质含砾砂岩、沉火山角砾凝灰岩及少量复成分砾岩、流纹质火山角砾凝灰岩等,产井上大胎壳叶肢介(Magumbonia-jingshangensis)、蜂窝梁大胎壳叶肢介(Magumbonia-fengwolingensis)。上部主要岩性为流纹质火山角砾凝灰岩、流纹质晶屑凝灰岩、流纹质熔结凝灰岩及流纹岩等。其中锆石年代学样品编号为TW11,地球化学样品为工作区内新鲜的基岩中取得,排除了变质、蚀变等情况的影响,编号为DP7H01~06,同时对岩石样品进行岩石学鉴定。

      流纹质凝灰岩,晶屑玻屑凝灰结构,块状构造,部分具假流纹构造。岩石有晶屑、玻屑、岩屑等组成。晶屑为尖角状或不规则状,有的保留半自形,晶屑成分主要为斜长石、钾长石、石英和少部分的黑云母,钾长石晶屑遭泥化作用,斜长石遭绢云母化作用,有环带构造,多数石英晶屑保留熔蚀港湾状,黑云母晶屑为片状,多数黑云母遭脱铁作用,并有铁质析出,晶屑粒径为0.05~2.00 mm,少部分晶屑可达3.0 mm的角砾级的晶屑,含量约为25%。玻屑部分为粒径小于0.05 mm的火山尘质点,部分玻屑为尖角状、凹面棱角、蠕虫状或不规则状,玻屑集合体呈条纹状,微具有塑性,在刚性的晶屑周围形成绕流,假流纹构造,大部分玻屑遭脱玻化作用,有的略有偏光反应,有的重结晶成细小的长英质,不透明矿物及铁质少量,岩石遭到强烈的绢云母化作用,岩石有裂隙发育,裂隙被铁质充填,含量约为65%。岩屑主要成分为流纹岩、英安岩及安山岩,次棱角状,大小为0.20~2.00 mm,含量约为10%(图2a图2b)。

      图  2  钓鱼台地区火山岩野外(a)及镜下照片(b)
      Figure  2.  (a) Field and (b) microscopic photographs of volcanic rocks in the Diaoyutai area

      河北省廊坊市区域地质调查研究院承担锆石测年工作中单矿物分选工作。首先将每件样品破碎,并粉碎至适当粒径,通过清洗、烘干、筛选等程序,选出不同粒级的锆石晶体,镜下挑选出颗粒较好的锆石晶体进行制靶。锆石CL图像拍摄与LA-ICP-MS U-Pb定年在北京科荟测试技术有限公司完成,采用的激光剥蚀电感耦合等离子质谱仪是德国生产的Jena elite,激光器型号是美国生产的Newwave 193-UC。根据锆石的阴极发光图像、透射光图像选取无包裹体、没有裂隙的合适锆石位置,采用193 mm准分子激光器对锆石表面进行剥蚀,激光剥蚀直径是25 μm,剥蚀频率10 Hz。以He气作为剥蚀物质的载气,将剥蚀物质运送至质谱仪进行测试分析。ICPMS的高频发射器功率是1200 w,冷却气(Ar)流是9 L/min,分析的积分时间共40 s,空白采集时间30 s。样品数据处理以NIST 610和GJ-1作为内部锆石标准,软件使用ICPMSData程序(刘平华等,2010)和Isopolot程序(Ludwing, 2003)进行分析和作图。

      地球化学样品共计6件,进行主量、微量及稀土元素分析,测试由河北省区域地质矿产调查研究所实验室完成。首先对样品进行去风化壳工作,获得新鲜样品后进行粉碎,并用球磨仪研磨成粉末状,主量元素采用Axios max X射线荧光光谱仪进行测试,精度优于5%,微量元素采用电感耦合等离子体质谱仪进行测试,分析精度优于5%,技术方法满足要求,地球化学图解经过去掉烧失量重新计算作图。

      研究区流纹质凝灰岩锆石U-Pb同位素分析结果见表1。所选取锆石样品多成长柱状或方块状,透明度较好,锆石颗粒直径多为100~150 μm,锆石具有明显的岩浆成因的韵律环带(图3)。研究认为,锆石成因不同其相应的Th/U也不相同(Rubatto et al., 2000),一般岩浆锆石的Th/U大于0.4,而变质锆石的Th/U含量较低,Th/U常小于0.07。本次锆石TW11样品中的Th/U值为0.24~1.96,大部分锆石Th/U大于0.4,均表现出明显的岩浆锆石特点(王新雨等,2023代新宇等,2024)。在206Pb/238U-207Pb/235U谐和图上,部分锆石年龄谐和度差,因此不参与最后计算。其余测点年龄加权平均值为(160.3±2.2) Ma,MSWD=3.4,该年龄代表了流纹质凝灰岩形成的年龄(图4)。

      表  1  钓鱼台地区火山岩(TW11)锆石U-Pb测试结果
      Table  1.  Zircon U-Pb test results of volcanic rocks(TW11)in the Diaoyutai area
      编号含量(10−6Th/U207Pb/206Pb207Pb/235U206Pb/238U238U/232Th207Pb/206Pb207Pb/235U206Pb/238U
      PbThU比值比值比值比值年龄
      (Ma)
      年龄
      (Ma)
      年龄
      (Ma)
      TW11-0137.5162.9690.30.240.05330.0020.18780.00720.02560.00033.13342.789.8174.86.21632.1
      TW11-0244.8247.6452.10.550.05610.00290.19640.00990.02550.00031.37453.8110.2182.18.4162.32.2
      TW11-0342.6224.9609.20.370.05230.00220.17610.00760.02450.00032.16301.991.7164.76.51562
      TW11-0429.294.3139.30.680.06060.00360.39160.02360.04670.00081.12633.4123.9335.517.2294.25
      TW11-0582.2400.11221.70.330.05190.00160.17470.00530.02440.00022.4279.770.4163.54.6155.61.4
      TW11-0636.9155.2665.80.230.04930.00210.16830.00690.02490.00033.26164.9100157.96158.71.9
      TW11-0741.7148.4126.91.170.05470.00470.34620.02750.04670.00080.67466.7195.3301.820.7294.34.6
      TW11-0829.7128.9558.80.230.04830.0020.16850.00640.02550.00033.37122.396.3158.15.5162.42
      TW11-0951110.9157.70.70.06050.00320.58030.03240.06940.00121.14620.4114.8464.720.8432.37
      TW11-1061.2206.7257.20.80.05320.00310.33680.01870.04640.00070.97338.9126.8294.814.2292.44.1
      TW11-1131.3139.8495.70.280.05050.00250.17640.00850.02550.00032.8216.7112.91657.3162.42
      TW11-1220.3123.3141.90.870.05460.00440.19380.01540.02590.00050.91394.5178.7179.913.1164.83
      TW11-1338260176.41.470.04760.00470.15820.0140.02490.00050.5479.7218.5149.112.3158.63.5
      TW11-1427.492.3147.40.630.05640.00320.35240.02170.04540.00091.23477.8121.3306.516.3286.25.8
      TW11-1565.2465.6237.51.960.05450.00370.19120.01250.02590.00040.43390.8186.1177.610.71652.5
      TW11-1625.3150.5258.40.580.0480.00320.1620.01020.0250.00041.36101.9148.1152.58.9159.12.4
      TW11-1760.3278.2812.80.340.05140.0020.18780.00760.02650.00042.2257.590.7174.86.5168.52.5
      TW11-1823.7124.8289.30.430.0510.00310.18330.01130.02640.00051.72242.7144.4170.99.71682.9
      TW11-1942.1209.3649.60.320.05050.00270.17310.00940.02480.00032.59220.4119.4162.18.2158.22.1
      TW11-2092.4583801.80.730.05380.00220.18330.00740.02480.00031.43364.960.2170.96.31581.9
      下载: 导出CSV 
      | 显示表格
      图  3  钓鱼台地区火山岩部分锆石阴极发光(CL)图
      Figure  3.  CL images of partial zircon of volcanic rocks in the Diaoyutai area
      图  4  钓鱼台地区火山岩(TW11)锆石U-Pb年龄谐和图(a)及加权平均图(b)
      Figure  4.  (a) U-Pb age concordance and (b) weighted average of volcanic rocks(TW11)in the Diaoyutai area

      流纹质凝灰岩主量元素分析结果见表2,其SiO2含量为73.14%~76.64%,平均为74.98%,Al2O3含量为12.51%~14.41%,平均为13.33%,MgO含量为0.28%~1.15%,CaO含量为0.30%~2.33%,P2O5含量较低为0.03%~0.07%,全碱(ALK)含量较低为5.79%~9.04%,平均值为6.96%,同时Na2O/K2O为0.49~0.96,岩石表现为富钾特征,铝过饱和指数(A/CNK)为1.00~1.57,表现为钙碱性特征。根据火山岩TAS图解(图5a),样品全落入流纹岩范围内,根据SiO2-K2O图解(图5b),样品均显示为高钾钙碱性系列岩石。

      表  2  钓鱼台地区火山岩主量元素(%)、微量和稀土元素(10−6)分析结果
      Table  2.  Major (%), trace and REE element (10−6) analytical results of volcanic rocks in the Diaoyutai area
      样品编号DP7H01DP7H02DP7H03DP7H04DP7H05DP7H06
      岩石名称流纹质凝灰岩
      SiO275.3274.9273.147576.6474.88
      TiO20.060.060.140.230.190.29
      Al2O314.4113.6414.0412.5112.612.79
      Fe2O30.530.150.31.270.691.01
      FeO0.681.691.720.680.540.97
      MnO0.030.070.090.060.070.06
      MgO0.750.561.150.470.310.28
      CaO0.520.952.330.520.30.3
      Na2O2.682.561.92.52.184.42
      K2O3.564.43.894.874.24.62
      P2O50.040.060.070.050.030.05
      LOI1.71.071.031.182.160.71
      100.27100.1499.8199.3499.91100.4
      ALK6.246.965.797.376.389.04
      N/K0.750.580.490.510.520.96
      A/CNK1.571.281.211.211.451
      Mg#53.6135.3650.7431.4932.2520.99
      SI9.155.9812.834.813.922.48
      DI5.411.998.4918.9116.0426.17
      Li31.7334.0446.733.586.555.48
      Be3.442.2533.483.482.41
      V6.964.049.6312.0214.158.81
      Cr2.141.691.572.2714.672.52
      Co0.20.281.071.183.730.53
      Ni1.590.591.221.410.893.41
      Cu2.051.722.913.213.163.58
      Zn21.0742.3542.2980.5789.32131.63
      Ga22.9819.2216.722.4419.5918.85
      Rb148.93152.94102.92180.9199.38118.41
      Zr93.41126.5110.7251.16196.38242.26
      Nb12.4310.878.5419.6321.9913.69
      Mo1.171.820.320.533.270.36
      In0.160.030.020.030.020.02
      Ba741.571207.12595.11152.26103.65387.61
      Sr51.9205.21154.7273.0843.5354.27
      Hf3.573.13.638.438.046.74
      Ta0.980.70.61.381.680.88
      W0.450.250.261.041.562.11
      Pb2119.8811.4820.8937.0916.91
      Bi0.130.120.010.50.630.07
      下载: 导出CSV 
      | 显示表格
      续表2
      样品编号DP7H01DP7H02DP7H03DP7H04DP7H05DP7H06
      Th5.554.594.9619.421.658.77
      U1.741.571.444.056.052.1
      Au0.810.851.380.740.421.22
      Ag0.060.040.030.040.050.06
      B21.8313.2911.184.468.014.33
      F1536.74639.06880.52381.14465.67264.69
      Y1414.112.123.625.127.1
      La19.314.920.529.840.135.9
      Ce39.24237.170.664.163
      Pr3.963.254.26.528.648.84
      Nd13.911.614.622.727.134.8
      Sm2.772.482.544.074.626
      Eu0.460.530.660.360.310.79
      Gd2.512.142.223.824.265.13
      Tb0.410.360.350.610.690.78
      Dy2.362.161.983.884.44.47
      Ho0.430.390.380.80.850.84
      Er1.171.041.092.422.642.37
      Tm0.20.180.210.470.520.44
      Yb1.211.111.222.883.152.64
      Lu0.180.160.190.440.490.41
      ΣREE88.0682.387.24149.37161.87166.41
      LREE79.5974.7679.6134.05144.87149.33
      HREE8.477.547.6415.321717.08
      LREE/HREE9.49.9210.428.758.528.74
      (La/Yb)N11.449.6312.057.429.139.75
      δEu0.530.70.850.280.210.44
      δCe1.11.480.981.240.840.87
      下载: 导出CSV 
      | 显示表格
      图  5  钓鱼台地区火山岩TAS图解和SiO2-K2O图解(a据Irvine et al., 1971;b据Peccerillo et al., 1976
      Figure  5.  TAS diagram and SiO2-K2O diagram of volcanic rocks in the Diaoyutai area

      岩石表现为富集Rb、Th、U、Nd等大离子亲石元素(LILE),亏损Nb、Sr、P、Ti等高场强元素(HFSE)(图6a)。岩石稀土元素ΣREE=82.30×10−6~155.41×10−6,(La/Yb)N=7.42~11.44,轻重稀土分馏明显。轻稀土富集而重稀土亏损,LREE/HREE=8.52~10.42,根据稀土元素球粒陨石标准化配分图显示为明显的右倾特征(图6b),δEu=0.21~0.85,平均值为0.5,表现较为明显的负异常,其中稀土元素配分图与洋岛玄武岩(OIB)配分模式相近(Sun et al., 1989)。

      图  6  钓鱼台地区火山岩微量元素原始地幔标准化蛛网图(a)和稀土元素球粒陨石标准化REE图解(b)(标准化数据源自Sun等, 1989
      Figure  6.  Primitive mantle-normalized trace element spidergrams and chondrite-normalized REE distribution patterns of volcanic rocks in the Diaoyutai area

      大兴安岭地区的火山岩基本都来自于中生代,特别是中晚侏罗世和白垩纪,特别是随着锆石U-Pb测年技术的应用和日渐成熟,使该地区的火山岩的年龄特征进一步显现。郝彬等(2016)在赤峰地区厘定了晚侏罗世(160~147 Ma)和早白垩世(132~129 Ma)的火山岩,主要以中酸性火山岩为主,杨扬等(2012)同样在赤峰地区测得满克头鄂博组火山岩的U-Pb年龄分别为(156±2) Ma和(157±3) Ma,杜洋等(2017)在克一河地区测得满克头鄂博组流纹质火山岩为139 Ma,刘凯等在大兴安岭北段图里河地区测得满克头鄂博组火山岩的年龄为(156±1) Ma。同时也有大量学者获得了大兴安岭其他地区中晚侏罗世火山岩年龄,同样集中在150~170 Ma(Wang et al., 2006陈志广等,2006张吉衡, 2006张连昌等,2007苟军等,2010孙德有等,2011程银行等,2014)。本次在内蒙古中部钓鱼台地区满克头鄂博组流纹质凝灰岩采集的锆石加权平均年龄为(160.3±2.2) Ma,表明在晚侏罗世,该地区存在比较强烈的火山作用,形成了满克头鄂博组酸性的火山岩。

      根据测试分析可知,满克头鄂博组流纹质凝灰岩SiO2含量平均为74.98%,全碱(ALK)含量平均为6.96%,Na2O/K2O平均为0.64,为偏钾质,A/NKC平均为1.29,属于高钾钙碱性系列岩石,表现为壳源岩浆的特点。同时岩石表现为富集Rb、Th、U、Nd等大离子亲石元素(LILE),亏损Nb、Sr、P、Ti等高场强元素(HFSE),特别强烈亏损Sr、P、Ti,也表明岩浆由地壳熔融产生(葛文春等,2001)。

      研究表明,斜长石的分离结晶会导致Eu和Sr的强烈亏损,二者对斜长石是强相容元素,研究区的火山岩,表现出较为明显的Eu异常,平均值为0.50,同时Sr也表现为明显亏损,P的负异常则可能表现为磷灰石的结晶分离,Ti的亏损可能受控于钛铁矿的分离结晶作用。同时在研究区内并未发现该时期基性岩的分布,说明岩浆来源不应为基性岩浆结晶分离的产物,同时岩石的Cr含量平均为4.14×10−6,Ni的含量平均为3.18×10−6,同样表现为未有幔源物质的加入(邓晋福等, 1999)。

      火山岩的Nb/U平均值为5.83,相比于大陆地壳偏低(Rudinick et al., 2003)。Nb/Ta值平均值为14.22,稍高于大陆地壳的平均值(11~12)(Xiong et al., 2005)。Rb/Sr为0.67~4.58,平均为2.25,与OIB(0.047)、原始地幔(0.03)、E-MORB(0.033)相比明显偏高(Sun et al., 1989),与壳源岩浆的范围(>0.5)一致(Tischeendorf et al., 1985),Nd/Th值的平均值为2.39,接近壳源岩石的比值(≈3)(Bea et al., 2001Rudinick et al., 2003),Ti/Zr=5.45,也均分布在壳源岩浆的范围内(Ti/Zr<20)(Wilson, 1989),Ti/Y值的平均值为48.13(Ti/Y<100)(Tischeendorf et al., 1985),其比值也属于壳源岩浆的产物特征。

      Mg#值是区分岩浆来源比较理想的参数,研究表明,典型的大洋中脊拉斑玄武岩(MORB)的Mg#值约为60,下地壳来源的溶体Mg#值均比较低,与熔融程度相关性小,一般小于40,当有地幔物质参与时,才可能导致Mg#值大于40(Rapp et al., 1995)。本次火山岩的Mg#值20.99~53.61,平均为37.41,应主要为壳源岩浆的产物,暗示存在幔源物质的参与。

      根据岩石类型判别图解,流纹质凝灰岩大部分为类似A型花岗岩(图7a),而岩石本身也具有高Si,低Sr的特点,也属于A型花岗岩特征,而根据C/MF-A/MF图解(图7b)显示,流纹质凝灰岩主要来源于变质沉积岩的部分熔融,说明岩浆的原岩均为地壳物质的熔融作用所产生的。综合分析认为钓鱼台地区满克头鄂博组流纹质凝灰岩与A型花岗岩化学特征相似,由地壳物质部分熔融而形成,可能含有少量幔源物质的参与。

      图  7  钓鱼台地区火山岩类型判别图解(a据Whalen et al., 1987; b据Alther et al., 2000
      Figure  7.  Type discrimination diagram of volcanic rocks in the Diaoyutai area

      研究区内火山岩表现富集Rb、Th、U、Nd等大离子亲石元素(LILE),亏损Nb、Sr、P、Ti等高场强元素(HFSE),具有高Si特点,且Sr含量为43.53×10−6~205.21×10−6,平均为97.12×10−6(小于400×10−6),Yb为1.11×10−6~3.15×10−6,平均为2.04×10−6(大于2×10−6),且具有明显的Eu负异常,具有A型花岗岩特征,相似于造山期后花岗岩的特征,根据构造判别图解Y+Nb-Rb(图8a),流纹质凝灰岩基本位于火山弧-后碰撞花岗岩范围内,而根据A型花岗岩类型判断,部分样品为A2型范围内,其余样品基本位于A2型花岗岩与A1型接触范围内,表现为逐步向伸展构造背景之下转变。

      图  8  钓鱼台地区火山岩构造判别图解(a据Pearce et al., 1984; b据Eby, 1990
      Figure  8.  Type discrimination diagram of volcanic rocks in the Diaoyutai area

      关于大兴安岭地区中生代火山岩的形成背景一致争议较大,一种观点认为是古太平洋构造域的影响,这种观念最直接的证据就是中国东部晚中生代岩浆活动具有统一性,表明它们可能的形成受控于东部的太平洋体系(Uyeda et al., 1974Hilde et al., 1977Takahashi et al., 1983邓晋福等,1996朱勤文等,1997)。日本海沟的太平洋板块俯冲带距离大兴安岭超过1800 km,即使认为日本海并未进行弧后扩张,那么大兴安岭距离俯冲带也超过1000 km,根据前人研究成果,当板块以26 °角俯冲到600 km以后,板块中心温度将超过1200 ℃,在这种高温作用下,板块早已经软化,不再产生弹性断层,而大兴安岭与俯冲作用有关的弧火山-侵入岩要远远小于这个数字,因此,古太平洋俯冲的影响边界应截止于东亚大陆边缘,俯冲作用不能完全解释大兴安岭的岩浆活动特征(张立敏等,1983邵济安等,2000)。基于岩石圈热演化过程分析,大兴安岭地区并没有发现与太平洋板块俯冲作用相关的晚中生代安第斯型弧岩浆带,也反映出晚侏罗、早白垩世东亚陆缘的岩浆岩与太平洋板块俯冲无关(上田诚也等,1979)。

      类似于超级地幔柱作用形成的深部熔融,在区域规模上,中国东北地区燕山期岩浆岩甚至可以与大火成岩省媲美。林强等(19981999)认为古亚洲域冷板块向地幔深部运动,从而引发了热地幔柱上升是大兴安岭中生代火山岩形成的重要控制因素。环状火山岩带是地幔柱模式最为显著的特点,然而中生代岩浆作用的时空分布特征不支持该模式,并且中生代火山岩时间跨度范围较大(185~105 Ma),而传统认为地幔柱产生的岩浆作用持续时间一般较短。而且大兴安岭中生代岩浆作用明显呈带状大陆边缘分布,这一点使用地幔柱作用模式很难解释。同时按照地幔柱最为基础的理论研究,地幔柱形成的直接产物是玄武质岩浆的大规模喷溢,而大兴安岭地区中生代基性岩浆活动非常贫乏(Fan et al., 2003张连昌等,2007),因此可能与太平洋构造域也没有直接影响。

      还有一种观点就是与蒙古–鄂霍茨克洋闭合的影响有关(郭锋等,2001Fan et al., 2003)。尹志刚等(2019)在大兴安岭南段东乌旗地区测定的满克头鄂博组流纹岩,其化学特征与A型花岗岩相似,推断形成于造山后伸展环境中。何鹏等(2022)在乌拉盖地区测得满克头鄂博组火山岩形成于154~164 Ma,主要来源于壳源,同样与蒙古–鄂霍茨克洋闭合后岩石圈伸展作用有关。在内蒙古莫合尔图、满洲里、扎鲁特旗、赤峰等地也都发现了该时期具有伸展构造背景的火山岩(陈志广等,2006孟恩等,2011程银行等,2013王杰等,2014)。

      晚古生代末期蒙古–鄂霍茨克洋部分开始俯冲,并在晚三叠世开始自西向东呈剪刀式闭合(莫申国等,2006黄始琪等,2014),在侏罗世早期完成了闭合(Tomurtogoo et al., 2005),但其深部板块的俯冲后撤作用并没有立刻结束,而是持续了一段时间,虽然中生代晚期的火山岩的构造线与其不一致,但是大兴安岭地区中—晚侏罗世的火山岩,特别是大面积分布的具有A型花岗岩特征的火山岩还应与蒙古-鄂霍茨克洋闭合后板块俯冲后撤所带来的伸展减薄环境有关。

      综合研究认为,研究区内晚侏罗世满克头鄂博组的火山岩具有A型花岗岩的地球化学特征,推测岩浆来源于地壳,形成于蒙古-鄂霍茨克洋闭合后板块俯冲后撤作用引起的地壳伸展减薄环境。

      (1)内蒙古东部钓鱼台地区满克头鄂博组火山岩年龄为(160.3±2.2) Ma,时代归属于晚侏罗世。

      (2)内蒙古东部钓鱼台地区满克头鄂博组火山岩具有A型花岗岩的地球化学特征,岩石表现为富集Rb、Th、U、Nd等大离子亲石元素(LILE),亏损Nb、Sr、P、Ti等高场强元素(HFSE),根据微量元素及其比值,火山岩的岩浆来源于地壳沉积岩的部分熔融,可能有地幔物质参与。

      (3)结合前人研究成果,推断研究区内满克头鄂博组火山岩主要形成于伸展构造背景下,与蒙古-鄂霍茨克洋闭合后板块俯冲后撤作用导致的岩石圈伸展作用有关。

    • 图  1   祁漫塔格成矿带地质图(据Zhong et al.,2021b修改)

      图中显示了文中涉及的矿床的类型和位置;其中,沙丘、玛兴大阪、哈西雅图矿床位于图幅右侧,未在图中显示出来

      Figure  1.   Geological map of the Qimantagh metallogenic belt

      图  2   文中使用的成矿岩体和非成矿岩体的28种全岩特征箱状图

      Figure  2.   Box illustrations of the 28 features of the mineralized and barren magmatic rocks used in this study

      图  3   随机森林模型原理图

      Figure  3.   Random Forest model diagram

      图  4   训练的随机森林模型对测试集的评价图

      a. 混淆矩阵图;b. 受试者特征曲线

      Figure  4.   Classification result for the test set using the trained of Random Forest model

      图  5   祁漫塔格地区成矿岩体和非成矿岩体全岩密度图解

      a. Yb–La/Yb密度图解;b. Y–Sr/Y密度图解

      Figure  5.   Whole–rock density diagrams for the mineralized and barren rocks from the Qimantagh metallogenic belt

      图  6   外部独立验证数据集的分类结果图

      a. 成矿岩体分类结果图(数据来源于Guo et al.,2022Xu et al.,2023);b. 非成矿岩体分类结果图(数据来源于Ren et al.,2023

      Figure  6.   Plot of classification results for external independent validation dataset

      表  1   文中使用的成矿岩体和非成矿岩体数据来源表

      Table  1   Data sources of mineralized and barren magmatic rocks used in this study

      编号位置矿床类型岩体类型数据量数据来源
      1卡尔却卡矽卡岩铜铅锌矿床成矿岩体19高永宝,2013张雨莲等,2014
      姚磊,2015Zhong et al.,2021b
      斑岩铜矿成矿岩体17李碧乐等,2010李积清等,2016
      Zhong et al.,2018
      2虎头崖矽卡岩铜铅锌矿床成矿岩体55李侃等,2015时超等,2017
      姚磊,2015张晓飞等,2016
      张爱奎等,20122016
      Zhong et al.,2021b
      3鸭子沟矽卡岩铜铅锌矿床成矿岩体8舒树兰等,2014
      4维宝矽卡岩铜铅锌矿床成矿岩体5Zhong et al.,2018
      非成矿岩体3Zhong et al.,2018
      5拉陵灶火斑岩钼矿成矿岩体10陈静等,2013钟世华,2018
      非成矿岩体5Chen et al.,2018
      6小灶火斑岩钼矿成矿岩体4陈静等,2018
      7长山斑岩钼矿成矿岩体3Zhong et al.,2018
      8乌兰乌珠儿斑岩铜矿成矿岩体6谈生祥等,2011
      9野马泉矽卡岩铁矿床成矿岩体68高永宝等,2014刘建楠,2018
      姚磊,2015张爱奎等,2016
      张雷,2013Chen et al.,2018
      Yin et al.,2017Zhong et al.,20182021b
      10尕林格矽卡岩铁矿床成矿岩体48高永宝等,2012张杰等,2018
      11那陵郭勒河矽卡岩铁矿床成矿岩体11薛宁等,2009李玉春等,2013a
      张雷,2013
      12沙丘矽卡岩铁矿床成矿岩体2李玉春等,2013b
      13它温查汗矽卡岩铁矿床成矿岩体10杨涛等,2017
      14玛兴大阪矽卡岩铁矿床成矿岩体4吴祥珂等,2011
      非成矿岩体5Yan et al.,2019
      15于沟子矽卡岩铁矿床成矿岩体4高永宝,2013
      16哈西雅图矽卡岩铁矿床成矿岩体5南卡俄吾等,2014
      非成矿岩体5南卡俄吾等,2015
      17小圆山矽卡岩铁矿床成矿岩体10孔会磊等,20152016
      18肯德可克非成矿岩体5张明玉等,2018
      19冰沟非成矿岩体6刘彬等,2013
      20白干湖非成矿岩体14李国臣等,2012高永宝,2013
      21阿格腾非成矿岩体21徐博,2020
      22阿确礅非成矿岩体22李瑶,2017
      23其木来克非成矿岩体9陈邦学等,2019
      24阿牙克非成矿岩体3郝杰等,2003
      25伊涅克阿干非成矿岩体9陆济璞等,2005
      26希热芒崖非成矿岩体9陆济璞等,2006
      27鸭子泉非成矿岩体5崔美慧等,2011
      28祁漫塔格非成矿岩体124王秉璋,2012马文等,2013
      29巴音郭勒非成矿岩体8王秉璋,2012
      30哈得尔干非成矿岩体23王秉璋,2012
      31扎日玛日那非成矿岩体5姚磊,2015
      32玉苏普阿勒克非成矿岩体12Wang et al.,2014
      下载: 导出CSV

      表  2   文中汇编的成矿岩体和非成矿岩体的全岩地球化学特征表

      Table  2   Whole–rock geochemical characterization of mineralized and barren magmatic rocks compiled in this study

      元素特征成矿岩体非成矿岩体
      含量平均值含量平均值
      SiO249.6~78.170.247.5~78.068.1
      Al2O310.5~18.313.32.6~18.413.6
      Fe2O30.5~12.63.20.9~13.44.1
      MgO0.1~1.10.60.1~1.10.6
      CaO0.3~10.02.50.2~13.42.7
      Na2O0.7~4.93.00.7~6.23.0
      K2O0.7~7.74.00.3~7.83.9
      Ba36.0~2420.0502.513.0~2086.0588.0
      Rb21.0~580.0193.76.5~566.0166.3
      Nb3.1~59.013.90.5~89.716.6
      La6.1~148.034.25.1~170.039.8
      Ce20.9~196.066.211.1~362.080.0
      Pr1.6~33.97.51.5~41.89.7
      Nd6.0~108.026.45.9~148.035.5
      Sm1.5~14.84.91.4~22.67.2
      Eu0~2.30.80.1~6.81.2
      Gd1.2~14.34.41.3~20.66.6
      Tb0.2~3.20.70.2~3.51.1
      Dy1.1~23.04.00.7~24.56.1
      Ho0.2~5.10.80.2~5.21.2
      Er0.7~15.22.40.5~15.03.4
      Tm0.1~2.60.40.1~2.30.5
      Yb0.7~17.62.60.5~17.03.3
      Lu0.1~2.90.40.1~2.40.5
      Sr12.4~743.0206.51.1~927.0226.7
      Y6.8~164.824.23.7~157.032.4
      Sr/Y0.1~64.911.10.1~75.811.0
      La/Yb0.9~46.515.60.9~75.215.3
        注:主量元素含量为%;微量元素含量为10−6
      下载: 导出CSV

      表  3   随机森林模型分类结果表

      Table  3   Classification results of Random Forest model

      模型岩体类型总体准确率准确率AUC
      随机森林成矿岩体0.900.840.93
      非成矿岩体0.94
      下载: 导出CSV
    • 陈邦学, 徐胜利, 杨有生, 等. 东昆仑西段其木来克一带晚二叠世侵入岩的成因及其构造意义[J]. 地质通报, 2019, 38(06): 1040-1051

      Chen Bangxue, Xu Shengli, Yang Yousheng, et al. Genesis and tectonic significance of Late Permian Qimulaike intrusive rocks in the west of East Kunlun Mountains, Xinjiang[J]. Geological Bulletin of China, 2019, 38(6): 1040-1051.

      陈静, 谢智勇, 李彬, 等. 东昆仑拉陵灶火钼多金属矿床含矿岩体地质地球化学特征及其成矿意义[J]. 地质与勘探, 2013, 49(5): 813−824.

      CHEN Jing, XIE Zhiyong, LI Bin, et al. Geological and gechemical characteristics of the ore-bearing intrusions from the Lalingzaohuo Mo polymetallic deposit and its metallogenic significance[J]. Geology and Exploration, 2013, 49(5): 813−824.

      陈静, 胡继春, 逯永卓, 等. 东昆仑小灶火地区钼矿化正长花岗岩年代学、地球化学特征及其地质意义[J]. 黄金科学技术, 2018, 26(4): 465−472.

      CHEN Jing, HU Jichun, LU Yongzhuo, et al. Geochronology, Geochemical Characteristics of Molybdenum Ore-bearing Syenogranite from Xiaozhaohuo Area in East Kunlun and Its Geological Significance[J]. Gold Science and Technology, 2018, 26(04): 465−472.

      崔美慧, 孟繁聪, 吴祥珂. 东昆仑祁漫塔格早奥陶世岛弧: 中基性火成岩地球化学、Sm-Nd同位素及年代学证据[J]. 岩石学报, 2011, 27(11): 3365-3379

      CUI Meihui, MENG Fancong, WU Xiangke. Early Ordovician island arc of Qimantag Mountain, eastern Kunlun: Evidences from geochemistry, Sm-Nd isotope and geochronology of intermediate-basic igneous rocks[J]. Acta Petrologica Sinica, 2011, 27(11): 3365-3379.

      董连慧, 刘德权, 唐延龄, 等. 试论新疆成矿体系与时空演化模式[J]. 矿床地质, 2015, 34(06): 1107-1129 doi: 10.16111/j.0258-7106.2015.06.002

      DONG Lianhui, LIU Dequan, TANG Yanling, et al. Five-era metallogenic system of mineral deposits in Xinjiang and its spatial and temporal evolution mode[J]. Mineral Deposits, 2015, 34(06): 1107-1129. doi: 10.16111/j.0258-7106.2015.06.002

      丰成友, 李东生, 吴正寿, 等. 东昆仑祁漫塔格成矿带矿床类型、时空分布及多金属成矿作用[J]. 西北地质, 2010, 43(04): 10-17 doi: 10.3969/j.issn.1009-6248.2010.04.002

      FENG Chengyou, Li Dongsheng, WU Zhengshou, et al. Major Types Time Space Distribution and Metallogeneses of Polymetallic Deposits in the Qimantage Metallogenic Belt, Eastern Kunlun Area[J]. Northwestern Geology, 2010, 43(04): 10-17. doi: 10.3969/j.issn.1009-6248.2010.04.002

      丰成友, 王雪萍, 舒晓峰, 等. 青海祁漫塔格虎头崖铅锌多金属矿区年代学研究及地质意义[J]. 吉林大学学报(地球科学版), 2011, 41(06): 1806-1817 doi: 10.13278/j.cnki.jjuese.2011.06.013

      FENG Chengyou, WANG Xueping, SHU Xiaofeng, et al. Isotopic Chronology of the Hutouya Skarn Lead-Zinc Polymetallic Ore District in Qimantage Area of Qinghia Province and It’s Geological Significance[J]. Journal of Jilin University, 2011, 41(06): 1806-1817. doi: 10.13278/j.cnki.jjuese.2011.06.013

      丰成友, 王松, 李国臣, 等. 青海祁漫塔格中晚三叠世花岗岩: 年代学、地球化学及成矿意义[J]. 岩石学报, 2012, 28(02): 665-678

      FENG Chenyou, WANG Song, LI Guochen, et al. Middle to Late Triassic granitoids in the Qimantage area, Qinghai Province, China: Chronology, geochemistry and metallogenic significances[J]. Acta Petrologica Sinica, 2012, 28(02): 665-678.

      高永宝. 东昆仑祁漫塔格地区中酸性侵入岩浆活动与成矿作用[D]. 西安: 长安大学, 2013

      GAO Yongbao. The Intermediate-acid Intrusive Magmatism and Mineralization in Qimantag, East Kunlun Moutains[D]. Xi’an: Chang’an University, 2013.

      高永宝, 李侃, 钱兵, 等. 东昆仑卡而却卡铜钼铁多金属矿床成矿年代学: 辉钼矿Re-Os和金云母Ar-Ar同位素定年约束[J]. 大地构造与成矿学, 2018, 42(01): 96-107

      GAO Yongbao, LI Kan, QIAN Bing, et al. The Metallogenic Chronology of Kaerqueka Deposit in Eastern Kunlun: Evidences from Molybdenite Re-Os and Phlogopite Ar-Ar Ages[J]. Geotectonica et Metallogenia, 2018, 42(01): 96-107.

      高永宝, 李文渊, 钱兵, 等. 东昆仑野马泉铁矿相关花岗质岩体年代学、地球化学及Hf同位素特征[J]. 岩石学报, 2014, 30(6): 1647−1665.

      GAO Yongbao, LI Wenyuan, QIAN Bing, et al. Geochronology, geochemistry and Hf isotopic compositions of the granitic rocks related with iron mineralization in Yemaquan deposit, East Kunlun, NW China. Acta Petrologica Sinica, 2014, 30(6): 1647−1665.

      高永宝, 李文渊, 马晓光, 等. 东昆仑尕林格铁矿床成因年代学及Hf同位素制约[J]. 兰州大学学报(自然科学版), 2012, 48(02): 36-47 doi: 10.13885/j.issn.0455-2059.2012.02.003

      GAO Yongbao, LI Wenyuan, MA Xiaoguang, et al. Genesis, geochronology and Hf isotopic compositions of the magmatic rocks in Galinge iron deposit, eastern China[J]. Journal of Lanzhou University, 2012, 48(02): 36-47. doi: 10.13885/j.issn.0455-2059.2012.02.003

      高永宝, 李文渊, 张照伟. 祁漫塔格白干湖-戛勒赛钨锡矿带石英脉型矿石流体包裹体及氢氧同位素研究[J]. 岩石学报, 2011, 27(06): 1829-1839

      GAO Yongbao, LI Wenyuan, ZHANG Zhaowei. Fluid inclusions and H-O isotopic compositions of quartz-vein ores in the Baiganhu-Jialesai W-Sn mineralization belts, Qimantage, NW China[J]. Acta Petrologica Sinica, 2011, 27(6): 1829-1839.

      郝杰, 刘小汉, 桑海清. 新疆东昆仑野牛泉石英闪长岩与英安斑岩的40Ar/39Ar同位素年龄[J]. 地质通报, 2003, (03): 165-169 doi: 10.3969/j.issn.1671-2552.2003.03.004

      HAO Jie, LIU Xiaohan, SANG Haiqing. Hornblende and biotite 40Ar/39Ar ages of the Yeniuquan quartz diorite and dacite-porphyry in thr Esat Kunlun orogenic belt, Xinjiang[J]. Geological Bulletin of China, 2003, (03): 165-169. doi: 10.3969/j.issn.1671-2552.2003.03.004

      景宝盛, 单金忠. 新疆东昆仑维宝地区铅锌矿床找矿标志及找矿方向[J]. 地质找矿论丛, 2013, 28(04): 499-507 doi: 10.6053/j.issn.1001-1412.2013.04.001

      JING Baosheng, SHAN Jinzhong. Prospecting criteria and ore prospecting orientation of lead-zinc deposit in Weibao area of East Kunlun region, Xinjiang[J]. Contribution to Geology and Mineral Resources Research, 2013, 28(04): 499-507. doi: 10.6053/j.issn.1001-1412.2013.04.001

      孔会磊, 李金超, 黄军, 等. 东昆仑小圆山铁多金属矿区斜长花岗斑岩锆石U-Pb测年、岩石地球化学及找矿意义[J]. 中国地质, 2015, 42(03): 521-532. doi: 10.3969/j.issn.1000-3657.2015.03.010

      KONG Huilei, LI Jinchao, HUANG Jun, et al. Zircon U-Pb dating and geochemical characteristics of the plagiogranite porphyry from the Xiaoyuanshan iron-polymetallic ore district in East Kunlun Mountains[J]. Geology in China, 2015, 42(3): 521-532. doi: 10.3969/j.issn.1000-3657.2015.03.010

      孔会磊, 李金超, 栗亚芝, 等. 青海祁漫塔格小圆山铁多金属矿区英云闪长岩LA-MC-ICP-MS锆石U-Pb测年及其地质意义[J]. 地质科技情报, 2016, 35(01): 8-16

      KONG Huilei, LI Jinchao, LI Yazhi, et al. LA-MC-ICP-MS Zircon U-Pb Dating and Its Geological Implications of the Tonalite from Xiaoyuanshan Iron-Polymetallic Ore District in Qimantag Mountain, Qinghai Province[J]. Geological Science and Technology Information, 2016, 35(01): 8-16.

      李碧乐, 孙丰月, 于晓飞, 等. 青海东昆仑卡尔却卡地区野拉塞铜矿床成因类型及成矿机制[J]. 岩石学报, 2010, 26(12): 3696-3708

      LI Bile, SUN Fengyue, YU Xiaofei, et al. Genetic type and Mineralizing Mechanism of the Yelasai Copper Deposit in Kaerqueka area Eastern Kunlun Qinghai Province[J]. Acta Petrologica Sinica, 2010, 26(12): 3696-3708.

      李苍柏, 肖克炎, 李楠, 等. 支持向量机、随机森林和人工神经网络机器学习算法在地球化学异常信息提取中的对比研究[J]. 地球学报, 2020, 41(02): 309-319 doi: 10.3975/cagsb.2020.022501

      LI Changbai, XIAO Keyan, LI Nan, et al. A Comparative Study of Support Vector Machine, Random Forest and Artificial Neural Network Machine Learning Algorithms in Geochemical Anomaly Information Extraction[J]. Acta Geoscientica Sinica, 2020, 41(02): 309-319. doi: 10.3975/cagsb.2020.022501

      李积清, 陈静, 史青瑞, 等. 东昆仑卡尔却卡矿区似斑状二长花岗岩成因: 锆石U-Pb年龄及Sr-Nd同位素制约[J]. 矿物岩石, 2016, 36(03): 87-95

      LI Jiqing, CHENG Jing, SHI Qingrui, et al. The Genesis of Porphyritic Monzogranitie of the Kaerqueka Deposit it the East Kunlun: Evidence, from Zircon U-Pb Dating and Sr-Nd Isotopic Compositions[J]. Mineral Petrol, 2016, 36(03): 87-95.

      李侃, 高永宝, 钱兵, 等. 东昆仑祁漫塔格虎头崖铅锌多金属矿区花岗岩年代学、地球化学及Hf同位素特征[J]. 中国地质, 2015, 42(03): 630-645 doi: 10.3969/j.issn.1000-3657.2015.03.017

      LI Kan, GAO Yongbao, QIAO Bing, et al. Geochronology, geochemical characteristics and Hf isotopic compositions of granite in the Hutouya deposit, Qimantag, East Kunlun[J]. Geology in China, 2015, 42(3): 630-645. doi: 10.3969/j.issn.1000-3657.2015.03.017

      李世金, 孙丰月, 丰成友, 等. 青海东昆仑鸭子沟多金属矿的成矿年代学研究[J]. 地质学报, 2008, 82(07): 949-955 doi: 10.3321/j.issn:0001-5717.2008.07.013

      LI Shijin, SUN Fengyue, FENG Chengyou, et al. Geochronological Study on Yazigou Polymetallic Deposit in Eastern Kunlun Qinhai Province[J]. Acta Geologica Sinica, 2008, 82(07): 949-955. doi: 10.3321/j.issn:0001-5717.2008.07.013

      李瑶. 东昆仑祁漫塔格阿确礅地区古生代花岗岩成因及大地构造意义[D]. 北京: 中国地质大学, 2017

      LI Yao. Genesis and Tectonic significance of Paleozoic Granites in Aquedun area, East Kunlun[D]. Beijing: China University of Geosciences, 2017.

      李国臣, 丰成友, 王瑞江, 等. 新疆白干湖钨锡矿田东北部花岗岩锆石SIMS U-Pb年龄、地球化学特征及构造意义[J]. 地球学报, 2012, 33(02): 216-226

      LI Guochen, FENG Chengyou, WANG Ruijiang, et al. SIMS Zircon U-Pb Age, Petrochemistry and Tectonic Implications of Granitoids in Northeastern Baiganhue W-Sn Orefield, Xinjiang[J]. Acta Geoscientica Sinica, 2012, 33(02): 216-226.

      李慧. 基于证据权重法和机器学习的赣南钨矿成矿远景预测[D]. 赣州: 江西理工大学, 2022

      LI Hui. Mineral Prospectivity Mapping of Tungsten Deposits in Southern Jiangxi Province Based on Weights of Evidence and Machine Learning[D]. Ganzhou: Jiangxi University of Science and Technology, 2022.

      李玉春, 李彬, 陈静, 等. 东昆仑拉陵灶火矿区花岗闪长岩Sr-Nd-Pb同位素特征及其地质意义[J]. 矿物岩石, 2013, 33(03): 110-115 doi: 10.3969/j.issn.1001-6872.2013.03.016

      LI Yuchun, LI Bin, CHEN Jing, et al. Sr-Nd-Pb Isotopic Characteristics of Ore-Bearing Granodiorites from Lalingzaohuo Deposit and it’s Geological Significance[J]. Journal of Mineral Petrol, 2013, 33(03): 110-115. doi: 10.3969/j.issn.1001-6872.2013.03.016

      李玉春, 张爱奎, 张培青, 等. 青海祁漫塔格沙丘地区侵入岩地质、地球化学特征及找矿意义[J]. 西北地质, 2013, 46(03): 70-82 doi: 10.3969/j.issn.1009-6248.2013.03.005

      LI Yuchun, ZHANG Aikui, ZHANG Peiqing, et al. The Geological and Geochemical Characteristics of the Intrusive Rock and Prospecting Significance in Shaqiu Areas, Qimantage Metallogenic Belt, Qinghai Province[J]. Northwestern Geology, 2013, 46(03): 70-82. doi: 10.3969/j.issn.1009-6248.2013.03.005

      刘建楠. 青海野马泉铁锌矿床多期次构造—岩浆热年代学成矿意义[D]. 北京: 中国地质科学院, 2018

      LIU Jiannan. The Metallogenic Significance of Multistage Tectonic Magmatic, the Morchronology of Yemaquan Iron-Zinc Deposit, Qinghai[D]. Beijing: Chinese Academy of Geological Sciences For, 2018.

      刘彬, 马昌前, 蒋红安, 等. 东昆仑早古生代洋壳俯冲与碰撞造山作用的转换: 来自胡晓钦镁铁质岩石的证据[J]. 岩石学报, 2013, 29(06): 2093-2106

      LIU Bin, MA Changqian, JIANG Hongan, et al. Early Paleozoic tectonic transition from ocean subduction to collisional orogeny in the Eastern Kunlun region: Evidence from Huxiaoqin mafic rocks[J]. Acta Petrologica Sinica, 2013, 29(6): 2093-2106.

      刘晓生, 章治邦. 基于改进网格搜索法的SVM参数优化[J]. 江西理工大学学报, 2019, 40(1): 5−9.

      LIU Xiaosheng, ZHANG Zhibang. Parameter optimization of Support Vector Machine based on improved grid search method[J]. Journal of Jiangxi University of Science and Technology, 2019, 40(1): 5−9.

      陆济璞, 李江, 覃小锋, 等. 东昆仑祁漫塔格伊涅克阿干花岗岩特征及构造意义[J]. 沉积与特提斯地质, 2005, (04): 46-54 doi: 10.3969/j.issn.1009-3850.2005.04.008

      LU Jipu, LI Jiang, TAN Xiaofeng, et al. The Yinieke agan granite mass in Qimantag eastern Kunlun and its tectonic significance[J]. Sedimentary Geology and Tethyan Geology, 2005, (04): 46-54. doi: 10.3969/j.issn.1009-3850.2005.04.008

      陆济璞, 戴梅芳, 李江, 等. 东昆仑祁漫塔格希热芒崖晚石炭世花岗岩地球化学特征及其构造背景[J]. 华南地质与矿产, 2006, (04): 1-8

      LU Jipi, DAI Meifang, LI Jiang, et al. Geochemical Characteristics and It’s Tectonis Setting of Xiremangya Lata Carboniferous Granite in the Qimantage Mountains, East Kunlun[J]. South China Geology, 2006, (04): 1-8.

      马文, 丁玉进, 李社宏, 等. 祁漫塔格中部元古代高钾(变质)侵入岩体的发现及其地质意义[J]. 西北地质, 2013, 46(01): 32-39 doi: 10.3969/j.issn.1009-6248.2013.01.004

      MA Wen, DING Yujin, LI Shehong, et al. The Discovery and Geological Significance of Proterozoic Intrusive Rock with High-K in the Central of Qimantge Area[J]. Northwestern Geology, 2013, 46(01): 32-39. doi: 10.3969/j.issn.1009-6248.2013.01.004

      毛景文, 周振华, 丰成友等. 初论中国三叠纪大规模成矿作用及其动力学背景[J]. 中国地质, 2012, 39(06): 1437-1471 doi: 10.3969/j.issn.1000-3657.2012.06.001

      MAO Jingwen, ZHOU Zhenhua, FENG Chengyou, et al. A preliminary study of the Triassic large-scale mineralization in China and its geodynamic setting[J]. Geology in China, 2012, 39(06): 1437-1471. doi: 10.3969/j.issn.1000-3657.2012.06.001

      莫宣学, 罗照华, 邓晋福, 等. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, 2007, 49(03): 403-414 doi: 10.3969/j.issn.1006-7493.2007.03.010

      MO Xuanxue, LUO Zhaohua, DENG Jinfu, et al. Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt[J]. Geological Journal of China Universities, 2007, 49(03): 403-414. doi: 10.3969/j.issn.1006-7493.2007.03.010

      南卡俄吾, 贾群子, 唐玲, 等. 青海东昆仑哈西亚图矿区花岗闪长岩锆石U-Pb年龄与岩石地球化学特征[J]. 中国地质, 2015, 42(03): 702-712 doi: 10.3969/j.issn.1000-3657.2015.03.022

      NAMHKA N, JIA Qunzi, TANG Ling, et al. Zircon U-Pb age and geochemical characteristics of granodiorite from the Haxiyatu iron-polymetallic ore district in Eastern Kunlun[J]. Geology in China, 2015, 42(3): 702-712. doi: 10.3969/j.issn.1000-3657.2015.03.022

      南卡俄吾, 贾群子, 李文渊, 等. 青海东昆仑哈西亚图铁多金属矿区石英闪长岩LA-ICP-MS锆石U-Pb年龄和岩石地球化学特征[J]. 地质通报, 2014, 33(06): 841-849 doi: 10.3969/j.issn.1671-2552.2014.06.007

      NAMHKA N, JIA Qunzi, LI Wenyuan, et al. LA-ICP-MS zircon U-Pb age and geochemical characteristics of quartz diorite from the Haxiyatu iron-polymetallic ore district in Eastern Kunlun[J]. Geological Bulletin of China, 2014, 33(6): 841-849. doi: 10.3969/j.issn.1671-2552.2014.06.007

      潘北斗, 李宝, 王福臣, 等. 不同类型矿床(点)空间关联关系定量研究——以中南半岛及临近地区为例[J]. 地质与勘探, 2022, 58(03): 532-544.

      PAN Beidou, LIU Bao, WANG Fuchen, et al. Quantitative study on spatial correlation of different types of deposits(occurrences)—A case study of Indochina Peninsula and adjacent areas[J]. Geology and Exploration, 2022, 58(3): 0532-0544.

      潘彤. 青海成矿单元划分[J]. 地球科学与环境学报, 2017, 39(01): 16-33 doi: 10.3969/j.issn.1672-6561.2017.01.002

      PAN Tong. Classification of Metallogenic Units in Qinghai, China[J]. Journal of Earth Sciences and Enviroment, 2017, 39(01): 16-33. doi: 10.3969/j.issn.1672-6561.2017.01.002

      时超, 李荣社, 何世平, 等. 东昆仑祁漫塔格虎头崖铅锌多金属矿成矿时代及其地质意义——黑云二长花岗岩地球化学特征和锆石U-Pb年龄证据[J]. 地质通报, 2017, 36(06): 977-986 doi: 10.3969/j.issn.1671-2552.2017.06.010

      SHI Chao, LI Rongshe, HE Shiping, et al. A study of the ore-forming age of the Hutouya deposit and its geological significance: Geochemistry and U-Pb zircon ages of biotite monzonitic granite in Qimantag, East Kunlun Mountains[J]. Geological Bulletin of China, 2017, 36(6): 977-986. doi: 10.3969/j.issn.1671-2552.2017.06.010

      舒树兰, 何书跃, 李彬, 等. 青海东昆仑鸭子沟多金属矿床地质地球化学特征及找矿前景分析[J]. 西北地质, 2014, 47(02): 62-72 doi: 10.3969/j.issn.1009-6248.2014.02.008

      SHU Shulan, HE Shuyue, LI Bin, et al. Geology, Geochemical Characteristics and Prospecting Analysisof Yazigou Polymetallic Deposit, Esat Kunlun, Qinghai Province[J]. Northwestern Geology, 2014, 47(02): 62-72. doi: 10.3969/j.issn.1009-6248.2014.02.008

      舒晓峰, 王雪萍, 张雨莲, 等. 青海虎头崖地区多金属矿床成因类型的厘定及找矿方向[J]. 西北地质, 2012, 45(01): 165-173 doi: 10.3969/j.issn.1009-6248.2012.01.022

      SHU Xiaofeng, WANG Xueping, ZHANG Yulian, et al. Determination of Multifarious Genesis and Prospecting of Polymetallic Metallogenic Deposit in Hutouya, Qinghai[J]. Northwestern Geology, 2012, 45(01): 165-173. doi: 10.3969/j.issn.1009-6248.2012.01.022

      谈生祥, 郭通珍, 董进生, 等. 青海乌兰乌珠尔地区晚志留世过铝质花岗岩地质特征及意义[J]. 青海大学学报(自然科学版), 2011, 29(1): 36−43.

      TAN Shengxiang, GUO Tongzhen, DONG Jinsheng, et al. Geological characteristics and significance of the peraluminous granite in late silurian epoch in Wulanwuzhuer region of Qinghai[J]. Journal of Qinghai University(Natural Science), 2011, 29(1): 36−43.

      田承盛, 丰成友, 李军红, 等. 青海它温查汉铁多金属矿床~(40)Ar-~(39)Ar年代学研究及意义[J]矿床地质, 2013, 32(01): 169-176 doi: 10.3969/j.issn.0258-7106.2013.01.012

      TIAN Chengsheng, FENG Chengyou, LI Junhong, et al. 40Ar-39Ar geochronology of Tawenchahan Fe-polymetallic deposit in Qimantag Mountain of Qinghai Province and its geological implications[J]. Mineral Deposits, 2013, 32(01): 169-176. doi: 10.3969/j.issn.0258-7106.2013.01.012

      田龙, 康磊, 刘良, 等. 东昆仑巴什尔希晚奥陶世二长花岗岩成因及其地质意义[J]. 西北地质, 2023, 56(2): 28−45.

      TIAN Long, KANG Lei, LIU Liang, et al. Petrogenesis and Geological Implications of Bashenerxi Monzogranite from East Kunlun Orogen Belt[J]. Northwestern Geology, 2023, 56(2): 28−45.

      王秉璋. 祁漫塔格地质走廊域古生代—中生代火成岩岩石构造组合研究[D]. 北京: 中国地质大学(北京), 2012

      WANG Bingzhang. The study and investigation on the assembly and coupling Petrotectonic assemblage during Paleozoic-Mesozoic period at Qimantag geological corridor domain[D]. Beijing: China University of Geosciences (Beijing), 2012.

      温博文, 董文瀚, 解武杰, 等. 基于改进网格搜索算法的随机森林参数优化[J]. 计算机工程与应用, 2018, 54(10): 154−157.

      WEN Bowen, DONG Wenhan, XIE Wujie, et al. Parameter optimization method for random forest based on improved grid search algorithm[J]. Computer Engineering and Applications, 2018, 54(10): 154-157.

      徐博. 藏北安多地区中侏罗统布曲组碳酸盐岩微相分析[D]. 成都: 成都理工大学, 2020

      XU Bo. Carbonate Microfacies Analysis and Evolutions of the Middle Jurassic Buqu Formation in the Amdo area, northern Tibet[D]. Chendu: Chendu University of Technology, 2020.

      许长坤, 刘世宝, 赵子基, 等. 青海省东昆仑成矿带铁矿成矿规律与找矿方向研究[J]. 地质学报, 2012, 86(10): 1621-1678 doi: 10.3969/j.issn.0001-5717.2012.10.006

      XU Changkun, LIU Shibao, ZHAO Ziji, et al. Metallogenic Law and Prospect Direction of Iron Deposits in the East Kunlun Metallogenic Belt in Qinghai[J]. Acta Geologica Sinca, 2012, 86(10): 1621-1678. doi: 10.3969/j.issn.0001-5717.2012.10.006

      许骏, 邓小华, 祝新友. 祁漫塔格成矿带地质特征和成矿时空分布规律[J]. 新疆地质, 2021, 39(04): 671-678 doi: 10.3969/j.issn.1000-8845.2021.04.025

      XU Jun, DENG Xiaohua, ZHU Xingyou. Geological Characteristics and Spatio-Temporal Distribution of Mineralization in the Qimantage metallogenic Belt[J]. Xinjiang Geology, 2021, 39(04): 671-678. doi: 10.3969/j.issn.1000-8845.2021.04.025

      许志琴, 杨经绥, 李化启, 等. 中国大陆印支碰撞造山系及其造山机制[J]. 岩石学报, 2012, 28(06): 1697-1709

      XU Zhiqin, YANG Jingsui, LI Huaqi, et al. Indosinian collision-orogenic system of Chinese continent and its orogenic mechanism[J]. Acta Petrologica Sinica, 2012, 28(06): 1697-1709.

      薛宁, 安勇胜, 李五福, 等. 青海野马泉地区正长花岗岩的基本特征及成因[J]. 青海大学学报(自然科学版), 2009, 27(02): 18-22 doi: 10.13901/j.cnki.qhwxxbzk.2009.02.003

      XU Ning, AN Yongsheng, LI Wufu, et al. Characteristic and genesis of normal granite in the Yemaquan of Qinghai[J]. Journal of Qinghai University, 2009, 27(02): 18-22. doi: 10.13901/j.cnki.qhwxxbzk.2009.02.003

      杨兴科, 韩珂, 范阅, 等. 东昆仑祁漫塔格矿带典型矿田构造背景与岩浆-热力构造特征[J]. 大地构造与成矿学, 2016, 40(02): 201-212 doi: 10.16539/j.ddgzyckx.2016.02.002

      YANG Xingke, HAN Ke, FAN Yue, et al. Tectonic Background and Magma-thermodynamic Structural Features of Typical Orefields in Qimantage Ore Belt, Eastern Kunlun[J]. Geotectonica et Metallogenia, 2016, 40(02): 201-212. doi: 10.16539/j.ddgzyckx.2016.02.002

      姚磊. 青海祁漫塔格地区三叠纪成岩成矿作用及地球动力学背景[D]. 北京: 中国地质大学(北京), 2015.

      YAO Lei. Petrogenesis of the Triassic granitoids and skarn mineralization in the Qimantag area, Qinghai Province, and their geodynamic setting[D]. Beijing: China University of Geosciences (Beijing), 2015.

      杨涛, 李智明, 张乐, 等. 东昆仑它温查汉西花岗岩地质地球化学特征及其构造意义[J]. 高校地质学报, 2017, 23(03): 452-464 doi: 10.16108/j.issn1006-7493.2017026

      YANG Tao, LI Zhiming, ZHANG Le, et al. Geological and Geochemical Characteristics of the Tawenchahanxi Granites in East Kunlun and Its Tectonic Significance[J]. Geological Journal of China Universities, 2017, 23(03): 452-464. doi: 10.16108/j.issn1006-7493.2017026

      于淼, 丰成友, 刘洪川, 等. 青海尕林格矽卡岩铁矿富Cl角闪石矿物地球化学特征与其成矿意义[J]. 岩石矿物学杂志, 2015, 34(05): 721-740 doi: 10.3969/j.issn.1000-6524.2015.05.010

      YU Miao, FENG Chengyou, LIU Hongchuan, et al. The Significance of Mineralization and Geochemistry of the Cl_rich Amphiboles from the Galinge Skarn Iron Deposit in Qinghai Province[J]. Acta Petrologica et Mineralogica, 2015, 34(05): 721-740. doi: 10.3969/j.issn.1000-6524.2015.05.010

      袁颖, 于少将, 王晨晖, 等. 基于网格搜索法优化支持向量机的围岩稳定性分类模型[J]. 地质与勘探, 2019, 55(2): 608−613.

      YUAN Ying, YU Shaojiang, WANG Chenhui, et al. Evaluation model for surrounding rock stability based on support vector machine optimized by grid search method[J]. Geology and Exploration, 2019, 55(2): 608−613.

      王子烨. 基于测度学习的喜马拉雅淡色花岗岩岩体识别[D]. 武汉: 中国地质大学, 2020

      WANG Ziye. Mapping of Himalaya Leucogranites Based on Metric Learning[D]. HU BEI: China University of Geosciences, 2020.

      吴祥珂, 孟繁聪, 许虹, 等. 青海祁漫塔格玛兴大坂晚三叠世花岗岩年代学、地球化学及Nd-Hf同位素组成[J]. 岩石学报, 2011, 27(11): 3380-3394

      WU Xiangke, MENG Fancong, XU Hong, et al. Zircon U-Pb dating, geochemistry and Nd-Hf isotopic compositions of the Maxingdaban Late Triassic granitic pluton from Qimantag in the eastern Kunlun[J]. Acta Petrologica Sinica, 2011, 27(11): 3380-3394.

      赵一鸣, 丰成友, 李大新, 等. 青海西部祁漫塔格地区主要矽卡岩铁多金属矿床成矿地质背景和矿化蚀变特征[J]. 矿床地质, 2013, 32(01): 1-19 doi: 10.3969/j.issn.0258-7106.2013.01.001

      ZHAO Yiming, FENG Chengyou, LI Daxing. Metallogenic setting and mineralization-alteration characteristics of major skarn Fe-polymetallic deposits in Qimantag area western Qinghai Province[J]. Mineral Deposits, 2013, 32(01): 1-19. doi: 10.3969/j.issn.0258-7106.2013.01.001

      张爱奎, 莫宣学, 袁万明, 等. 东昆仑西部野马泉地区三叠纪花岗岩成因与构造背景[J]. 矿物学报, 2016, 36(02): 157-173 doi: 10.16461/j.cnki.1000-4734.2016.02.001

      ZHANG Aikui, MO Xuanxue, YUAN Wangming, et al. Petrogensis and Tectonic Setting of Yemaquan Triassic Granite from the West of the Eastern Kunlun Mountain Range, China[J]. Acta Mineralogica Sinca, 2016, 36(02): 157-173. doi: 10.16461/j.cnki.1000-4734.2016.02.001

      张爱奎. 青海野马泉地区晚古生代—早中生代岩浆作用与成矿研究[D]. 北京: 中国地质大学(北京), 2012

      ZHANG Aikui. Studies on late Paleozoic-early Mesozoic magmatism and mineralization in Yemaquan area, Qinghai province[D]. Beijing: China University of Geosciences (Beijing), 2012.

      张雷. 东昆仑野马泉地区三叠纪构造岩浆作用与成矿关系[D]. 北京: 中国地质大学(北京), 2013.

      ZHANG Lei. Studies on Triassic Tectonic Magmatosm and Relationship with Mineralization in Yemaquan Area, East Kunlun[D]. Beijing: China University of Geosciences (Beijing), 2013.

      张明玉, 丰成友, 王辉, 等. 东昆仑祁漫塔格地区晚三叠世正长花岗岩岩石成因及构造意义[J]. 岩石矿物学杂志, 2018, 37(2): 197−210.

      ZHANG Mingyu, FENG Chengyou, WANG Hui, et al. Petrogenesis and tectonic implications of the Late Triassic syenogranite in Qimantag area, East Kunlun Mountains[J]. Acta Petrologica et Mineralgica, 2018, 37(2): 197-210.

      张杰, 康晓波, 鲁慧, 等. 哀牢山中段地质灾害空间分布规律研究——以元江县为例[J]. 工程地质学报, 2018, 26(03): 720-731

      ZHANG Jie, KANG Xiaobo, LU Hui, et al. Study on spatial distribution of geological disasters in middle part of Ailao mountain: A case of Yuanjiang County[J]. Journal of Engineering Geology, 2018, 26(3): 720-731.

      张晓飞, 李智明, 贾群子, 等. 青海祁漫塔格虎头崖多金属矿区花岗斑岩地球化学、年代学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2016, 46(03): 749-765

      ZHANG Xiaofei, LI Zhiming, JIA Qunzi, et al. Geochronology, Geochemistry and Geological Significance of Granite Porphyry in Hutouya Polymetallic Deposit, Qimantage Area, Qinghai Province[J]. Journal of Jilin University(Earth Science Edition), 2016, 46(03): 749-765.

      张晓飞, 宋忠宝, 李智明, 等. 北祁连浪力克矿区闪长玢岩地质地球化学特征及其地质意义[J]. 西北地质, 2012, 45(S1): 113−116.
      张向飞, 陈莉, 曹华文, 等. 中国新疆–中亚大地构造单元划分及演化简述[J]. 西北地质, 2023, 56(4): 1−39.

      ZHANG Xiangfei, CHEN Li, CAO Huawen, et al. Division of Tectonic Units and Their Evolutions within Xinjiang, China to Central Asia[J]. Northwestern Geology, 2023, 56(4): 1−39.

      张雨莲, 贾群子, 宋忠宝, 等. 青海省卡尔却卡铜多金属矿床A区斑岩型和B区矽卡岩型成矿岩体特征对比[J]. 西北地质, 2014, 47(04): 114-122 doi: 10.3969/j.issn.1009-6248.2014.04.012

      ZHANG Yulian, JIA Qunzi, SONG Zhongbao, et al. Contrastive Study on Features of Ore-forming Rock Mass between Area-A Porphyry Type and Area-B Skarn Type in Ka’erqueka Copper Molubdenum Deposit in Qinghai Province[J]. Northwestern Geology, 2014, 47(04): 114-122. doi: 10.3969/j.issn.1009-6248.2014.04.012

      钟世华. 新疆维宝铜铅锌矿床成因研究[D]. 北京: 中国地质科学院, 2018

      ZHONG Shihua. Genesis of the Weibao Cu-Pb-Zn deposit in Xinjiang, China[D]. Beijing: Chinese Aacademy of Geological Sciences, 2018.

      钟世华, 丰成友, 李大新, 等. 新疆维宝矽卡岩铜铅锌矿床维西矿段矿物学特征[J]. 地质学报, 2017, 91(05): 1066-1082 doi: 10.3969/j.issn.0001-5717.2017.05.008

      ZHONG Shihua, FENG Chengyou, LI Daxing, et al. Mineralogical Characteristics of the Weixi Ore Block in the Weibao Skarn-type Copper-Lead-Zinc Deposit, Xinjiang[J]. Acta Geologica Sinica, 2017, 91(05): 1066-1082. doi: 10.3969/j.issn.0001-5717.2017.05.008

      庄玉军, 彭璇, 周艳龙, 等. 柴北缘赛什腾山滩间山群晚奥陶世富铌玄武岩成因及其地质意义[J]. 西北地质, 2023, 56(1): 63−80.

      ZHUANG Yujun, PENG Xuan, ZHOU Yanlong, et al. Genesis and Geological Significance of Late Ordovician Nb-rich Basalts from Tanjianshan Group in Saishitengshan Mountain, Northern Margin of Qaidam Tectonic belt[J]. Northwestern Geology, 2023, 56(1): 63−80.

      Ballard J R, Palin M J, Campbell I H. Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile[J]. Contributions to Mineralogy and Petrology, 2002, 144(3): 347-364. doi: 10.1007/s00410-002-0402-5

      Bergen K J, Johnson P A, Hoop M V, et al. Machine learning for data-driven discovery in solid Earth geoscience[J]. Science, 2019, 363(6433): eaau0323. doi: 10.1126/science.aau0323

      Breiman L. Random Forests[J]. Machine Learning, 2001, 45(1): 5−32.

      Chen J, Wang B Z, Lu H F, et al. Geochronology and geochemistry of Early Devonian intrusions in the Qimantagh area, Northwest China: evidence for post-collisional slab break-off[J]. International Geology Review, 2018, 60(4): 479-495. doi: 10.1080/00206814.2017.1346487

      Chiaradia M, Ulianov A, Kouzmanov A, et al. Why large porphyry Cu deposits like high Sr/Y magmas?[J]. Scientific Reports, 2012, 2: 685-686. doi: 10.1038/srep00685

      Chawla N V. Data mining for imbalanced datasets: An overview[J]. Data mining and knowledge discovery handbook, 2009, 875−886.

      Du J, Audetat A. Early sulfide saturation is not detrimental to porphyry Cu-Au formation[J]. Geology, 2020, 48(5): 519-524. doi: 10.1130/G47169.1

      Guo X Z, Zhou T F, Jia Q Z, et al. Highly differentiated felsic granites linked to Mo mineralization in the East Kunlun Orogenic Belt, NW China: Constrains from geochemistry, and Sr-Nd-Hf isotopes of the Duolongqiarou porphyry Mo deposit[J]. Ore Geology Reviews, 2022, 145: 104891. doi: 10.1016/j.oregeorev.2022.104891

      Hedenquist J W, Arribas A, Reynolds T J. Evolution of an intrusion-centered hydrothermal system;Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits[J]. Philippines. Economic Geology, 1998, 93(4): 373-404. doi: 10.2113/gsecongeo.93.4.373

      Jordan M I, Mitchell T M. Machine learning: Trends, perspectives, and prospects[J]. Special Issue Review, 2015, 349: 255-260.

      Kotsiantis S, Kanellopoulos D, Pintelas P. Handling imbalanced datasets: a review, gests international transactions on computer science and engineering[J]. Synthetic Oversampling Instances Using Clustering, 2006, 30(1): 25-36.

      Leng C B, Cooke D R, Hou Z Q, et al. Quantifying Exhumation at the Giant Pulang Porphyry Cu-Au Deposit Using U-Pb-He Dating[J]. Economic Geology, 2018, 113(5): 1077-1092. doi: 10.5382/econgeo.2018.4582

      Lin X, Chang H, Wang K, et al. Machine Learning for Source Identification of Dust on the Chinese Loess Plateau[J]. Geophysical Research Letters, 2020, 47(21): e2020GL088950.

      Lv W C, Li Z H, Wu X X, et al. Maximum Entropy Niche–Based Modeling(Maxent) of Potential Geographical Distributions of Lobesia Botrana(Lepidoptera_Tortricidae) in China[J]. Computer and Computing Technologies in Agriculture, 2011, 3: 264-246.

      Mao Y J, Qin K Z, Li C S, et al. Petrogenesis and ore genesis of the Permian Huangshanxi sulfide ore-bearing mafic-ultramafic intrusion in the Central Asian Orogenic Belt, western China[J]. Lithos, 2014, (200-201): 111-125.

      Nathwani C L, Wilkinson J J, George F, et al. Machine learning for geochemical exploration: classifying metallogenic fertility in arc magmas and insights into porphyry copper deposit formation[J]. Mineralium Deposita, 2022, 57(7): 1143-1166. doi: 10.1007/s00126-021-01086-9

      Nathwani C L, Wilkinson J J, Brownscombe W, et al. Mineral Texture Classification Using Deep Convolutional Neural Networks: An Application to Zircons From Porphyry Copper Deposits[J]. JGR Solid Earth, 2023, 128(2).

      Petrelli M, Perugini D. Solving petrological problems through machine learning: the study case of tectonic discrimination using geochemical and isotopic data[J]. Contributions to Mineralogy and Petrology, 2016, 171(10).

      Pizarro H, Campo E, Bouzaro F, et al. Porphyry indicator zircons (PIZs): Application to exploration of porphyry copper deposits[J]. Ore Geology Reviews, 2020, 126: 103771. doi: 10.1016/j.oregeorev.2020.103771

      Ren X, Dong Y P, He D F, et al. Late Triassic magmatic rocks in the southern East Kunlun Orogenic Belt, northern Tibetan Plateau: Petrogenesis and tectonic implications[J]. International Geology Review, 2023,

      Rezeau H, Jagoutz O. The importance of H2O in arc magmas for the formation of porphyry Cu deposits. Ore Geology Reviews, 2020, 126, 103744.

      Rezeau H, Moritz R, Wotzlaw J F, et al. Zircon Petrochronology of the Meghri-Ordubad Pluton, Lesser Caucasus: Fingerprinting Igneous Processes and Implications for the Exploration of Porphyry Cu-Mo Deposits[J]. Economic Geology, 2019, 114(7): 1365-1388. doi: 10.5382/econgeo.4671

      Richards J P. High Sr/Y arc magmas and porphyry Cu deposits: just add water[J]. Economic Geology, 2011, 106(7): 1075-1081. doi: 10.2113/econgeo.106.7.1075

      Sun W D, Liang H Y, Ling M X, et al. The link between reduced porphyry copper deposits and oxidized magmas[J]. Geochimica et Cosmochimica Acta, 2013, 103: 263-275. doi: 10.1016/j.gca.2012.10.054

      Wang Y, Qiu, K F, Müller A, et al. Machine Learning Prediction of Quartz Forming-Environments[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(8).

      Wang C, Liu L, Xiao P X, et al. Geochemical and geochronologic constraints for Paleozoic magmatism related to the orogenic collapse in the Qimantagh-South Altyn region, northwestern China[J]. Lithos, 2014, (202-203): 1-20.

      Xia R, Wang C M, Qing M, et al. Molybdenite Re-Os, zircon U-Pb dating and Hf isotopic analysis of the Shuangqing Fe-Pb-Zn-Cu skarn deposit, East Kunlun Mountains, Qinghai Province, China[J]. Ore Geology Reviews, 2015, 66: 114-131. doi: 10.1016/j.oregeorev.2014.10.024

      Xu Q L, Sun Y G, Mao G Z, et al. Petrogenesis of the Ore-Related Intrusions of the Aikengdelesite Mo (-Cu) and Halongxiuma Mo Deposits: Implication for Geodynamic Evolution and Mineralization in the East Kunlun Orogen, Northwest China[J]. Minerals, 13(3): 447.

      Yan M J, Sun G S, Sun F Y, et al. Geochronology, Geochemistry, and Hf Isotopic Compositions of Monzogranites and Mafic-Ultramafic Complexes in the Maxingdawannan Area, Eastern Kunlun Orogen, Western China: Implications for Magma Sources, Geodynamic Setting, and Petrogenesis[J]. Journal of Earth Science, 2019, 30: 335-347. doi: 10.1007/s12583-018-1203-8

      Yin S, Ma C Q, Xu J N. Geochronology, geochemical and Sr-Nd-Hf-Pb isotopic compositions of the granitoids in the Yemaquan orefield, East Kunlun orogenic belt, northern Qinghai-Tibet Plateau: Implications for magmatic fractional crystallization and sub-solidus hydrothermal alteration[J]. Lithos, 2017, 294-295: 339-355. doi: 10.1016/j.lithos.2017.10.012

      Yu M, Feng C Y, Santosh M, et al. The Qiman Tagh Orogen as a window to the crustal evolution in northern Qinghai-Tibet Plateau[J]. Earth-Science Reviews, 2017a. 167: 103-123. doi: 10.1016/j.earscirev.2017.02.008

      Yu M, Feng C Y, Mao J W, et al. Multistage Skarn-Related Tourmaline From the Galinge Deposit, QimanTage, Western China: A Fluid Evolution Perspective[J]. The Canadian Mineralogist, 2017b, 55(1): 3-19. doi: 10.3749/canmin.1600043

      Zhong S H, Seltmann R, Shen P. Two different types of granitoids in the Suyunhe large porphyry Mo deposit, NW China and their genetic relationships with molybdenum mineralization[J]. Ore Geology Reviews, 2017, 88: 116-139. doi: 10.1016/j.oregeorev.2017.04.012

      Zhong S H, Feng C Y, Seltmann R, et al. Geochemical contrasts between Late Triassic ore-bearing and barren intrusions in the Weibao Cu-Pb-Zn deposit, East Kunlun Mountains, NW China: constraints from accessory minerals(zircon and apatite)[J]. Mineralium Deposita, 2018, 53(6): 855-870. doi: 10.1007/s00126-017-0787-8

      Zhong S H, Li S Z, Feng C Y, et al. Porphyry copper and skarn fertility of the northern Qinghai-Tibet Plateau collisional granitoids[J]. Earth-Science Reviews, 2021a, 103524.

      Zhong S H, Feng C Y, Seltmann R, et al. Middle Devonian volcanic rocks in the Weibao Cu-Pb-Zn deposit, East Kunlun Mountains, NW China: Zircon chronology and tectonic implications[J]. Ore Geology Reviews, 2021b, 84: 309-327.

      Zhong S H, Li S Z, Liu Y, et al. I-type and S-type granites in the Earth’s earliest continental crust[J]. Communications Earth & Environment, 2023, 4: 61.

      Zhou Y, Zhang Z, Yang J, et al. Machine Learning and Singularity Analysis Reveal Zircon Fertility and Magmatic Intensity: Implications for Porphyry Copper Potential[J]. Natural Resources Research, 2022, 31(6): 3061-3078. doi: 10.1007/s11053-022-10122-y

      Zou S, Chen X, Brzozowski M J, et al. Application of Machine Learning to Characterizing Magma Fertility in Porphyry Cu Depositsp[J]. Journal of Geophysical Research: Solid Earth, 2022, 27(8).

    • 期刊类型引用(3)

      1. 黄宇,钟世华,李三忠,赵鸿,薛梓萌,郭广慧,刘嘉情,牛警徽. 副矿物包裹体和信号采集时间对锆石U-Pb年龄和微量元素分析结果的影响. 地学前缘. 2025(01): 388-400 . 百度学术
      2. 呼冬强,何福宝,李辉,郝延海,张强,冯昌荣,廖风云. 基于随机森林算法的新疆木吉一带金矿区域成矿预测. 新疆地质. 2024(01): 158-163 . 百度学术
      3. 孙富海. 基于机器学习的多金属矿成矿预测和评价. 矿产勘查. 2024(S2): 78-84 . 百度学术

      其他类型引用(1)

    图(6)  /  表(3)
    计量
    • 文章访问数:  187
    • HTML全文浏览量:  32
    • PDF下载量:  188
    • 被引次数: 4
    出版历程
    • 收稿日期:  2023-07-24
    • 修回日期:  2023-09-10
    • 录用日期:  2023-09-10
    • 网络出版日期:  2023-08-24
    • 刊出日期:  2023-12-19

    目录

    /

    返回文章
    返回