Characteristics of Platinum Group Element in Neoproterozoic Mafic Intrusions in the Northern Margin of the Yangtze and Exploration Implications
-
摘要:
扬子地块北缘的汉南地区是中国最重要的基性–超基性岩体分布区之一。新元古代毕机沟和望江山岩体是汉南地区出露最好、研究程度最高的两个层状基性岩体。毕机沟和望江山岩体被认为是由亏损地幔经历10%~20%部分熔融形成的。远高于原始地幔的Cu/Pd值(Cu/Pd毕机沟值为3.52×104~3.97×105,Cu/Pd望江山值为1.78×104~1.61×106),表明岩体母岩浆在侵入浅部地壳之前就经历了早期硫化物熔离。毕机沟岩体中铱族元素(IPGE)与全岩Ni呈正相关,Cu/Ir与Ni/Pd呈负相关,说明在浅部岩浆房硫化物未饱和时,铂族元素的分配主要受橄榄石控制。望江山岩体中铂族元素与全岩Ni、V、TiO2无相关性,Cu/Ir与Ni/Pd呈正相关,说明望江山岩体中铂族元素受二次熔离硫化物的控制。毕机沟和望江山岩体中矿物不具有定向性,加上望江山岩体中二次熔离出的硫化物中铂族元素依然亏损,说明这些岩体更可能是岩浆单次贯入冷却形成的,而非岩浆通道。因此,浅部可能不具备赋存大型矿床的条件,今后的找矿工作应该聚焦于更深部。
Abstract:Multiple layered mafic intrusions occur along the northern margin of the Yangtze Block, SW China. The Neoproterozoic Bijigou and Wangjiangshan mafic intrusions are two of the best exposed intrusions in the region. The Bijigou and Wangjiangshan mafic intrusions are thought to be generated by 10% to 20% of partial melting of a depleted mantle source. Uniformly high Cu/Pd (3.52×104~3.97×105 for the Bijigou samples and 1.78×104~1.61×106 for the Wangjiangshan samples) indicate that the parental magma of these intrusions experienced prior sulfide segregation before their intrusions into the shallow crust. Positive correlation between IPGE with whole–rock Ni, and negative correlation between Cu/Ir and Ni/Pd illustrate that the distribution of PGE is mainly controlled by the accumulation of olivine under an S–unsaturated condition. In comparison no linearly correlation between PGE and whole–rock Ni, V and TiO2, and positive correlation between Cu/Ir and Ni/Pd illustrate that the PGE in the Wangjiangshan intrusion is controlled by the second-stage sulfide saturation. The general lack of parallel alignment of tabular minerals in the Bijigou and Wangjiangshan intrusions, combined the PGE depletions in the Wangjiangshan second segregated sulfides, indicates that these intrusions probably intruded and cooled under a single episode of magma replenishment, rather than a dynamic magma conduit system. Therefore the shallow part may not have the conditions to host large deposits and future prospecting work should focus on the deeper part.
-
Keywords:
- Neoproterozoic /
- mafic intrusion /
- PGE /
- sulfide segregation /
- Yangtze block
-
扬子地块北缘汉南地区新元古代基性–超基性层状岩体,对于研究和了解扬子板块新元古代构造演化及其与Rodinia超大陆裂解关系,具有非常重要的意义,因此引起了学术界极大地关注。这些基性–超基性层状岩体分布在扬子陆块北缘,从东向西依次出露有:毕机沟和望江山基性–超基性岩体,以及骆家坝、柳树店和碑坝基性岩体。
1960年以来,前人就对毕机沟和望江山岩体中钛铁氧化物矿床和铜镍硫化物矿床进行了研究。Sm–Nd同位素研究表明,城固、西乡长溪沟、望江山和毕机沟岩体的Sm–Nd等时线年龄为837~1 061 Ma(张宗清等,2000;杨合群等,2013,杨合群,2021)。前人利用SHRIMP、LA–ICP–MS和SIMS对毕机沟岩体和望江山岩体进行了锆石U–Pb年代学分析,得到了一致的成岩年龄,认为毕机沟岩体和望江山岩体的成岩年龄分别为780 Ma和820 Ma(Zhou et al.,2002;Dong et al.,2011;Wang et al.,2016)。全岩Sr–Nd和锆石Hf同位素数据表明,毕机沟和望江山岩体是同源的,两者均为新元古代早期岩石圈地幔在高于2.0 GPa的压力下,经过10%~20%部分熔融的产物。两个岩体侵位过程中地壳混染的贡献几乎可以忽略不计(Zhou et al.,2002;Zhao et al.,2009;Dong et al.,2011;Wang et al.,2016)。
但是,对于毕机沟和望江山岩体中赋存的钛铁氧化物矿床和铜镍硫化物矿床的成矿作用和成岩成矿机制却少有关注。成来顺(2017)通过镍硫火试金法分析了毕机沟岩体的铂族元素(PGE)含量,讨论了母岩浆性质和成矿潜力。王岩等(2019)通过LA–ICP–MS分析测试单斜辉石微量元素含量,认为望江山岩体侵位深度为12.9~18 km。但是,前人并未进一步探讨岩体中硫化物饱和机制和铂族元素富集机理,笔者使用低浓度卡洛斯管和同位素稀释法对毕机沟和望江山两个岩体中的铂族元素进行分析,结合主量、微量元素数据,用来研究不同岩体中铂族元素分布以及对其分配的控制因素;探讨已知的Fe–Ti矿化和汉南地区新元古代基性–超基性层状岩体的铂族元素硫化物矿化潜力。
1. 地质背景
华南板块由扬子板块和华夏板块组成。扬子板块的北部以秦岭–大别–苏鲁造山带为界,与华北克拉通分开,西部以松潘–甘孜造山带与青藏高原隔开(Zhao et al.,2012)。扬子板块的结晶基底由高度变质的太古代—中元古代的砂质–泥质沉积地层组成,上边被弱变质到未变质的新元古代到新生代地层覆盖(张国伟等,1995,2000;苏犁,2004;Zhao et al.,2009)。
位于扬子地块北部的汉南地区是中国最重要的基性–超基性侵入岩分布区之一(董显扬等,1995;吴新斌等,2023)。汉南地区出露的基底主要是低绿片岩相的新元古代西乡群火山–沉积建造(张宗清等,2000;Ling et al.,2003)。780 Ma毕机沟岩体和820 Ma望江山岩体是汉南地区最大的和研究程度最高的两个基性–超基性层状岩体(图1),这两个岩体顶部都赋存有具有开采价值的钒钛磁铁矿(巩志超等,1975;任有祥,1976)。在望江山岩体底部超基性岩层位,还赋存有薄层具经济价值的铜硫化物矿床(杨星等,1993)。
毕机沟层状岩体长约为50 km,宽为6~12 km,覆盖面积超过500 km2。岩体侵位于新元古代(895±3) Ma西乡群变火山–沉积岩中(Ling et al., 2003),后来又被同期或晚期花岗岩和花岗闪长岩侵位(董显扬等,1995)。毕机沟岩体具有明显的层状构造,根据岩石类型自下而上可以划分为:橄长岩带、辉长岩带、角闪辉长岩带。底部的橄长岩带由纯橄岩、橄长岩、橄榄辉长岩和少量斜长岩、辉石岩组成;中部的辉长岩带由橄榄辉长岩、苏长辉长岩、辉长岩和苏长岩共同组成;上部的角闪辉长岩带由角闪辉长岩、辉长闪长岩和石英辉长岩组成。钒钛磁铁矿主要位于辉长岩带顶部和角闪辉长岩带中(苏犁,2004)。每个岩相带中发育韵律层理,表现为浅色辉长岩和富含钛铁氧化物的暗色层互层(图2a)。但在每一个单独的韵律层理中,板、柱状矿物没有表现出明显的定向性(图2c、图2d)。文中样品主要采于毕机沟岩体中部辉长岩带和上部角闪辉长岩带,岩石类型包括辉长岩、磁铁辉长岩、橄榄辉长岩和磁铁辉长苏长岩,造岩矿物主要为斜长石、斜方辉石、单斜辉石,还有少量的橄榄石、角闪石和黑云母(图2c、图2d)。金属矿物由磁铁矿、钛铁矿和少量硫化物(主要为黄铁矿)组成(图2b)。
图 2 毕机沟和望江山岩体的野外照片和不同岩石类型的岩相学特征a.毕机沟岩体的层状构造;b.毕机沟岩体磁铁辉长岩的背散射电子图像;c.毕机沟岩体的磁铁苏长岩;d.毕机沟岩体的橄榄辉长岩;e.望江山岩体的苏长辉长岩;f.望江山岩体的辉长岩;Ol.橄榄石;Mt.磁铁矿;Cpx.单斜辉石;Opx.斜方辉石;Pl.斜长石;Sil.硅酸盐矿物;Ilm.钛铁矿;Sul.硫化物Figure 2. Field photos and petrographic characteristics of different rock types from the Bijigou and Wangjiangshan intrusions望江山层状岩体长约为17 km,宽约为7 km,出露面积超过100 km2。岩体侵位于新元古代(895±3) Ma西乡群变火山–沉积岩中(Ling et al.,2003),后又被同期或晚期的花岗岩和花岗闪长岩侵入(董显扬等,1995)。岩体就位之后,被几个NE–SW方向的断层将其分为几个部分。望江山岩体相对于毕机沟岩体基性程度略高,发育层状构造和韵律结构。其岩相分带自下向上包括:橄榄岩带、辉长岩带、闪长岩带。底部的橄榄岩带由下部的纯橄岩、橄长岩、辉石岩和橄榄辉长岩逐渐过渡为上部橄榄辉石岩、橄榄辉长岩;中部的辉长岩带由辉长岩、橄榄辉长岩、苏长辉长岩和辉长苏长岩共同组成;上部的闪长岩带由角闪辉长岩、辉长闪长岩和石英闪长岩共同组成。其中,硫化物矿化主要位于岩体底部的橄榄岩带中,钒钛磁铁矿化主要位于辉长岩带顶部(苏犁,2004)。本文样品主要采于望江山岩体下部辉长岩带,岩石类型包括橄榄苏长岩、橄榄辉长岩、辉长苏长岩、辉长岩和磁铁辉长岩,造岩矿物主要为斜长石、斜方辉石、单斜辉石和少量橄榄石(图2e、图2f)。金属矿物为磁铁矿、钛铁矿和硫化物(主要为黄铁矿)。
2. 分析方法
全岩样品利用颚式碎样机和碳化钨钵体碎样机细碎至200 目。首先称取一定量的干燥粉末放置于预热处理过的刚玉坩埚中,在马弗炉1 000 ℃条件下放置90 分钟,重新称取样品重量,确定烧失量。然后称取0.5 g干燥的粉末样品,利用0.4 g LiF、3.6 g Li2B4O7和0.3 g NH4NO3作为助熔剂,混合均匀后,滴一至两滴LiBr,再在高频电炉上加热制成玻璃片,最后在X射线荧光光谱仪(XRF)上测定(王建其等,2016)。XRF对主量元素氧化物的检出限为0.01%,测量的分析精度优于2%。
全岩微量元素的分析和测定采用的是酸溶法+电感耦合等离子质谱(ICP–MS)联合测定(刘晔等,2007)。全岩粉末加入HF+HNO3混合之后在特氟龙熔样罐中190 ℃加热48 h。样品由国际标准样品BHVO–2、AGV–2、BCR–2和GSP–2及空白样监测,采用含量权重的线性拟合方式对样品进行最终的校正计算,大多数元素的分析精度优于5%。
全岩铂族元素分析测定采用卡洛斯管结合同位素稀释法,详细分析流程参考(Chu et al.,2015)。191Ir/193Ir、194Pt/196Pt、105Pd/106Pd和99Ru/101Ru的测试是在中国科学院地质与地球物理研究所进行的。使用带电子倍增器的多接收等离子质谱ICP–MS测定。191Ir/193Ir、194Pt/196Pt、105Pd/106Pd和99Ru/101Ru的分析精度通常为0.1%~0.5 %(2 RSD)。通过测量参考标准WGB–1和TDB–1来监测整个实验流程的可靠性。Ir、Ru、Pt和Pd含量与前人报告值一致(Govindaraju,1994;Meisel et al.,2004;Qi et al.,2008)。流程空白的Ir含量为3×10–12、Ru为17×10–12、Pt为13×10–12、Pd为14×10–12。
3. 分析结果
3.1 全岩主、微量元素
从岩相学特征(图2)和全岩烧失量(LOI小于2%)可以看出,文中大多数样品都是新鲜的。毕机沟岩体样品的主量元素数据显示出强烈地受堆晶矿物相影响的特征。SiO2含量为35.8%~44.3%,MgO含量为4.42%~10.5%。它们具有相对较高的TFe2O3和TiO2值,暗示岩体中存在Fe–Ti氧化物矿物堆晶(表1)。V的含量为177×10−6~729×10−6,Zr、La、Th的平均含量分别为13.4×10−6、3.45×10−6、0.12×10−6。毕机沟岩体(Th/Yb)PM的平均值为0.69(表1)。
表 1 毕机沟岩体、望江山岩体样品主量(%)、微量元素(10−6)与稀土元素(10−6)组成分析结果表Table 1. Major (%), trace element (10−6) and REE concentrations (10−6) analyses of the Bijigou and Wangjiangshan samples样品号 WJS502 WJS503 WJS510 WJS516 WJS517 WJS519 WJS606 WJS612 WJS614 BJG502 BJG503 BJG507 BJG514 BJG516 BJG522 岩性 橄榄
辉长岩辉长
苏长岩橄榄
辉长苏
长岩橄榄
苏长岩橄榄
苏长岩橄榄
苏长岩磁铁
辉长岩辉长
苏长岩辉长
岩磁铁
含橄辉
长岩磁铁
辉长岩橄榄
辉长岩辉长
岩磁铁
辉长岩磁铁
辉长苏
长岩SiO2 48.0 51.0 45.1 45.0 45.0 46.3 42.9 51.1 48.4 41.9 42.8 44.3 35.8 43.0 41.7 TiO2 0.33 1.06 1.12 0.31 0.50 1.27 2.98 1.14 1.14 2.41 2.24 0.57 4.55 4.52 3.57 Al2O3 20.9 18.3 16.9 18.2 13.5 18.5 14.5 16.0 16.8 15.2 13.8 17.3 14.2 15.5 14.7 TFe2O3 6.32 8.57 12.7 9.63 12.7 10.9 17.1 9.81 10.9 18.9 17.3 14.1 27.0 16.7 17.1 MnO 0.10 0.16 0.16 0.12 0.16 0.14 0.27 0.17 0.16 0.18 0.22 0.17 0.26 0.20 0.26 MgO 7.39 7.31 9.33 13.7 18.3 8.93 5.92 6.18 8.28 5.91 6.84 10.5 4.42 6.05 6.23 CaO 13.9 10.2 12.5 9.49 7.42 10.5 10.9 8.72 10.2 11.4 12.8 8.55 9.10 11.1 11.3 Na2O 2.06 2.95 1.76 1.77 1.59 2.60 2.92 3.38 2.98 2.28 2.09 2.06 2.09 2.38 2.44 K2O 0.16 0.22 0.05 0.16 0.27 0.19 0.44 1.65 0.31 0.12 0.10 0.11 0.13 0.09 0.11 P2O5 0.05 0.16 0.20 0.06 0.10 0.18 1.08 0.19 0.14 0.05 1.09 0.05 0.33 0.07 2.00 LOI 0.38 0.23 0.21 1.07 0.73 0.16 0.87 1.32 0.34 0.99 0.36 2.01 1.41 -0.07 -0.30 Total 99.51 99.61 99.94 99.53 99.98 99.55 99.83 99.62 99.62 99.32 99.55 99.64 99.24 99.53 99.24 Li 3.81 4.21 2.75 5.14 5.67 4.71 6.90 14.0 8.96 4.78 2.91 3.18 6.11 3.24 5.76 Be 0.32 0.37 0.27 0.28 0.35 0.47 1.11 0.92 0.59 0.21 0.23 0.17 0.20 0.20 0.25 Sc 28.9 27.6 33.1 11.6 15.1 26.3 42.2 31.8 32.5 44.8 56.8 12.4 39.2 49.2 43.1 V 88.9 86.0 282 70.8 88.5 191 361 166 197 729 472 177 716 406 330 Cr 419 195 233 503 467 198 22.6 192 264 5.41 5.37 46.6 6.70 5.77 8.35 Co 47.2 37.4 67.2 74.9 95.9 66.4 52.0 39.8 57.2 83.3 56.0 86.1 56.7 50.0 46.3 Ni 125 65.3 162 338 466 197 21.4 52.8 91.6 5.59 5.38 58.5 2.60 18.5 4.43 Cu 53.1 8.67 83.4 42.4 23.8 44.0 63.1 45.1 62.2 20.2 20.5 38.6 20.2 28.2 13.5 Zn 39.1 55.6 85.0 62.2 83.5 71.8 157 87.0 78.0 98.9 109 79.7 180 89.2 116 Ga 16.2 16.5 16.8 12.7 11.0 16.2 21.5 18.2 16.9 20.3 18.8 15.2 24.5 17.6 19.3 Ge 1.07 1.20 1.25 0.95 1.09 1.24 1.62 1.50 1.43 1.41 1.59 1.08 1.39 1.39 1.49 Rb 2.37 2.06 0.53 2.28 4.80 2.32 2.17 30.0 3.12 1.85 1.58 1.31 2.34 0.78 0.97 Sr 557 638 528 374 281 312 423 237 270 425 422 364 513 457 542 Y 9.45 12.2 13.1 5.66 9.49 20.6 64.4 41.0 26.1 8.48 21.7 3.38 8.08 7.60 26.0 Zr 25.1 37.2 16.5 21.7 43.0 64.2 177 257 107 12.3 15.7 6.55 9.72 20.4 15.8 Nb 0.91 2.20 0.50 1.00 2.20 2.58 19.6 7.19 3.35 0.44 0.60 0.28 0.49 1.34 1.43 Cs 0.09 0.08 0.15 0.17 0.15 0.06 0.08 0.66 0.12 0.27 0.17 0.62 0.69 0.35 0.35 Ba 88.6 120 55.6 69.6 93.4 124 220 907 126 47.0 50.9 45.4 43.1 45.1 59.4 La 4.08 3.81 4.07 3.21 5.31 4.83 30.0 15.3 6.68 1.56 6.07 1.30 1.92 1.46 8.38 Ce 9.38 9.21 10.7 7.06 12.0 13.0 75.6 38.1 16.9 4.02 16.4 2.87 4.92 3.69 23.5 Pr 1.31 1.33 1.67 0.93 1.58 2.03 10.7 5.18 2.47 0.65 2.59 0.39 0.79 0.59 3.63 Nd 6.24 6.67 8.79 4.20 7.04 10.5 50.2 23.9 12.1 3.73 14.1 1.89 4.56 3.43 20.1 Sm 1.61 1.80 2.34 0.99 1.64 2.99 12.0 6.06 3.50 1.21 3.87 0.49 1.36 1.11 5.32 Eu 0.83 1.25 1.04 0.53 0.60 1.26 3.27 1.79 1.37 0.68 1.43 0.40 0.89 0.70 2.17 Gd 1.78 2.13 2.60 1.06 1.75 3.43 12.4 6.51 4.08 1.48 4.42 0.57 1.67 1.39 5.99 Tb 0.28 0.35 0.42 0.17 0.28 0.59 1.94 1.09 0.71 0.26 0.69 0.09 0.27 0.23 0.89 Dy 1.78 2.19 2.53 1.05 1.72 3.62 11.7 6.98 4.55 1.62 4.07 0.61 1.59 1.48 5.06 Ho 0.37 0.45 0.51 0.22 0.36 0.76 2.31 1.46 0.94 0.33 0.81 0.13 0.32 0.30 0.98 Er 1.02 1.30 1.39 0.62 1.04 2.12 6.40 4.28 2.68 0.93 2.18 0.37 0.86 0.83 2.46 Tm 0.14 0.18 0.18 0.09 0.15 0.31 0.89 0.64 0.39 0.13 0.28 0.05 0.11 0.11 0.30 Yb 0.90 1.21 1.15 0.58 0.97 1.93 5.50 4.30 2.54 0.81 1.68 0.35 0.67 0.72 1.74 Lu 0.13 0.18 0.16 0.09 0.15 0.29 0.80 0.65 0.37 0.12 0.24 0.05 0.10 0.10 0.24 Hf 0.71 0.92 0.59 0.54 1.07 1.65 4.45 5.28 2.68 0.43 0.56 0.19 0.35 0.59 0.49 Ta 0.08 0.18 0.08 0.07 0.15 0.21 0.92 0.33 0.21 0.07 0.08 0.05 0.05 0.15 0.15 Pb 1.19 1.09 0.58 2.35 1.96 1.14 2.35 4.83 3.98 0.78 1.01 2.51 0.66 0.62 0.71 Th 0.22 0.18 0.05 0.19 0.53 0.19 0.47 1.02 0.47 0.06 0.23 0.09 0.06 0.05 0.21 U 0.04 0.05 0.01 0.04 0.12 0.05 0.14 0.32 0.12 0.02 0.06 0.03 0.02 0.02 0.06 望江山岩体的SiO2含量为42.9%~51.1%,MgO含量为5.92%~18.3%。TFe2O3和TiO2含量相对低于毕机沟岩体(表1)。相对于毕机沟岩体,望江山岩体的V丰度略低,为70.8×10−6~361×10−6。Zr、La、Th的平均含量分别为83.2×10−6、8.58×10−6、0.37×10−6。望江山岩体的平均(Th/Yb)PM值为1.16(表1)。
3.2 全岩铂族元素
与世界上典型的含铂族元素的层状基性–超基性岩体相比,南非的Bushveld层状侵入体(Barnes et al.,2004;高永伟等,2023)、南非的Stella侵入体(Maier et al.,2003;王丰翔等,2022)、加拿大的Coldwell杂岩体(Good et al.,1994)、加拿大的Agnew侵入体(Vogel,1996)和巴西RioJacaré侵入体(Sá et al.,2005),毕机沟和望江山侵入体的铂族元素含量非常亏损(图3a)。毕机沟岩体的铂族元素总丰度(ΣPGE)为0.15×10−9~2.54×10−9,望江山岩体的ΣPGE值为0.12×10−9~2.62×10−9。在这两个岩体中,IPGE和钯族元素(PPGE)之间具有良好的线性关系(图3)。毕机沟岩体中Cu/Pd值为3.52×104~3.97×105(平均为1.78×105),相对低于望江山岩体Cu/Pd值(Cu/Pd = 1.78×104–1.61×106;平均为4.29×105)(表2)。两个岩体铂族元素原始地幔标准化曲线显示一致的趋势,IPGE相对于PPGE更加亏损(图4b、图4c)。这种模式与杨星等(1993)的配分模式趋势吻合,都显示IPGE相对于PPGE亏损的左倾特征。然而,杨星等(1993)用硫锑分光光度法测定的铂族元素丰度要比本研究中用MC–ICP–MS测试结果低一个数量级。
表 2 毕机沟岩体、望江山岩体样品铂族元素组成表(10−9)Table 2. Platinum group element concentrations of the Bijigou and Wangjiangshan samples (10−9)样品号 岩性 Ir Ru Pt Pd ΣPGE WJS502 橄榄辉长岩 0.010 0.040 0.088 0.186 0.325 WJS503 辉长苏长岩 0.019 0.071 0.424 0.486 1.000 WJS510 橄榄辉长苏长岩 0.025 0.078 0.762 0.292 1.158 WJS516 橄榄苏长岩 0.012 0.043 0.459 0.265 0.779 WJS517 橄榄苏长岩 0.012 0.044 0.263 1.193 1.513 WJS519 橄榄苏长岩 0.039 0.137 0.459 1.981 2.616 WJS606 磁铁辉长岩 0.003 0.057 0.070 0.081 0.211 WJS612 辉长苏长岩 0.005 0.062 0.029 0.028 0.125 WJS614 辉长岩 0.003 0.033 0.027 0.092 0.155 BJG502 磁铁含橄辉长岩 0.005 0.039 0.080 0.179 0.304 BJG503 磁铁辉长岩 0.022 0.034 0.298 0.148 0.503 BJG507 橄榄辉长岩 0.089 0.149 1.208 1.097 2.544 BJG514 辉长岩 0.005 0.056 0.071 0.113 0.246 BJG516 磁铁辉长岩 0.027 0.046 0.211 0.071 0.354 BJG522 磁铁辉长苏长岩 0.005 0.032 0.050 0.066 0.153 在毕机沟岩体中,IPGE和PPGE均与Ni正相关,但与V或TiO2不相关(图5)。在望江山岩体中,IPGE和PPGE与Ni,V和TiO2均不相关(图5)。
图 4 世界典型层状侵入体(a)、毕机沟岩体(b)和望江山岩体(c)的铂族元素原始地幔标准化曲线南非Bushveld岩体上部带和关键带铂族元素数据引自Barnes等(2004);南非Stella岩体数据引自Maier等(2003);加拿大Coldwall岩体数据引自Good等(1994);加拿大Agnew岩体数据引自Vogel(1996);MORB和OIB数据引自Barnes等(2005));图4b和图4c虚线部分引自杨星等(1993)Figure 4. (a) Primitive mantle-normalized platinum-group element diagrams of world classic PGE-bearing mafic intrusions,(b) the Bijigou intrusion and (c) the Wangjiangshan intrusion4. 讨论
4.1 母岩浆性质
毕机沟和望江山岩体所有样品均具有非常亏损的铂族元素含量(ΣPGE值<3×10−9)。毕机沟岩体的Pt/Ir值为18.9,Pd/Ir值为14.8;望江山岩体的Pt/Ir值为12.2,Pd/Ir值为32.2,两者均高于原始地幔的Pt/Ir值和Pd/Ir值(Pt/Ir值为2.09,Pd/Ir值为1.18)(Taylor et al.,1985)。IPGE与PPGE有着不同的地球化学特征,在部分熔融过程中,Ir更倾向于富集在残留相中,而Pt、Pd则更倾向于富集在熔体相中(Mitchell et al.,1981;Barnes et al.,1985)。因此,岩浆一旦发生低程度部分熔融会导致熔体相具有高的Pt/Ir值和Pd/Ir值。前人研究认为,毕机沟和望江山岩体的母岩浆是亏损地幔经历了中到高程度部分熔融的产物。因此,排除了岩体的高Pt/Ir值和Pd/Ir值是低程度部分熔融所致(Zhao et al.,2009;Dong et al.,2011)。
理论计算和实验岩石学研究表明,岩浆在硫化物不饱和状态下,IPGE在硅酸盐矿物中的分配系数高于PPGE,更倾向于富集在橄榄石(Brenan et al.,2003,2005)、铬铁尖晶石中(Capobianco et al.,1994;Righter et al.,2004;Brenan et al.,2012;Park et al.,2012),或者直接以铂族元素合金的形式存在(Ballhaus et al.,2006;Lorand et al.,2013)。相比之下,Pd则表现出不相容特征,更倾向于富集在熔体相中(Barnes et al.,1993)。因此,如果岩浆早期在硫不饱和状态下,发生橄榄石或者铬铁尖晶石的结晶分异,会导致残余岩浆相对富集PPGE而相对亏损IPGE,从而使得残余岩浆具有高的Pd/Ir值和低的IPGE/PPGE值。
Cu和Pd在硫化物和硅酸盐熔体之间具有不同的分配系数(DCuSul/Sil值为5.8×102;DPdSul/Sil 值为3.4×104)(Peach et al.,1990,1994)。因此,一旦岩浆存在硫化物熔离,Pd就会强烈富集在硫化物中使得残余岩浆中Pd亏损。当这些残余岩浆侵位到浅部岩浆房并冷却后,堆晶相将从岩浆中继承高的Cu/Pd值和亏损的铂族元素特征。
毕机沟和望江山岩体均具有亏损的铂族元素组成和极高的Cu/Pd值(Cu/Pd毕机沟值为3.52×104~3.97×105;Cu/Pd望江山值为1.78×104~1.61×106)。两者相近的铂族元素原始地幔标准化曲线(图3)和高于原始地幔的Cu/Pd值(Cu/Pd值为7 000~10 000)(表2)(Barnes et al.,1993),暗示两者的母岩浆同源并且在侵位前都经历过早期硫化物熔离过程。左倾的铂族元素原始地幔标准化曲线和低IPGE/PPGE值,结合前人报道的较低的Fo含量(Zhang et al.,2020),表明毕机沟和望江山岩体的母岩浆均在侵位前发生过早期结晶分异作用。铬铁尖晶石、橄榄石或者铱族元素合金早期结晶分异可能是造成原始岩浆在侵位前发生硫化物熔离的主要原因。
4.2 铂族元素富集机理
如前所述,在硫不饱和状态下,IPGE更倾向于以相容元素的形式配分在橄榄石、磁铁矿中,而PPGE则倾向以不相容元素的形式分布在残余岩浆中。因此,岩体中IPGE的丰度往往与橄榄石、磁铁矿含量正相关,而PPGE则无相关性(Barnes et al.,1993;Capobianco et al.,1994;Brenan et al.,2012;Pagé et al.,2012)。毕机沟岩体的铂族元素丰度与全岩Ni含量正相关,与V和TiO2不相关(图4),表明在毕机沟岩体中IPGE主要受到橄榄石相控制。在望江山岩体中,不论IPGE还是PPGE均与Ni、V或TiO2线性关系较差(图4),表明其分布不受橄榄石或磁铁矿控制。
由于铂族元素在硫化物和硅酸盐熔体中的分配系数(DPdSul/Sil值为3.4×104;DIrSul/Sil值为3.5×104)远高于Ni(DNiSul/Sil值为700)或Cu(DCuSul/Sil值为580)的分配系数,所以相比Ni和Cu来说,铂族元素将优先进入硫化物中,当硫化物从硅酸盐岩浆中熔离就会导致残余岩浆中铂族元素相对于Ni和Cu亏损(Peach et al.,1990, 1994)。因此岩体具有高的Ni/Pd值和Cu/Ir值表明可能存在早期硫化物熔离(Barnes et al.,1988,2005)。因为Ni和Ir在橄榄石中属于相容元素,而Cu和Pd属于不相容元素,所以橄榄石早期结晶分异会导致残余岩浆中的Ni/Pd值和Cu/Ir值之间呈负相关。综上所述,通过研究Ni/Pd、Cu/Ir的分布趋势可以对岩浆演化过程中是硫化物还是橄榄石的分离结晶占主导地位进行判断。在Ni/Pd–Cu/Ir相关图中(图6),毕机沟和望江山岩体的数据点虽然分散,但总体表现出两个趋势:①毕机沟岩体的数据显示出较好的受橄榄石结晶分异影响的趋势。②而望江山岩体则表现出受到二次硫化物熔离影响的趋势。这些特征表明,毕机沟岩体未达到硫化物二次饱和,铂族元素的分配趋势主要受橄榄石堆晶影响;而望江山岩体的母岩浆在演化过程中达到了硫化物二次饱和,出现硫化物熔离,望江山岩体中铂族元素的分配主要受二次熔离硫化物控制。
根据微量元素数据,毕机沟岩体的(Th/Yb)PM值为0.69,并且具有明显低于或者与地幔近似的δ18O特征(6.0±1.3‰)(Wang et al.,2016),这表明在毕机沟岩体形成过程中并未发生明显的地壳混染。相比之下,望江山岩体较毕机沟岩体具有更高的(Th/Yb)PM值(1.16)和δ18O值(7.1±1.9‰)(Wang et al.,2016),表明陆壳混染可能是导致望江山岩体母岩浆在浅部发生硫化物熔离的原因。
4.3 成岩成矿机制及找矿建议
前人对峨眉大火成岩省中含Fe–Ti–V氧化物矿床和Cu–Ni–PGE硫化物矿床的基性–超基性侵入岩研究认为,陆壳混染和多次岩浆贯入是导致在这些幔源岩浆中成矿的重要条件(Zhong et al.,2004,2011;Zhou et al.,2005;赵莉等,2006;Zhang et al.,2009;Pang et al.,2009,2010)。例如,利用矿物成分在岩体中自下向上的突变判断攀枝花含Fe–Ti–V层状基性岩体底部厚层钒钛磁铁矿就是富铁岩浆多次贯入的结果(Pang et al.,2009)。将板柱状矿物(如斜长石、单斜辉石)在单层中强烈定向作为判断存在多期岩浆贯入的证据(Zhou et al.,2005)。尽管毕机沟和望江山岩体中同样存在层状构造,但是板柱状矿物很少有定向(图2),暗示这两个岩体可能不存在岩浆的多次贯入。
在硫化物富集模式中,岩浆通道中早期熔离出来的硫化物不断汲取新贯入原始岩浆中的亲硫元素是导致硫化物富集铂族元素的因素之一(Campbell et al.,1983;Naldrett et al.,1986;Li et al.,1999;Barnes et al.,2002)。攀西地区富含铂族元素的新街层状岩体,在小岩体中含有巨大经济价值的铂族元素矿床,被认为是典型的岩浆通道相(Zhong et al.,2004;Li et al.,2015)。二次熔离硫化物与新补充的岩浆相互作用,从岩浆吸收铂族元素到这些硫化物中,从而为小岩体中硫化物富集铂族元素提供了潜在的机制。尽管望江山岩体中存在二次熔离出的硫化物,但其中铂族元素是非常亏损的,暗示望江山岩体并不是一个岩浆通道,它很可能是岩浆单次贯入冷却结晶的产物。
前人提出持续的原始岩浆贯入是在幔源岩浆中形成大型Cu–Ni–PGE矿床的原因之一(Naldrett,2010)。对比之下,笔者认为汉南地区820 Ma望江山岩体和780 Ma毕机沟岩体为不同时期岩浆单次贯入的结果。因此浅部不具备赋存大型矿床的条件,今后的探矿工作可以将目标放在更深部(图7)。
5. 结论
(1)毕机沟和望江山岩体母岩浆同源,均为硫化物不饱和岩浆。硅酸盐矿物结晶分异是导致母岩浆在深部发生硫化物熔离的原因。
(2)在毕机沟岩体中,铂族元素分配受到橄榄石控制;在望江山岩体中,铂族元素分配则受二次熔离硫化物控制。
(3)与其他大型Cu–Ni–PGE矿床相比,汉南地区毕机沟和望江山基性–超基性岩体为幔源岩浆单次贯入的结果,浅部不具备赋存大型矿床的条件,今后的找矿工作应聚焦于深部。
-
图 1 扬子地块北缘毕机沟和望江山岩体地质图(据Dong et al.,2011;Wang et al.,2016修)
Figure 1. Geological map of the Bijigou and Wangjiangshan intrusions at the northern of the Yangtze block
图 2 毕机沟和望江山岩体的野外照片和不同岩石类型的岩相学特征
a.毕机沟岩体的层状构造;b.毕机沟岩体磁铁辉长岩的背散射电子图像;c.毕机沟岩体的磁铁苏长岩;d.毕机沟岩体的橄榄辉长岩;e.望江山岩体的苏长辉长岩;f.望江山岩体的辉长岩;Ol.橄榄石;Mt.磁铁矿;Cpx.单斜辉石;Opx.斜方辉石;Pl.斜长石;Sil.硅酸盐矿物;Ilm.钛铁矿;Sul.硫化物
Figure 2. Field photos and petrographic characteristics of different rock types from the Bijigou and Wangjiangshan intrusions
图 4 世界典型层状侵入体(a)、毕机沟岩体(b)和望江山岩体(c)的铂族元素原始地幔标准化曲线
南非Bushveld岩体上部带和关键带铂族元素数据引自Barnes等(2004);南非Stella岩体数据引自Maier等(2003);加拿大Coldwall岩体数据引自Good等(1994);加拿大Agnew岩体数据引自Vogel(1996);MORB和OIB数据引自Barnes等(2005));图4b和图4c虚线部分引自杨星等(1993)
Figure 4. (a) Primitive mantle-normalized platinum-group element diagrams of world classic PGE-bearing mafic intrusions,(b) the Bijigou intrusion and (c) the Wangjiangshan intrusion
图 6 毕机沟和望江山岩体Ni/Pd–Cu/Ir相关图(投图区域引自Barnes et al., 1988,2005)
Figure 6. Ni/Pd–Cu/Ir plots of the Bijigou and Wangjiangshan intrusions
表 1 毕机沟岩体、望江山岩体样品主量(%)、微量元素(10−6)与稀土元素(10−6)组成分析结果表
Table 1 Major (%), trace element (10−6) and REE concentrations (10−6) analyses of the Bijigou and Wangjiangshan samples
样品号 WJS502 WJS503 WJS510 WJS516 WJS517 WJS519 WJS606 WJS612 WJS614 BJG502 BJG503 BJG507 BJG514 BJG516 BJG522 岩性 橄榄
辉长岩辉长
苏长岩橄榄
辉长苏
长岩橄榄
苏长岩橄榄
苏长岩橄榄
苏长岩磁铁
辉长岩辉长
苏长岩辉长
岩磁铁
含橄辉
长岩磁铁
辉长岩橄榄
辉长岩辉长
岩磁铁
辉长岩磁铁
辉长苏
长岩SiO2 48.0 51.0 45.1 45.0 45.0 46.3 42.9 51.1 48.4 41.9 42.8 44.3 35.8 43.0 41.7 TiO2 0.33 1.06 1.12 0.31 0.50 1.27 2.98 1.14 1.14 2.41 2.24 0.57 4.55 4.52 3.57 Al2O3 20.9 18.3 16.9 18.2 13.5 18.5 14.5 16.0 16.8 15.2 13.8 17.3 14.2 15.5 14.7 TFe2O3 6.32 8.57 12.7 9.63 12.7 10.9 17.1 9.81 10.9 18.9 17.3 14.1 27.0 16.7 17.1 MnO 0.10 0.16 0.16 0.12 0.16 0.14 0.27 0.17 0.16 0.18 0.22 0.17 0.26 0.20 0.26 MgO 7.39 7.31 9.33 13.7 18.3 8.93 5.92 6.18 8.28 5.91 6.84 10.5 4.42 6.05 6.23 CaO 13.9 10.2 12.5 9.49 7.42 10.5 10.9 8.72 10.2 11.4 12.8 8.55 9.10 11.1 11.3 Na2O 2.06 2.95 1.76 1.77 1.59 2.60 2.92 3.38 2.98 2.28 2.09 2.06 2.09 2.38 2.44 K2O 0.16 0.22 0.05 0.16 0.27 0.19 0.44 1.65 0.31 0.12 0.10 0.11 0.13 0.09 0.11 P2O5 0.05 0.16 0.20 0.06 0.10 0.18 1.08 0.19 0.14 0.05 1.09 0.05 0.33 0.07 2.00 LOI 0.38 0.23 0.21 1.07 0.73 0.16 0.87 1.32 0.34 0.99 0.36 2.01 1.41 -0.07 -0.30 Total 99.51 99.61 99.94 99.53 99.98 99.55 99.83 99.62 99.62 99.32 99.55 99.64 99.24 99.53 99.24 Li 3.81 4.21 2.75 5.14 5.67 4.71 6.90 14.0 8.96 4.78 2.91 3.18 6.11 3.24 5.76 Be 0.32 0.37 0.27 0.28 0.35 0.47 1.11 0.92 0.59 0.21 0.23 0.17 0.20 0.20 0.25 Sc 28.9 27.6 33.1 11.6 15.1 26.3 42.2 31.8 32.5 44.8 56.8 12.4 39.2 49.2 43.1 V 88.9 86.0 282 70.8 88.5 191 361 166 197 729 472 177 716 406 330 Cr 419 195 233 503 467 198 22.6 192 264 5.41 5.37 46.6 6.70 5.77 8.35 Co 47.2 37.4 67.2 74.9 95.9 66.4 52.0 39.8 57.2 83.3 56.0 86.1 56.7 50.0 46.3 Ni 125 65.3 162 338 466 197 21.4 52.8 91.6 5.59 5.38 58.5 2.60 18.5 4.43 Cu 53.1 8.67 83.4 42.4 23.8 44.0 63.1 45.1 62.2 20.2 20.5 38.6 20.2 28.2 13.5 Zn 39.1 55.6 85.0 62.2 83.5 71.8 157 87.0 78.0 98.9 109 79.7 180 89.2 116 Ga 16.2 16.5 16.8 12.7 11.0 16.2 21.5 18.2 16.9 20.3 18.8 15.2 24.5 17.6 19.3 Ge 1.07 1.20 1.25 0.95 1.09 1.24 1.62 1.50 1.43 1.41 1.59 1.08 1.39 1.39 1.49 Rb 2.37 2.06 0.53 2.28 4.80 2.32 2.17 30.0 3.12 1.85 1.58 1.31 2.34 0.78 0.97 Sr 557 638 528 374 281 312 423 237 270 425 422 364 513 457 542 Y 9.45 12.2 13.1 5.66 9.49 20.6 64.4 41.0 26.1 8.48 21.7 3.38 8.08 7.60 26.0 Zr 25.1 37.2 16.5 21.7 43.0 64.2 177 257 107 12.3 15.7 6.55 9.72 20.4 15.8 Nb 0.91 2.20 0.50 1.00 2.20 2.58 19.6 7.19 3.35 0.44 0.60 0.28 0.49 1.34 1.43 Cs 0.09 0.08 0.15 0.17 0.15 0.06 0.08 0.66 0.12 0.27 0.17 0.62 0.69 0.35 0.35 Ba 88.6 120 55.6 69.6 93.4 124 220 907 126 47.0 50.9 45.4 43.1 45.1 59.4 La 4.08 3.81 4.07 3.21 5.31 4.83 30.0 15.3 6.68 1.56 6.07 1.30 1.92 1.46 8.38 Ce 9.38 9.21 10.7 7.06 12.0 13.0 75.6 38.1 16.9 4.02 16.4 2.87 4.92 3.69 23.5 Pr 1.31 1.33 1.67 0.93 1.58 2.03 10.7 5.18 2.47 0.65 2.59 0.39 0.79 0.59 3.63 Nd 6.24 6.67 8.79 4.20 7.04 10.5 50.2 23.9 12.1 3.73 14.1 1.89 4.56 3.43 20.1 Sm 1.61 1.80 2.34 0.99 1.64 2.99 12.0 6.06 3.50 1.21 3.87 0.49 1.36 1.11 5.32 Eu 0.83 1.25 1.04 0.53 0.60 1.26 3.27 1.79 1.37 0.68 1.43 0.40 0.89 0.70 2.17 Gd 1.78 2.13 2.60 1.06 1.75 3.43 12.4 6.51 4.08 1.48 4.42 0.57 1.67 1.39 5.99 Tb 0.28 0.35 0.42 0.17 0.28 0.59 1.94 1.09 0.71 0.26 0.69 0.09 0.27 0.23 0.89 Dy 1.78 2.19 2.53 1.05 1.72 3.62 11.7 6.98 4.55 1.62 4.07 0.61 1.59 1.48 5.06 Ho 0.37 0.45 0.51 0.22 0.36 0.76 2.31 1.46 0.94 0.33 0.81 0.13 0.32 0.30 0.98 Er 1.02 1.30 1.39 0.62 1.04 2.12 6.40 4.28 2.68 0.93 2.18 0.37 0.86 0.83 2.46 Tm 0.14 0.18 0.18 0.09 0.15 0.31 0.89 0.64 0.39 0.13 0.28 0.05 0.11 0.11 0.30 Yb 0.90 1.21 1.15 0.58 0.97 1.93 5.50 4.30 2.54 0.81 1.68 0.35 0.67 0.72 1.74 Lu 0.13 0.18 0.16 0.09 0.15 0.29 0.80 0.65 0.37 0.12 0.24 0.05 0.10 0.10 0.24 Hf 0.71 0.92 0.59 0.54 1.07 1.65 4.45 5.28 2.68 0.43 0.56 0.19 0.35 0.59 0.49 Ta 0.08 0.18 0.08 0.07 0.15 0.21 0.92 0.33 0.21 0.07 0.08 0.05 0.05 0.15 0.15 Pb 1.19 1.09 0.58 2.35 1.96 1.14 2.35 4.83 3.98 0.78 1.01 2.51 0.66 0.62 0.71 Th 0.22 0.18 0.05 0.19 0.53 0.19 0.47 1.02 0.47 0.06 0.23 0.09 0.06 0.05 0.21 U 0.04 0.05 0.01 0.04 0.12 0.05 0.14 0.32 0.12 0.02 0.06 0.03 0.02 0.02 0.06 表 2 毕机沟岩体、望江山岩体样品铂族元素组成表(10−9)
Table 2 Platinum group element concentrations of the Bijigou and Wangjiangshan samples (10−9)
样品号 岩性 Ir Ru Pt Pd ΣPGE WJS502 橄榄辉长岩 0.010 0.040 0.088 0.186 0.325 WJS503 辉长苏长岩 0.019 0.071 0.424 0.486 1.000 WJS510 橄榄辉长苏长岩 0.025 0.078 0.762 0.292 1.158 WJS516 橄榄苏长岩 0.012 0.043 0.459 0.265 0.779 WJS517 橄榄苏长岩 0.012 0.044 0.263 1.193 1.513 WJS519 橄榄苏长岩 0.039 0.137 0.459 1.981 2.616 WJS606 磁铁辉长岩 0.003 0.057 0.070 0.081 0.211 WJS612 辉长苏长岩 0.005 0.062 0.029 0.028 0.125 WJS614 辉长岩 0.003 0.033 0.027 0.092 0.155 BJG502 磁铁含橄辉长岩 0.005 0.039 0.080 0.179 0.304 BJG503 磁铁辉长岩 0.022 0.034 0.298 0.148 0.503 BJG507 橄榄辉长岩 0.089 0.149 1.208 1.097 2.544 BJG514 辉长岩 0.005 0.056 0.071 0.113 0.246 BJG516 磁铁辉长岩 0.027 0.046 0.211 0.071 0.354 BJG522 磁铁辉长苏长岩 0.005 0.032 0.050 0.066 0.153 -
成来顺. 陕西毕机沟钒钛磁铁矿床铂族元素地球化学特征及其意义[J]. 矿产与地质, 2017, 31(6): 1072-1076 doi: 10.3969/j.issn.1001-5663.2017.06.009 CHENG Laishun. Geochemical characteristics of platinum group elements of Bijigou V-Ti magnetite deposit in Shaanxi Province and its significance[J]. Mineral Resources and Geology, 2017, 31(6): 1072-1076. doi: 10.3969/j.issn.1001-5663.2017.06.009
董显扬, 李行, 叶良和, 等. 中国超镁铁质岩[M]. 北京: 地质出版社, 1995 DONG Xianyang, LI Hang, YE Lianghe, et al. Ultramafic Rocks in China[M]. Beijing:Geological Publishing House,1995.
高永伟, 洪俊, 吕鹏瑞, 等. 哈萨克斯坦乌拉尔肯皮赛铬铁矿资源基地地质背景、成矿特征及矿床成因[J]. 西北地质, 2023, 56(1): 142−155. GAO Yongwei, HONG Jun, LÜ Pengrui, et al. Geological Background, Metallogenic Characteristics and Ore Genesis of the KempirsayChromite Resource Base in the Ural, Kazakhstan[J]. Northwestern Geology, 2023, 56(1): 142−155.
巩志超, 黄廷弼, 任有祥, 等. 陕南洋县—西乡—南郑一带含铁基性岩体地质矿化特征及今后找矿意见[J]. 西北地质, 1975, (04): 3-18. 刘晔, 柳小明, 胡兆初, 等. ICP-MS测定地质样品中37个元素的准确度和长期稳定性分析[J]. 岩石学报, 2007, 23(5): 1203 -1210. LIU Ye, LIU Xiaoming, HU Zhaochu, et al. Evaluation of accuracy and long-term stability of determination of 37 trace elements in geological samples by ICP-MS[J]. Acta Petrologica Sinica, 2007, 23(5): 1203-1210.
任有祥, 巩志超. 陕南望江山基性岩体的地质矿化特征及成因讨论[J]. 西北地质, 1976(3): 28-36. 苏犁. 中国中西部几个新元古代镁铁–超镁铁岩体研究及对Rodinia超大陆裂解事件的制约[D]. 西安: 西北大学, 2004 SU Li. Studies of Neoproterozoic mafic and ultramafic in-trusions in western-central China and their constrains on breakup of Rodinia Supercontinent[D]. Xi’an: Northwest University, 2004.
王丰翔, 李晓明, 栾卓然, 等. 全球铂族金属资源分布、供需及消费格局[J]. 地质通报, 2022, 41(10): 1829−1846. WANG Fengxiang, LI Xiaoming, LUAN Zhuoran, et al. Global PGEs resource distribution, supply and demand and consumption trends[J]. Geological Bulletin of China, 2022, 41(10): 1829−1846.
王建其, 柳小明. X射线荧光光谱法分析不同类型岩石中10种主量元素的测试能力验证[J]. 岩矿测试, 2016, 35(02): 145-151 doi: 10.15898/j.cnki.11-2131/td.2016.02.006 WANG Jianqi, LIU Xiaoming. Proficiency Testing of the XRF Method for Measuring 10 Major Elements in Different Rock Types[J]. Rock and Mineral Analysis, 2016, 35(2): 145-151. doi: 10.15898/j.cnki.11-2131/td.2016.02.006
王岩, 王梦玺, 焦建刚. 扬子地块北缘新元古代望江山层状岩体矿物成分和铂族元素特征: 对岩浆演化过程和构造环境的制约[J]. 地质力学学报, 2019, 25(2): 267-285 doi: 10.12090/j.issn.1006-6616.2019.25.02.026 WANG Yan, WANG Mengxi, JIAO Jiangang. Mineral composition and platinum-group elements of the Neoproterozoic Wangjiangshan layered intrusion in the northern margin of the Yangtze Block: implications for the processes of magma evolution and tectonic setting[J]. Journal of Geomechanics, 2019, 25 (2): 267-285. doi: 10.12090/j.issn.1006-6616.2019.25.02.026
吴新斌, 吴凡, 毛友亮, 等. 汉南杂岩高桥沟花岗斑岩体岩石地球化学特征及侵位机制时代归属探讨[J]. 西北地质, 2023, 56(4): 329−335. WU Xinbin, WU Fan, MAO Youliang, et al. Petrological Characteristics and Emplacement Mechanism of the Gaoqiaogou Granitic Porphyry in the Hannan Complex: A Geochemistry Approach[J]. Northwestern Geology, 2023, 56(4): 329−335.
杨合群. 陕西毕机沟一带岩浆型钒钛磁铁矿[J]. 西北地质, 2021, 54(2): 110-110 YANG Hequn. Magmatic vanadium-titanium magnetite in Bijigou area, Shaanxi Province[J]. Northwest Geoscience, 2021, 54(2): 110-110.
杨合群, 苏犁, 宋述光, 等. 论陕西毕机沟钒钛磁铁矿床成因[J]. 地质与勘探, 2013, 40: 1036-1045 YANG Hequn, SU Li, SONG Shuguang, et al. On Genesis of the Bijigou V-Ti Magnetite Deposit in Shaanxi Province[J]. Geology and Exploration, 2013, 49 (06): 1036-1045.
杨星, 潘晓萍, 姚文光, 等. 汉南金水-青泥坑镁铁层状杂岩体与含铂性研究[J]. 西北地质科学, 1993, 14(1): 1–62 YANG Xing, PAN Xiaoping, YAO Wenguang, et al. Mafic layered complex body and its platinum-bearing nature in Jinshui-Qingnikeng Hanlan[J]. Northwest Geoscience, 1993, 14(1): 1-62.
张国伟, 于在平, 董云鹏, 等. 秦岭区前寒武纪构造格巧与演化问题探讨[J]. 岩石学报, 2000, 16: 11–21 ZHANG Guowei, YU Zaiping, DONG Yunpeng, et al. On Precambrian frame-work and evolution of the Qinling belt[J]. Acta Petrologica Sinica, 2000, 16(2): 11-21.
张国伟, 张宗清, 董云鹏. 秦略造山带主要构造岩石地层单元的构造性质及其火地构造意义[J]. 岩石学报, 1995, 11: 101–114 doi: 10.3321/j.issn:1000-0569.1995.02.002 ZHANG Guowei, ZHANG Zongqing, DONG Yunpeng. Nature of Main Tectono-Lithostratigraphic Units of the Qingling Orogen: Implications of the Tectonoic Evolution[J]. Acta Petrologica Sinica, 1995, 11(2): 101-114. doi: 10.3321/j.issn:1000-0569.1995.02.002
张宗清, 张国伟, 唐索寒, 等. 汉南侵入杂岩年龄及其快速冷凝原因[J]. 科学通报, 2000, 45: 2567–2572 doi: 10.3321/j.issn:0023-074X.2000.23.021 ZHANG Zongqing, ZHANG Guowei, TANG Suohan, et al. Geochronology of the Hannan intrusive complex to adjoin the Qinling orogen and its rapid cooling reason[J]. Chinese Science Bulletin, 2000, 45(23): 2567-2572. doi: 10.3321/j.issn:0023-074X.2000.23.021
赵莉, 张招崇, 王福生, 等. 一个开放的岩浆房系统: 攀西新街镁铁-超镁铁质层状岩体[J]. 岩石学报, 2006, 22(6): 1565-1578 doi: 10.3321/j.issn:1000-0569.2006.06.014 ZHAO Li, ZHANG Zhaochong, WANG Fusheng, et al. Open–system magma chamber: An example from the Xinjie mafic–ultramafic layered intrusion in Panxi region, SW China[J]. Acta Petrologica Sinica, 2006, 22: 1565–1578. doi: 10.3321/j.issn:1000-0569.2006.06.014
Ballhaus C, Bockrath C, Wohlgemuth-Ueberwasser C, et al. Fractionation of the noble metals by physical processes[J]. Contributions to Mineralogy and Petrology, 2006, 152: 667–684. doi: 10.1007/s00410-006-0126-z
Barnes S J, Boyd R, Korneliussen A, et al. The Use of Mantle Normalization and Metal Ratios in Discriminating between the Effects of Partial Melting, Crystal Fractionation and Sulphide Segregation on Platinum-Group Elements, Gold, Nickel and Copper: Examples from Norway[J]. Springer Netherlands, 1988, 87: 113–143.
Barnes S J, Lightfoot P C. Formation of magmatic nickel–sulfide ore deposits and processes affecting their copper and platinum–group element contents[J]. Economic Geology 100th Anniversary Volume: 2005, 179–213.
Barnes S J, Maier W D, Ashwal L D. Platinum–group element distribution in the main zone and upper zone of the Bushveld Complex, South Africa[J]. Chemical Geology, 2004, 208: 293–317. doi: 10.1016/j.chemgeo.2004.04.018
Barnes S J, Maier W D. Platinum–group elements and microstructures of normal Merensky Reef from Impala Platinum Mines, Bushveld Complex[J]. Journal of Petrology, 2002, 43: 103–128. doi: 10.1093/petrology/43.1.103
Barnes S J, Naldrett A, Gorton M. The origin of the fractionation of platinum–group elements in terrestrial magmas[J]. Chemical Geology, 1985, 53: 303–323. doi: 10.1016/0009-2541(85)90076-2
Barnes S J, Picard C. The behaviour of platinum–group elements during partial melting, crystal fractionation, and sulphide segregation: An example from the Cape Smith Fold Belt, northern Quebec[J]. Geochimica Et Cosmochimica Acta, 1993, 57: 79–87. doi: 10.1016/0016-7037(93)90470-H
Brenan J M, Finnigan C F, Mcdonough W F, et al. Experimental constraints on the partitioning of Ru, Rh, Ir, Pt and Pd between chromite and silicate melt: The importance of ferric iron[J]. Chemical Geology, 2012, 302: 16–32.
Brenan J M, Mcdonough W F, Ash R. An experimental study of the solubility and partitioning of iridium, osmium and gold between olivine and silicate melt[J]. Earth and Planetary Science Letters, 2005, 237: 855–872. doi: 10.1016/j.jpgl.2005.06.051
Brenan J M, Mcdonough W F, Dalpe C. Experimental constraints on the partitioning of rhenium and some platinum–group elements between olivine and silicate melt[J]. Earth and Planetary Science Letters, 2003, 212: 135–150. doi: 10.1016/S0012-821X(03)00234-6
Campbell I H, Naldrett A J, Barnes S J. A model for the origin of the platinum–rich sulfide horizons in the Bushveld and Stillwater Complexes[J]. Journal of Petrology, 1983, 24: 133–165. doi: 10.1093/petrology/24.2.133
Capobianco C J, Hervig R L, Drake M J. Experiments on crystal/liquid partitioning of Ru, Rh and Pd for magnetite and hematite solid solutions crystallized from silicate melt[J]. Chemical Geology, 1994, 113: 23–43. doi: 10.1016/0009-2541(94)90003-5
Chu Z Y, Yan Y, Chen Z, et al. Comprehensive method for precise determination of Re, Os, Ir, Ru, Pt, Pd concentrations and Os isotopic compositions in geological samples[J]. Geostandards and Geoanalytical Research, 2015, 39: 151-169. doi: 10.1111/j.1751-908X.2014.00283.x
Dong Y P, Liu X M, Santosh M, et al. Neoproterozoic subduction tectonics of the northwestern Yangtze Block in South China: Constrains from zircon U–Pb geochronology and geochemistry of mafic intrusions in the Hannan Massif[J]. Precambrian Research, 2011, 189: 66–90. doi: 10.1016/j.precamres.2011.05.002
Good D J, Crocket J H. Genesis of the Marathon Cu–platinum–group element deposit, Port Coldwell alkalic complex, Ontario; a Midcontinent rift–related magmatic sulfide deposit[J]. Economic Geology, 1994, 89: 131–149. doi: 10.2113/gsecongeo.89.1.131
Govindaraju K. 1994 complication of working values and sample description for 383 geostandards[J]. Geostandards Newsletter, 1994, 18: 1–158. doi: 10.1111/j.1751-908X.1994.tb00502.x
Li C S, Naldrett A J. Geology and petrology of the Voisey's Bay intrusion: reaction of olivine with sulfide and silicate liquids[J]. Lithos, 1999, 47: 1–31. doi: 10.1016/S0024-4937(99)00005-5
Li H B, Zhang Z C, Li Y S, et al. Petrogenesis and metallogenesis of the Xinjie layered mafic–ultramafic intrusion, China: Modeling of recharge, assimilation and fractional crystallization[J]. Journal of Asian Earth Sciences, 2015, 113: 1056–1067. doi: 10.1016/j.jseaes.2015.02.030
Ling W L, Gao S, Zhang B R, et al. Neoproterozoic tectonic evolution of the northwestern Yangtze craton, South China: implications for amalgamation and break–up of the Rodinia Supercontinent[J]. Precambrian Research, 2003, 122: 111–140. doi: 10.1016/S0301-9268(02)00222-X
Lorand J P, Luguet A, Alard O. Platinum–group element systematics and petrogenetic processing of the continental upper mantle: A review[J]. Lithos, 2013, 164–167: 2–21.
Maier W D, Barnes S J, Gartz V, et al. Pt–Pd reefs in magnetitites of the Stella layered intrusion, South Africa: A world of new exploration opportunities for platinum group elements[J]. Geology, 2003, 31: 885–888.
Meisel T, Moser J. Reference materials for geochemical PGE analysis: new analytical data for Ru, Rh, Pd, Os, Ir, Pt and Re by isotope dilution ICP–MS in 11 geological reference materials[J]. Chemical Geology, 2004, 208: 319–338. doi: 10.1016/j.chemgeo.2004.04.019
Mitchell R H, Keays R R. Abundance and distribution of gold, palladium and iridium in some spinel and garnet lherzolites: implications for the nature and origin of precious metal–rich intergranular components in the upper mantle[J]. Geochimica et Cosmochimica Acta, 1981, 45: 2425–2433, 2435–2442.
Naldrett A J, Gasparrini E C, Barnes S J et al. The Upper Critical Zone of the Bushveld Complex and the origin of Merensky–type ores[J]. Economic Geology, 1986, 81: 1105–1117. doi: 10.2113/gsecongeo.81.5.1105
Naldrett A J. From the mantle to the bank: the life of a Ni–Cu–(PGE) sulfide deposit[J]. South African Journal of Geology, 2010, 113: 1–32. doi: 10.2113/gssajg.113.1-1
Pagé P, Barnes S J, Béard J H, et al. In situ determination of Os, Ir, and Ru in chromites formed from komatiite, tholeiite and boninite magmas: Implications for chromite control of Os, Ir and Ru during partial melting and crystal fractionation[J]. Chemical Geology, 2012, 302–303: 3–15.
Pang Kwannang, Li C S, Zhou M F, et al. Mineral compositional constraints on petrogenesis and oxide ore genesis of the late Permian Panzhihua layered gabbroic intrusion, SW China[J]. Lithos, 2009, 110: 199–214. doi: 10.1016/j.lithos.2009.01.007
Pang Kwannang, Zhou M F, Qi L, et al. Flood basalt–related Fe–Ti oxide deposits in the Emeishan large igneous province, SW China[J]. Lithos, 2010, 119: 123–136. doi: 10.1016/j.lithos.2010.06.003
Park J W, Campbell I H, Eggins S M. Enrichment of Rh, Ru, Ir and Os in Cr spinels from oxidized magmas: evidence from the Ambae volcano, Vanuatu[J]. Geochimica et Cosmochimica Acta, 2012, 78: 28–50. doi: 10.1016/j.gca.2011.11.018
Peach C L, Mathez E A, Keays R R. Sulfide melt-silicate melt distribution coefficients for noble metals and other chalcophile elements as deduced from MORB: Implications for partial melting[J]. Geochim Cosmochim Acta, 1990, 54(12): 3379-3389. doi: 10.1016/0016-7037(90)90292-S
Peach C L, Mathez E A, Keays R R. Experimentally determined sulfide melt-silicate melt partition coefficients for iridium andpalladium[J]. Chemical Geology, 1994, (117): 361-377.
Qi L, Zhou M F. Platinum–group elemental and Sr–Nd–Os isotopic geochemistry of Permian Emeishan flood basalts in Guizhou Province, SW China[J]. Chemical Geology, 2008, 248: 83–103. doi: 10.1016/j.chemgeo.2007.11.004
Righter K, Campbell A J, Humayun M, et al. Partitioning of Ru, Rh, Pd, Re, Ir, and Au between Cr–bearing spinel, olivine, pyroxene and silicate melts[J]. Geochimica Et Cosmochimica Acta, 2004, 68: 867–880. doi: 10.1016/j.gca.2003.07.005
Sá J H S, Barnes S J, Prichard H M, et al. The Distribution of Base Metals and Platinum–Group Elements in Magnetititeand Its Host Rocks in the Rio Jacare Intrusion, Northeastern Brazil[J]. Economic Geology, 2005, 100: 333–348.
Taylor S R, Mclennan S M. The continental crust: its composition and evolution[J]. The Journal of Geology, 1985, 94(4): 57-72.
Vogel D C. The geology and geochemistry of the Agnew Intrusion: implications for the petrogenesis of early Huronian mafic igneous rocks in Central Ontario, Canada[J]. The University of Melbourne, 1996, 163.
Wang M X, Oliver N, Christina W. The flaw in the crustal ‘zircon archive’: mixed Hf isotope signatures record progressive contamination of late–stage liquid in mafic–ultramafic layered intrusions[J]. Journal of Petrology, 2016, 57: 27–52. doi: 10.1093/petrology/egv072
Zhang X Q, Zhang H F, Zou H B. Rift–related Neoproterozoic tholeiitic layered mafic intrusions at northern Yangtze Block, South China: Mineral chemistry evidence[J]. Lithos, 2020, 356–357: 105376.
Zhang Z C, Mao J W, Saunders A D, et al. Petrogenetic modeling of three mafic–ultramafic layered intrusions in the Emeishan large igneous province, SW China, based on isotopic and bulk chemical constraints[J]. Lithos, 2009, 113: 369–392. doi: 10.1016/j.lithos.2009.04.023
Zhao G C, Cawood P A. Precambrian geology of China[J]. Precambrian Research, 2012, 222–223: 13–54.
Zhao J H, Zhou M F. Secular evolution of the Neoproterozoic lithospheric mantle underneath the northern margin of the Yangtze Block, South China[J]. Lithos, 2009, 107: 152–168. doi: 10.1016/j.lithos.2008.09.017
Zhong H, Qi L, Hu R Z, et al. Rhenium–osmium isotope and platinum–group elements in the Xinjie layered intrusion, SW China: Implications for source mantle composition, mantle evolution, PGE fractionation and mineralization[J]. Geochimica Et Cosmochimica Acta, 2011, 75: 1621–1641. doi: 10.1016/j.gca.2011.01.009
Zhong H, Tao Y, Prevec S A, et al. Trace–element and Sr–Nd isotopic geochemistry of the PGE–bearing Xinjie layered intrusion in SW China[J]. Chemical Geology, 2004, 203: 237–252. doi: 10.1016/j.chemgeo.2003.10.008
Zhou M F, Kennedy A K, Sun M, et al. Neoproterozoic arc–related mafic intrusions along the northern margin of South China: implications for the accretion of Rodinia[J]. The Journal of Geology, 2002, 110: 611–618. doi: 10.1086/341762
Zhou M F, Robinson P T, Lesher C M, et al. Geochemistry, petrogenesis and metallogenesis of the Panzhihua gabbroic layered intrusion and associated Fe–Ti–V oxide deposits, Sichuan Province, SW China[J]. Journal of Petrology, 2005, 46: 2253–2280. doi: 10.1093/petrology/egi054