ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

青海磨石沟地区锰矿地质特征及成因探讨

彭涛, 才永吉, 张国鹏, 陈健

彭涛,才永吉,张国鹏,等. 青海磨石沟地区锰矿地质特征及成因探讨[J]. 西北地质,2024,57(2):135−145. doi: 10.12401/j.nwg.2023019
引用本文: 彭涛,才永吉,张国鹏,等. 青海磨石沟地区锰矿地质特征及成因探讨[J]. 西北地质,2024,57(2):135−145. doi: 10.12401/j.nwg.2023019
PENG Tao,CAI Yongji,ZHANG Guopeng,et al. Geological Characteristics and Genesis of Manganese Ore in Moshigou Area, Qinghai Province[J]. Northwestern Geology,2024,57(2):135−145. doi: 10.12401/j.nwg.2023019
Citation: PENG Tao,CAI Yongji,ZHANG Guopeng,et al. Geological Characteristics and Genesis of Manganese Ore in Moshigou Area, Qinghai Province[J]. Northwestern Geology,2024,57(2):135−145. doi: 10.12401/j.nwg.2023019

青海磨石沟地区锰矿地质特征及成因探讨

基金项目: 青海省清洁能源矿产专项资金勘查项目“青海省格尔木市磨石沟地区锰多金属矿普查”(2021074047kc016)资助。
详细信息
    作者简介:

    彭涛(1987−),男,工程师,从事地质矿产勘查工作。E–mail:790003379@qq.com

  • 中图分类号: P618.32

Geological Characteristics and Genesis of Manganese Ore in Moshigou Area, Qinghai Province

  • 摘要:

    青海磨石沟锰矿是近年来东昆仑南坡地区新发现的台盆相沉积型碳酸锰矿,主要赋存于中新元古界万宝沟群碳酸盐岩组顶部。含锰岩系及锰矿体具有厚度大、延伸稳定、岩性组合简单及整体品位偏低但储量较大的特点,是青海省内少数具有良好前景的锰矿勘查基地之一。根据磨石沟锰矿区的最新勘查成果,从成矿地质背景、矿区地质特征、厚大的白云岩–碳质板岩含锰岩系、层状密集分布的锰矿体、矿石质量特征及主–微量元素特征等方面推断矿床成因与热水沉积关系密切,初步探究磨石沟地区热水沉积锰矿的成矿模式。通过综合分析,初步评价磨石沟锰矿区的找矿潜力,为类似沉积型锰矿勘查提供找矿借鉴。

    Abstract:

    Moshigou manganese mining area in Qinghai is a platform basin sedimentary manganese carbonate deposit newly discovered in the south slope of East Kunlun in recent years, which mainly occurs at the top of the carbonate formation of Wanbaogou group in meso Neoproterozoic. Manganese bearing rock series and manganese orebody are characterized by large thickness, stable extension, simple lithologic combination, low overall grade but large reserves. They are one of the few manganese ore exploration bases with good prospects in Qinghai Province. According to the latest exploration results of Moshigou manganese mining area, it is inferred that the genesis of the deposit is closely related to hot water sedimentation from the aspects of metallogenic geological background, geological characteristics of the mining area, thick dolomite carbonaceous slate manganese bearing rock series, layered densely distributed manganese ore bodies, ore quality characteristics, main and trace element characteristics, etc., and the metallogenic model of hot water sedimentary manganese ore in Moshigou area is preliminarily explored. Through comprehensive analysis, the prospecting potential of Moshigou manganese mining area is preliminarily evaluated, so as to provide prospecting reference for similar sedimentary manganese ore exploration.

  • 磨石沟地区位于青海省格尔木市西南部,距格尔木市区约90 km,处于昆仑山脉东段南坡附近,山势陡峻险要,谷深坡陡。该区以往基础性地质工作程度较高,而矿产调查及资源评价工作侧重于金、铜、钴多金属矿,未开展过系统的锰矿勘查工作。

    2019年,青海省有色第一地质勘查院在磨石沟地区发现锰矿化线索;2020~2021年,开展了磨石沟锰矿的预查、普查工作,大致查明了调查区的地质特征和控矿地质条件,对区内锰矿体的空间分布、规模、形态、产状、矿石质量和品位变化等情况进行了较系统的调查,理清了含锰岩系的含矿建造,填补了格尔木地区黑色岩系中锰矿勘查的空白。

    磨石沟地区大地构造位置位于东昆仑南坡俯冲碰撞杂岩带(KSPZ)(张雪亭等,2007查显锋等,2012祁生胜,2013史连昌等,2017),属于东昆仑增生楔铜-钴-金成矿亚带(潘彤,2017),为活动区造山带,成矿期次多,类型复杂,成矿地质条件优越(谢升浪等,2021)(图1)。

    图  1  青海省磨石沟地区地质图(马延虎等,2004王发明等,2004邓红斌等,2017
    1.柴达木中新生界后造山磨拉石前陆盆地;2.祁漫塔格–都兰新元古界—早古生界缝合带;3.东昆中岩浆弧带;4.昆仑山口–昌马河俯冲增生楔;5.巴颜喀拉双向边缘前陆盆地;6.东昆仑南坡俯冲碰撞杂岩带;7.第四系;8.中—上三叠统希里可特组;9.中—下三叠统洪水川组;10.奥陶系—志留系纳赤台群砾岩组;11.奥陶系—志留系纳赤台群砂岩组;12.早古生界下寒武统沙松乌拉组;13.中—新元古界万保沟群碳酸岩组;14.燕山期石英二长花岗岩;15.加里东期石英二长花岗岩;16.地质界线;17.逆断层;18.正断层;19.不明性质断层;20.向斜;21.背斜;22.主缝合带;23.新元古界—早古生界缝合带俯冲方向;24.晚古生界—早中生界缝合带俯冲方向;25.A型俯冲带;26.矿区范围
    Figure  1.  Geological map of Moshigou area, Qinghai Province

    调查区所处东昆仑南坡俯冲碰撞杂岩带,北端界线为昆中断裂,是本区最主要的大型深断裂。该断裂以北出现古元古界、太古界基底中深变质岩系,以南为新元古界浅变质岩系,且含大量基性火山岩,表明该古老断裂带可能在古元古界即具有雏形(谢成良等,2012)。在昆中断裂南缘的万保沟–小南川一带(调查区西19.5 km)至可可沙-清水泉一带(调查区东454.3 km)产出蛇绿混杂岩。经测量镁铁质岩–超镁铁质岩的全岩Sm–Nd等时线年龄为1 004.71~(1 372±85)Ma,为中新元古界产出;结合同期形成的沉积岩特点表明,昆中断裂带在中新元古界裂陷拉张,形成裂谷有限小洋盆–昆中洋盆(解玉月等,1998桑继镇等,2016)。在洋盆形成后,本区连续沉积中新元古界万宝沟群。之后经历早古生界昆仑洋壳向北俯冲增生,晚古生界—早中生界碰撞造山-断块隆升作用,本区主要造山运动完成,构造格局基本形成(邓红斌等,2017朱坤贺,2022)。

    调查区地层主体属东昆仑南坡分区(孙崇仁等,1997)。区域出露的主要地层有中—新元古界万保沟群碳酸岩组(Pt2-3W 2)、早古生界下寒武统沙松乌拉组(∈1s)、奥陶系—志留系纳赤台群砂岩组(OSN 2)和砾岩组(OSN 3)、中—下三叠统洪水川组(T1-2h)、中—上三叠统希里可特组(T2-3x)及第四系(Q)。含锰岩系沉积于万保沟群碳酸岩组,主成矿期为中新元古代。

    区域断裂和褶皱构造均发育,断裂构造以北西–北西西向断裂发育为主,其次为北东–北东东向断裂。构造变形强烈,伴随有岩浆侵位、区域变质及成矿作用等地质事件,多为地层接触断裂,控制地层、岩浆岩体的展布方向。区域断裂主要受昆中断裂影响,多形成于早—中生界碰撞造山时期,性质为南倾逆冲断层。褶皱以北西–南东为主,与区域主断裂方向一致,卷入地层较简单,主要为中新元古界晋宁运动时期(祁生胜等,2001)和早—中生界碰撞造山时期形成。

    从中古生界到新生界以来经历了漫长的构造演化历史,地质构造复杂,岩浆活动较为发育,经历了加里东期、燕山期等构造岩浆旋回,侵入岩大面积出露,以中酸性岩体、岩脉形式分布。

    磨石沟锰矿区出露的主要地层为中—新元古界万宝沟群碳酸盐岩组灰岩段(Pt2-3W21)和白云岩、板岩段(Pt2-3W22),中—下三叠统洪水川组二段(T1-2h2)。其中万宝沟群碳酸盐岩组灰岩段岩性为灰岩、碳质板岩、砂岩等,白云岩、板岩段岩性为千枚岩、白云岩、碳质板岩、灰岩;洪水川组二段岩性为长石石英砂岩。

    该矿区内构造发育较简单,仅有一条北西–南东向区域断裂,断裂整体倾向为358°~25°,倾角为44°~60°,为一正断层,断层破碎带宽为5~10 m。断裂带中见断层角砾岩、断层泥、构造透镜体出现,断层角砾岩以砂岩、灰岩为主,断层两侧岩石片理化强烈,局部小范围牵引褶皱、揉皱较发育。断裂带上盘出露三叠系洪水川组二段长石石英砂岩,下盘出露万宝沟群碳酸盐组白云岩、板岩段结晶白云岩。断裂为华里西末期至印支期的多期活动断裂(图2)。

    图  2  磨石沟锰矿区地质图
    1.第四系;2.三叠系中下统洪水川组二段;3.中—新元古界万保沟群碳酸岩组白云岩、板岩段;4.长石石英砂岩;5.碳质板岩;6.千枚岩;7.白云岩;8.灰岩;9.地质界线;10.正断层;11.不明性质断层;12.主要锰矿体及编号
    Figure  2.  Geological map of Moshigou manganese mining area

    含锰岩系为中新元古界万宝沟群碳酸盐岩组白云岩、板岩段,分为11层,控制长度为2 400 m,总厚度为308.2~619.2 m,产状为170°~190°∠52°~75°。自下而上依次为底板白云岩、千枚岩(夹层7)、Ⅱ号锰矿层、含锰千枚岩(夹层6)、含锰白云岩(夹层5)、含锰千枚岩(夹层4)、白云岩(夹层3)、含锰千枚岩(夹层2)、Ⅰ号锰矿层、含锰千枚岩(夹层1)、顶板白云岩。地表发现的矿化主要为层状软锰矿化、褐锰矿化,侵染状褐铁矿化;蚀变主要为绢云母化、硅化、碳酸盐化。含锰岩系北东发育一条北西–南东向北倾正断层,将含锰岩系走向东延伸段错断。含锰岩系岩石普遍具有节理和裂隙发育,多见片理化状,岩石变形较强,局部形成揉皱,但地层整体为南倾展布,未发现岩浆岩活动(图3)。

    图  3  磨石沟锰矿区含锰岩系柱状图
    Figure  3.  Histogram of manganese bearing rock series in Moshigou manganese ore area

    锰矿体整体产状与地层一致,在研究区呈南倾单斜展布,主要分布于Ⅰ、Ⅱ锰矿层,延伸稳定,厚度大,具有一定规模。通过少量的槽探、钻探控制,共圈出锰矿体13条,长度为400~1 550 m,真厚度为0.51~9.03 m,累积真厚度达24.17 m,Mn品位为10.27%~18.32%,单样最高品位为26.46%。在Ⅰ号锰矿层中圈出6条锰矿体,其中,Ⅰ-2Mn、Ⅰ-6Mn矿体为碳酸锰主矿体;Ⅱ号锰矿层中圈出7条锰矿体,其中,Ⅱ-5Mn、Ⅱ-6Mn为碳酸锰主矿体。

    通过物相分析,地表锰矿石以水锰矿+褐锰矿、软锰矿为主,通过钻探岩心取样分析,发现深部为碳酸锰矿原生矿,故以碳酸锰矿为主体来评价,以DZ/T0200–2020《铁、锰、铬矿地质勘查规范》中冶金用碳酸锰矿石一般工业指标圈连矿体。磨石沟锰矿的主矿体Mn品位多为10.27%~16.03%,平均品位为12.83%,以碳酸锰贫锰矿石为主。由于Mn/TFe值为2.52~3.92,平均为3.24;P/Mn值为0.01~0.013,平均为0.008;(CaO+MgO)/(SiO2+Al2O3)值为0.18~0.33,平均为0.26(表1)。通过3项指标确定,磨石沟锰矿属于中铁高磷酸性碳酸锰矿。

    表  1  磨石沟锰矿区主矿体特征简表
    Table  1.  Characteristics of main ore body in Moshigou manganese mining area
    主矿体项目厚度MnTFePSiO2CaOMgOAl2O3LossMn/TFeP/Mn(CaO+MgO)/
    (SiO2+Al2O3
    (m)(%)(%)(%)(%)(%)(%)(%)(%)
    Ⅰ-2Mn单工程5.4211.885.180.1540.104.793.899.1714.512.290.0130.18
    Ⅰ-6Mn单工程9.0313.864.010.1637.415.504.217.7515.833.460.0120.22
    Ⅱ-5Mn最小值0.6110.274.080.0831.147.702.026.8021.962.520.0080.26
    最大值2.5516.034.330.2036.419.553.528.4223.423.700.0120.29
    平均值1.4312.444.220.1133.868.832.917.7322.702.950.0090.28
    Ⅱ-6Mn最小值0.9511.043.020.05430.846.641.924.8519.623.660.0050.24
    最大值2.5415.233.890.01442.0512.024.167.1021.013.920.0010.33
    平均值1.4711.923.470.0935.389.693.165.8620.623.440.0080.31
     注:测试单位为青海省有色地质测试中心。采用光谱–化学分析法测试,仪器为ICAP-6300 ICP等离子体发射光谱仪A-7,检出限0.001×10−2,可靠性良好。
    下载: 导出CSV 
    | 显示表格

    矿石矿物以菱锰矿为主,以微晶斑块集合体形式产出,含量约为15%,斑块呈半自形或他形细粒状,粒径为0.03~0.10 mm;其次为软锰矿,呈胶状、纤维状,集合体呈细网脉状或细脉状沿裂隙及方解石晶粒间隙分布,含量约为5%;其他成分主要为微–粉晶方解石(67%)、石英(10%)、铁锰质(2%)、含碳泥质等(1%)。通过扫描电镜鉴定,发现菱锰矿、石英为条带状定向分布,碳质聚集呈纹层状与泥质矿物互混定向排列。

    矿石结构为半自形或他形粒状结晶结构、细网脉填隙结构、交代残余结构、交代假象结构等,构造以变余层状、块状、板状、微细浸染状-细网脉状构造等。

    金属矿物从早到晚生成顺序:菱锰矿、黄铁矿→硫铜钴矿→黄铜矿→软锰矿-褐铁矿。

    在锰矿床的形成过程中,需要较好的构造条件、适宜的沉积相和古地理环境(江沙等,2019)。磨石沟地区在中新元古界昆中断裂裂陷拉张,形成裂谷有限小洋盆后开始连续沉积万宝沟群,该地层分为3个岩组,分别为火山岩组、碳酸岩组、上碎屑岩组。其中火山岩组为典型的洋岛玄武岩,沉积环境为半深海斜坡沟谷–斜坡扇环境,盖层碳酸盐岩组沉积于火山岩组之上,沉积环境为静水低能碳酸盐岩台地沉积环境,二者共同构成了洋岛–海山的“双层型”结构(蔡雄飞等,2007许鑫等,2016李宪栋,2017)。

    近年来,大多数专家主要通过锰矿石主量、微量元素等地球化学特征进行锰质来源的研究(伊帆等,2017石浩等,2019刘虎等,2019李荣志等,2021)。

    Al/(Al+Fe+Mn)值作为热水沉积的指示参数,值越小代表沉积物中热水沉积的产物含量越高,典型热水沉积物比值<0.35(Bostom et al.,1969Bostrom el al.,1973)。纯热水参与沉积的岩石中Al/(Al+Fe+Mn)值低至0.01,正常海洋沉积岩石中这一比值可达0.6(Adachi et al.,1986)。磨石沟矿区Al/(Al+Fe+Mn)值为0.1~0.28(表2),平均为0.17,远比正常海洋作用沉积岩石的比值低,表明碳酸锰矿石的物质成分与热水沉积有关(高永宝等,2017

    表  2  磨石沟锰矿区碳酸锰矿石化学成分及参数表
    Table  2.  Chemical composition and parameters of manganese carbonate ore in Moshigou manganese mining area
    样品编号Mn(%)Fe(%)Al2O3(%)SiO2(%)Al/(Al+Fe+Mn)SiO2/Al2O3
    MS2021QZ01‐H1210.903.505.6233.260.175.92
    MS2021QZ01‐H1311.343.024.8530.840.156.36
    MS2021QZ01‐H1810.884.086.8035.060.195.16
    MS2021QZ01‐H2010.824.188.2131.100.223.79
    MS2021QZ01‐H4110.985.408.2442.300.215.13
    MS2021TC01‐H1922.634.417.3830.590.134.14
    MS2021TC01‐H3211.625.1710.9748.700.264.44
    MS2021TC01‐H3426.463.726.0133.650.105.60
    MS2021TC01‐H5512.305.798.4434.820.204.13
    MS2021TC01‐H5616.066.268.0130.990.163.87
    MS2021TC01‐H5716.173.485.5129.060.135.27
    MS2021TC01‐H5812.694.266.3832.300.175.06
    MS2021TC01‐H6017.763.766.9633.800.154.86
    MS2021TC01‐H6114.804.408.5039.360.194.63
    MS2021TC01‐H6215.806.207.9434.520.164.35
    MS2021TC01‐H6315.134.225.9628.340.144.76
    MS2021TC01‐H6415.284.516.9431.680.164.56
    MS2021TC02‐H4613.664.507.5542.620.185.65
    MS2021TC02‐H4719.592.984.7428.560.106.03
    MS2021TC02‐H4818.542.854.5830.430.106.64
    MS2021TC02‐H4915.722.984.8127.900.125.80
    MS2021TC02‐H5012.024.429.1440.960.234.48
    MS2021TC02‐H5215.574.428.8241.450.194.70
    MS2021TC02‐H5311.214.6510.3945.370.264.37
    MS2021TC02‐H5412.623.024.9027.710.145.66
    MS2021TC02‐H5512.163.005.3027.880.165.26
    MS2021TC02‐H11812.15.3613.0445.790.283.51
    MS2021TC02‐H12112.913.816.1628.950.164.70
    MS2021TC02‐H12214.764.847.9636.440.184.58
    MS2021TC02‐H12514.354.704.5034.960.117.77
     注:测试单位:青海省有色地质测试中心。采用光谱–化学分析法测试,仪器为ICAP-6300 ICP等离子体发射光谱仪A-7,检出限0.001×10−2,可靠性良好。
    下载: 导出CSV 
    | 显示表格

    SiO2/Al2O3值可用于判定锰矿石与陆源、生物、热水沉积的关系,陆壳中的SiO2/Al2O3值为3.6,超过此值说明有热水沉积的补充(Crerar el al.,1982Taylor et al.,1985秦元奎等,2010姚远等,2016)。磨石沟矿区碳酸锰矿石SiO2/Al2O3值为3.87~7.77,平均为5.03,表明成矿与热水沉积有关。

    Ni/Co值<3.6是热水沉积的典型特征(刘志臣等,2015吴佳昌等,2019)。磨石沟锰矿区Ni/Co值为0.70~1.83(表3),平均为1.13,其中,锰矿石Ni/Co值为0.70~0.98,顶底板岩石Ni/Co值为1.81~1.83,具有明显的差异,表明含矿层与顶底板受热水沉积影响不同。

    表  3  磨石沟锰矿区碳酸锰矿石微量元素及参数表
    Table  3.  Table of trace elements and parameters of manganese carbonate ore in Moshigou manganese mining area
    样品编号岩性V(%)Co(%)Ni(%)Ni/CoV/(V+Ni)
    QZ01‐H07锰矿石0.02400.00470.00460.980.84
    QZ01‐H14锰矿石0.00480.0040.00380.950.56
    QZ01‐H18锰矿石0.01000.00460.00320.700.76
    QZ01‐H103锰矿石0.00500.00480.00350.730.59
    ZK0001‐H01底板千枚岩0.01700.00210.00381.810.82
    ZK0001‐H32锰矿石0.00450.00370.00330.890.58
    ZK0001‐H96顶板白云岩0.01000.00230.00421.830.7
     注:测试单位:青海省有色地质测试中心。主要采用X荧光法(XRF)测试,仪器为日本理学公司Primus-Ⅱ型,检出限5.96×10−6,可靠性良好。
    下载: 导出CSV 
    | 显示表格

    在海水中Ba的含量较低,正常海水沉积物中不易富集,而在现在海底热水中含量较高,为热水沉积的重要标志元素(纪冬平等,2022)。磨石沟锰矿石Ba含量为4650×10−6~9910×10−6,平均为6877×10−6,围岩Ba含量为491×10−6~2460×10−6,平均为793×10−6,明显高于上地壳平均值260×10−6,表明锰矿沉积受热水沉积的影响。

    V/(V+Ni)值为0.46~0.57时属于弱氧环境,0.57~0.83为贫氧环境,0.83~1为缺氧环境(Tyson,1991Jones et al.,1994Tribovillard et al.,2006尹青,2015)。磨石沟锰矿石的V/(V+Ni)值为0.56~0.84,平均为0.69,显示为贫氧还原环境形成。

    前人在磨石沟西侧采集的万宝沟群碳酸盐组岩石进行基质系统和外来系统Ca、Mg含量对比,认为该地层为半深水–深水相的沉积环境,再结合遗迹化石、粒度分析、槽模构造等进一步分析表明万宝沟群碳酸盐岩组为浅海陆棚远端–斜坡深水沉积,在海退期为锰质的沉积提供了有利条件(郭宪璞等,2004)。根据调查区沉积环境、构造演化、造山运动、锰质来源等因素综合分析,初步推测区内成矿模式,即中新元古界磨石沟地区开始形成有限小洋盆,洋盆拉张发育过程中,基底来源的含锰热水与中远距离的陆源锰质慢慢随海水运移并储存在洋盆中,随着海退影响,深水局限盆地逐步过渡形成浅水盆地,浅海盆地中形成静水低能半封闭的贫氧还原环境,受生物、化学富集作用,锰质在贫氧还原界面附近随陆源碎屑、硅质、方解石等沉积形成原生的碳酸锰矿(图4)。

    图  4  磨石沟锰矿区成矿模式示意图
    1.灰岩;2.万宝沟群碳酸盐岩组灰岩段;3.万宝沟群碳酸盐岩组白云岩段;4.含锰岩系;5.碳酸锰矿;6.断层;7.相对运动方向;8.运动方向
    Figure  4.  Schematic diagram of metallogenic model of Moshigou manganese mine area

    锰矿床产于万宝沟群碳酸盐岩组上部,为浅变泥质岩及碳酸盐岩为主的建造,层位稳定,属于浅海台盆相沉积,发育水平层理,前人发现有叠层石产出,证明成矿期具有丰富的藻类活动,该时期是较为稳定的沉积时期(王国灿等,2007)。沉积岩微相按岩性可分为碳质板岩–菱锰矿微相、碳质板岩–白云岩–菱锰矿微相。含锰岩系下部沉积了较厚大的灰岩层,而含锰岩系以白云岩和浅变质岩为主,显示出水位由深到浅的过程。

    目前,磨石沟锰矿区仍处于初始找矿阶段,已发现矿体在走向上自南东到西北具有从尖灭、断续、薄层到连续、稳定、厚大的渐变沉积特点,其中断续、尖灭沉积区段的锰矿石具有条带状、薄层状特征,连续、稳定沉积区段具有纹层状、透镜状、厚层状特征。结合国内典型热水沉积锰矿床的成矿规律分析可知:断续、尖灭到连续、稳定沉积区段符合热水沉积矿床边缘相–过渡相的矿石典型特征,而具有鲕豆状、眼球状、气泡状、气液喷溢沉积等构造的中心相厚大富锰矿(薛友智等,2019沈红钱等,2021刘振等,2021)尚未探明。磨石沟锰矿成矿期后经历的构造活动主要为晚古生界—早中生界碰撞造山-断块隆升作用,形成多条北西—南东向脆性断裂,其中1条断裂将含锰岩系走向东延伸段错断,含锰岩系走向西延伸段无断层和岩浆岩发育,矿床保存条件较好。

    (1)磨石沟锰矿区共圈出锰矿体13条,长度为400~1 550 m,真厚度为0.51~9.03 m,累积矿体真厚度达24.17 m,Mn品位为10.27%~18.32%,具有规模较大,埋深小,走向和倾向延伸稳定的特点,具有成为中–大型台盆相沉积锰矿床的潜力。

    (2)磨石沟锰矿以碳酸锰贫锰矿石为主,P、SiO2含量较高。由于Mn/TFe值平均为3.24,P/Mn值平均为0.008,(CaO+MgO)/(SiO2+Al2O3)值平均为0.26,属于中铁高磷酸性碳酸锰矿。

    (3)磨石沟矿区Al/(Al+Fe+Mn)值为0.1~0.28,平均值为0.17;SiO2/Al2O3值为3.87~7.77,平均值为5.03;Ni/Co值为0.70~1.83,平均值为1.13,具有热水沉积特点。磨石沟锰矿区含锰岩系以铁质岩、锰质岩、硅质岩等沉积岩为主,富含Fe、Ba、Si、V、Ni等热水沉积指示元素;锰矿体走向上具有具条带状、薄层状特征,连续稳定沉积区具有纹层状、厚层状沉积特点;锰矿石结构含半自形或他形粒状结晶结构、细网脉填隙结构,构造以块状、板状、微细浸染状-细网脉状构造为主;矿石矿物中菱锰矿以微晶斑块集合体条带状分布,石英为条带状定向分布,碳质聚集呈纹层状与泥质矿物互混定向排列,表明磨石沟锰矿的形成与热水沉积关系密切。

    (4)磨石沟锰矿区属于碳酸盐岩地台上的浅海台盆相沉积,沉积时间长且稳定,含锰岩系厚大,目前仅仅围绕锰矿沉积的过渡相-边缘相展开了勘查,通过进一步的控制和追索,有望找到锰矿沉积中心相的厚大富锰矿体。

  • 图  1   青海省磨石沟地区地质图(马延虎等,2004王发明等,2004邓红斌等,2017

    1.柴达木中新生界后造山磨拉石前陆盆地;2.祁漫塔格–都兰新元古界—早古生界缝合带;3.东昆中岩浆弧带;4.昆仑山口–昌马河俯冲增生楔;5.巴颜喀拉双向边缘前陆盆地;6.东昆仑南坡俯冲碰撞杂岩带;7.第四系;8.中—上三叠统希里可特组;9.中—下三叠统洪水川组;10.奥陶系—志留系纳赤台群砾岩组;11.奥陶系—志留系纳赤台群砂岩组;12.早古生界下寒武统沙松乌拉组;13.中—新元古界万保沟群碳酸岩组;14.燕山期石英二长花岗岩;15.加里东期石英二长花岗岩;16.地质界线;17.逆断层;18.正断层;19.不明性质断层;20.向斜;21.背斜;22.主缝合带;23.新元古界—早古生界缝合带俯冲方向;24.晚古生界—早中生界缝合带俯冲方向;25.A型俯冲带;26.矿区范围

    Figure  1.   Geological map of Moshigou area, Qinghai Province

    图  2   磨石沟锰矿区地质图

    1.第四系;2.三叠系中下统洪水川组二段;3.中—新元古界万保沟群碳酸岩组白云岩、板岩段;4.长石石英砂岩;5.碳质板岩;6.千枚岩;7.白云岩;8.灰岩;9.地质界线;10.正断层;11.不明性质断层;12.主要锰矿体及编号

    Figure  2.   Geological map of Moshigou manganese mining area

    图  3   磨石沟锰矿区含锰岩系柱状图

    Figure  3.   Histogram of manganese bearing rock series in Moshigou manganese ore area

    图  4   磨石沟锰矿区成矿模式示意图

    1.灰岩;2.万宝沟群碳酸盐岩组灰岩段;3.万宝沟群碳酸盐岩组白云岩段;4.含锰岩系;5.碳酸锰矿;6.断层;7.相对运动方向;8.运动方向

    Figure  4.   Schematic diagram of metallogenic model of Moshigou manganese mine area

    表  1   磨石沟锰矿区主矿体特征简表

    Table  1   Characteristics of main ore body in Moshigou manganese mining area

    主矿体项目厚度MnTFePSiO2CaOMgOAl2O3LossMn/TFeP/Mn(CaO+MgO)/
    (SiO2+Al2O3
    (m)(%)(%)(%)(%)(%)(%)(%)(%)
    Ⅰ-2Mn单工程5.4211.885.180.1540.104.793.899.1714.512.290.0130.18
    Ⅰ-6Mn单工程9.0313.864.010.1637.415.504.217.7515.833.460.0120.22
    Ⅱ-5Mn最小值0.6110.274.080.0831.147.702.026.8021.962.520.0080.26
    最大值2.5516.034.330.2036.419.553.528.4223.423.700.0120.29
    平均值1.4312.444.220.1133.868.832.917.7322.702.950.0090.28
    Ⅱ-6Mn最小值0.9511.043.020.05430.846.641.924.8519.623.660.0050.24
    最大值2.5415.233.890.01442.0512.024.167.1021.013.920.0010.33
    平均值1.4711.923.470.0935.389.693.165.8620.623.440.0080.31
     注:测试单位为青海省有色地质测试中心。采用光谱–化学分析法测试,仪器为ICAP-6300 ICP等离子体发射光谱仪A-7,检出限0.001×10−2,可靠性良好。
    下载: 导出CSV

    表  2   磨石沟锰矿区碳酸锰矿石化学成分及参数表

    Table  2   Chemical composition and parameters of manganese carbonate ore in Moshigou manganese mining area

    样品编号Mn(%)Fe(%)Al2O3(%)SiO2(%)Al/(Al+Fe+Mn)SiO2/Al2O3
    MS2021QZ01‐H1210.903.505.6233.260.175.92
    MS2021QZ01‐H1311.343.024.8530.840.156.36
    MS2021QZ01‐H1810.884.086.8035.060.195.16
    MS2021QZ01‐H2010.824.188.2131.100.223.79
    MS2021QZ01‐H4110.985.408.2442.300.215.13
    MS2021TC01‐H1922.634.417.3830.590.134.14
    MS2021TC01‐H3211.625.1710.9748.700.264.44
    MS2021TC01‐H3426.463.726.0133.650.105.60
    MS2021TC01‐H5512.305.798.4434.820.204.13
    MS2021TC01‐H5616.066.268.0130.990.163.87
    MS2021TC01‐H5716.173.485.5129.060.135.27
    MS2021TC01‐H5812.694.266.3832.300.175.06
    MS2021TC01‐H6017.763.766.9633.800.154.86
    MS2021TC01‐H6114.804.408.5039.360.194.63
    MS2021TC01‐H6215.806.207.9434.520.164.35
    MS2021TC01‐H6315.134.225.9628.340.144.76
    MS2021TC01‐H6415.284.516.9431.680.164.56
    MS2021TC02‐H4613.664.507.5542.620.185.65
    MS2021TC02‐H4719.592.984.7428.560.106.03
    MS2021TC02‐H4818.542.854.5830.430.106.64
    MS2021TC02‐H4915.722.984.8127.900.125.80
    MS2021TC02‐H5012.024.429.1440.960.234.48
    MS2021TC02‐H5215.574.428.8241.450.194.70
    MS2021TC02‐H5311.214.6510.3945.370.264.37
    MS2021TC02‐H5412.623.024.9027.710.145.66
    MS2021TC02‐H5512.163.005.3027.880.165.26
    MS2021TC02‐H11812.15.3613.0445.790.283.51
    MS2021TC02‐H12112.913.816.1628.950.164.70
    MS2021TC02‐H12214.764.847.9636.440.184.58
    MS2021TC02‐H12514.354.704.5034.960.117.77
     注:测试单位:青海省有色地质测试中心。采用光谱–化学分析法测试,仪器为ICAP-6300 ICP等离子体发射光谱仪A-7,检出限0.001×10−2,可靠性良好。
    下载: 导出CSV

    表  3   磨石沟锰矿区碳酸锰矿石微量元素及参数表

    Table  3   Table of trace elements and parameters of manganese carbonate ore in Moshigou manganese mining area

    样品编号岩性V(%)Co(%)Ni(%)Ni/CoV/(V+Ni)
    QZ01‐H07锰矿石0.02400.00470.00460.980.84
    QZ01‐H14锰矿石0.00480.0040.00380.950.56
    QZ01‐H18锰矿石0.01000.00460.00320.700.76
    QZ01‐H103锰矿石0.00500.00480.00350.730.59
    ZK0001‐H01底板千枚岩0.01700.00210.00381.810.82
    ZK0001‐H32锰矿石0.00450.00370.00330.890.58
    ZK0001‐H96顶板白云岩0.01000.00230.00421.830.7
     注:测试单位:青海省有色地质测试中心。主要采用X荧光法(XRF)测试,仪器为日本理学公司Primus-Ⅱ型,检出限5.96×10−6,可靠性良好。
    下载: 导出CSV
  • 蔡雄飞, 魏启荣. 东昆仑万保沟岩群洋岛地层序列特征和构造古地理的恢复[J]. 地层学杂志, 2007(02): 117-126 doi: 10.3969/j.issn.0253-4959.2007.02.003

    CAI Xiongfei, WEI Qirong. Stratigraphic sequence of ocean islands and palinspastic reconstruction of the Wanbaogou group-complex in the Eastern Kunlun orogenic belt[J]. Journal of Stratigraphy, 2007 (02): 117-126. doi: 10.3969/j.issn.0253-4959.2007.02.003

    查显锋, 计文化, 张海迪, 等. 青海中部昆南增生杂岩带变形分期及构造过程[J]. 地质通报, 2012, 31(12): 2015-2024 doi: 10.3969/j.issn.1671-2552.2012.12.010

    CHA Xianfeng, JI Wenhua, ZHANG Haidi, et al. A discussion on the deformation phases and tectonic process of the Southern Kunlun accretionary complex belt, in central Qinghai[J]. Geological Bulletin, 2012, 31 (12): 2015-2024. doi: 10.3969/j.issn.1671-2552.2012.12.010

    邓红斌, 姚波, 钟刚, 等. 青海省格尔木市格尔木河西地区J46E023018、J46E023019、J46E024018、J46E024019、I46E001019五幅1∶ 5万区域地质矿产调查[R]. 四川省地质矿产勘查开发局川西北地质队, 2017
    高永宝, 滕家欣, 陈登辉, 等. 新疆西昆仑玛尔坎苏锰矿带成矿地质特征及找矿方向[J]. 西北地质, 2017, 50(01): 261-269 doi: 10.3969/j.issn.1009-6248.2017.01.022

    GAO Yongbao, TENG Jiaxin, CHEN Denghui, et al. Metallogenic geological characteristics and prospecting direction of markansu manganese ore belt in West Kunlun, Xinjiang [J] Northwestern Geology, 2017, 50 (01): 261-269. doi: 10.3969/j.issn.1009-6248.2017.01.022

    郭宪璞, 王乃文, 丁孝忠. 东昆仑格尔木南部纳赤台群和万宝沟群基质系统与外来系统地球化学差异[J]. 地质通报, 2004(12): 1188-1195 doi: 10.3969/j.issn.1671-2552.2004.12.004

    GUO Xianpu, WANG Naiwen, DING Xiaozhong. Geochemical divergence between the matrix system and exotic block system in the Naij Tal and Wanbaogou groups in the East Kunlun Mountains [J]. Geological Bulletin, 2004 (12): 1188-1195. doi: 10.3969/j.issn.1671-2552.2004.12.004

    江沙, 周星, 黄一杰, 等. 广西忻城县里苗-塘岭锰矿床控矿因素及成矿模式[J]. 地质与勘探, 2019, 55(03): 723-735

    JIANG Sha, ZHOU Xing, HUANG Yijie, et al. Ore-controlling factors and metallogenic model of LiMiao-tangling manganese deposit in Xincheng County of Guangxi [J]. Geology and Exploration, 2019, 55 (03): 723-735.

    纪冬平, 王朋, 高政伟, 等. 陕西宁强县中坝锰矿床地球化学特征及成矿模式[J]. 矿床地质, 2022, 41(03): 469-488 doi: 10.16111/j.0258-7106.2022.03.002

    JI Dongping, WANG Peng, GAO Zhengwei, et al. Geochemical characteristics and metallogenic model of Zhongba manganese deposit in Ningqiang County, Shaanxi, China [J]. Geology of Mineral Deposits, 2022, 41 (03): 469-488. doi: 10.16111/j.0258-7106.2022.03.002

    李宪栋. 青海省分水岭地区中新元古代火山岩特征及构造环境[J]. 工业技术创新, 2017, 04(06): 98-103

    LI Xiandong. Characteristics and structural environment of middle Neoproterozoic volcanic rocks in the Watershed area of Qinghai Province [J]. Industrial Technology Innovation, 2017, 04 (06): 98-103.

    李荣志, 蒋新红, 邹颖贵, 等. 广西东平锰矿床地质特征及成矿模式[J]. 中国锰业, 2021, 39(03): 18-28 doi: 10.14101/j.cnki.issn.1002-4336.2021.03.005

    LI Rongzhi, JIANG Xinhong, ZOU Yinggui, et al. Geological characteristics and mineralization and metallogenic model of Dongping manganese deposit in Guangxi [J]. China Manganese Industry, 2021, 39 (03): 18-28. doi: 10.14101/j.cnki.issn.1002-4336.2021.03.005

    刘虎, 李庆宏, 陈艳, 等. 湖南桃江响涛源锰矿地球化学特征及其成因意义[J]. 地质与勘探, 2019, 55(03): 712-722

    LIU Hu, LI Qinghong, CHEN Yan, et al. Geochemical characteristics and genetic significance of the Xiangtaoyuan manganese deposit in Taojiang, Hunan province [J]. Geology and Exploration, 2019, 55 (03): 712-722.

    刘振, 马志鑫, 刘伟, 等. 重庆秀山小茶园地区南华纪大塘坡组沉积环境与锰矿产出规律[J]. 沉积学报, 2021, 39(03): 515-524

    LIU Zhen, MA Zhixin, LIU Wei, et al. Sedimentary environment and manganese ore deposits in the Nanhua period Datangpo formation in Xiaochayuan area, Xiushan, Chongqing [J]. Acta Sedimentologica Sinica, 2021, 39 (03): 515-524.

    刘志臣, 王聪, 张远国, 等. 贵州遵义锰矿床地球化学特征及成因分析[J]. 矿物学报, 2015, 35(04): 481-488

    LIU Zhichen, WANG Cong, ZHANG Yuanguo, et al. Geochemistry and ore genesis of Zunyi Mn Deposit, Guizhou, China[J]. Acta Mineralogica Sinica, 2015, 35 (04): 481-488.

    马延虎, 蔡德华, 任晋祁, 等. 万保沟幅、没草沟幅、青办食宿站幅区域地质调查报告[R]. 青海省地质调查院区调六分队, 2004
    潘彤. 青海成矿单元划分[J]. 地球科学与环境学报, 2017, 39(1): 19-24 doi: 10.3969/j.issn.1672-6561.2017.01.002

    PAN Tong. Classification of metallogenic units in Qinghai, China[J]. Journal of Earth Science and Environment, 2017, 39 (1): 19-24. doi: 10.3969/j.issn.1672-6561.2017.01.002

    祁生胜, 王秉璋, 王瑾, 等. 晋宁运动在东昆仑东段的表现及其意义[J]. 青海地质, 2001(S1): 17-21

    QI Shengsheng, WANG Bingzhang, WANG Jin, et al. Manifestation of Jinning movement in the eastern sector of East Kunlun and its significance [J]. Qinghai Geology, 2001 (S1): 17-21.

    祁生胜. 青海省大地构造单元划分与成矿作用特征[J]. 青海国土经略, 2013(05): 53-62 doi: 10.3969/j.issn.1671-8704.2013.05.018

    QI Shengsheng. Division of tectonic units and characteristics of mineralization in Qinghai Province [J]. Qinghai Land and Resources Strategy, 2013 (05): 53-62. doi: 10.3969/j.issn.1671-8704.2013.05.018

    秦元奎, 张华成, 姚敬劬. 广西大新县下雷锰矿床的地球化学特征及其意义[J]. 地质论评, 2010, 56(05): 664-672 doi: 10.16509/j.georeview.2010.05.014

    QIN yuankui, ZHANG Huacheng, YAO Jingyu. Geochemical characteristics and geological implication of the Xialei manganese deposit, Daxin County, Guangxi [J]. Geological Review, 2010, 56 (05): 664-672. doi: 10.16509/j.georeview.2010.05.014

    桑继镇, 裴先治, 李瑞保, 等. 东昆仑东段清水泉辉长岩体LA-ICP-MS锆石U-Pb年龄、地球化学特征及其构造意义[J]. 地质通报, 2016, 35(05): 700-710 doi: 10.3969/j.issn.1671-2552.2016.05.007

    SANG Jizhen, PEI Xianzhi, LI Ruibao, et al. LA-ICP-MS zircon U-Pb dating and geochemical characteristics of gabbro in Qingshuiquan, east section of East Kunlun, and its tectionic significance[J]. Geological Bulletin, 2016, 35 (05): 700-710. doi: 10.3969/j.issn.1671-2552.2016.05.007

    沈红钱, 张遂, 曾飞, 等. 华南南华纪武陵锰矿成矿带松桃李家湾-高地-道坨地堑盆地研究新进展和潜力预测[J]. 贵州地质, 2021, 38(02): 129-138 doi: 10.3969/j.issn.1000-5943.2021.02.003

    SHEN Hongqian, ZHANG Sui, ZENG Fei, et al. New research progress and potential prediction of Lijiawan-Gaodi-Daotuo graben located in Songtao area, Wuling manganese ore belt in Nanhua period, South China [J]. Guizhou Geology, 2021, 38 (02): 129-138. doi: 10.3969/j.issn.1000-5943.2021.02.003

    石浩, 覃小锋, 王宗起, 等. 黔东松桃地区李家湾锰矿床地质、地球化学特征及成因信息[J]. 西北地质, 2019, 52(01): 109-122 doi: 10.19751/j.cnki.61-1149/p.2019.01.010

    SHI Hao, QIN Xiaofeng, WANG Zongqi, et al. Geological, geochemical characteristics and genetic information of the Lijiawan manganese deposit in Songtao area, eastern Guizhou [J]. Northwestern Geology, 2019, 52(01): 109-122. doi: 10.19751/j.cnki.61-1149/p.2019.01.010

    史连昌, 才航加, 许海全, 等. 东昆仑南坡俯冲增生杂岩楔中纳赤台群物质组成特征[J]. 地质通报, 2017, 36(Z1): 251-257 doi: 10.3969/j.issn.1671-2552.2017.02.008

    SHI Lianchang, CAI Hangjia, XU Haiquan, et al. Material composition characteristics of Naijtai group in subduction accretion complex on the southern slope of East Kunlun mountains [J]. Geological Bulletin, 2017, 36 (z1): 251-257. doi: 10.3969/j.issn.1671-2552.2017.02.008

    孙崇仁, 喇继德, 李璋荣, 等. 青海省岩石地层[M]. 武汉: 中国地质大学出版社, 1997

    SUN Chongren, LA Jide, LI Zhangrong, et al. Lithostratigraphy of Qinghai Province [M]. Wuhan: China University of Geosciences Press, 1997.

    王发明, 唐健, 蔡德华, 等. 水泥厂幅、忠阳山幅、黑刺沟幅区域地质调查报告[R]. 青海省地质调查院区调三分队, 2004.
    王国灿, 魏启荣, 贾春兴, 等. 关于东昆仑地区前寒武纪地质的几点认识[J]. 地质通报, 2007(08): 929-937 doi: 10.3969/j.issn.1671-2552.2007.08.003

    WANG Guocan, WEI Qirong, JIA Chunxing, et al. Some ideas of Precambrian geology in the East Kunlun, China [J]. Geological bulletin, 2007 (08): 929-937. doi: 10.3969/j.issn.1671-2552.2007.08.003

    吴佳昌, 赵品忠, 黄宗添, 等. 滇东南地区石炭系锰矿找矿新发现[J]. 地质与勘探, 2019, 55(S1): 306-313

    WU Jiachang, ZHAO Pinzhong, HUANG Zongtian, et al. New discovery of prospecting for manganese ore in Carboniferous of Southeast Yunnan province[J]. Geology and Exploration, 2019, 55 (S1): 306-313.

    谢成良, 叶高峰, 魏文博, 等. 藏北高原主要断裂带电性结构特征[J]. 地球物理学报, 2012, 55(12): 3991-4002 doi: 10.6038/j.issn.0001-5733.2012.12.011

    XIE Chengliang, YE Gaofeng, WEI Wenbo, et al. Electrical features of the main faults beneath northern Tibetan Plateau[J]. Acta Geophysica Sinica, 2012, 55 (12): 3991-4002. doi: 10.6038/j.issn.0001-5733.2012.12.011

    谢升浪, 郑才贤, 贾波, 等. 东昆仑菜园子沟地区锰矿地质特征及找矿标志[J]. 中国锰业, 2021, 39(2): 24-27 doi: 10.14101/j.cnki.issn.1002-4336.2021.02.005

    XIE Shenglang, ZHENG Caixian, JIA Bo, et al. The geological characteristics and prospecting criteria of manganese deposits in Caiyuanzigou area, East Kunlun [J]. China Manganese Industry, 2021, 39 (2): 24-27. doi: 10.14101/j.cnki.issn.1002-4336.2021.02.005

    解玉月. 昆中断裂东段不同时代蛇绿岩特征及形成环境[J]. 青海地质, 1998(01): 27-36

    XIE Yuyue. Features of Ophiolites with different period in the eastern sector of middle Kunlun fault and its original environment[J]. Qinghai geology, 1998 (01): 27-36.

    许鑫, 宋述光, 苏犁. 东昆仑中段万宝沟群玄武岩的形成时代和构造意义[J]. 岩石矿物学杂志, 2016, 35(06): 965-980 doi: 10.3969/j.issn.1000-6524.2016.06.004

    XU Xin, SONG Shuguang, SU Li. Formation age and tectonic significance of Wanbaogou basalt in the middle East Kunlun orogenic belt [J]. Journal of Rock Mineralogy, 2016, 35 (06): 965-980. doi: 10.3969/j.issn.1000-6524.2016.06.004

    薛友智, 姚敬劬, 黄金水, 等. 再论锰的“内源外生”成矿说[J]. 地质与勘探, 2019, 55(04): 891-898

    XUE Youzhi, YAO Jingyu, hUANG Jinshui, et al. A review of the metallogenic theory of endogenous origin and exogenous mineralization of manganese ores[J]. Geology and Exploration, 2019, 55 (04): 891-898.

    姚远, 赖健清, 唐一昂, 等. 广西东平沉积锰矿地球化学特征及成矿物质来源研究[J]. 地质找矿论丛, 2016, 31(04): 506-514 doi: 10.6053/j.issn.1001-1412.2016.04.005

    YAO yuan, LAI Jianqing, TANG Yiang, et al. Geochemistry characteristics and the ore material source of Dongping sedimentary manganese deposits in Guangxi [J]. On geological prospecting, 2016, 31 (04): 506-514. doi: 10.6053/j.issn.1001-1412.2016.04.005

    伊帆, 伊海生. 桂西南地区下三叠统北泗组含锰岩系地球化学特征及意义[J]. 地球化学, 2017, 46(01): 46-65 doi: 10.3969/j.issn.0379-1726.2017.01.005

    YI Fan, YI Haisheng. Geochemical characteristics of the Beisi formation manganese-bearing rocks of the Lower Triassic series in the Tiandeng area, Southwest Guangxi and their implications[J]. Geochemistry, 2017, 46 (01): 46-65. doi: 10.3969/j.issn.0379-1726.2017.01.005

    尹青. 桂西南地区下三叠统锰矿沉积特征与成因机理研究[D]. 成都: 成都理工大学, 2015.

    YIN Qing. Research on depositional feature and mineralization mechanism of manganese deposit of the lower triassic in Southwest Guangxi area[D]. Chengdu: Chengdu University of Technology, 2015.

    张雪亭, 杨生德, 王秉璋. 青海省板块构造研究[M]. 北京: 地质出版社, 2007

    ZHANG Xueting, YANG Shengde, WANG Bingzhang. Study on plate tectonics in Qinghai Province [M]. Beijing: Geological Publishing House, 2007.

    朱坤贺. 东昆仑造山带的俯冲与增生构造[J]. 江西科学, 2022, 40(02): 318-322 doi: 10.13990/j.issn1001-3679.2022.02.022

    ZHU Kunhe. Subduction and accretionary tectonics of the East Kunlun orogen[J]. Jiangxi Science and Technology, 2022, 40 (02): 318-322. doi: 10.13990/j.issn1001-3679.2022.02.022

    Adachi M, Yamamoto K, Sugiski R. Hydrothermal chert and associated siliceous rocks from the northern Pacific: Their geological significance as indication of ridge activity[J]. Sedimentary Geology, 1986, 47: 125-148. doi: 10.1016/0037-0738(86)90075-8

    Bostom K, Peterson M N A. Origin of aluminum poor ferromanganoan sediments in areas of high heat flow on the East Pacific rise[J]. Marine Geology, 1969, 7: 427-447. doi: 10.1016/0025-3227(69)90016-4

    Bostrom K, Kraemer T, Gartner S. Provenance and accumulation rates of opaling silica, Al, Ti, Fe, Mn, Cu, Ni and Co in Pacific pelagic sedimen-ts [J]. Chemical Geology, 1973, 11(2): 123-148. doi: 10.1016/0009-2541(73)90049-1

    Crerar D A, Namson J, Chyi M S. Manganiferous cherts of the Franciscan Assemblage. I. General geology, ancient and modern analogues, and implications for hydrothermal convection at oceanic spreading centers[J]. Deep Sea Research Part B, Oceanograghic Literature Review, 1982, 29(12): 771.

    Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1): 111-129.

    Taylor S R, Mclennan S M. The Continental Crust: Its Composition and Evolution[M]. Oxford: Blackwell Scientific Publications, 1985.

    Tribovillard N, Thomas J A, Lyons T. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1): 12-32.

    Tyson P D. Climatic change in Southern Africa : Past and present conditions and possible future scenarios[J]. Climatic change, 1991, 18: 241-258. doi: 10.1007/BF00139000

图(4)  /  表(3)
计量
  • 文章访问数:  174
  • HTML全文浏览量:  24
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-13
  • 修回日期:  2022-08-25
  • 网络出版日期:  2023-02-19
  • 刊出日期:  2024-04-19

目录

/

返回文章
返回