ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    高级检索

    雅鲁藏布江中游石冰川发育特征及潜在成灾机制分析

    刘勇, 张文, 魏良帅

    刘勇,张文,魏良帅. 雅鲁藏布江中游石冰川发育特征及潜在成灾机制分析[J]. 西北地质,2024,57(1):44−54. doi: 10.12401/j.nwg.2023136
    引用本文: 刘勇,张文,魏良帅. 雅鲁藏布江中游石冰川发育特征及潜在成灾机制分析[J]. 西北地质,2024,57(1):44−54. doi: 10.12401/j.nwg.2023136
    LIU Yong,ZHANG Wen,WEI Liangshuai. Developmental Characteristics and Potential Disaster Mechanism of Rock Glaciers in the Middle Reaches of the Yarlung Zangbo River[J]. Northwestern Geology,2024,57(1):44−54. doi: 10.12401/j.nwg.2023136
    Citation: LIU Yong,ZHANG Wen,WEI Liangshuai. Developmental Characteristics and Potential Disaster Mechanism of Rock Glaciers in the Middle Reaches of the Yarlung Zangbo River[J]. Northwestern Geology,2024,57(1):44−54. doi: 10.12401/j.nwg.2023136

    雅鲁藏布江中游石冰川发育特征及潜在成灾机制分析

    基金项目: 中国地质调查局项目“长江上游水文地质与水资源调查监测”(DD20221757),四川省自然资源厅项目“四川省黄河流域地下水资源调查(2023-2025)”(N5100012023000974),西藏自治区自然资源厅项目“西藏自治区地质灾害防治技术研究与示范”(藏财采[2020]0890-1)联合资助。
    详细信息
      作者简介:

      刘勇(1989− ),男,博士,工程师,主要从事水文地质和环境地质研究工作。E−mail:1039786137@qq.com

      通讯作者:

      张文(1985−),男,博士,高级工程师,主要从事工程地质和环境地质研究工作。E−mail:3463287@qq.com

    • 中图分类号: P66

    Developmental Characteristics and Potential Disaster Mechanism of Rock Glaciers in the Middle Reaches of the Yarlung Zangbo River

    • 摘要:

      石冰川是以冰岩混合物为基础在重力和冻融作用下形成的一类具有蠕滑特征的冰缘地貌,大量分布于中国青藏高原和天山地区,了解其发育特征对于研究高寒山区环境演化和致灾机理具有重要的理论和现实意义。近年来的监测研究发现,受气候变暖影响,石冰川表面蠕滑出现了显著的加速过程,形成泥石流或滑坡的风险增大。青藏高原是全球气候变暖的敏感区,由气候变暖引起的地质灾害受到广泛关注。鉴于此,笔者采用现场测量、遥感解译和理论分析的方法,分析并探讨了雅鲁藏布江中游桑−加峡谷两岸石冰川的发育特征和潜在成灾机制。结果表明,石冰川的形成和发育与孕育基床的地形、气候和太阳辐射有关,在气温升高、短历时强降雨或强烈地震作用下,石冰川易形成泥石流或滑坡灾害威胁下游,主要表现为石冰川下游段组成物质的不稳定性。

      Abstract:

      Rock glaciers are a type of ice-marginal landforms with creep-slip characteristics formed by gravity and freeze-thaw based on ice and rock mixtures, and they have a large distribution in the Qinghai-Tibet Plateau and Tianshan Mountains in China. Monitoring studies in recent years have found that a significant acceleration process of creep slip on the surface of rock glaciers has occurred under the influence of climate warming, and the risk of forming mudflows or landslides has increased. The Qinghai-Tibet Plateau is a sensitive area of global warming, and the geological disasters caused by climate warming have received wide attention. In view of this, this paper analyzes and discusses the development characteristics and potential disaster mechanisms of rock glaciers on both sides of the Sangri-Jiacha Gorge in the middle reaches of the Yarlung Zangbo River using field measurements, remote sensing interpretation and theoretical analysis. The results show that the formation and development of rock glaciers are related to the topography, climate and solar radiation of the nurturing environment, and that they are prone to form mudflows or landslides threatening the downstream under the effect of rising temperature, short-duration heavy rainfall or strong earthquakes, mainly manifested by the instability of the constituent materials of the downstream section of rock glaciers.

    • 图  1   研究区地理位置图

      a.研究区地形分布图;b.研究区遥感影像图;c.典型石冰川全貌

      Figure  1.   Location map of the study area

      图  2   典型石冰川遥感影像分布图

      Figure  2.   Distribution of remote sensing images of typical rock glaciers

      图  3   典型石冰川分布示意图

      Figure  3.   Typical rock glacier distribution diagram

      图  4   典型冰碛型石冰川

      Figure  4.   Typical moraine-type rock glacier

      图  5   典型倒石堆型石冰川

      Figure  5.   Typical talus-type rock glacier

      图  6   研究区石冰川分布图

      Figure  6.   Distribution map of rock glaciers in the study area

      图  7   石冰川属性参数统计图

      a. 石冰川平面面积分布图;b. 石冰川末端高程分布图;c. 石冰川顶部高程分布图;d. 石冰川长度分布图;e. 石冰川长宽比分布图;f. 石冰川平均坡度分布图

      Figure  7.   Rock glacier property parameter statistics

      图  8   研究区石冰川坡度和流向分布图

      Figure  8.   Distribution of slope and flow direction of rock glaciers in the study area

      图  9   巴龙贡巴倒石堆型石冰川表层照片

      Figure  9.   Surface layer of Barungunba talus-type rock glacier

      图  10   噶琼绒冰碛型石冰川照片

      Figure  10.   Gaqiongrong moraine type rock glacier

      图  11   岩屑尺寸统计图

      巴龙贡巴石冰川C40=31.7%;噶琼绒冰碛型石冰川C40=20.4%

      Figure  11.   Rock chip size statistics

      图  12   岩屑磨圆度统计

      外环为巴龙贡巴石冰川,SA=0.71;内环为噶琼绒冰碛型石冰川,SA=1.08

      Figure  12.   Rock chip grinding roundness statistics

      图  13   沃德贡杰石冰川分布全貌图

      a.沃德贡杰石冰川三维地形分布图;b.沃德贡杰石冰川全貌

      Figure  13.   Full view of the Waldegrenje Rock Glacier

      图  14   沃德贡杰石冰川轮廓线分布图(底图为1965年锁眼卫星影像)

      Figure  14.   Distribution of contour lines of the Waldegunjerite glacier

      图  15   沃卡盆地东侧冰蚀槽谷前缘淤堵照片

      Figure  15.   Siltation at the leading edge of the ice-eroded trough valley on the east side of the Voka Basin

      表  1   遥感影像信息表

      Table  1   Remote Sensing Image Information

      采集时间景号传感器分辨率(m)产品级别轨道号
      2020-10-278369717PMS1L1A33461
      2020-11-018317957PMS1L1A33533
      2020-11-018317956PMS1L1A33533
      2020-11-018317955PMS1L1A33533
      2020-10-278329966PMS1L1A33459
      2020-11-018318233PMS1L1A33533
      2020-11-018318232PMS1L1A33533
      2020-11-018318231PMS1L1A33533
      1965-12-31\KH-90.6~1.2\\
      1981-02-18\KH-90.6~1.2\\
      下载: 导出CSV
    • 丛凯, 李瑞冬, 毕远宏. 基于FLO-2D模型的泥石流治理工程效益评价[J]. 西北地质, 2019, 52(03): 209-216.

      CONG Kai, LI Ruidong, BI Yuanhong. Benefit evaluation of debris flow control engineering based on FLO-2D Model [J]. Northwestern Geology, 2019, 52 (03): 209-2016.

      郭志明. 雅鲁藏布江流域石冰川编目及空间分布特征研究[D]. 昆明: 云南大学, 2019

      GUO Zhiming. Study on the cataloguing and spatial distribution characteristics of rock glaciers in the Yarlung Tsangpo River basin [D]. Kunming: Yunnan University, 2019.

      刘耕年, 熊黑钢, 崔之久, 等. 天山石冰川的形态与发育条件[J]. 地理科学, 1995(3): 226-233+297 doi: 10.13249/j.cnki.sgs.1995.03.004

      LIU Gengnian, XIONG Heigang, CIU Zhijiu, et al. Morphology and development conditions of rock glaciers in the Tianshan Mountains[J]. Geoscience, 1995(3): 226-233+297. doi: 10.13249/j.cnki.sgs.1995.03.004

      刘勇. 内外动力耦合下雅鲁藏布江贡嘎-加查河段的成灾机制研究[D]. 成都: 成都理工大学, 2021

      LIU Yong. Study on the disaster mechanism of the Yarlung Tsangpo River Gongga-Jiacha section under the coupling of internal and external dynamics [D]. Chengdu: Chengdu University of Technology, 2021.

      马腾霄, 杨文光, 朱利东, 等. 雅鲁藏布江中游地貌参数特征及其构造地貌意义[J]. 成都理工大学学报(自然科学版), 2022, 49(4): 502−512.

      MA Tengxiao, YANG Wenguang, ZHU Lidong, et al. Geomorphic parameters and their tectonic geomorphic significance in the middle reaches of Yarlung Zangbo River, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2022, 49(4): 502−512.

      王运生, 刘勇, 罗永红, 等. 深切峡谷斜坡地震动响应研究[M]. 北京: 科学出版社, 2019

      WANG Yunsheng, LIU Yong, LUO Yonghong, et al. Study on ground vibration response of deep-cut canyon slopes [M]. Beijing: Science Press, 2019.

      吴中海, 张永双, 胡道功, 等. 西藏桑日县沃卡地堑的第四纪正断层活动及其机制探讨[J]. 地质学报, 2007(10): 1328-1337+1449-1450.

      WU Zhonghai, ZHANG Yongshuang, HU Daogong, et al. Exploration of Quaternary normal fault activity and its mechanism in the Woka graben, Sangri County, Tibet[J]. Journal of Geology, 2007(10): 1328-1337+1449-1450.

      徐瑾昊. 基于深度学习的石冰川遥感识别研究[D]. 西安: 西北大学, 2020

      XU Jinhao. Research on remote sensing identification of rock glaciers based on deep learning[D]. Xi’an: Northwestern University, 2020.

      杨耀先, 胡泽勇, 路富全, 等. 青藏高原近60年来气候变化及其环境影响研究进展[J]. 高原气象, 2022, 41(01): 1-10

      YANG Yaoxian, HU Zeyong, LU Fuquan, et al. Progress of climate change and its environmental impact on Qinghai-Tibet Plateau in the past 60 years[J]. Highland Meteorology, 2022, 41(01): 1-10.

      张升林, 江在雄. 1915年西藏桑日7.0级地震[J]. 东北地震研究, 1991(01): 131-132

      ZHANG Shenglin, JIANG Zaixiong. The magnitude 7.0 earthquake in Sangri, Tibet, 1915[J]. Northeast Earthquake Research, 1991(01): 131-132.

      朱诚. 现代冰缘地貌研究[M]. 南京: 江苏科学技术出版社, 1994

      ZHU Cheng. Studies on modern ice margin landforms[M]. Nanjing: Jiangsu Science and Technology Press, 1994.

      周敖日格勒, 王英, 唐菊兴, 等. 冈底斯斑岩铜矿带东段早中新世剥蚀作用及对渐新世—中新世斑岩矿床时空分布的影响[J]. 西北地质, 2022, 55(03): 286-296 doi: 10.19751/j.cnki.61-1149/p.2022.03.023

      ZHOUAORIGELE, WANG Ying, TANG Juxing, et al. Early miocene exhumation history in the eastern porphyry copper belt and its influence on the spatial and temporal distribution of Oligocene- Miocene porphyry deposits[J]. Northwestern Geology, 2022, 55 (03): 286-296 doi: 10.19751/j.cnki.61-1149/p.2022.03.023

      Buchli T, Kosa A, Limpach P, et al. Kinematic investigations on the Furggwanghorn Rock Glacier, Switzerland [J]. Permafrost and Periglacial Processes, 2018, 29(1): 3-20. doi: 10.1002/ppp.1968

      Brencher G, Handwerger A, Munroe J. InSAR-based characterization of rock glacier movement in the Uinta Mountains, Utah, USA [J]. Cryosphere, 2021, 15(10): 4823-4844. doi: 10.5194/tc-15-4823-2021

      Benn D I, Ballantyne C K. Reconstructing the transport history of glacigenic sediments: a new approach based on the co-variance of clast form indices[J]. Sedimentary Geology, 1994, 91(1-4): 215-227. doi: 10.1016/0037-0738(94)90130-9

      Barsch D. Rock glaciers- Indicators for the Present and Former Geoecology in High Mountain Environments [J]. Springer-Verlag, Berlin, 1996, 269–271.

      Brozovic N, Burbank D W, Meigs A J. Climatic limits on landscape development in the Northwestern Himalaya[J]. Science, 1997, 276(5312): 571-574. doi: 10.1126/science.276.5312.571

      Corte A. The hydrological significance of rock glaciers[J]. Journal of Glaciology, 1976, 17(75): 157-158. doi: 10.3189/S0022143000030859

      Cicoira A, Marcer M, Gartner-Roer I, et al. A general theory of rock glacier creep based on in-situ and remote sensing observations[J]. Permafrost and Periglacial Processes, 2020, 32(1): 139-153.

      Eriksen H, Rouyet L, Lauknes T R, et al. Recent Acceleration of a Rock Glacier Complex, Adept, Norway, Documented by 62 Years of Remote Sensing Observations[J]. Geophysical Research Letters, 2018, 45(16): 8314-8323. doi: 10.1029/2018GL077605

      Fey C, Krainer K. Analyses of UAV and GNSS based flow velocity variations of the rock glacier Lazaun (Ötztal Alps, South Tyrol, Italy) [J]. Geomorphology, 2020, 365: 107261. doi: 10.1016/j.geomorph.2020.107261

      Haeberli W, Hallet B, Arenson L, et al. Permafrost creep and rock glacier dynamics [J]. Permafrost and Periglacial Processes, 2006, 17(3): 189-214. doi: 10.1002/ppp.561

      Jankea J R, Bellisarioa A C, Ferrandobl F A. Classification of debris-covered glaciers and rock glaciers in the Andes of central Chile [J]. Geomorphology, 2015, 98–121.

      Jones D B, Harrison S, Anderson K, et al. Mountain rock glaciers contain globally significant waterstores [J]. Scientific Reports, 2018, 8 (1): 28-34. doi: 10.1038/s41598-017-18341-7

      Müller J, Vieli A, Gartner-Roer I. Rock glaciers on the run - understanding rock glacier landform evolution and recent changes from numerical flow modeling[J]. Cryosphere, 2016, 10(6): 2865-2886. doi: 10.5194/tc-10-2865-2016

      Onaca A, Ardelean F, Urdea P, et al. Southern Carpathian rock glaciers: Inventory, distribution and environmental controlling factors [J]. Geomorphology, 2017, 293(B): 391-404.

    • 期刊类型引用(1)

      1. 杜军,高佳佳,陈涛,次旺,巴果卓玛. 1981—2023年雅鲁藏布江流域大气饱和水汽压差变化及影响因素. 气候变化研究进展. 2024(05): 544-557 . 百度学术

      其他类型引用(0)

    图(15)  /  表(1)
    计量
    • 文章访问数:  197
    • HTML全文浏览量:  10
    • PDF下载量:  65
    • 被引次数: 1
    出版历程
    • 收稿日期:  2023-03-22
    • 修回日期:  2023-07-17
    • 网络出版日期:  2023-07-19
    • 刊出日期:  2024-02-19

    目录

      /

      返回文章
      返回