Developmental Characteristics and Potential Disaster Mechanism of Rock Glaciers in the Middle Reaches of the Yarlung Zangbo River
-
摘要:
石冰川是以冰岩混合物为基础在重力和冻融作用下形成的一类具有蠕滑特征的冰缘地貌,大量分布于中国青藏高原和天山地区,了解其发育特征对于研究高寒山区环境演化和致灾机理具有重要的理论和现实意义。近年来的监测研究发现,受气候变暖影响,石冰川表面蠕滑出现了显著的加速过程,形成泥石流或滑坡的风险增大。青藏高原是全球气候变暖的敏感区,由气候变暖引起的地质灾害受到广泛关注。鉴于此,笔者采用现场测量、遥感解译和理论分析的方法,分析并探讨了雅鲁藏布江中游桑−加峡谷两岸石冰川的发育特征和潜在成灾机制。结果表明,石冰川的形成和发育与孕育基床的地形、气候和太阳辐射有关,在气温升高、短历时强降雨或强烈地震作用下,石冰川易形成泥石流或滑坡灾害威胁下游,主要表现为石冰川下游段组成物质的不稳定性。
Abstract:Rock glaciers are a type of ice-marginal landforms with creep-slip characteristics formed by gravity and freeze-thaw based on ice and rock mixtures, and they have a large distribution in the Qinghai-Tibet Plateau and Tianshan Mountains in China. Monitoring studies in recent years have found that a significant acceleration process of creep slip on the surface of rock glaciers has occurred under the influence of climate warming, and the risk of forming mudflows or landslides has increased. The Qinghai-Tibet Plateau is a sensitive area of global warming, and the geological disasters caused by climate warming have received wide attention. In view of this, this paper analyzes and discusses the development characteristics and potential disaster mechanisms of rock glaciers on both sides of the Sangri-Jiacha Gorge in the middle reaches of the Yarlung Zangbo River using field measurements, remote sensing interpretation and theoretical analysis. The results show that the formation and development of rock glaciers are related to the topography, climate and solar radiation of the nurturing environment, and that they are prone to form mudflows or landslides threatening the downstream under the effect of rising temperature, short-duration heavy rainfall or strong earthquakes, mainly manifested by the instability of the constituent materials of the downstream section of rock glaciers.
-
-
表 1 遥感影像信息表
Table 1 Remote Sensing Image Information
采集时间 景号 传感器 分辨率(m) 产品级别 轨道号 2020-10-27 8369717 PMS 1 L1A 33461 2020-11-01 8317957 PMS 1 L1A 33533 2020-11-01 8317956 PMS 1 L1A 33533 2020-11-01 8317955 PMS 1 L1A 33533 2020-10-27 8329966 PMS 1 L1A 33459 2020-11-01 8318233 PMS 1 L1A 33533 2020-11-01 8318232 PMS 1 L1A 33533 2020-11-01 8318231 PMS 1 L1A 33533 1965-12-31 \ KH-9 0.6~1.2 \ \ 1981-02-18 \ KH-9 0.6~1.2 \ \ -
丛凯, 李瑞冬, 毕远宏. 基于FLO-2D模型的泥石流治理工程效益评价[J]. 西北地质, 2019, 52(03): 209-216. CONG Kai, LI Ruidong, BI Yuanhong. Benefit evaluation of debris flow control engineering based on FLO-2D Model [J]. Northwestern Geology, 2019, 52 (03): 209-2016.
郭志明. 雅鲁藏布江流域石冰川编目及空间分布特征研究[D]. 昆明: 云南大学, 2019 GUO Zhiming. Study on the cataloguing and spatial distribution characteristics of rock glaciers in the Yarlung Tsangpo River basin [D]. Kunming: Yunnan University, 2019.
刘耕年, 熊黑钢, 崔之久, 等. 天山石冰川的形态与发育条件[J]. 地理科学, 1995(3): 226-233+297 doi: 10.13249/j.cnki.sgs.1995.03.004 LIU Gengnian, XIONG Heigang, CIU Zhijiu, et al. Morphology and development conditions of rock glaciers in the Tianshan Mountains[J]. Geoscience, 1995(3): 226-233+297. doi: 10.13249/j.cnki.sgs.1995.03.004
刘勇. 内外动力耦合下雅鲁藏布江贡嘎-加查河段的成灾机制研究[D]. 成都: 成都理工大学, 2021 LIU Yong. Study on the disaster mechanism of the Yarlung Tsangpo River Gongga-Jiacha section under the coupling of internal and external dynamics [D]. Chengdu: Chengdu University of Technology, 2021.
马腾霄, 杨文光, 朱利东, 等. 雅鲁藏布江中游地貌参数特征及其构造地貌意义[J]. 成都理工大学学报(自然科学版), 2022, 49(4): 502−512. MA Tengxiao, YANG Wenguang, ZHU Lidong, et al. Geomorphic parameters and their tectonic geomorphic significance in the middle reaches of Yarlung Zangbo River, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2022, 49(4): 502−512.
王运生, 刘勇, 罗永红, 等. 深切峡谷斜坡地震动响应研究[M]. 北京: 科学出版社, 2019 WANG Yunsheng, LIU Yong, LUO Yonghong, et al. Study on ground vibration response of deep-cut canyon slopes [M]. Beijing: Science Press, 2019.
吴中海, 张永双, 胡道功, 等. 西藏桑日县沃卡地堑的第四纪正断层活动及其机制探讨[J]. 地质学报, 2007(10): 1328-1337+1449-1450. WU Zhonghai, ZHANG Yongshuang, HU Daogong, et al. Exploration of Quaternary normal fault activity and its mechanism in the Woka graben, Sangri County, Tibet[J]. Journal of Geology, 2007(10): 1328-1337+1449-1450.
徐瑾昊. 基于深度学习的石冰川遥感识别研究[D]. 西安: 西北大学, 2020 XU Jinhao. Research on remote sensing identification of rock glaciers based on deep learning[D]. Xi’an: Northwestern University, 2020.
杨耀先, 胡泽勇, 路富全, 等. 青藏高原近60年来气候变化及其环境影响研究进展[J]. 高原气象, 2022, 41(01): 1-10 YANG Yaoxian, HU Zeyong, LU Fuquan, et al. Progress of climate change and its environmental impact on Qinghai-Tibet Plateau in the past 60 years[J]. Highland Meteorology, 2022, 41(01): 1-10.
张升林, 江在雄. 1915年西藏桑日7.0级地震[J]. 东北地震研究, 1991(01): 131-132 ZHANG Shenglin, JIANG Zaixiong. The magnitude 7.0 earthquake in Sangri, Tibet, 1915[J]. Northeast Earthquake Research, 1991(01): 131-132.
朱诚. 现代冰缘地貌研究[M]. 南京: 江苏科学技术出版社, 1994 ZHU Cheng. Studies on modern ice margin landforms[M]. Nanjing: Jiangsu Science and Technology Press, 1994.
周敖日格勒, 王英, 唐菊兴, 等. 冈底斯斑岩铜矿带东段早中新世剥蚀作用及对渐新世—中新世斑岩矿床时空分布的影响[J]. 西北地质, 2022, 55(03): 286-296 doi: 10.19751/j.cnki.61-1149/p.2022.03.023 ZHOUAORIGELE, WANG Ying, TANG Juxing, et al. Early miocene exhumation history in the eastern porphyry copper belt and its influence on the spatial and temporal distribution of Oligocene- Miocene porphyry deposits[J]. Northwestern Geology, 2022, 55 (03): 286-296 doi: 10.19751/j.cnki.61-1149/p.2022.03.023
Buchli T, Kosa A, Limpach P, et al. Kinematic investigations on the Furggwanghorn Rock Glacier, Switzerland [J]. Permafrost and Periglacial Processes, 2018, 29(1): 3-20. doi: 10.1002/ppp.1968
Brencher G, Handwerger A, Munroe J. InSAR-based characterization of rock glacier movement in the Uinta Mountains, Utah, USA [J]. Cryosphere, 2021, 15(10): 4823-4844. doi: 10.5194/tc-15-4823-2021
Benn D I, Ballantyne C K. Reconstructing the transport history of glacigenic sediments: a new approach based on the co-variance of clast form indices[J]. Sedimentary Geology, 1994, 91(1-4): 215-227. doi: 10.1016/0037-0738(94)90130-9
Barsch D. Rock glaciers- Indicators for the Present and Former Geoecology in High Mountain Environments [J]. Springer-Verlag, Berlin, 1996, 269–271.
Brozovic N, Burbank D W, Meigs A J. Climatic limits on landscape development in the Northwestern Himalaya[J]. Science, 1997, 276(5312): 571-574. doi: 10.1126/science.276.5312.571
Corte A. The hydrological significance of rock glaciers[J]. Journal of Glaciology, 1976, 17(75): 157-158. doi: 10.3189/S0022143000030859
Cicoira A, Marcer M, Gartner-Roer I, et al. A general theory of rock glacier creep based on in-situ and remote sensing observations[J]. Permafrost and Periglacial Processes, 2020, 32(1): 139-153.
Eriksen H, Rouyet L, Lauknes T R, et al. Recent Acceleration of a Rock Glacier Complex, Adept, Norway, Documented by 62 Years of Remote Sensing Observations[J]. Geophysical Research Letters, 2018, 45(16): 8314-8323. doi: 10.1029/2018GL077605
Fey C, Krainer K. Analyses of UAV and GNSS based flow velocity variations of the rock glacier Lazaun (Ötztal Alps, South Tyrol, Italy) [J]. Geomorphology, 2020, 365: 107261. doi: 10.1016/j.geomorph.2020.107261
Haeberli W, Hallet B, Arenson L, et al. Permafrost creep and rock glacier dynamics [J]. Permafrost and Periglacial Processes, 2006, 17(3): 189-214. doi: 10.1002/ppp.561
Jankea J R, Bellisarioa A C, Ferrandobl F A. Classification of debris-covered glaciers and rock glaciers in the Andes of central Chile [J]. Geomorphology, 2015, 98–121.
Jones D B, Harrison S, Anderson K, et al. Mountain rock glaciers contain globally significant waterstores [J]. Scientific Reports, 2018, 8 (1): 28-34. doi: 10.1038/s41598-017-18341-7
Müller J, Vieli A, Gartner-Roer I. Rock glaciers on the run - understanding rock glacier landform evolution and recent changes from numerical flow modeling[J]. Cryosphere, 2016, 10(6): 2865-2886. doi: 10.5194/tc-10-2865-2016
Onaca A, Ardelean F, Urdea P, et al. Southern Carpathian rock glaciers: Inventory, distribution and environmental controlling factors [J]. Geomorphology, 2017, 293(B): 391-404.
-
期刊类型引用(1)
1. 杜军,高佳佳,陈涛,次旺,巴果卓玛. 1981—2023年雅鲁藏布江流域大气饱和水汽压差变化及影响因素. 气候变化研究进展. 2024(05): 544-557 . 百度学术
其他类型引用(0)