ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

内蒙朝克山辉长岩中单斜辉石矿物化学特征及地质意义

张永玲, 张治国, 刘希军, 田昊, 李得超, 肖让, 肖尧

张永玲,张治国,刘希军,等. 内蒙朝克山辉长岩中单斜辉石矿物化学特征及地质意义[J]. 西北地质,2024,57(1):122−138. doi: 10.12401/j.nwg.2023027
引用本文: 张永玲,张治国,刘希军,等. 内蒙朝克山辉长岩中单斜辉石矿物化学特征及地质意义[J]. 西北地质,2024,57(1):122−138. doi: 10.12401/j.nwg.2023027
ZHANG Yongling,ZHANG Zhiguo,LIU Xijun,et al. Mineralogical Chemistry Characteristics and Geological Significance of the Clinopyroxene from Chaokeshan Gabbro, Inner Mongolia[J]. Northwestern Geology,2024,57(1):122−138. doi: 10.12401/j.nwg.2023027
Citation: ZHANG Yongling,ZHANG Zhiguo,LIU Xijun,et al. Mineralogical Chemistry Characteristics and Geological Significance of the Clinopyroxene from Chaokeshan Gabbro, Inner Mongolia[J]. Northwestern Geology,2024,57(1):122−138. doi: 10.12401/j.nwg.2023027

内蒙朝克山辉长岩中单斜辉石矿物化学特征及地质意义

基金项目: 国家自然科学基金(92055208),广西自然科学基金杰出青年科学基金(2018GXNSFFA281009),广西八桂学者项目“有色金属成矿理论与勘查技术”(2018),甘肃省高等学校创新基金项目(2021A-118),广西研究生教育创新计划项目(YCBZ2021063)联合资助
详细信息
    作者简介:

    张永玲(1977−),女,硕士,副教授,主要从事水利工程研究。E−mail:zhangyl5266@163.com

    通讯作者:

    张治国(1991− ),男,博士,讲师,主要从事蛇绿岩及构造−岩浆作用研究。E−mail:zhangzhiguo1231@163.com。

  • 中图分类号: P588.14

Mineralogical Chemistry Characteristics and Geological Significance of the Clinopyroxene from Chaokeshan Gabbro, Inner Mongolia

  • 摘要:

    内蒙贺根山带广泛发育古生代基性岩浆岩,为探讨其岩浆源区和岩石成因,进一步了解中亚造山带东段古生代构造背景,笔者对朝克山蛇绿岩进行了矿物学研究。矿物电子探针结果显示,辉长岩中单斜辉石均属于透辉石,既有碱性特征,也有拉斑特征,SiO2含量为50.75%~52.99%,具有高的Al2O3,含量为2.03%~3.77%,相对亏损轻稀土元素(La/Sm)N=0.12~0.22和高场强元素(HFSE;Nb、Ta、Zr、Hf、Ti负异常),富集大离子亲石元素(LILEs),与辉长岩全岩的特征程度相一致,共同指示岩体母岩浆可能为亚碱性的拉斑玄武质岩浆向碱性玄武质岩浆演化的趋势。单斜辉石的平衡温度为1099~1242 ℃,平衡压力为1.5~6.4 kbar,深度为5~21 km,显示明显的深源特征。结合前人研究成果,笔者认为朝克山蛇绿岩形成于弧后盆地环境。

    Abstract:

    Paleozoic mafic magmatic rocks are widely developed in Hegenshan belt of Inner Mongolia. In order to explore the magmatic source and petrological genesis of these rocks and to further understand the Paleozoic tectonic setting of the eastern part of the Central Asian orogenic belt, the Chaokeshan ophiolites are studied by mineralogy. Mineral electron probe results show that the monocline in gabbro belongs to diopside, which has both alkaline and tholeitic characteristic, with SiO2 (50.75% to 52.99%) and high Al2O3 (2.03% to 3.77%), and are relatively enriched large ion lithophile elements, but depleted in light rare earth elements ((La/Sm)N=0.12~0.22) and in high field strength elements (e.g. Nb, Ta, Zr, Hf, Ti), consistent with the characteristics of the whole gabbro rock, indicating that the parent magma of the pluton may be subalkaline tholeitic magma to alkaline basalt magma evolution trend. The temperature and pressure of clinopyroxene are 1099~1242 ℃, 1.5~6.4 kbar and 5~21 km respectively, suggesting obvious deep-derived characteristics. Combined with the previous research results, it’s suggest that the Chaokeshan ophiolites was likely produced in the back-arc tectonic setting.

  • 中国生态地质调查起步于20世纪80年代,近年来国内学者在相关研究方面成果丰硕(王尧等,2019张茂省等,2019王京彬等,2020聂洪峰等,2021李文明等,2022)。南水北调中线工程是中国重要的跨流域调水工程,陕西省商洛市丹江源地区是南水北调中线工程重要水源涵养区(图1a),因地处秦岭保护区,又是全国生态环境建设重点试点示范区,具有重要的生态功能地位。同时,土地利用/覆被变化是导致生态格局演变和生态系统变化的重要因素(Veldkamp et al.,2004岳德鹏等,2007陈利顶等,20082013),景观指数可以体现景观结构组成和空间配置等特征,能高度浓缩景观格局信息,定量获取要素的空间分布特征,为生态格局动态变化研究提供基础信息(Robert,1997邬建国,2000Moser et al.,2002陈文波等,2002王天山等,2016)。张雁等(20162018)对商洛市水源地土地利用类型结构及生态环境效应进行分析,但多侧重于水生态评价研究。李文明等(2022)梳理了西北地区的生态地质调查进展并分析了生态安全屏障区存在的问题,尚未对研究区生态地质格局进行过深入调查。因此,摸清丹江源地区的生态地质本底,分析生态格局动态演变,以及科学合理利用配置土地资源意义重大。笔者依托丹江源地区生态地质调查项目,采用坡面调查方法,梳理不同地质建造上的典型生态关键带生态地质特征,利用ENVI 5.3、ArcGIS 10.2及Fragstats4.2软件,解译分析区内2000~2020年3期土地利用时空演变和景观格局演变特征,掌握全区地下—地表生态地质格局动态演变,为丹江源地区的生态地质环境治理、土地利用结构优化、生态系统保护及生态质量评价提供重要的数据支撑和科学依据,对充分发挥其生态服务功能具有重要现实意义。

    图  1  研究区地理位置(a)及丹江源地区水系分布图(b)
    Figure  1.  (a) Geographical location of the study area and (b) drainage distribution map of Danjiangyuan Area

    按照流域划分原则,在ArcGIS 10.2软件支持下,界定商洛市商州区内丹江及支流的流域面积为1 757 km2图1a)。研究区地形总体呈西北高、东南低,海拔为699~1 684 m,主要有中山区、低山丘陵区、河谷川塬区3种地貌单元,具有暖温带南缘过渡带季风性、半湿润性山地气候特点。区内多年平均降水量为699.44 mm,年际间降水量分布不均,受地形地貌影响,区域降水呈西多东少,南多北少的地域特征,总体表现为山地多,河谷阶地少。山区年均降雨量800 mm以上,年均气温为10~11 ℃,河谷川塬区年均降雨量在730 mm以下,年均气温在13 ℃以上(国家气象科学数据中心,1951~2020)。降水量随着高度增加而增多,表现为降水量的垂直差异性。区内水系发育,河网密度0.69~1.28 km/km2图1b),多年平均年径流深为230 mm,年径流量为4.48×108 m3,平均流量为8 m3/s,径流年内分配不均匀。

    研究区大地构造位置属华北板块,以商丹断裂为界,划分为华北陆块和商丹地壳对接带2个二级构造单元(图2)。基于时代+物质组成的划分方案,将区内地质建造划分为13类(图2a),前寒武纪砂泥质碎屑岩建造、侏罗纪—古近纪陆相砂泥质碎屑岩建造、前寒武纪酸性岩浆岩建造、寒武纪—奥陶纪海相碳酸盐岩建造等为主(图2b)。研究区内岩浆岩较发育,火山岩岩性为变玄武岩、变安山岩、凝灰岩等。侵入岩主要有新元古代混合片麻岩、志留纪辉长岩体等,另有少量三叠纪、侏罗纪花岗岩体。

    图  2  丹江源地区地质建造图(a)及不同地质建造面积分布图(b)
    1.第四纪陆相松散堆积建造;2.寒武纪海相碳酸盐岩建造;3.古生代中酸性岩浆岩建造;4.寒武纪基性火山岩建造;5.侏罗纪-古近纪陆相砂泥质碎屑岩建造;6.奥陶纪泥质碎屑岩建造;7.前寒武纪碳酸盐岩建造;8.三叠纪陆相砂泥质碎屑岩建造;9.古生代基性火山岩建造;10.前寒武纪砂泥质碎屑岩建造;11.三叠纪中酸性岩浆岩建造;12.古生代基性-超基性岩浆岩建造;13.前寒武纪酸性岩浆岩建造;14.实测剖面
    Figure  2.  (a) Geological construction map and (b) distribution map of different geological construction areas in Danjiangyuan area

    区内土壤类型有黄棕壤、紫色土、褐土、潮土、粗骨土和新积土(潘贤章等,2015)。丹江源地区植被空间分布明显,丹江源地区用材林和主要水源涵养林区主要分布在中山区(陕西省商洛地区地理志,1981);土壤较瘠簿的低山区主要分布有常绿阔叶树的落叶林带、栓皮栎林带、经济林、用材林和草场草坡;低山丘陵区森林覆盖率较低,以天然草地、人工林为主。区内产业结构以农业、林业为主导产业,经济基础较为薄弱。

    在初步查明生态地质背景的基础上,结合微地貌的影响因素,采用野外路线调查结合坡面调查的方法(王京彬等,2020聂洪峰等,2021),选取代表性的地段开展生态地质剖面测量解析,控制重要的生态地质类型,结合浅钻及垂向剖面等形式予以揭露,观察、测量生态地质现象,记录不同地质、地形地貌、生态、土壤等生态地质信息,绘制生态地质剖面,梳理区域生态地质条件现状及制约因素,垂向上查明不同地质建造上的典型生态关键带相关生态要素间的相互作用过程。

    文中遥感影像数据选择2000年Landsat TM5,2010年Landsat TM5,2020年Landsat OLI影像,时相以9~10月为主,分辨率为30 m,云量均3%以下,使用的数字高程模型下载自地理空间数据云官网(中国科学院计算机网络信息中心科学数据中心http://www.gscloud.cn)。运用ENVI 5.3对3期遥感航片进行解译。结合商州区土地利用现状,对研究区土地利用类型进行划分,并与GLOBELLAND30数据(Zhu et al.,2010Chen et al.,201120142016)进行比对,准确率达到84.6%以上,解译结果符合精度要求,在ArcGIS 10.2软件支持下,绘制3期土地利用分类图,分析区域土地利用时空演变。

    结合研究实际需求,笔者参考前人研究成果的基础上(李煜东等,2020张晓宁等,2020苏明伟等,2021张建等,2021张林等,2022),选取相关景观格局指数进行计算(表1),主要从斑块类型和景观水平层次开展研究。利用 ArcGIS 10.2的空间分析模块将土地利用类型图转换为Grid格式后,采用目前广泛使用的景观格局计算分析软件 Frastats 4.2进行丹江源地区2000~2020年3期各景观组分的相关景观指数计算。

    表  1  景观格局指数选取及指示意义
    Table  1.  Selection and indicative significance of landscape pattern index
    景观单元特征指数指标选取指示意义
    景观面积度量指标 斑块类型面积(CA) CA值的大小影响着斑块类型聚集地中的物种数量及丰度
    斑块类型比(PLAND) PLAND指某一斑块类型占整个景观面积的相对比例
    最大斑块指数(LPI) LPI主要表示某一景观类型最大斑块占整个景观面积的比例,决定了景观优劣斑块,反应景观变化受人类活动干扰程度
    景观面积(TA) TA定义景观幅度,是监测生态系统是否稳定的重要指标
    景观形状指标 景观形状指数(LSI) LSI反映景观和斑块形状的分散和规则程度,值越大说明景观形状越复杂
    景观邻近度指标 香农多样性指数(SHDI) SHDI表示景观类型的复杂程度,值越小斑块类型越少,值增大说明斑块类型增加或各斑块类型在景观中呈均衡化趋势分布
    景观聚集与分散度
    测量指标
    蔓延度指数(CONTAG) CONTAG反映景观类型的聚集程度和延展程度,高蔓延度值表明某种优势斑块类型具有良好的连通性
    散布与并列指数(IJI) IJI反映斑块类型的隔离分布情况
    聚集度指数(AI) AI是基于栅格数量来测度景观或者某种斑块类型的聚集程度
     注:各景观格局指数计算公式和详细意义可参阅相关文献(何鹏等,2009孙天成等,2019)。
    下载: 导出CSV 
    | 显示表格

    基于生态关键带基岩–成土母质–土壤–植被垂向调查思路(图3),笔者绘制区内基岩–成土母质–土壤–植被变化图(图4)和典型生态地质剖面(图5)。

    图  3  丹江源地区不同生态关键带基岩–成土母质–土壤–植被变化图
    Figure  3.  Changes of bedrock, parent material, soil and vegetation in different ecological key zones of Danjiangyuan area
    图  4  丹江源地区金陵寺镇–柿园街生态地质剖面
    Figure  4.  Eco–geological profile of Jinlingsi Town–Shizyuan Street in Danjiangyuan area
    图  5  丹江源地区杨峪河镇麻街岭–任家村生态地质剖面
    Figure  5.  Eco–geological profile of Majeiling–Renjia village in Yangyuhe town, Danjiangyuan area

    金陵寺镇–柿园街生态地质剖面显示(图2a图4),研究区南部的三叠纪中酸性侵入岩建造、古生代酸性侵入岩建造、前寒武纪酸性侵入岩建造的基岩节理发育,成土母质为中酸性岩类风化物,中酸性花岗岩的成土母质层和淀积层相对较薄(图3),在中山区形成的土壤类型为棕壤,质地为沙质土,结构疏松,透水性好,含水性、保水性差,上覆植被类型为针阔叶混交林,因土壤pH值呈酸性,针叶油松较发育(图3图4)。在低山丘陵区主要形成粗骨土,砂砾含量高,植被郁闭度稍低,植被类型为以阔叶为主的针阔混交林。南部的古生代基性火山岩、基性-超基性侵入岩建造和前寒武纪基性火山岩建造的基岩易风化解体,形成较厚的风化层,质地一般为壤质,保水性能强,呈中性或弱碱性,在中山区形成棕壤,在低山丘陵区形成淋溶褐土。

    杨峪河镇麻街岭–任家村生态地质剖面显示(图2a图5),区内中部的白垩纪—古近纪陆相砂泥质碎屑岩建造,其地层产状平缓,节理不发育或仅发育风化节理等,成土母质为白垩纪–古近纪砂泥岩类风化物,例如含砾砂岩风化形成的淀积层较厚(图3),在低山丘陵区和中山区均形成紫色土,土体浅薄,质地为沙质土,有机质含量低,保水性差,水土流失易发,植被覆盖类型主要为草本植物(图3图5)。研究区中部的前寒武纪碎屑岩建造的片理化和节理发育,泥质含量高,易风化,质地一般为壤质,在中山区形成棕壤,在低山丘陵区形成淋溶褐土。上覆植被郁闭度高,林型为以栓皮栎等阔叶林为主的针阔混交林(图3图5)。前寒武纪碳酸盐岩建造的岩石质地坚硬,不易风化,例如大理岩的成土母质层较厚(图3),在中山区和低山丘陵区形成淋溶褐土,在河谷川塬区形成石质土,多处出现裸露基岩,植被覆盖以草本为主,零星分布少量低矮灌木和油松(图5)。

    不同的地质建造,因为岩性不同、形成时代不同,受控于不同的构造地质背景和环境背景,导致形成不同的地形地貌、成土母质、土壤类型、水文类型、局部小气候类型,在以上立地条件的综合影响下,最终形成不同的植被覆盖类型和景观格局,以期为地方政府实施国土空间分区管控提供地学依据。

    借助ENVI 5.3提取研究区的土地利用类型、分布、规模等信息。依据《土地利用现状分类》标准,将研究区土地类型分为林地、草地、耕地、水域、建设用地及未利用土地6类。通过2000、2010、2020年3期土地利用类型的遥感解译,结合研究区年际土地变更成果数据进行土地利用类型监测,研究区土地利用现状整体表现为不同土地利用类型面积随时间变化存在差异。

    从土地利用类型数量结构(图6)来看,丹江源地区位于秦巴山地,气候温暖湿润,降水相对丰沛,是中国南水北调中线工程重要水源地,也是重要的生物多样性保护和水源涵养生态功能区,加之多山少田的地理特征,土地利用结构中林地比例占绝对优势;其次是耕地,林地和耕地占比约85%以上,其他用地类型比例偏低。研究区内的自然景观和人造景观之间转入转出频繁,自然景观转出面积大小排序为:草地>林地,林地基数大,变化不显著。人造景观耕地转出明显,建设用地、水域大幅转入,转入面积大小排序为:建设用地>水域,因研究区未利用土地多为利用度不高的裸地,其转入转出幅度变化不大。

    图  6  丹江源地区2000、2010、2020年不同土地利用类型数量结构
    Figure  6.  Quantitative structure of different land use types of Danjiangyuan area in 2000, 2010 and 2020

    土地利用动态度差异较明显(表2),建筑用地和水域变化最明显。建设用地动态表现为持续扩张趋势,2000~2020年建设用地动态增长度为11.70%,其中2000~2010年动态增长度为3.98%;2010~2020年增长速度较快,动态增长度为13.89%。这表明建设用地扩张主要发生在2010~2020年。2000~2020年水域动态增长度为8.51%,水域呈持续扩张趋势,其中2000~2010年的动态增长度为3.54%;2010~2020年的动态增长度为3.66%,在后期变化较大。林地基数大,2000~2020年动态增长度为0.01%,其中,2000~2010年增长度仅为0.1%,2010~2020年递减率为−0.09%。草地的动态变化不大,呈先增长后递减趋势,耕地呈持续递减趋势,未利用土地动态变化不明显。

    表  2  丹江源地区2000~2020年土地动态度变化
    Table  2.  Changes of land dynamic attitude from 2000 to 2020 in Danjiangyuan area

    土地利用类型
    土地动态度
    2000~2010年2010~2020年2000~2020年
    耕地
    林地
    草地
    水域
    建设用地
    未利用土地
    −0.32%
    0.10%
    −0.67%
    3.54%
    3.98%
    −0.08%
    −1.05%
    −0.09%
    0.20%
    3.66%
    13.89%
    0.07%
    −0.67%
    0.01%
    −0.24%
    8.51%
    11.70%
    −0.05%
    下载: 导出CSV 
    | 显示表格

    丹江源地区受地形条件,土地利用格局具有特殊性(图7)。林地占绝对优势,以天然林区为主,主要分布在杨斜镇、麻街镇、板桥镇、沙河子镇,草地主要分布在腰市镇、城关街道,耕地和建设用地分布规律明显,耕地主要分布在河谷川塬两岸及东北部的腰市镇、大荆镇,建设用地均分布于水系两岸,城区建设用地分布于丹江主河道两岸。不同土地利用类型时空转移特征明显,其中,耕地与林地之间的时空转移特征变化明显,且耕地向林地转移较明显,变化区域随时间变化先由中部向两侧扩散;耕地与建设用地之间的变化区域主要集中在商州城区、腰市镇和大荆镇,呈带状分布(图7),这与城市发展和经济发展有关。研究区未来的土地利用格局还以林地为主,但林地有退化趋势,且耕地后备资源不足,说明土地利用结构尚需进一步优化。

    图  7  丹江源地区2000、2010、2020年土地利用类型遥感解译变化图
    Figure  7.  Remote sensing interpretation changes of land use types of Danjiangyuan area in 2000, 2010 and 2020

    2000~2020年土地利用时空演变结果总体显示丹江源的生态趋势向好有所改善。早期,当地居民伐林开垦,大规模修建坡耕地。2006年,商洛市积极调整土地利用结构及方式,以生态清洁小流域为生态建设单元,经过多年的综合治理和发展,当地生态环境得到了极大的改善。2011年底,圆满完成陕西省丹江口库区及上游水土保持一期工程的建设。2012年,商洛市启动陕西省丹江口库区及上游水土保持二期工程,2014年已顺利实现“清水进京”的宏伟目标,自通水至今,丹江的监测断面水质全部达到功能区标准。在生态建设保护的政策引导下,丹江源地区的土地利用变化对生态环境扰动较少。林地和耕地将长期是水源地主要土地利用类型,直接影响着其生态环境效应。

    由于南水北调中线工程建设的需要,一方面,当地政府及民众对水源地和林地的保护意识不断增强,对公共资源的使用日趋合理,特别是对“山水林田湖草”生态文明建设的贯彻执行,进一步保障了研究区林地基数和水域面积的稳定增长,对可持续发展政策的实施有很大的正面效应。另一方面,由于调水工程及城市化进程建设以及保护水源地的移民搬迁,区内建设用地大幅度增加,存在草地退化和耕地减少现象。作为南水北调中线工程典型的山区水源地,今后应合理配置土地资源,优化土地利用结构,加强林地和耕地保护,将有利于丹江源地区社会经济和资源环境的可持续发展。受自然环境条件和社会经济水平限制,该区也是经济限制发展区。水源保护工作取得了一定成效,但还存在生态保护与经济发展矛盾突出、治污项目资金缺口大等困难和问题。

    结合土地利用变化的解译,利用Frastats 4.2软件,计算丹江源地区2000~2020年3期景观格局指数。在类型水平上(表3),各土地利用类型的景观指数呈现出不同的变化趋势。林地景观具有很强的优势性,以其为代表的自然景观斑块呈现破碎状态。从2000~2020年的斑块类型比PLAND数据来看,未发生太大变化,呈微弱的减少趋势。人造景观耕地则呈现先增加后减少的变化趋势,草地变化趋势相反,先减后增,表明区内景观生态过程较活跃。

    表  3  丹江源地区2010~2020年3期斑块类型水平的景观格局指数
    Table  3.  Landscape pattern indices of patch types in the Danjiangyuan area from 2010 to 2020
    斑块类型年份CA(km2PLAND(%)LPI(%)LSIIJIAI
    林地20001240.430076.030072.640017.457039.683198.0450
    20101253.270075.870072.460017.651034.324098.0204
    2020
    2000
    1242.2100
    321.1200
    75.1900
    20.8100
    71.490016.827137.679498.1100
    88.0625
    耕地20.210053.520453.9354
    2010310.870021.020020.470053.112747.025988.2095
    2020278.170020.810017.160057.316348.395787.2000
    草地2000171.99002.74000.190084.853128.333347.1916
    2010160.39002.53000.050085.827923.765644.2992
    2020163.64002.75000.050095.866019.975040.3615
    水域20002.68000.04000.03008.122071.113562.7075
    20103.63000.06000.04006.565262.662673.7705
    20204.96000.08000.07006.703772.204677.8098
    建设用地200020.18000.34000.100012.769947.873078.5033
    201028.22000.47000.140013.225642.946081.0820
    202067.41001.13000.800014.839849.561886.4070
    未利用土地20000.47000.04000.08002.193831.574338.8427
    20100.50000.05000.09002.747232.267439.3754
    20200.49000.04000.08002.358431.683238.7120
     注:由于各土地利用类型斑块类型面积统计存在四舍五入,面积总和与研究区总面积有略微出入。
    下载: 导出CSV 
    | 显示表格

    从景观形状指数LSI变化趋势可知,耕地、草地的景观形状指数较大且总体呈现上升趋势,反映了区内耕地、草地景观和斑块形状分散且不规则,说明二者的景观形状比较复杂。林地和水域的景观形状指数有所下降,建设用地的景观形状指数呈上升趋势。以建设用地为代表的人造景观斑块面积呈现增大趋势, 2000~2010年增长不明显;2010~2020年增长迅速,斑块呈现片状分布。合理的土地利用规划让建设用地聚集程度提高,边界规则化,特别是移民搬迁政策的执行,使得建设用地聚集程度高。水域斑块类型面积呈现增加的趋势,斑块类型比和最大斑块指数总体呈上升趋势,不断增加并趋于平稳,水域占研究区面积的比例持续上升,散布与并列指数减小,景观形状指数和聚集度指数与水域相邻的景观要素变少,连通性增强。

    景观水平的景观格局指数显示(表4),2000~2020年间丹江源地区的景观结构发生了变化,景观形状指数LSI呈现先有微弱减小后又增加趋势,总体呈增加,各类景观趋于离散,且形状趋于规则;蔓延度指数CONTAG在2000~2020年间先增加后减小,总体呈增大趋势,反映景观类型的聚集程度和延展程度,各景观之间连通性较好。散布与并列指数IJI呈减小趋势,反映了区内斑块类型的隔离分布情况,丰富度变低。香农多样性指数SHDI在2000~2020年间增加了0.031,说明区内的各斑块类型呈均衡趋势分布,土地利用类型越来越丰富,景观邻近度变好。聚集度指数AI在2000~2010年有上升,在2010~2020年有下降,先增加后减小。

    表  4  丹江源地区2000~2020年景观水平的景观格局指数
    Table  4.  Landscape pattern index of the Danjiangyuan area from 2000 to 2020
    年份TA(km2LSICONTAGIJISHDIAI
    20001757.000027.822973.295745.50260.655794.4950
    20101757.000027.772075.905839.21900.659694.5070
    20201757.000029.737874.704040.41320.696394.1028
     注:TA. 景观面积;LSl. 景观形状指数;CONTAG. 蔓延度指数;IJI. 散布与并列指数;SHDI. 香农多样性指数;Al. 聚集度指数。
    下载: 导出CSV 
    | 显示表格

    2000~2010年,水域面积、林地面积及建设用地增加,耕地和草地面积减少,南水北调中线工程的建设,及从保护和改善生态环境出发退耕还林政策的实施,保障了丹江源地区水域面积和林地面积的增长;另一方面是移民搬迁政策,使原本分散的聚居地转为城镇、移民新村等,整体上建设用地面积增加,聚集度提升。2010~2020年,水域、草地及建设用地增加,林地、耕地面积减少,当地政府加大生态文明建设,对水源地及特殊土地类型湿地的保护政策不断推进,保障了水域面积的稳定增长,尤其是湿地保护成效显著,但随着近十年城市发展建设的需求,建设用地增加幅度较大,人口增长和社会需求也加速了土地利用程度的变化。

    (1)各地质建造因构造地质背景差异导致上覆地形地貌、成土母质、土壤类型、水文类型、局部小气候类型,在以上立地条件的综合影响下形成了不同的生态地质格局。

    (2)丹江源地区林地比例占绝对优势,林地和耕地占比85%以上,其他土地类型比例偏低。2000~2020年土地利用类型变化显著,水域、耕地和建设用地面积变化较为剧烈。区内自然景观和人造景观之间转入转出频繁,但整体土地利用变化对生态环境扰动较少。林地和耕地将长期是水源地主要的土地利用类型,直接影响着其生态环境效应。

    (3)丹江源地区2000~2020年景观空间格局变化明显,尤其在2010~2020年景观生态过程较活跃。区内各斑块类型趋于规则呈均衡趋势分布,斑块类型间形成了良好的连接性,景观聚集程度逐渐提升,空间分布趋向集中。

    (4)南水北调中线工程建设进一步保障了研究区林地基数和水域面积的稳定增长,丹江源地区的生态趋势向好;调水工程及城市化进程建设及保护水源地的移民搬迁导致区内建设用地大幅度增加,存在草地退化和耕地减少现象。建议合理配置土地资源,优化土地利用结构,加强林地和耕地保护及生态补偿,将有利于丹江源地区社会经济和生态环境的可持续发展。

    致谢:在本文撰写过程中得到国际竹藤中心漆良华教授、博士生张建的帮助,商洛市自然资源局、商洛市林业局、商州区林业局等兄弟单位在资料收集方面给予了大力支持,在此一并致谢。

  • 图  1   中亚造山带主要构造单元构造图(a)及研究区大地构造位置示意图(b)(据王树庆等,2008

    Figure  1.   (a) Tectonic map of the main tectonic units of the Central Asian Orogenic Belt and (b) Geological map showing the tectonic units of study area

    图  2   朝克山地区地质简图(据王树庆等,2008

    Figure  2.   Geological sketch of the Chaokeshan region

    图  3   朝克山地区辉长岩的野外露头(a~b)、显微照片(d~f)及单斜辉石环带结构背散电子图(g~h)

    Pl. 斜长石;Cpx. 单斜辉石;Hbl. 角闪石;Chl. 绿泥石

    Figure  3.   (a–b) Outcrop images, (d–f) Representative photomicrographs and (g–h) the backscattered electronicimages of the clinopyroxenes’ ring–band structure of the Chaokeshan gabbro

    图  4   朝克山蛇绿岩中辉长岩的单斜辉石图解(据Mahoney et al.,1998

    a. Q–J图(Q=Ca+Mg+Fe2+,J=2Na);b. Wo–En–Fs图解

    Figure  4.   Compositional variations of Clinopyroxenes in gabbros from the Chaokeshan ophiolitic

    图  5   朝克山蛇绿岩中辉长岩的单斜辉石REE球粒陨石标准化图(a)和不相容元素原始地幔标准化图解(b)

    标准化数据据Sun等(1989);意大利亚平宁山脉北部辉长岩中单斜辉石数据来源于Sanfippo等(2011)

    Figure  5.   (a)Chondrite–normalized rare earth element (REE) and(b) primitive mantle–normalized multi–element variation patterns for clinopyroxenes within the gabbroic rocks from the Chaokeshan ophiolitic

    图  6   朝克山蛇绿岩中辉长岩的单斜辉石图解(据Aoki et al.,1973邱家骧等,1996

    a. Al-Al图解(A 线条以下为火成岩中单斜辉石;A与B之间为玄武岩包体中的单斜辉石;B与C 之间为麻粒岩中单斜辉石;C 线条以上为榴辉岩中单斜辉石);b.Si-Al图解(A为巨晶单斜辉石;B.堆积岩中单斜辉石;C.碱性玄武岩中的斑晶;D.拉斑玄武岩中的斑晶)

    Figure  6.   Compositional variations of Clinopyroxenes in gabbros from the Chaokeshan ophiolitic

    图  7   朝克山蛇绿岩中辉长岩的单斜辉石图解(据邱家骧等,1996

    a. Al2O3–SiO2图解;b.Ti–(Ca+Na)图解

    Figure  7.   Compositional variations of Clinopyroxenes in gabbros from the Chaokeshan ophiolitic

    图  8   朝克山蛇绿岩中辉长岩的单斜辉石在F1–F2双因子判别图解(据邱家骧等,1987

    F1=−0.012*(SiO2)−0.0807*(TiO2)+0.0026*(Al2O3)−0.0012*(FeO)− 0.0026*(MnO)+0.0087*(MgO) −0.0128*(CaO)−0.0419*(Na2O); F2=−0.0469*(SiO2)−0.0818*(TiO2)−0.0212*(Al2O3)−0.0041*(FeO)−0.1435*(MnO)−0.0029*(MgO)+0.0085*(CaO)+0.016*(Na2O);WPT.板块内部拉斑玄武岩;WPA.板块内部碱性玄武岩;VAB.火山弧玄武岩;OFB.洋中脊玄武岩

    Figure  8.   F1–F2 factor discriminant diagram of compositional variations of Clinopyroxenes in gabbros from the Chaokeshan ophiolitic

    表  1   朝克山辉长岩的单斜辉石的主量元素组成分析结果表(%)

    Table  1   Major element compositions (%) of clinopyroxene in Chaokeshan gabbro

    样品CKS-08-
    01-1
    CKS-08-
    01-2
    CKS-08-
    01-3
    CKS-08-
    01-4
    CKS-08-
    01-5
    CKS-08-
    01-6
    CKS-08-
    01-7
    CKS-08-
    01-8
    CKS-08-
    01-9
    CKS-08-
    01-10
    SiO252.3552.5752.3452.6552.3452.6252.6151.8652.1652.30
    TiO20.610.500.690.760.460.620.720.690.610.52
    Al2O32.622.512.762.642.652.622.612.702.702.90
    Cr2O30.370.280.380.390.350.350.360.380.380.38
    FeO*5.926.426.206.155.896.075.956.205.865.73
    MnO0.190.200.200.160.170.180.170.180.190.15
    MgO13.6914.1213.7913.6913.6813.8013.9014.0113.8113.98
    CaO23.9223.5923.8724.0524.2324.0424.1224.0023.9524.03
    Na2O0.370.360.390.370.310.380.360.400.400.36
    K2O0.000.000.000.000.010.000.000.000.010.00
    Toal100.03100.55100.62100.84100.08100.67100.80100.43100.06100.34
    Si1.9371.9371.9281.9341.9361.9351.9321.9171.9301.927
    Al0.0630.0630.0720.0660.0640.0650.0680.0830.0700.073
    Al0.0510.0460.0480.0480.0520.0490.0450.0350.0480.053
    Ti0.0170.0140.0190.0210.0130.0170.0200.0190.0170.015
    Cr0.0110.0080.0110.0110.0100.0100.0110.0110.0110.011
    Fe2+0.1830.1980.1910.1890.1820.1870.1830.1920.1810.176
    Mn0.0060.0060.0060.0050.0050.0050.0050.0060.0060.005
    Mg0.7550.7750.7570.7500.7540.7560.7610.7720.7620.768
    Ca0.9480.9310.9420.9460.9600.9470.9490.9500.9490.949
    Na0.0260.0260.0280.0260.0220.0270.0250.0290.0290.026
    Mg#80.4679.6979.8679.8980.5480.2280.6580.1180.7981.32
    Fs9.7210.3810.1110.029.619.879.6510.029.579.32
    En40.0240.7240.0639.7839.7740.0240.2140.3440.2640.56
    Wo50.2648.9049.8350.2150.6250.1250.1349.6450.1650.12
    样品CKS-08-
    01-11
    CKS-08-
    01-12
    CKS-08-
    01-13
    CKS-08-
    01-14
    CKS-08-
    01-15
    CKS-08-
    02-1
    CKS-08-
    02-2
    CKS-08-
    02-3
    CKS-08-
    02-4
    CKS-08-
    02-5
    SiO252.2952.4252.2352.7252.0052.0252.8652.4652.3852.99
    TiO20.770.780.750.570.510.530.650.670.640.62
    Al2O32.822.682.672.592.402.682.492.502.642.31
    Cr2O30.400.380.330.350.410.270.240.230.310.24
    FeO*5.936.105.705.736.335.986.446.486.045.81
    MnO0.160.190.190.170.210.210.170.200.180.21
    MgO13.9513.9813.8513.7814.2513.6314.1214.1314.3014.10
    CaO24.0323.6124.3924.3823.5523.7323.7423.3123.1424.17
    Na2O0.370.350.350.290.360.300.340.340.350.33
    K2O0.000.000.000.000.000.000.010.000.000.00
    Toal100.71100.48100.46100.58100.0299.35101.05100.3299.97100.79
    Si1.9231.9301.9261.9391.9291.9371.9371.9361.9351.944
    Al0.0770.0700.0740.0610.0710.0630.0630.0640.0650.056
    Toal100.71100.48100.46100.58100.0299.35101.05100.3299.97100.79
    Si1.9231.9301.9261.9391.9291.9371.9371.9361.9351.944
    Al0.0770.0700.0740.0610.0710.0630.0630.0640.0650.056
    下载: 导出CSV
    续表1
    样品CKS-08-
    01-11
    CKS-08-
    01-12
    CKS-08-
    01-13
    CKS-08-
    01-14
    CKS-08-
    01-15
    CKS-08-
    02-1
    CKS-08-
    02-2
    CKS-08-
    02-3
    CKS-08-
    02-4
    CKS-08-
    02-5
    Al0.0450.0470.0420.0510.0330.0550.0450.0450.0500.044
    Ti0.0210.0210.0210.0160.0140.0150.0180.0190.0180.017
    Cr0.0120.0110.0100.0100.0120.0080.0070.0070.0090.007
    Fe2+0.1820.1880.1760.1760.1960.1860.1970.2000.1870.178
    Mn0.0050.0060.0060.0050.0070.0060.0050.0060.0060.007
    Mg0.7650.7670.7610.7550.7880.7570.7710.7770.7880.771
    Ca0.9470.9310.9640.9600.9360.9470.9320.9220.9160.950
    Na0.0270.0250.0250.0200.0260.0220.0240.0240.0250.024
    Mg#80.7580.3481.2481.0980.0680.2579.6379.5580.8481.22
    Fs9.639.969.259.3110.229.8610.3810.539.879.39
    En40.3940.6740.0539.9341.0440.0440.5840.9441.6740.59
    Wo49.9849.3750.7050.7648.7450.1049.0448.5448.4650.02
    样品CKS-08-
    02-6
    CKS-08-
    02-7
    CKS-08-
    02-8
    CKS-08-
    02-9
    CKS-08-
    02-10
    CKS-08-
    02-11
    CKS-08-
    02-12
    CKS-08-
    02-13
    CKS-08-
    02-14
    CKS-08-
    02-15
    SiO252.5452.4952.1252.4252.7952.4951.9252.7552.9152.74
    TiO20.600.540.770.600.560.570.570.510.470.51
    Al2O32.462.032.492.312.562.682.832.392.542.59
    Cr2O30.240.280.270.250.420.360.290.280.200.27
    FeO*5.705.935.806.245.975.885.705.785.875.96
    MnO0.180.190.190.190.190.170.160.190.190.18
    MgO14.3014.1014.2614.8313.9914.0613.9013.9113.7513.90
    CaO23.9923.8423.6022.9123.7623.8523.9823.7423.9324.02
    Na2O0.300.290.280.310.370.380.310.320.360.35
    K2O0.010.000.000.010.010.000.010.010.010.00
    Toal100.3199.6999.78100.07100.61100.4499.6899.86100.24100.52
    Si1.9361.9481.9311.9361.9401.9331.9271.9501.9501.940
    Al0.0640.0520.0690.0640.0600.0670.0730.0500.0500.060
    Al0.0430.0370.0400.0370.0510.0490.0510.0540.0600.053
    Ti0.0170.0150.0210.0170.0150.0160.0160.0140.0130.014
    Cr0.0070.0080.0080.0070.0120.0110.0090.0080.0060.008
    Fe2+0.1760.1840.1800.1930.1840.1810.1770.1790.1810.183
    Mn0.0050.0060.0060.0060.0060.0050.0050.0060.0060.006
    Mg0.7860.7800.7870.8160.7670.7720.7690.7670.7550.762
    Ca0.9470.9480.9370.9060.9350.9410.9530.9400.9450.947
    Na0.0210.0210.0200.0220.0260.0270.0230.0230.0260.025
    Mg#81.7380.9281.4180.9080.6880.9981.3081.1180.6880.60
    Fs9.219.629.4410.069.739.569.319.479.629.70
    En41.1740.8141.3542.6240.6540.7440.5040.6640.1540.28
    Wo49.6349.5749.2147.3249.6149.6950.1949.8750.2350.02
    下载: 导出CSV
    续表1
    样品CKS-08-
    02-16
    CKS-08-
    02-17
    CKS-08-
    04-1
    CKS-08-
    04-2
    CKS-08-
    04-3
    CKS-08-
    04-4
    CKS-08-
    04-5
    CKS-08-
    04-6
    CKS-08-
    04-7
    CKS-08-
    04-8
    SiO252.3252.5452.9152.7351.9952.0451.6752.2552.0451.57
    TiO20.580.740.450.430.600.760.590.510.510.56
    Al2O32.532.822.442.382.742.752.882.402.262.67
    Cr2O30.210.230.480.420.410.500.450.410.380.50
    FeO*5.975.885.485.725.335.335.575.175.925.33
    MnO0.200.200.170.180.160.150.170.150.170.15
    MgO13.7613.8415.1115.3615.4115.3915.6515.2515.5615.18
    CaO24.1224.0923.5223.2823.9123.3523.3023.0123.0923.95
    Na2O0.400.370.380.420.310.320.340.300.350.32
    K2O0.000.000.000.020.000.020.000.010.000.00
    Toal100.09100.70100.93100.94100.87100.60100.6199.45100.27100.23
    Si1.9361.9301.9341.9291.9061.9091.8991.9341.9201.904
    Al0.0640.0700.0660.0710.0940.0910.1010.0660.0800.096
    Al0.0460.0520.0390.0320.0240.0280.0240.0390.0180.020
    Ti0.0160.0200.0120.0120.0170.0210.0160.0140.0140.016
    Cr0.0060.0070.0140.0120.0120.0140.0130.0120.0110.015
    Fe2+0.1850.1810.1670.1750.1630.1640.1710.1600.1830.165
    Mn0.0060.0060.0050.0060.0050.0050.0050.0050.0050.005
    Mg0.7590.7580.8230.8380.8420.8420.8570.8410.8560.836
    Ca0.9560.9480.9210.9120.9390.9180.9170.9120.9120.948
    Na0.0290.0270.0270.0290.0220.0220.0240.0210.0250.023
    Mg#80.4280.7683.1082.7283.7683.7383.3684.0282.4083.55
    Fs9.729.578.769.098.408.518.808.369.378.45
    En39.9540.1743.0743.5243.3243.7744.0643.9743.8742.90
    Wo50.3350.2648.1747.4048.2947.7247.1447.6746.7748.65
    样品CKS-08-
    04-8
    CKS-08-
    04-10
    CKS-08-
    04-11
    CKS-08-
    04-12
    CKS-08-
    04-13
    CKS-08-
    04-14
    CKS-08-
    06-1
    CKS-08-
    06-2
    CKS-08-
    06-3
    CKS-08-
    06-4
    SiO251.9252.0851.9752.5052.4051.7651.2051.2950.7551.80
    TiO20.560.380.530.780.520.650.670.680.270.42
    Al2O32.552.402.972.852.792.642.842.853.223.30
    Cr2O30.410.380.350.480.430.420.010.010.030.11
    FeO*5.085.636.125.675.505.599.149.139.697.16
    MnO0.170.180.200.210.190.150.120.220.290.18
    MgO15.3615.5215.8114.9915.1415.6613.1413.7413.1314.28
    CaO23.7123.5222.0023.0423.0722.8621.5321.5221.5322.40
    Na2O0.330.330.330.350.360.290.390.390.380.31
    K2O0.000.000.010.010.000.000.000.000.000.01
    Toal100.10100.41100.28100.88100.39100.0299.0399.8299.2999.97
    Si1.9151.9181.9111.9201.9241.9101.9301.9191.9151.919
    Al0.0850.0820.0890.0800.0760.0900.0700.0810.0850.081
    Al0.0260.0220.0400.0430.0450.0250.0560.0440.0590.063
    下载: 导出CSV
    续表1
    样品CKS-08-
    04-8
    CKS-08-
    04-10
    CKS-08-
    04-11
    CKS-08-
    04-12
    CKS-08-
    04-13
    CKS-08-
    04-14
    CKS-08-
    06-1
    CKS-08-
    06-2
    CKS-08-
    06-3
    CKS-08-
    06-4
    Ti0.0150.0110.0150.0220.0140.0180.0190.0190.0080.012
    Cr0.0120.0110.0100.0140.0130.0120.0000.0000.0010.003
    Fe2+0.1570.1730.1880.1730.1690.1730.2880.2860.3060.222
    Mn0.0050.0060.0060.0070.0060.0050.0040.0070.0090.006
    Mg0.8450.8520.8670.8170.8290.8620.7380.7670.7380.789
    Ca0.9370.9280.8670.9030.9080.9040.8690.8630.8700.889
    Na0.0240.0230.0230.0250.0250.0210.0280.0280.0280.023
    Mg#84.3483.0882.1782.5083.0883.3271.9272.8670.7278.06
    Fs8.098.889.799.158.868.9015.2014.9215.9711.67
    En43.5843.6145.1143.1643.4944.4638.9440.0438.5741.52
    Wo48.3447.5145.1047.6847.6546.6445.8645.0545.4646.81
    样品CKS-08-
    06-5
    CKS-08-
    06-6
    CKS-08-
    06-7
    CKS-08-
    06-8
    CKS-08-
    06-9
    CKS-08-
    06-10
    CKS-08-
    06-11
    CKS-08-
    06-12
    CKS-08-
    06-13
    CKS-08-
    06-14
    SiO251.3450.9552.1851.9552.1850.9952.0351.4151.5051.50
    TiO20.790.540.470.590.490.830.640.860.660.75
    Al2O33.323.773.092.993.173.582.742.783.363.52
    Cr2O30.070.090.130.130.220.130.030.020.020.10
    FeO*7.936.135.695.666.038.458.689.528.147.15
    MnO0.210.180.160.140.180.200.200.230.210.18
    MgO13.8414.5014.8214.7915.1113.4513.8413.3214.0214.37
    CaO21.8622.0522.3822.5522.3221.8821.8021.5022.1822.24
    Na2O0.380.260.260.260.360.430.380.390.390.36
    K2O0.000.010.000.010.000.000.000.000.000.00
    Toal99.7298.4899.1899.04100.0699.93100.34100.03100.46100.17
    Si1.9131.9081.9341.9301.9221.9021.9311.9221.9081.905
    Al0.0870.0920.0660.0700.0780.0980.0690.0780.0920.095
    Al0.0590.0740.0690.0610.0590.0600.0510.0450.0540.058
    Ti0.0220.0150.0130.0160.0140.0230.0180.0240.0180.021
    Cr0.0020.0030.0040.0040.0060.0040.0010.0000.0010.003
    Fe2+0.2470.1920.1760.1760.1860.2640.2690.2980.2520.221
    Mn0.0070.0060.0050.0040.0060.0060.0060.0070.0060.005
    Mg0.7690.8090.8190.8190.8290.7480.7660.7420.7740.792
    Ca0.8730.8840.8890.8970.8800.8740.8670.8610.8800.881
    Na0.0270.0190.0190.0180.0250.0310.0270.0280.0280.026
    Mg#75.6880.8482.2782.3281.7073.9373.9871.3975.4578.18
    Fs13.0810.179.379.299.8013.9814.1615.6513.2211.67
    En40.7142.9343.4643.2843.7539.6540.2739.0540.6241.82
    Wo46.2146.9047.1747.4346.4546.3745.5745.3046.1646.51
    下载: 导出CSV
    续表1
    样品CKS-08-06-15CKS-08-06-16CKS-08-06-17CKS-08-06-18
    SiO252.3052.7952.2552.24
    TiO20.460.550.490.61
    Al2O32.452.323.413.21
    Cr2O30.130.060.240.18
    FeO*6.996.035.796.75
    MnO0.160.110.160.17
    MgO14.6215.2215.0314.68
    CaO22.5022.7922.3822.01
    Na2O0.350.280.330.30
    K2O0.000.010.000.01
    Toal99.96100.17100.07100.16
    Si1.9371.9421.9211.925
    Al0.9180.9180.9050.890
    Al0.0630.0580.0790.075
    Ti0.0130.0150.0130.017
    Cr0.0040.0020.0070.005
    Fe2+0.2160.1850.1780.208
    Mn0.0050.0030.0050.005
    Mg0.8070.8350.8230.806
    Ca0.8930.8980.8810.869
    Na0.0250.0200.0230.022
    Mg#78.8681.8282.2279.51
    Fs11.299.679.4611.04
    En42.1243.5143.7342.83
    Wo46.5846.8246.8146.14
     注:Mg# = 100*Mg/(Mg+Fe2+);Fs= 100*Fe2+/(Mg+Ca+Fe2+);En= 100*Mg/(Mg+Ca+Fe2+);Wo=100*Ca/(Mg+Ca+Fe2+) 。
    下载: 导出CSV

    表  2   朝克山辉长岩的单斜辉石的微量元素数据表(10−6

    Table  2   Trace element compositions of clinopyroxene in gabbro from the Chaokeshan(10−6)

    样品CKS-08-
    01-1
    CKS-08-
    01-2
    CKS-08-
    01-3
    CKS-08-
    01-4
    CKS-08-
    01-5
    CKS-08-
    01-6
    CKS-08-
    01-7
    CKS-08-
    01-8
    CKS-08-
    01-9
    CKS-08-
    01-10
    Sc117.7108.2112.3108.0104.1109.3108.0108.798.07117.7
    V427.25410.11417.14417.82387.93416.56394.93427.54376.24427.25
    Cr2667254125692651243826512443324924512667
    Co33.0933.2035.9933.7434.9836.3034.3435.5234.4733.09
    Ni135.9139.4155.9157.6179.4154.2139.8131.1167.7135.9
    Cu7.2412.7514.015.8736.387.540.583.3521.827.24
    Zn27.7024.8525.6127.5527.0026.3026.7028.5032.5327.70
    Ga4.564.504.844.574.424.623.664.914.504.56
    Rb0.440.110.000.160.000.010.000.270.190.44
    Sr7.208.218.186.7411.118.936.326.936.897.20
    Y15.4815.5216.0516.7915.6616.4115.8516.7414.7315.48
    Zr8.378.419.008.097.698.579.358.967.568.37
    Nb0.010.030.010.000.010.030.050.010.020.01
    Sn1.581.381.701.131.331.600.911.351.611.58
    Sb0.510.521.080.650.620.600.770.190.560.51
    Ba0.240.210.600.241.490.310.170.360.840.24
    La0.160.160.150.100.240.130.180.090.140.16
    Ce1.031.111.200.760.901.030.800.920.691.03
    Pr0.270.240.260.230.190.160.170.280.150.27
    Nd1.611.491.712.061.942.331.811.991.951.61
    Sm1.231.021.361.341.310.781.021.131.291.23
    Eu0.430.460.470.550.540.470.480.420.400.43
    下载: 导出CSV
    续表2
    样品CKS-08-
    01-1
    CKS-08-
    01-2
    CKS-08-
    01-3
    CKS-08-
    01-4
    CKS-08-
    01-5
    CKS-08-
    01-6
    CKS-08-
    01-7
    CKS-08-
    01-8
    CKS-08-
    01-9
    CKS-08-
    01-10
    Gd2.362.132.181.801.712.091.602.142.232.36
    Tb0.400.330.530.420.360.440.330.450.400.40
    Dy2.992.613.003.082.602.972.683.152.502.99
    Ho0.590.660.640.590.700.620.650.640.570.59
    Er1.851.901.941.831.631.911.811.841.501.85
    Tm0.190.280.290.220.260.270.170.240.280.19
    Yb1.291.681.661.671.441.871.902.231.781.29
    Lu0.270.270.270.250.260.240.270.200.190.27
    Hf0.560.590.480.450.220.400.590.550.410.56
    Ta0.010.010.010.010.020.020.010.010.010.01
    样品CKS-08-
    01-11
    CKS-08-
    01-12
    CKS-08-
    02-1
    CKS-08-
    02-2
    CKS-08-
    02-3
    CKS-08-
    02-4
    CKS-08-
    02-5
    CKS-08-
    02-6
    CKS-08-
    02-7
    CKS-08-
    02-8
    Sc110.895.55108.2106.0123.6104.9116.1112.5123.9128.0
    V425.11370.42415.3399.8428.2392.8402.6396.6414.4410.5
    Cr2685242918301774239217732829186123971784
    Co36.6935.5736.1743.2141.1440.3837.9939.3835.4433.79
    Ni134.5160.6147.2194.4186.6185.8158.4150.1166.4148.3
    Cu2.4450.8716.3251.4546.1030.539.468.339.651.98
    Zn25.9328.6127.2537.2527.4035.1327.3324.6030.1722.60
    Ga4.494.364.975.165.534.564.903.414.913.64
    Rb1.450.740.140.020.190.440.140.190.140.14
    Sr8.117.816.566.396.896.608.366.556.296.18
    Y17.2414.3516.4414.7615.9116.1615.9815.1716.3915.39
    Zr9.857.558.878.418.687.658.847.379.307.50
    Nb0.020.000.000.020.030.010.010.000.020.02
    Sn1.541.471.471.351.421.771.441.521.181.61
    Sb0.470.231.390.590.140.280.350.260.320.74
    Ba0.000.960.410.300.250.310.120.250.190.18
    La0.130.160.170.130.180.190.090.150.070.10
    Ce1.130.890.830.670.730.900.760.580.780.70
    Pr0.330.260.200.210.180.180.180.240.210.15
    Nd1.802.132.082.401.561.971.901.552.161.73
    Sm0.731.181.361.141.330.940.961.171.221.15
    Eu0.340.490.470.330.520.300.580.420.380.40
    Gd2.821.862.102.032.372.501.842.032.052.32
    Tb0.440.470.480.410.420.390.380.300.370.36
    Dy3.102.532.872.742.962.802.532.743.373.09
    Ho0.630.580.680.570.640.610.540.610.740.53
    Er1.751.462.091.681.861.671.861.741.691.56
    下载: 导出CSV
    续表2
    样品CKS-08-
    01-11
    CKS-08-
    01-12
    CKS-08-
    02-1
    CKS-08-
    02-2
    CKS-08-
    02-3
    CKS-08-
    02-4
    CKS-08-
    02-5
    CKS-08-
    02-6
    CKS-08-
    02-7
    CKS-08-
    02-8
    Tm0.250.300.300.210.300.240.230.240.250.29
    Yb1.851.571.661.731.991.411.721.322.151.77
    Lu0.260.230.240.260.250.200.210.190.250.23
    Hf0.310.490.540.420.400.520.590.420.520.39
    Ta0.010.010.010.010.010.010.010.010.010.01
    样品CKS-08-
    02-9
    CKS-08-
    02-10
    CKS-08-
    02-11
    CKS-08-
    04-1
    CKS-08-
    04-2
    CKS-08-
    04-3
    CKS-08-
    04-4
    CKS-08-
    04-5
    CKS-08-
    04-6
    CKS-08-
    04-7
    Sc95.94107.1105.8109.5113.7115.298.3092.56110.4107.3
    V359.1404.5402.1387.8347.8393.9323.3325.4423.9412.8
    Cr1589165717293133301129492466276235182997
    Co35.9536.5439.5734.7141.8334.0241.4239.4232.9434.16
    Ni130.8165.0168.3133.5152.7126.9179.0156.7129.7131.7
    Cu20.0611.2725.107.3715.163.8747.0111.524.023.02
    Zn29.0227.6025.9327.3530.5728.8533.6127.5327.2225.04
    Ga4.404.684.724.584.074.254.514.574.644.15
    Rb0.140.140.360.000.020.680.000.000.000.00
    Sr5.586.696.6110.247.256.846.015.568.017.59
    Y13.0814.1416.1915.7913.1316.8513.6713.6719.4417.08
    Zr6.486.796.3410.517.2010.959.889.5011.509.56
    Nb0.020.020.010.050.040.030.020.000.070.03
    Sn1.570.871.570.760.681.561.721.041.471.18
    Sb0.400.310.140.470.760.370.510.700.220.82
    Ba0.180.540.100.440.280.100.560.470.180.01
    La0.100.080.090.180.130.190.070.170.180.17
    Ce0.850.740.790.910.670.990.770.861.010.82
    Pr0.160.180.140.200.200.300.210.210.280.20
    Nd1.831.561.981.941.622.332.151.602.022.09
    Sm1.201.401.101.120.961.140.891.121.210.99
    Eu0.450.330.350.490.360.520.430.430.530.51
    Gd2.361.851.632.121.492.401.371.962.191.58
    Tb0.300.450.370.470.370.470.360.360.460.42
    Dy2.382.912.542.622.423.372.672.422.932.81
    Ho0.560.650.660.540.550.690.560.540.840.60
    Er1.501.711.741.581.261.711.151.592.081.87
    Tm0.210.190.320.280.160.240.170.240.250.26
    Yb1.421.531.501.661.081.491.541.251.791.43
    Lu0.200.240.350.250.210.210.160.190.310.22
    Hf0.310.410.510.410.330.570.340.410.590.38
    Ta0.010.010.010.010.010.010.010.010.010.01
    下载: 导出CSV
    续表2
    样品CKS-08-
    06-1
    CKS-08-
    06-2
    CKS-08-
    06-3
    CKS-08-
    06-4
    CKS-08-
    06-5
    CKS-08-
    06-6
    CKS-08-
    06-7
    CKS-08-
    06-8
    CKS-08-
    06-9
    CKS-08-
    06-10
    Sc135.2128.9133.5130.9128.6119.3113.1129.9135.2128.9
    V403.7460.0462.1337.9443.4475.0410.2521.3403.7460.0
    Cr1863506.1593.63334607.2264.91046268.61863506.1
    Co42.6748.4047.8237.8047.5251.5543.5548.4942.6748.40
    Ni201.7125.8132.6207.3121.1116.3162.799.69201.7125.8
    Cu21.158.9924.501.880.002.150.446.0721.158.99
    Zn29.2342.5437.2821.2437.2350.1330.4646.9629.2342.54
    Ga7.016.727.295.857.296.747.048.387.016.72
    Rb0.700.000.560.010.000.000.230.000.700.00
    Sr14.6713.8514.5711.1412.1212.6013.7312.4514.6713.85
    Y15.1219.1018.3113.2920.7522.2517.2322.9715.1219.10
    Zr14.4114.2514.5610.6014.7814.1612.1717.5614.4114.25
    Nb0.030.010.010.000.000.000.030.010.030.01
    Sn1.451.591.811.271.521.631.191.331.451.59
    Sb0.000.000.070.010.000.010.060.040.000.00
    Ba1.912.672.270.000.001.870.312.661.912.67
    La0.220.320.210.190.290.200.380.280.220.32
    Ce1.291.231.230.711.421.521.271.291.291.23
    Pr0.200.340.300.240.400.420.240.480.200.34
    Nd1.783.092.591.620.003.282.523.881.783.09
    Sm1.091.841.720.961.881.501.591.911.091.84
    Eu0.480.650.770.470.690.740.680.710.480.65
    Gd2.243.123.051.802.702.612.793.382.243.12
    Tb0.390.540.520.340.540.540.500.560.390.54
    Dy2.583.853.592.553.613.952.934.102.583.85
    Ho0.590.810.720.430.890.900.681.050.590.81
    Er1.651.872.511.291.882.092.092.811.651.87
    Tm0.210.280.330.200.310.320.290.380.210.28
    Yb1.101.631.761.151.621.931.682.311.101.63
    Lu0.230.260.260.160.270.370.230.390.230.26
    Hf0.920.840.670.700.520.790.481.070.920.84
    Ta0.010.010.010.010.010.010.010.010.010.01
    下载: 导出CSV

    表  3   单斜辉石-熔体平衡温度、压力、深度及其与全岩之间Fe–Mg 分配系数表

    Table  3   Temperature, pressure, depth of monoclinopyroxene melt equilibrium and Fe–Mg distribution coefficient with the whole rock

    样品编号P(kbar)T(℃)KD(Fe-Mg)深度(km)
    CKS-08-013.2~5.81099~11840.289~0.29810.50~19.29
    CKS-08-022.8~5.61122~11940.292~0.2969.36~18.52
    CKS-08-042.1~6.41169~12420.293~0.2997.07~21.05
    CKS-08-061.5~5.61168~11930.275~0.2824.79~18.33
     注:按照1 GPa 相当于33 km 深度计算。
    下载: 导出CSV
  • 包志伟, 陈森煌, 张桢堂. 内蒙古贺根山地区蛇绿岩稀土元素和Sm-Nd同位素研究[J]. 地球化学, 1994, 23(04): 339-349 doi: 10.3321/j.issn:0379-1726.1994.04.004

    BAO Zhiwei, CHEN Senhuang, ZHANG Zhentang. Study on REE Sm-Nd isotopes of Hegenshan ophiolite, Inner Mongolla[J]. Geochimica, 1994, 23(04): 339-349. doi: 10.3321/j.issn:0379-1726.1994.04.004

    白志民. 北京西山中生代火山岩中单斜辉石矿物化学及成因意义[J]. 岩石矿物学杂志, 2000, 19(02): 174-184 doi: 10.3969/j.issn.1000-6524.2000.02.010

    BAI Zhimin. Mineral Chemistry and Genetic Significance of Clinopyroxenes from the Mesozoic Volcanic Rocks in Western Hills of Beijing[J]. Acta Petrologica et Mineralogica, 2000, 19(02): 174-184. doi: 10.3969/j.issn.1000-6524.2000.02.010

    陈光远, 孙岱生, 殷辉安. 成因矿物学与找矿矿物学[M]. 重庆: 重庆出版社, 1987: 222–287

    CHEN Guangyuan, SUN Daisheng, YIN Huian. Genetic mineralogy and prospecting mineralogy[M]. Chongqing: Chongqing Press, 1987: 222-287.

    党智财, 付超, 李俊建, 等. 内蒙古中部镁铁质-超镁铁质岩带铜镍成矿潜力探讨[J]. 西北地质, 2022, 55(01): 142-155 doi: 10.19751/j.cnki.61-1149/p.2022.01.011

    DANG Zhicai, FU Chao, LI Junjian, et al. Discussion on the Copper and Nickel Metallogenic potentiality of Mafic-Ultramafic Rocks in Central Inner Mongolla [J]. Northwestern Geology, 2022, 55(01): 142-155. doi: 10.19751/j.cnki.61-1149/p.2022.01.011

    黄波, 付冬, 李树才, 等. 内蒙古贺根山蛇绿岩形成时代及构造启示[J]. 岩石学报, 2016, 32(01): 158-176

    HUANG Bo, FU Dong, LI Shucai, et al. The age and tectonic implications of the Hegengshan ophiolite in Inner Mongolla [J]. Acta Petrologica Sinica, 2016, 32(01): 158-176.

    黄波, 付冬, 周文孝, 等. 蛇绿混杂岩内基性岩锆石年龄的复杂性: 以内蒙古贺根山蛇绿岩为例[J]. 地质科学, 2021, 56(02): 596-614

    HUANG Bo, FU Dong, ZHOU Wenxiao, et al. Complexity of zircon ages of mafic rocks in ophiolitic mélanges: A case from the Hegenshan ophiolite, Inner Mongolia [J]. Chinese Journal of Geology, 2021, 56(02): 596-614.

    赖绍聪, 秦江锋, 李永飞. 青藏北羌塘新第三纪玄武岩单斜辉石地球化学[J]. 西北大学学报(自然科学版), 2005, 35(05): 121-126 doi: 10.16152/j.cnki.xdxbzr.2005.05.028

    LAI Shaocong, QIN Jiangfeng, LI Yongfei. Trace element Geochem istry and classification of the clinopyroxene in Cenozoic trachybasalt from north Qingtang area, Tibetan plateau[J]. Joumal of Northwest University (Natural Science Edition), 2005, 35(05): 121-126. doi: 10.16152/j.cnki.xdxbzr.2005.05.028

    邱家骧, 曾广策. 中国东部新生代玄武岩中低压单斜辉石的矿物化学及岩石学意义[J]. 岩石学报, 1987, (04): 1-9 doi: 10.3321/j.issn:1000-0569.1987.04.001

    QIU Jiaxiang, ZENG Guangce. The main characteristics and petrological significance of low pressure clinopyroxenes in the Cenozoic basalts from eastern China[J]. Acta Petrologica Sinica, 1987, (04): 1-9. doi: 10.3321/j.issn:1000-0569.1987.04.001

    邱家骧, 廖群安. 浙闽新生代玄武岩的岩石成因学与Cpx矿物化学[J]. 火山地质与矿产, 1996, 17(1): 16-25.

    QIU Jiaxiang, LIAO Qunan. Petrogenesis and Cpx mineral chemistry of Cenozoic basalts from Zhejiang and Fujian of Eastern China[J]. Volcanology and Mineral Resources, 1996, 17(1): 16-25.

    王成, 任利民, 张晓军, 等. 内蒙古贺根山蛇绿岩中玄武岩锆石U-Pb年龄、地球化学特征及其地质意义[J]. 地质找矿论丛, 2018, 33(04): 617-626. doi: 10.6053/j.issn.1001-1412.2018.04.016

    WANG Chen, REN Liming, ZHANG Xiaojun, et al. Zircon U-Pb age and geochemical characteristics of basalt of the Hegenshan ophiolite in Inner Mongolia and the geological significance[J]. Contributions to Geology and Mineral Mineral Resources Research, 2018, 33(04): 617-626. doi: 10.6053/j.issn.1001-1412.2018.04.016

    王树庆, 许继峰, 刘希军, 等. 内蒙朝克山蛇绿岩地球化学: 洋内弧后盆地的产物?[J]. 岩石学报, 2008, 24(12): 2869-2879.

    WANG Shuqing, XU Jifeng, LIU Xijun, et al. Geochemistry of the Chaokeshan ophiolite: Product of intra-oceanic back-arc basin?[J]. Acta Petrologica Sinica, 2008, 24(12): 2869-2879.

    鄢全树, 石学法, 王昆山, 等. 南海新生代玄武岩中单斜辉石矿物化学及成因意义[J]. 岩石学报, 2007, (11): 2981-2989 doi: 10.3969/j.issn.1000-0569.2007.11.028

    YAN Quanshu, SHI Xuefa, WANG Kunshan, et al. Mineral chemistry and its genetic significance of olivine in Cenozoic basalts from the South China Sea[J]. Acta Petrologica Sinica, 2007, (11): 2981-2989. doi: 10.3969/j.issn.1000-0569.2007.11.028

    闫纪元, 李旭平, 鄢全树. 南海新生代玄武岩中单斜辉石地球化学特征及其地质意义[J]. 地质论评, 2014, 60(04): 824-838 doi: 10.16509/j.georeview.2014.04.014

    YAN Jiyuan, LI Xuping, YAN Quanshu. Geochemical Characteristics and Geological Implications of Clinopyroxenes in Cenozoic Basalts from the South China Sea[J]. Geological Review, 2014, 60(04): 824-838. doi: 10.16509/j.georeview.2014.04.014

    杨剑洲, 龚晶晶, 高健翁, 等. 北山造山带白云山蛇绿岩地幔橄榄岩成因及形成环境[J]. 西北地质, 2019, 52(03): 1-13 doi: 10.19751/j.cnki.61-1149/p.2019.03.001

    YANG Jianzhou, GONG Jingjing, GAO Jianweng, et al. Petrogenesis and Geotectonic Setting of Mantle Peridotites from the Baiyunshan Ophiolite in Beishan Orogen[J]. Northwestern Geology, 2019, 52(03): 1-13. doi: 10.19751/j.cnki.61-1149/p.2019.03.001

    臧遇时, 杨高学, 赵金凤. 蛇绿岩的定义、分类及其发展[J]. 西北地质, 2013, 46(02): 12-17 doi: 10.3969/j.issn.1009-6248.2013.02.002

    ZANG Yushi, YANG Gaoxue, ZHAO Jinfeng, et al. The Definition, Classification and Development of Ophiolites[J]. Northwestern Geology, 2013, 46(02): 12-17. doi: 10.3969/j.issn.1009-6248.2013.02.002

    张旗, 周国庆. 中国蛇绿岩[M]. 北京: 科学出版社, 2001: 1−182

    ZHANG Qi, ZHOU Guoqing. Chinese ophiolite[M]. Beijing: Science Press, 2001: 1−182.

    张向飞, 陈莉, 曹华文, 等. 中国新疆–中亚大地构造单元划分及演化简述[J]. 西北地质, 2023, 56(4): 1−39.

    ZHANG Xiangfei, CHEN Li, CAO Huawen, et al. Division of Tectonic Units and Their Evolutions within Xinjiang, China to Central Asia[J]. Northwestern Geology, 2023, 56(4): 1−39.

    张治国, 刘磊, 刘希军, 等. 新疆西准噶尔哈姆图斯火山岩年代学、地球化学特征及地质意义[J]. 桂林理工大学学报, 2019, 39(02): 258-269

    ZHANG Zhiguo, LIU Lei, LIU Xijun, et al. Geochronology and geochemistry of volcanic rocks from the Hamtus area in the western Junggar(Xinjiang) and their geological significance[J]. Journal of Guilin University of Technology, 2019, 39(02): 258-269.

    AOKI K, KUSHIRO I. Some clinopyroxenes from ultramafic inclusions in Dreiser Weiher, Eifel[J]. Contributions to Mineralogy and Petrology, 1968, 18(4): 326-337. doi: 10.1007/BF00399694

    AOKI K I, SHIBA I. Pyroxenes from lherzolite inclusions of Itinome-gata, Japan[J]. Lithos, 1973, 6(1): 41-51. doi: 10.1016/0024-4937(73)90078-9

    HUANG Xiaolong, XU Yigang, LO Chinghua, et al. Exsolution lamellae in a clinopyroxene megacryst aggregate from Cenozoic basalt, Leizhou Peninsula, South China: petrography and chemical evolution[J]. Contributions to Mineralogy and Petrology, 2007, 154: 691-705. doi: 10.1007/s00410-007-0218-4

    IRVING A J, FREY F A. Trace element abundances in megacrysts and their host basalts: constraints on partition coefficients and megacryst genesis[J]. Geochimica et Cosmochimica Acta, 1984, 48(6): 1201-1221. doi: 10.1016/0016-7037(84)90056-5

    JIAN Ping, KRONER A, WINDLEY B F, et al. Carboniferous and Cretaceous mafic–ultramafic massifs in Inner Mongolia (China): A SHRIMP zircon and geochemical study of the previously presumed integral“Hegenshan ophiolite” [J]. Lithos, 2012, 142-143: 48-66. doi: 10.1016/j.lithos.2012.03.007

    KINZLER R J. Melting of mantle peridotite at pressures approaching the spinel to garnet transition: Application to mid‐ocean ridge basalt petrogenesis[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B1): 853-874. doi: 10.1029/96JB00988

    KUSHIRO I. Si-Al relation in clinopyroxenes from igneous rocks[J]. American Journal of Science, 1960, 258: 518-551. doi: 10.2475/ajs.258.7.518

    LE BSA M J. The role of aluminum in igneous clinopyroxenes with relation to their parentage[J]. American Journal of Science, 1962, 260(4): 267-288. doi: 10.2475/ajs.260.4.267

    LL J Y. Permian geodynamic setting of Northeast China and adjacent regions: closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate [J]. Earth and Planetary Science Letters, 2006, 26(3-4): 207-224.

    LIU Chuanzhou, WU Fuyuan, WILDE S A, et al. Anorthitic plagioclase and pargasitic amphibole in mantle peridotites from the Yungbwa ophiolite (southwestern Tibetan Plateau) formed by hydrous melt metasomatism[J]. 2010, Lithos, 114: 413-422.

    LIU Xijun, ZHANG Zhiguo, XU Jifeng, et al. The youngest Permian Ocean in Central Asian Orogenic Belt: Evidence from Geochronology and Geochemistry of Bingdaban Ophiolitic Melange in Central Tianshan, northwestern China [J]. Geological Journal, 2020, 55(3): 2062-2079. doi: 10.1002/gj.3698

    LIU, Xijun, XU, Jifeng, CASTILLO P R, et al. Long-lived low Th/U Pacific-type isotopic mantle domain: Constraints from Nd and Pb isotopes of the Paleo-Asian Ocean mantle[J]. Earth and Planetary Science Letters, 2021, 567: 117006. doi: 10.1016/j.jpgl.2021.117006

    MAHONEY J J, FRE R, TEJADA M L G, et al. Tracing the Indian Ocean Mantle Domain Through Time: Isotopic Results from Old West Indian, East Tethyan, and South Pacific Seafloor[J]. Journal of Petrology, 1998, 39(7): 1285-1306. doi: 10.1093/petroj/39.7.1285

    MIAO Laicheng, FAN Weiming, Liu Dunyi, et al. Geochronology and geochemistry of the Hegenshan ophiolitic complex: Implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China [J]. Journal of Asian Earth Sciences, 2008, 32(5-6): 348-370. doi: 10.1016/j.jseaes.2007.11.005

    MORIMOTO N. Nomenclature of Pyroxenes[J]. Mineralogy and Petrology, 1988, 39: 55-76. doi: 10.1007/BF01226262

    NISBET E G, PEARCE J A. Clinopyroxene composition in mafic lavas from different tectonic settings [J]. Contributions to Mineralogy and Petrology, 1977, 63(2): 149-160. doi: 10.1007/BF00398776

    NOZAKA T, LIU Yan. Petrology of the Hegenshan ophiolite and its implication for the tectonic evolution of northern China-ScienceDirect [J]. Earth and Planetary Science Letters, 2002, 202(1): 89-104. doi: 10.1016/S0012-821X(02)00774-4

    PEARCE J A, LIPPARD S J, ROBERTS S. Characteristics and tectonic significance of supra-subduction zone ophiolites[J]. Geological Society, London, Special Publications, 1984, 16(1): 77-94. doi: 10.1144/GSL.SP.1984.016.01.06

    PUTIRKA K D. Thermometers and barometers for volcanic systems[J]. Reviews in mineralogy and Geochemistry, 2008, 69(1): 61-120. doi: 10.2138/rmg.2008.69.3

    Sanfippo A, Tribuzio R. Melt transport and deformation history in a nonvolcanic ophiolitic section, northern Apennines, Italy: implications for crustal accretion at slow spreading settings[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(7).

    SHERAFAT S, YAVUZ F, NOORBEHESHT I, et al. Mineral chemistry of Plio-Quaternary subvolcanic rocks, southwest Yazd Province, Iran[J]. International Geology Review, 2012, 54(13): 1497-1531. doi: 10.1080/00206814.2011.644748

    STRECK M J, DUNGAN M A, BUSSY F, et al. Mineral inventory of continuously erupting basaltic andesites at Arenal volcano, Costa Rica: implications for interpreting monotonous, crystal-rich, mafic arc stratigraphies[J]. Journal of Volcanology and Geothermal Research, 2005, 140(1): 133-155.

    SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. In: Saunders, A. D. , Norry, M. J. (Eds. ), Implications for Mantle Composition and Processes, Magmatism in the Ocean Basins: Geological Society, Lo ndon, Special Publication, 1989, 42: 313-345.

    THOMPSON R N. Some high-pressure pyroxenes[J]. Mineralogical Magazine, 1974, 39(307): 768-787. doi: 10.1180/minmag.1974.039.307.04

    WASS S Y. Multiple origins of clinopyroxenes in alkali basaltic rocks[J]. Lithos, 1979, 612(2): 115-132.

    WANG Yang, GAO Yongfeng, SANTOSH M, et al. Permian dyke swarm with bimodal affinity from the Hegenshan ophiolite-arc-accretionary belt, Central Inner Mongolia: Implications on lithospheric extension in a Carboniferous continental arc [J]. Lithos, 2020, 356-357.

    WINDLEY B F, ALEXEIE V D, XIAO, Wenjiao, et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of Geological Society London, 2007, 164: 31-47. doi: 10.1144/0016-76492006-022

    XIAO Wenjiao, WINDLEY B F, YUAN C, et al. Paleozoic multiple subduction-accretion processes of the southern Altaids [J]. American Journal of Science, 2009, 309(3): 221-270. doi: 10.2475/03.2009.02

    ZHANG Zhiguo, LIU Xijun, XIAO Wenjiao, et al. Geochemistry and Sr-Nd-Hf-Pb isotope systematics of late Carboniferous sanukitoids in northern West Junggar, NW China: Implications for initiation of ridge-subduction[J]. Gondwana Research, 2021, 99: 204-218. doi: 10.1016/j.gr.2021.07.008

  • 期刊类型引用(4)

    1. 付柯锦. 生态环境保护背景下南水北调中线工程水源区生态旅游发展的路径选择. 地域研究与开发. 2025(01): 137-142+150 . 百度学术
    2. 袁江龙,刘晓煌,李洪宇,邢莉圆,雒新萍,王然,王超,赵宏慧. 1990—2050年黄河中游伊洛河流域不同土地利用类型碳储量时空分异特征. 现代地质. 2024(03): 559-573 . 百度学术
    3. 刘小玉,李士杰,何海洋,秦昊洋,王思琪,孙旭. 基于InVEST和PLUS模型下的土地利用变化及生境质量演变分析:以汉中盆地为例. 西北地质. 2024(04): 271-284 . 本站查看
    4. 欧阳渊,刘洪,张景华,唐发伟,张腾蛟,黄勇,黄瀚霄,李富,陈敏华,宋雯洁. 西南山区生态地质调查技术方法研究. 西北地质. 2023(04): 218-242 . 本站查看

    其他类型引用(1)

图(8)  /  表(10)
计量
  • 文章访问数:  172
  • HTML全文浏览量:  38
  • PDF下载量:  29
  • 被引次数: 5
出版历程
  • 收稿日期:  2022-06-19
  • 修回日期:  2023-11-04
  • 网络出版日期:  2023-03-16
  • 刊出日期:  2024-01-07

目录

/

返回文章
返回