Geochemical Characteristics and Geological Significance of Granites in Eastern Songliao Basin
-
摘要:
笔者对松辽盆地东部与张广才岭西部含黑云母花岗岩进行LA–ICP–MS 测年和微量稀土元素地球化学分析,探究其成岩时代与成岩环境。样品锆石振荡生长环带明显,Th/U值较大,揭示其属于岩浆成因。锆石U–Pb测年测得年龄分别为(179.3±1.5) Ma和(177.5±1.4) Ma,属于早侏罗世末期。轻稀土元素分馏明显,重稀土元素无明显分馏,Eu、Ce元素具有正异常。样品形成于板块俯冲聚敛环境。该地区花岗岩在形成过程中主要受控于部分熔融作用,岩脉有地壳和地幔双重性,可能有地幔混染现象。通过统计大兴安岭、松辽盆地与张广才岭花岗岩年龄,发现张广才岭处花岗岩形成时期早于松辽盆地花岗岩形成时期,进一步验证前人推测古太平洋板块和蒙古–鄂霍茨克洋板块发生双俯冲+拆沉作用。
Abstract:LA–ICP–MS dating and trace REE geochemical analysis of biotite–bearing granites in the eastern part of Songliao basin and the western part of Zhangguangcai range are carried out to explore their diagenetic age and environment in this paper . The sample zircon oscillatory growth zone is obvious, and the Th/U ratio is big, indicating that it belongs to magmatic origin. The ages of zircon U–Pb dating are (179.3±1.5)Ma; (177.5±1.4)Ma, belonging to the end of Early Jurassic. Light rare earth elements have obvious fractionation, heavy rare earth elements have no obvious fractionation, and Eu and Ce elements have positive anomalies. The sample was formed in the subduction and accumulation environment of the plate. The formation of granites in the two regions is mainly controlled by partial melting. The two dikes have the duality of crust and mantle, may have mantle contamination. Based on the statistics of the ages of the granites in the Greater Khingan Mountains, Songliao basin and Zhangguangcai range, it is found that the granites in Zhangguangcai range were formed earlier than those in Songliao basin. Validate the previous speculation that the ancient Pacific plate and the Mongolia–Okhotsk ocean plate have double subduction and delamination.
-
Keywords:
- geochemistry /
- granite /
- U–Pb chronology /
- tectonic setting /
- Songliao basin
-
中国东北部所在板块的形成演化受古亚洲洋构造域、蒙古–鄂霍次克洋构造域和古太平洋构造域的影响和控制,古生代期间与中生代期间分别经历了古亚洲洋构造体系的演化、古太平洋构造体系和蒙古–鄂霍茨克洋构造体系的双重演化 (Sengor et al.,1993;Wu et al.,2011;孟恩等,2011;Xu et al.,2013;Feng et al.,2015),使得该区构造活动频繁,岩浆活动强烈。通过研究东北地区岩浆岩的形成机制有助于更好的认识三大构造域的构造关系,对大地构造的认识具有重要意义。对比分析前人研究成果,发现对于松辽盆地及其周围中生代岩浆岩的成因、来源的推测大致分为3种:①古太平洋板块俯冲模式。②幔柱模式。③蒙古–鄂霍茨克洋闭合及后碰撞造山模式(邵济安等,2001;Kravchinsky et al.,2002;Fan et al.,2003;Meng,2003;Tomurtogoo et al.,2005;Wang et al.,2006;隋振民等,2007;Zhang et al.,2008;Zhou et al.,2009;Ying et al.,2010;Wu et al.,2010;Dong et al.,2014;Shi et al.,2015)。但是主要受哪个构造模式的影响,还未有统一的定论。
近年来的研究强调花岗岩的多源物质混合成因,前人提出3种成因分类:壳源、幔源及壳幔混合。岩浆混合也成为了花岗岩成因机制之一(李宗怀等,2004;肖庆辉等,2007;程顺波等,2009)。研究该区花岗岩的成因可以更好的判断该区受何种构造模式的影响。笔者以松辽盆地东部与张广才岭西部早侏罗世花岗岩为研究对象,通过锆石 LA–ICP–MS 测年和微量稀土元素地球化学分析,研究花岗岩形成的年代学、源区特征与岩石成因。并统计东北地区大兴安岭、松辽盆地与张广才岭岩浆岩的形成时间,通过分析对比不同地区岩浆岩的形成时间,用于佐证前人提出的古太平洋板块与蒙古–鄂霍茨克洋板块双俯冲的模式,为确定大地构造关系提供新的证据。
1. 地质背景
中国东北地区处于一复合板块之上,该复合板块是在前中生代由多个微型板块拼合而成,位于西伯利亚、华北和太平洋三大板块所夹持的区域,并在中新生代时期,板块的东缘受到环太平洋板块拼贴和洋壳俯冲作用,北缘受到蒙古–鄂霍茨克洋缝合带俯冲–碰撞作用的多重影响(Sengor et al.,1993;Wu et al.,2011;孟恩等,2011;Xu et al.,2013;Feng et al.,2015)。
松辽盆地位于中国东北部,是世界上典型的大型中生代—新生代陆相沉积盆地(曹怀仁等,2017;张健等,2023;付秀丽等,2024)。松辽盆地为一近NE向、NNE向的菱形盆地,东西南北分别被张广才岭、大兴安岭、康平–法库山地、小兴安岭所包围。张广才岭属于长白山脉,可能是中国构造岩浆活动最复杂的巨型造山带,构造岩浆活动主要发生在华力西期与燕山期(李蓉等,2012;任永健等,2020)。研究区处于松辽盆地东部与张广才岭西部交汇处,区内在中生代时期发生过多期的岩浆侵入活动,且主要集中在早—中侏罗世,有强烈的岩浆活动,以酸性和中酸性岩浆为主,发育有较广的花岗岩(图1)。
图 1 中国东北部构造简图(a)、松辽盆地东部–张广才岭中生代岩浆岩分布图(b)(据任永健,2019修)Figure 1. (a) Structural diagram of northeast China and (b) distribution of mesozoic magmatic rocks in Zhangguangcai range, Eastern Songliao basin2. 采样与分析方法
样品S-SH-1采样位置尚志市绥化村公路旁,地理坐标为 E 127°55′33.91″,N 45°17′25.32″;样品H-D-3采样位置哈尔滨市阿城区大分水岭公路旁,地理坐标为 E127°16′25.7″,N 45°21′32.86″ (图1)。
锆石制靶及阴极发光(CL)图像拍摄工作:将岩石样品粉碎、淘洗、用电磁法分离,得到较高纯度的矿样,在双目镜下挑选晶形完好,裂痕较少或无裂痕,透明度较高且不含包裹体的锆石进行制靶,将其粘贴在树脂上,干燥后将表面打磨抛光,使用西北大学大陆动力学国家重点实验室中美国Gatan公司的Gatan MonoCL3+阴极荧光谱仪进行锆石阴极发光(CL)拍照。
锆石U–Pb年龄测定和微量、全岩稀土元素分析也在西北大学大陆动力学国家重点实验室进行。分析仪器为 LA–ICP–MS,其激光剥蚀系统为德国Coherent Lambda Physik公司的GeoLas pro, ICP–MS 为Agilent公司的 Agilent 7500a;Agilent 7500a等离子体质谱仪用于岩石微量元素分析,与紫外准分子激光剥蚀系统(澳大利亚ASI公司S155-LR)联用于锆石原位U–Pb定年。锆石U–Pb年龄测定详细的实验测试步骤可见参考文献(袁洪林等,2003)。微量、稀土元素采用ICP–MS分析,误差小于10%。详细的实验分析方法可见参考文献(刘颖等,1996;李冰等,2005)。
3. 花岗岩镜下特征
绥化村花岗岩(S-SH-1)岩性为含黑云母中细粒花岗岩。岩石为中细粒花岗结构,块状构造。岩石发蚀变弱。主要矿物:石英含量约为30%,呈他形粒状,正中突起,边部有微弱的溶蚀现象,主要为单晶石英,偶见多晶石英,部分石英呈碎屑粒状,部分可见与长石交生形成文象结构。条纹长石含量约为37%,短板状,表面浑浊,负低突起,条纹结构发育。斜长石含量约为15%,呈短柱状,部分表面较脏,负低突起,聚片双晶发育。微斜长石含量约为9%,半自形板状,表面浑浊,负低突起,格子状双晶发育,常见于石英交生形成及形成文象结构。次要矿物:黑云母含量约为6%,片状,浅褐–黄褐色多色性,正中突起,一组极完全解理。次生矿物:绢云母,为长石蚀变而来,细小鳞片状集合体。黏土矿物,长石发生泥化而生成。锆石含量约为1%,浅褐色,正极高突起,正延性(图2)。
阿城区花岗岩(H-D-3)岩性为含黑云母花岗岩。岩石为花岗结构,块状构造。岩石发生较弱蚀变,主要为部分斜长石绢云母化。主要矿物:石英含量约为28%,呈他形粒状,正中突起,干涉色一级灰白至一级淡黄,边部有微弱的溶蚀现象,部分石英呈碎屑粒状,部分可见与长石交生形成文象结构。斜长石含量约为15%,呈短柱状,部分表面较脏,负低突起,聚片双晶发育,发生较强泥化及绢云母化。条纹长石含量约为40%,呈短板状,表面浑浊,负低突起,条纹结构发育,可见与石英交生,部分发生泥化及绢云母化。微斜长石含量约为8%,呈半自形板状,表面浑浊,负低突起,格子状双晶发育,常见于石英交生形成及形成文象结构,部分沿裂隙发生泥化,绢云母化。次要矿物:黑云母含量约为6%,呈片状,浅褐–黄褐色多色性,正中突起,一组极完全解理,部分发生绿泥石化。次生矿物:绢云母为长石蚀变而来,细小鳞片状集合体。黏土矿物,长石发生泥化而生成。绿泥石,浅绿–深绿多色性。锆石含量约为1%,浅褐色,正极高突起,正延性(图3)。
4. 地球化学特征
4.1 岩石锆石年代学
绥化村花岗岩(S-SH-1)共选取25粒锆石进行U–Pb同位素测试,所选锆石多为无色和淡褐色,呈半透明–透明状,粒径为100~150 μm,长宽比大多为1∶1~1∶2 ,锆石颗粒普遍为自形长柱状。阿城区花岗岩(H-D-3)共选取30粒锆石进行U–Pb同位素测试,所选锆石多为无色,呈半透明–透明状,粒径为80~150 μm,长宽比大多为1∶1~1∶1.5,部分锆石颗粒破碎,晶型不完整,呈短柱状。
岩浆成因锆石具有振荡生长环带的特征,在CL图(图4、图5)中2件样品所选取的锆石均呈现明显的振荡生长环带,揭示为典型岩浆锆石。少部分锆石在透射光下可见裂缝。
通过测算样品锆石的Th/U值可以判断锆石的形成原因,通常来讲变质成因锆石Th/U值较小,一般为<0.1,岩浆成因锆石Th/U值较大,一般为<0.4(Rubatto et al.,2000;Möller et al.,2003;吴元保等,2004;俞胜等,2023)。绥化村花岗岩的25粒锆石中,锆石的Th/U值为0.40~1.12,其中只有点号S-SH-1-029样品的Th/U值为0.4,其余样品Th/U值均大于0.4,占比为96.0%(表1)。阿城区花岗岩的30粒锆石品中,锆石的Th/U值为0.39~1.09,其中只有点号H-D-3-021和H-D-3-030号样品的Th/U值小于等于0.4,其余样品Th/U值均大于0.4,占比为93.3%(表2)。由此,从Th/U值判断,样品中的锆石为岩浆成因,和所采样品为花岗岩判断吻合。
表 1 绥化村花岗岩(S-SH-1)样品锆石测年结果表Table 1. Zircon dating results of Suihuacun granite (S-SH-1) sample点号 U Th Pb Th/U 同位素比值 年龄(Ma) 谐和度 (10–6) 207Pb/206Pb ± 1σ 207Pb/235U ± 1σ 206Pb/238U ± 1σ 207Pb/206Pb ± 1σ 207Pb/235U ± 1σ 206Pb/238U ± 1σ S-SH-1-001 787.25 424.80 26.99 0.54 0.0507 0.0017 0.1937 0.0066 0.0277 0.0006 229.0 76.4 179.8 5.6 176.1 3.9 98% S-SH-1-002 610.16 332.24 21.39 0.54 0.0496 0.0015 0.1940 0.0060 0.0283 0.0006 178.3 69.0 180.0 5.1 180.2 3.9 100% S-SH-1-003 580.54 263.11 20.33 0.45 0.0475 0.0014 0.1899 0.0057 0.0290 0.0006 73.2 69.3 176.5 4.9 184.3 4.0 96% S-SH-1-004 693.84 366.37 24.10 0.53 0.0509 0.0014 0.1980 0.0057 0.0282 0.0006 235.1 63.0 183.4 4.8 179.4 3.9 98% S-SH-1-006 565.66 289.23 19.66 0.51 0.0526 0.0015 0.2042 0.0061 0.0281 0.0006 312.7 64.6 188.7 5.1 178.9 3.9 95% S-SH-1-007 773.82 869.86 30.92 1.12 0.0499 0.0014 0.1938 0.0054 0.0282 0.0006 188.0 61.8 179.9 4.6 179.3 3.8 100% S-SH-1-008 622.87 324.97 21.32 0.52 0.0513 0.0016 0.1956 0.0060 0.0277 0.0006 252.5 67.9 181.4 5.1 176.0 3.8 97% S-SH-1-009 774.11 380.43 27.58 0.49 0.0477 0.0019 0.1928 0.0077 0.0293 0.0007 85.6 92.8 179.0 6.6 186.0 4.1 96% S-SH-1-010 853.63 384.03 28.68 0.45 0.0498 0.0013 0.1907 0.0051 0.0278 0.0006 187.2 58.7 177.2 4.3 176.4 3.8 100% S-SH-1-012 696.59 405.52 24.14 0.58 0.0518 0.0016 0.1969 0.0061 0.0276 0.0006 277.0 68.4 182.5 5.2 175.2 3.8 96% S-SH-1-013 778.72 385.45 27.03 0.49 0.0514 0.0014 0.2009 0.0055 0.0283 0.0006 259.1 60.3 185.9 4.7 180.2 3.9 97% S-SH-1-014 573.68 313.01 19.27 0.55 0.0496 0.0018 0.1851 0.0068 0.0271 0.0006 177.6 83.3 172.4 5.9 172.0 3.8 100% S-SH-1-015 689.19 347.64 23.77 0.50 0.0487 0.0014 0.1882 0.0055 0.0280 0.0006 132.3 65.9 175.1 4.7 178.2 3.8 98% S-SH-1-016 739.51 448.71 26.93 0.61 0.0497 0.0014 0.1975 0.0056 0.0288 0.0006 182.0 63.1 183.0 4.7 183.1 3.9 100% S-SH-1-017 755.55 375.12 25.37 0.50 0.0518 0.0018 0.1950 0.0068 0.0273 0.0006 276.4 76.7 180.9 5.7 173.6 3.8 96% S-SH-1-018 647.84 378.09 23.37 0.58 0.0503 0.0015 0.1979 0.0060 0.0286 0.0006 207.1 67.1 183.4 5.1 181.5 3.9 99% S-SH-1-021 358.56 151.36 12.04 0.42 0.0537 0.0022 0.2043 0.0082 0.0276 0.0006 358.8 88.3 188.7 6.9 175.4 3.9 93% S-SH-1-022 420.38 229.11 14.75 0.55 0.0513 0.0017 0.1987 0.0068 0.0281 0.0006 253.2 76.1 184.1 5.8 178.7 3.9 97% S-SH-1-023 665.75 352.93 23.82 0.53 0.0528 0.0015 0.2080 0.0060 0.0286 0.0006 321.1 63.2 191.8 5.1 181.5 3.9 94% S-SH-1-024 504.33 254.67 18.24 0.50 0.0506 0.0016 0.2041 0.0064 0.0293 0.0006 221.4 70.2 188.6 5.4 186.0 4.0 99% S-SH-1-026 760.81 399.46 26.73 0.53 0.0490 0.0014 0.1912 0.0055 0.0283 0.0006 148.1 64.3 177.7 4.7 179.9 3.9 99% S-SH-1-027 961.29 525.01 33.85 0.55 0.0514 0.0014 0.1983 0.0054 0.0280 0.0006 260.5 59.4 183.7 4.6 177.8 3.8 97% S-SH-1-028 821.54 599.28 30.68 0.73 0.0503 0.0014 0.1986 0.0056 0.0287 0.0006 206.5 62.3 184.0 4.7 182.2 3.9 99% S-SH-1-029 657.00 262.17 22.56 0.40 0.0517 0.0015 0.2025 0.0060 0.0284 0.0006 273.5 64.7 187.3 5.0 180.5 3.9 96% S-SH-1-030 675.37 361.07 24.49 0.53 0.0522 0.0016 0.2081 0.0065 0.0289 0.0006 293.8 68.7 192.0 5.5 183.8 4.0 96% 表 2 阿城区花岗岩(H-D-3)样品锆石测年结果表Table 2. Zircon dating results of Acheng granite (H-D-3) samples点号 U Th Pb Th/U 同位素比值 年龄(Ma) 谐和度 (10–6) 207Pb/206Pb ± 1σ 207Pb/235U ± 1σ 206Pb/238U ± 1σ 207Pb/206Pb ± 1σ 207Pb/235U ± 1σ 206Pb/238U ± 1σ H-D-3-001 646.04 389.25 23.40 0.60 0.0494 0.0014 0.1943 0.0058 0.0285 0.0006 166.4 66.9 180.3 4.9 181.3 3.9 99% H-D-3-002 1111.21 1061.47 42.11 0.96 0.0496 0.0012 0.1863 0.0048 0.0273 0.0006 175.3 57.4 173.5 4.1 173.3 3.7 100% H-D-3-003 928.60 557.41 33.19 0.60 0.0488 0.0013 0.1899 0.0051 0.0282 0.0006 139.0 59.9 176.6 4.3 179.4 3.8 98% H-D-3-004 362.17 310.08 13.71 0.86 0.0513 0.0017 0.1977 0.0067 0.0280 0.0006 253.3 75.5 183.2 5.7 177.8 3.9 97% H-D-3-005 550.99 343.51 19.96 0.62 0.0492 0.0015 0.1916 0.0060 0.0283 0.0006 156.1 70.0 178.0 5.1 179.7 3.9 99% H-D-3-006 1028.47 1121.34 41.04 1.09 0.0497 0.0013 0.1915 0.0050 0.0280 0.0006 180.1 57.8 177.9 4.3 177.7 3.8 100% H-D-3-007 356.46 203.77 12.61 0.57 0.0496 0.0017 0.1930 0.0067 0.0282 0.0006 174.6 78.8 179.2 5.7 179.5 3.9 100% H-D-3-008 274.01 207.36 10.25 0.76 0.0551 0.0020 0.2143 0.0080 0.0282 0.0006 415.1 80.2 197.1 6.7 179.4 3.9 91% H-D-3-009 239.30 232.46 9.27 0.97 0.0557 0.0021 0.2132 0.0082 0.0278 0.0006 439.1 83.6 196.3 6.9 176.6 3.9 89% H-D-3-010 891.02 865.63 33.06 0.97 0.0495 0.0013 0.1834 0.0050 0.0269 0.0006 169.2 60.5 171.0 4.3 171.1 3.7 100% H-D-3-011 1172.31 603.72 40.81 0.51 0.0497 0.0013 0.1924 0.0051 0.0281 0.0006 179.3 59.0 178.7 4.4 178.6 3.8 100% H-D-3-012 843.67 543.12 30.29 0.64 0.0490 0.0013 0.1887 0.0052 0.0279 0.0006 148.6 61.7 175.5 4.4 177.5 3.8 99% H-D-3-013 557.34 511.28 21.26 0.92 0.0486 0.0015 0.1872 0.0058 0.0279 0.0006 128.1 69.9 174.2 4.9 177.6 3.8 98% H-D-3-014 239.55 206.64 9.19 0.86 0.0494 0.0020 0.1928 0.0078 0.0283 0.0006 165.8 91.6 179.0 6.6 180.0 4.0 99% H-D-3-015 282.14 220.97 10.09 0.78 0.0506 0.0020 0.1874 0.0073 0.0269 0.0006 223.8 87.0 174.4 6.2 170.8 3.8 98% H-D-3-016 907.67 725.05 33.38 0.80 0.0493 0.0013 0.1876 0.0050 0.0276 0.0006 161.6 59.9 174.6 4.3 175.6 3.7 99% H-D-3-017 1217.89 1012.25 45.95 0.83 0.0494 0.0012 0.1911 0.0050 0.0280 0.0006 168.0 57.8 177.6 4.2 178.3 3.8 100% H-D-3-018 397.75 307.89 14.57 0.77 0.0498 0.0017 0.1893 0.0064 0.0276 0.0006 184.0 76.2 176.0 5.5 175.4 3.8 100% H-D-3-019 544.42 578.29 21.87 1.06 0.0488 0.0015 0.1903 0.0058 0.0283 0.0006 136.3 69.0 176.9 5.0 179.9 3.9 98% H-D-3-020 469.44 305.12 16.52 0.65 0.0505 0.0016 0.1904 0.0061 0.0273 0.0006 218.0 71.1 176.9 5.2 173.9 3.8 98% H-D-3-021 1057.08 420.85 35.81 0.40 0.0496 0.0013 0.1917 0.0051 0.0280 0.0006 175.2 59.7 178.0 4.4 178.3 3.8 100% H-D-3-022 1015.52 724.53 37.34 0.71 0.0483 0.0013 0.1858 0.0049 0.0279 0.0006 115.1 59.7 173.1 4.2 177.3 3.8 98% H-D-3-023 586.65 407.74 21.28 0.70 0.0488 0.0014 0.1876 0.0056 0.0279 0.0006 139.6 67.6 174.5 4.8 177.1 3.8 99% H-D-3-024 249.08 206.93 9.64 0.83 0.0472 0.0021 0.1858 0.0082 0.0286 0.0007 57.9 102.5 173.0 7.0 181.5 4.1 95% H-D-3-025 542.70 423.44 20.14 0.78 0.0506 0.0015 0.1946 0.0059 0.0279 0.0006 223.1 67.2 180.5 5.0 177.3 3.8 98% H-D-3-026 384.09 364.24 15.02 0.95 0.0513 0.0017 0.1998 0.0068 0.0282 0.0006 255.5 75.6 184.9 5.7 179.4 3.9 97% H-D-3-027 427.61 348.41 16.21 0.81 0.0518 0.0017 0.1992 0.0066 0.0279 0.0006 276.5 72.9 184.5 5.6 177.4 3.8 96% H-D-3-028 1109.09 648.61 39.08 0.58 0.0495 0.0013 0.1887 0.0049 0.0276 0.0006 171.6 58.0 175.5 4.2 175.8 3.7 100% H-D-3-029 130.61 73.88 4.72 0.57 0.0467 0.0030 0.1832 0.0115 0.0284 0.0007 35.4 144.9 170.8 9.9 180.7 4.2 94% H-D-3-030 707.68 276.05 24.24 0.39 0.0507 0.0014 0.1979 0.0057 0.0283 0.0006 227.7 63.8 183.3 4.8 179.9 3.9 98% 绥化村花岗岩锆石206Pb/238U年龄为172.0~186.0 Ma。在U–Pb年龄谐和图(图6)中,投点均集中在谐和线上及其附近,206Pb/238U加权平均年龄为(179.3±1.5)Ma(n=25,MSWD = 0.88),代表绥化村花岗岩形成于早侏罗世末期。阿城区花岗岩处锆石206Pb/238U年龄为170.8~181.5 Ma,在U–Pb年龄谐和图(图7)中,投点均集中在谐和线上及其附近,206Pb/238U加权平均年龄为(177.5±1.4)Ma(n=30,MSWD = 0.51),代表阿城区花岗岩形成于早侏罗世末期(201.3±0.2~174.1±1.1 Ma)。
4.2 岩石地球化学特征
绥化村花岗岩的5个分析点中,其稀土元素总量为96.92×10-6~182.63×10-6,LREE/HREE值为11.96~25.07,平均为16.34。(La/Yb)N值为1.91~6.03,平均为3.29。(La/Sm)N值为1.31~2.29,平均为1.78。(Gd/Yb)N值为0.03~0.04,平均为0.04(表3)。阿城区花岗岩的5个分析点中,其稀土元素总量为52.08×10-6~113.38×10-6,LREE/HREE为4.61~8.32,平均为6.46。(La/Yb)N值为0.35~1.83,平均为1.07。(La/Sm)N值为0.24~1.85,平均为0.74。(Gd/Yb)N值为0.04~0.07,平均为0.06(表3)。
表 3 绥化村花岗岩(S-SH-1)与阿城区花岗岩(H-D-3)花岗岩微量与稀土元素(10–6)Table 3. Trace and rare earth elements of Suihuacun granite (S-SH-1) and Acheng granite (H-D-3) (10–6)元素 SH1 SH2 SH3 SH4 SH5 SH平 H1 H2 H3 H4 H5 H平 Ti 2.52 3.23 2.78 5.15 1.75 3.09 9.94 5.85 2.95 5.52 9.92 6.84 Fe 10.17 13.58 41.84 17.72 17.56 20.17 3.65 4.12 2.12 2.69 2.29 2.97 Zr 4898.00 4898.00 4898.00 4898.00 4898.00 4898.00 4898.00 4898.00 4898.00 4898.00 4898.00 4898.00 Nb 4.31 4.52 4.19 4.28 4.85 4.43 1.16 4.29 5.89 1.00 2.49 2.97 Hf 139.88 146.23 142.79 143.53 147.32 143.95 109.15 129.19 142.22 116.40 118.78 123.15 Ta 1.91 1.94 1.70 1.99 2.24 1.96 0.44 1.37 1.93 0.35 0.90 1.00 Pb 21.39 24.10 19.66 21.32 26.93 22.68 9.27 33.06 30.29 9.64 16.21 19.70 Th 332.24 366.37 289.23 324.97 448.71 352.30 232.46 865.63 543.12 206.93 348.41 439.31 U 610.16 693.84 565.66 622.87 739.51 646.41 239.30 891.02 843.67 249.08 427.61 530.14 Y 9.41 9.64 9.00 9.64 10.37 9.61 10.68 18.00 19.43 10.97 13.58 14.53 La 13.87 11.96 27.79 9.55 17.39 16.11 5.80 11.12 15.82 2.32 2.18 7.45 Ce 77.35 59.24 95.88 58.60 82.09 74.63 28.43 58.08 66.51 27.36 30.62 42.20 Pr 4.07 3.28 9.02 2.94 5.11 4.88 1.78 3.37 2.28 0.81 0.73 1.79 Nd 15.58 14.37 34.55 13.17 20.03 19.54 9.74 17.12 8.04 6.11 5.23 9.25 Sm 4.75 4.75 7.83 4.70 6.33 5.67 6.18 9.71 5.53 5.82 5.82 6.61 Eu 0.41 0.34 0.55 0.48 0.61 0.48 1.67 1.82 1.07 1.53 1.46 1.51 Gd 0.16 0.16 0.17 0.15 0.18 0.16 0.26 0.40 0.32 0.28 0.28 0.31 Tb 0.05 0.05 0.05 0.05 0.06 0.05 0.08 0.13 0.12 0.08 0.09 0.10 Dy 0.71 0.73 0.69 0.72 0.78 0.73 0.94 1.52 1.52 0.95 1.13 1.21 Ho 0.28 0.30 0.28 0.29 0.32 0.29 0.35 0.56 0.60 0.35 0.43 0.46 Er 1.54 1.56 1.47 1.56 1.69 1.56 1.69 2.71 3.01 1.73 2.12 2.25 Tm 0.36 0.35 0.34 0.36 0.39 0.36 0.36 0.57 0.65 0.37 0.47 0.48 Yb 3.55 3.45 3.30 3.58 3.89 3.56 3.56 5.21 6.21 3.60 4.53 4.62 Lu 0.74 0.73 0.70 0.76 0.83 0.75 0.77 1.08 1.29 0.76 0.94 0.97 ∑REE 123.42 101.28 182.63 96.92 139.70 128.79 61.59 113.38 112.95 52.08 56.02 79.21 LREE 116.03 93.94 175.62 89.44 131.56 121.32 53.60 101.22 99.25 43.95 46.04 68.81 HREE 7.39 7.34 7.01 7.48 8.14 7.47 7.99 12.16 13.70 8.13 9.99 10.40 LREE/HREE 15.70 12.80 25.07 11.96 16.16 16.34 6.71 8.32 7.24 5.41 4.61 6.46 δEu 1.46 1.18 1.46 1.75 1.76 1.52 4.03 2.84 2.45 3.64 3.49 3.29 δCe 2.52 2.32 1.48 2.71 2.14 2.23 2.17 2.33 2.72 4.90 5.97 3.62 La/Yb 2.80 2.48 6.03 1.91 3.21 3.29 1.17 1.53 1.83 0.46 0.35 1.07 La/Sm 1.89 1.63 2.29 1.31 1.77 1.78 0.61 0.74 1.85 0.26 0.24 0.74 Gd/Yb 0.04 0.04 0.04 0.03 0.04 0.04 0.06 0.06 0.04 0.07 0.05 0.06 在球粒陨石标准化稀土配分图(图8)中,两件样品稀土配分曲线近乎一致,均显示左倾特征,说明轻稀土元素(La~Eu)亏损而重稀土元素(Gd~Lu)富集。绥化村花岗岩Eu显示正异常,δEu值为1.18~1.76,平均为1.52。Ce显示为正异常,δCe值为1.48~2.71,平均为2.23。阿城区花岗岩Eu显示较小正异常,δEu值为2.45~4.03,平均为3.29。Ce显示为正异常,δCe值为2.17~5.97,平均为3.62。
球粒陨石数据标准化数据采用La:0.237,Ce:0.612,Pr:0.095,Nd:0.467,Sm:0.153,Eu:0.058,Gd:0.206,Tb:0.0374,Dy:0.254,Ho:0.057,Er:0.166,Tm:0.0255,Yb:0.17,Lu:0.025(Sun et al.,1989)。绥化村花岗岩与阿城区花岗岩球粒陨石标准化稀土配分图大致一样,反映了两处花岗岩属于同源岩浆演化的特征。
5. 讨论
5.1 岩体形成时代
绥化村花岗岩为含黑云母中细粒花岗岩,锆石Th/U值为0.40~1.12,U–Pb同位素测的年龄为(179.3±1.5)Ma,确定为早侏罗世末期,阿城区花岗岩为含黑云母花岗岩,锆石Th/U值为0.39~1.09,U–Pb同位素测的年龄为(177.5±1.4)Ma,确定为早侏罗世末期。
尚志市东部苇河花岗岩基东侧二长花岗岩年龄为(179±7)Ma(Wu et al.,2011);吉林中部老少沟花岗岩岩年龄为(173.6±1.1)Ma(钱烨等,2021);张广才岭北长岗花岗年龄为(173±2)Ma(冯光英等,2019);张广才岭南部帽儿山花岗岩形成于(176.4±1.1)~(180.0±1.8)Ma(赵越等,2021);吉林中部地区的白石山花岗岩年龄为182~190 Ma、舒兰花岗岩年龄为(190±2)Ma、石场屯花岗岩年龄为(184±2)Ma,张广才岭北部的虎峰花岗岩年龄为(191±3)Ma、延寿花岗岩年龄为(190±4)Ma、一面坡花岗岩年龄为(183±4)Ma(孙德有等,2005);小兴安岭南部伊春地区五三零花岗岩年龄为(180±2)Ma、南岔三林场花岗岩年龄为(175±3)Ma、寒月林场花岗岩年龄为(195±2)Ma(杨长江等,2010);张广才岭南段上营北花岗岩年龄为(178.9±2.7)Ma、帽儿山花岗岩年龄为(183.7±2.4)Ma(句高等,2018)。绥化村花岗岩、阿城区花岗岩采样点与前人所研究的区域相临近,可确定其侵入活动发育于早侏罗世,为早燕山期(李蓉等,2012)。
5.2 源区特征与岩体成因
在Nb–Y构造环境判别图解中,绥化村花岗岩岩脉样品与阿城区花岗岩岩脉样品均落入火山弧+同碰撞型花岗岩范围内(图9),揭示2处岩脉形成于板块俯冲聚敛环境(Pearce et al.,1984;Paterno et al.,2006;王得权等,2022)。
图 9 Nb–Y构造环境判别图(据Pearce et al.,1984)Figure 9. Discrimination map of Nb–Y tectonic environment前人研究表明,研究区及附近岩浆岩的成因主要有镁铁质熔体的结晶分异、壳幔混合和壳源物质的部分熔融3种(Champion et al.,1992;Richards,2011)。地幔部分熔融或者分离结晶作用形成的岩浆通常是基性或者中性的(Valley et al.,2005)。而花岗岩属于典型的酸性深成岩或酸性浅成岩。表明其岩浆源区不可能直接来自幔源岩浆部分熔融与分离结晶(骆念岗等,2021)。在排除岩浆作用的影响后,微量元素比值可以有效识别物质来源,地壳 Nb/Ta值、 Eu/Sm值、Sm/Nd值分别为 0~11、0.16~0.20、<0.3;地幔的这些比值分别为 17.5、0.03~0.23、0.26~0.38(Rudnick et al.,1995;刘大明等,2022)。绥化村花岗岩的 Nb/Ta 值为2.15~2.47(平均为2.27),显示壳源特征;而 Eu/Sm 值为 0.07~0.10(平均0.085)、 Sm/Nd 值为 0.23~0.36(平均为0.31),显示幔源特征,说明了可能有地幔混染现象。阿城区花岗岩花岗岩石的 Nb/Ta 值为2.78~3.14(平均为2.89),显示壳源特征;而 Eu/Sm 值为 0.19~0.27(平均0.23)、 Sm/Nd 值 为0.57~1.11(平均为0.79),显示幔源特征,说明了可能有地幔混染现象。
Zr/Hf值的地壳值为33.0(Taylor et al.,1985);原始地幔值为37.0(Sun et al.,1989)。绥化村花岗岩和阿城区花岗岩分别为33.25~35.02和34.44~44.88,平均值为34.04和40.11。绥化村花岗岩的Zr/Hf值均更为接近地壳组成,而阿城区花岗岩的Zr/Hf值均更为接近地幔组成。
Th/U值的地壳值为6.00,地幔值为4.05(Allègre et al.,1978;Taylor et al.,1985;Sun et al., 1989;Defant et al.,1990;Rudnick et al.,2003;骆念岗等,2021)。绥化村花岗岩Th/U值为0.40~1.12,平均值为0.55;阿城区花岗岩Th/U值为0.39~1.09,平均值为0.75,说明可能有地幔混染现象。
La/Sm–La判别图解(图10) 显示,两地区花岗岩在形成过程中主要受控于部分熔融作用(Sun et al.,1989)。
绥化村花岗岩岩体偏低的 La(平均16.11×10−6)与较低的 La/Sm 值(平均2.75),以及两者之间呈现明显的正相关特征(图10),指示岩体在形成过程中部分熔融起主导作用。阿城区花岗岩岩体偏低的 La(平均7.45×10−6)与较低的 La/Sm 值(平均1.14),以及两者之间呈现明显的正相关特征(图10),指示岩体在形成过程中部分熔融起主导作用(Rudnick et al.,1995;刘大明等,2022)。
5.3 东北地区花岗岩年龄对比
通过汇总统计前人对中国东北地区花岗岩的测年数据(图11),松辽盆地花岗岩形成时期主要以晚三叠世及以后为主,主要形成于燕山运动期;大兴安岭地区花岗岩形成时期集中在早白垩世;张广才岭花岗岩形成时期主要以早侏罗世及以前为主。总体来看,张广才岭处花岗岩形成时期较松辽盆地花岗岩形成时期早。
东北地区中生代火山岩作用与古太平洋板块俯冲和蒙古-鄂霍茨克洋俯冲、拆沉作用有关,两个大洋岩石圈俯冲在一起(图12),洋壳俯冲到陆壳之下,斜向下插入到地幔中,洋壳持续受热升温,在达到一定深度后,洋壳上层岩石中熔点较低的沉积物率先发生部分熔融,伴随着上覆岩石圈板块也发生部分熔融,便会可能形成具有地壳、地幔双重性的岩浆,岩浆向上侵入,进而引发火山活动。岩浆形成的位置由海沟向大陆方向呈倾斜延伸排列,火山活动发生的时间由陆壳边缘向陆壳内陆推迟(舒良树,2010;唐杰等,2018;杨雅军等,2022)。
图 12 古太平洋板块俯冲和蒙古-鄂霍茨克洋版块俯冲、拆沉作用模式图(据杨雅军等,2022修)Figure 12. Models of subduction of the Paleo-Pacific plate and subduction and subsidence in the Mongolia-Okhotsk ocean plate蒙古–鄂霍茨克洋板块在消减带向下俯冲时,玄武岩洋壳由绿片岩相经角闪岩相转变为榴辉岩相,榴辉岩相的密度大,甚至超过软流圈地幔,因此,产生一个向下的拉力。当俯冲到最后,洋壳消失殆尽,发生陆陆碰撞。陆壳由于密度低,产生一个向上的浮力,而大洋岩在圈板块仍然向下运动,此时,在大陆根部容易产生拉断,大洋岩石圈即被拆沉进人地幔,拆沉后留下的空间被热的软流圈地幔冲填,加热下地壳底部,使共发生部分熔融,形成大量的中酸性岩浆,陆壳也由于受热而随之抬升(张旗等,2006;舒良树,2010;唐杰等,2018;杨雅军等,2022)。松辽盆地火山岩高场强元素Nb、Ta亏损程度相对较弱,其位于板内火山岩带,而张广才岭与大兴安岭地区火山岩位于火山弧同碰撞带。
6. 结论
(1)松辽盆地东部地区尚志市绥化村处花岗岩为含黑云母中细粒花岗岩,年龄为(179.3±1.5)Ma;松辽盆地东部地区哈尔滨市阿城区处花岗岩为含黑云母花岗岩,测得年龄为(177.5±1.4)Ma,皆为早侏罗世末期。
(2)尚志市绥化村处花岗岩脉与哈尔滨市阿城区处花岗岩脉样品均属于火山弧+同碰撞型花岗岩,该岩脉形成于板块俯冲聚敛环境。两地区花岗岩形成过程中主要受控于部分熔融作用。两处岩脉有地壳和地幔双重性,可能有地幔混染现象。
(3)张广才岭处与大兴安岭地区花岗岩形成时期较松辽盆地花岗岩形成时期早。岩浆形成的位置由海沟向大陆方向呈倾斜延伸排列,火山活动发生的时间由陆壳边缘向陆壳内陆推迟。松辽盆地火山岩位于板内火山岩带,而张广才岭与大兴安岭地区火山岩位于火山弧+同碰撞带。中国东北部板块与古太平洋版块、蒙古-鄂霍茨克洋板块发生双俯冲+拆沉作用。
-
图 1 中国东北部构造简图(a)、松辽盆地东部–张广才岭中生代岩浆岩分布图(b)(据任永健,2019修)
Figure 1. (a) Structural diagram of northeast China and (b) distribution of mesozoic magmatic rocks in Zhangguangcai range, Eastern Songliao basin
图 9 Nb–Y构造环境判别图(据Pearce et al.,1984)
Figure 9. Discrimination map of Nb–Y tectonic environment
图 12 古太平洋板块俯冲和蒙古-鄂霍茨克洋版块俯冲、拆沉作用模式图(据杨雅军等,2022修)
Figure 12. Models of subduction of the Paleo-Pacific plate and subduction and subsidence in the Mongolia-Okhotsk ocean plate
表 1 绥化村花岗岩(S-SH-1)样品锆石测年结果表
Table 1 Zircon dating results of Suihuacun granite (S-SH-1) sample
点号 U Th Pb Th/U 同位素比值 年龄(Ma) 谐和度 (10–6) 207Pb/206Pb ± 1σ 207Pb/235U ± 1σ 206Pb/238U ± 1σ 207Pb/206Pb ± 1σ 207Pb/235U ± 1σ 206Pb/238U ± 1σ S-SH-1-001 787.25 424.80 26.99 0.54 0.0507 0.0017 0.1937 0.0066 0.0277 0.0006 229.0 76.4 179.8 5.6 176.1 3.9 98% S-SH-1-002 610.16 332.24 21.39 0.54 0.0496 0.0015 0.1940 0.0060 0.0283 0.0006 178.3 69.0 180.0 5.1 180.2 3.9 100% S-SH-1-003 580.54 263.11 20.33 0.45 0.0475 0.0014 0.1899 0.0057 0.0290 0.0006 73.2 69.3 176.5 4.9 184.3 4.0 96% S-SH-1-004 693.84 366.37 24.10 0.53 0.0509 0.0014 0.1980 0.0057 0.0282 0.0006 235.1 63.0 183.4 4.8 179.4 3.9 98% S-SH-1-006 565.66 289.23 19.66 0.51 0.0526 0.0015 0.2042 0.0061 0.0281 0.0006 312.7 64.6 188.7 5.1 178.9 3.9 95% S-SH-1-007 773.82 869.86 30.92 1.12 0.0499 0.0014 0.1938 0.0054 0.0282 0.0006 188.0 61.8 179.9 4.6 179.3 3.8 100% S-SH-1-008 622.87 324.97 21.32 0.52 0.0513 0.0016 0.1956 0.0060 0.0277 0.0006 252.5 67.9 181.4 5.1 176.0 3.8 97% S-SH-1-009 774.11 380.43 27.58 0.49 0.0477 0.0019 0.1928 0.0077 0.0293 0.0007 85.6 92.8 179.0 6.6 186.0 4.1 96% S-SH-1-010 853.63 384.03 28.68 0.45 0.0498 0.0013 0.1907 0.0051 0.0278 0.0006 187.2 58.7 177.2 4.3 176.4 3.8 100% S-SH-1-012 696.59 405.52 24.14 0.58 0.0518 0.0016 0.1969 0.0061 0.0276 0.0006 277.0 68.4 182.5 5.2 175.2 3.8 96% S-SH-1-013 778.72 385.45 27.03 0.49 0.0514 0.0014 0.2009 0.0055 0.0283 0.0006 259.1 60.3 185.9 4.7 180.2 3.9 97% S-SH-1-014 573.68 313.01 19.27 0.55 0.0496 0.0018 0.1851 0.0068 0.0271 0.0006 177.6 83.3 172.4 5.9 172.0 3.8 100% S-SH-1-015 689.19 347.64 23.77 0.50 0.0487 0.0014 0.1882 0.0055 0.0280 0.0006 132.3 65.9 175.1 4.7 178.2 3.8 98% S-SH-1-016 739.51 448.71 26.93 0.61 0.0497 0.0014 0.1975 0.0056 0.0288 0.0006 182.0 63.1 183.0 4.7 183.1 3.9 100% S-SH-1-017 755.55 375.12 25.37 0.50 0.0518 0.0018 0.1950 0.0068 0.0273 0.0006 276.4 76.7 180.9 5.7 173.6 3.8 96% S-SH-1-018 647.84 378.09 23.37 0.58 0.0503 0.0015 0.1979 0.0060 0.0286 0.0006 207.1 67.1 183.4 5.1 181.5 3.9 99% S-SH-1-021 358.56 151.36 12.04 0.42 0.0537 0.0022 0.2043 0.0082 0.0276 0.0006 358.8 88.3 188.7 6.9 175.4 3.9 93% S-SH-1-022 420.38 229.11 14.75 0.55 0.0513 0.0017 0.1987 0.0068 0.0281 0.0006 253.2 76.1 184.1 5.8 178.7 3.9 97% S-SH-1-023 665.75 352.93 23.82 0.53 0.0528 0.0015 0.2080 0.0060 0.0286 0.0006 321.1 63.2 191.8 5.1 181.5 3.9 94% S-SH-1-024 504.33 254.67 18.24 0.50 0.0506 0.0016 0.2041 0.0064 0.0293 0.0006 221.4 70.2 188.6 5.4 186.0 4.0 99% S-SH-1-026 760.81 399.46 26.73 0.53 0.0490 0.0014 0.1912 0.0055 0.0283 0.0006 148.1 64.3 177.7 4.7 179.9 3.9 99% S-SH-1-027 961.29 525.01 33.85 0.55 0.0514 0.0014 0.1983 0.0054 0.0280 0.0006 260.5 59.4 183.7 4.6 177.8 3.8 97% S-SH-1-028 821.54 599.28 30.68 0.73 0.0503 0.0014 0.1986 0.0056 0.0287 0.0006 206.5 62.3 184.0 4.7 182.2 3.9 99% S-SH-1-029 657.00 262.17 22.56 0.40 0.0517 0.0015 0.2025 0.0060 0.0284 0.0006 273.5 64.7 187.3 5.0 180.5 3.9 96% S-SH-1-030 675.37 361.07 24.49 0.53 0.0522 0.0016 0.2081 0.0065 0.0289 0.0006 293.8 68.7 192.0 5.5 183.8 4.0 96% 表 2 阿城区花岗岩(H-D-3)样品锆石测年结果表
Table 2 Zircon dating results of Acheng granite (H-D-3) samples
点号 U Th Pb Th/U 同位素比值 年龄(Ma) 谐和度 (10–6) 207Pb/206Pb ± 1σ 207Pb/235U ± 1σ 206Pb/238U ± 1σ 207Pb/206Pb ± 1σ 207Pb/235U ± 1σ 206Pb/238U ± 1σ H-D-3-001 646.04 389.25 23.40 0.60 0.0494 0.0014 0.1943 0.0058 0.0285 0.0006 166.4 66.9 180.3 4.9 181.3 3.9 99% H-D-3-002 1111.21 1061.47 42.11 0.96 0.0496 0.0012 0.1863 0.0048 0.0273 0.0006 175.3 57.4 173.5 4.1 173.3 3.7 100% H-D-3-003 928.60 557.41 33.19 0.60 0.0488 0.0013 0.1899 0.0051 0.0282 0.0006 139.0 59.9 176.6 4.3 179.4 3.8 98% H-D-3-004 362.17 310.08 13.71 0.86 0.0513 0.0017 0.1977 0.0067 0.0280 0.0006 253.3 75.5 183.2 5.7 177.8 3.9 97% H-D-3-005 550.99 343.51 19.96 0.62 0.0492 0.0015 0.1916 0.0060 0.0283 0.0006 156.1 70.0 178.0 5.1 179.7 3.9 99% H-D-3-006 1028.47 1121.34 41.04 1.09 0.0497 0.0013 0.1915 0.0050 0.0280 0.0006 180.1 57.8 177.9 4.3 177.7 3.8 100% H-D-3-007 356.46 203.77 12.61 0.57 0.0496 0.0017 0.1930 0.0067 0.0282 0.0006 174.6 78.8 179.2 5.7 179.5 3.9 100% H-D-3-008 274.01 207.36 10.25 0.76 0.0551 0.0020 0.2143 0.0080 0.0282 0.0006 415.1 80.2 197.1 6.7 179.4 3.9 91% H-D-3-009 239.30 232.46 9.27 0.97 0.0557 0.0021 0.2132 0.0082 0.0278 0.0006 439.1 83.6 196.3 6.9 176.6 3.9 89% H-D-3-010 891.02 865.63 33.06 0.97 0.0495 0.0013 0.1834 0.0050 0.0269 0.0006 169.2 60.5 171.0 4.3 171.1 3.7 100% H-D-3-011 1172.31 603.72 40.81 0.51 0.0497 0.0013 0.1924 0.0051 0.0281 0.0006 179.3 59.0 178.7 4.4 178.6 3.8 100% H-D-3-012 843.67 543.12 30.29 0.64 0.0490 0.0013 0.1887 0.0052 0.0279 0.0006 148.6 61.7 175.5 4.4 177.5 3.8 99% H-D-3-013 557.34 511.28 21.26 0.92 0.0486 0.0015 0.1872 0.0058 0.0279 0.0006 128.1 69.9 174.2 4.9 177.6 3.8 98% H-D-3-014 239.55 206.64 9.19 0.86 0.0494 0.0020 0.1928 0.0078 0.0283 0.0006 165.8 91.6 179.0 6.6 180.0 4.0 99% H-D-3-015 282.14 220.97 10.09 0.78 0.0506 0.0020 0.1874 0.0073 0.0269 0.0006 223.8 87.0 174.4 6.2 170.8 3.8 98% H-D-3-016 907.67 725.05 33.38 0.80 0.0493 0.0013 0.1876 0.0050 0.0276 0.0006 161.6 59.9 174.6 4.3 175.6 3.7 99% H-D-3-017 1217.89 1012.25 45.95 0.83 0.0494 0.0012 0.1911 0.0050 0.0280 0.0006 168.0 57.8 177.6 4.2 178.3 3.8 100% H-D-3-018 397.75 307.89 14.57 0.77 0.0498 0.0017 0.1893 0.0064 0.0276 0.0006 184.0 76.2 176.0 5.5 175.4 3.8 100% H-D-3-019 544.42 578.29 21.87 1.06 0.0488 0.0015 0.1903 0.0058 0.0283 0.0006 136.3 69.0 176.9 5.0 179.9 3.9 98% H-D-3-020 469.44 305.12 16.52 0.65 0.0505 0.0016 0.1904 0.0061 0.0273 0.0006 218.0 71.1 176.9 5.2 173.9 3.8 98% H-D-3-021 1057.08 420.85 35.81 0.40 0.0496 0.0013 0.1917 0.0051 0.0280 0.0006 175.2 59.7 178.0 4.4 178.3 3.8 100% H-D-3-022 1015.52 724.53 37.34 0.71 0.0483 0.0013 0.1858 0.0049 0.0279 0.0006 115.1 59.7 173.1 4.2 177.3 3.8 98% H-D-3-023 586.65 407.74 21.28 0.70 0.0488 0.0014 0.1876 0.0056 0.0279 0.0006 139.6 67.6 174.5 4.8 177.1 3.8 99% H-D-3-024 249.08 206.93 9.64 0.83 0.0472 0.0021 0.1858 0.0082 0.0286 0.0007 57.9 102.5 173.0 7.0 181.5 4.1 95% H-D-3-025 542.70 423.44 20.14 0.78 0.0506 0.0015 0.1946 0.0059 0.0279 0.0006 223.1 67.2 180.5 5.0 177.3 3.8 98% H-D-3-026 384.09 364.24 15.02 0.95 0.0513 0.0017 0.1998 0.0068 0.0282 0.0006 255.5 75.6 184.9 5.7 179.4 3.9 97% H-D-3-027 427.61 348.41 16.21 0.81 0.0518 0.0017 0.1992 0.0066 0.0279 0.0006 276.5 72.9 184.5 5.6 177.4 3.8 96% H-D-3-028 1109.09 648.61 39.08 0.58 0.0495 0.0013 0.1887 0.0049 0.0276 0.0006 171.6 58.0 175.5 4.2 175.8 3.7 100% H-D-3-029 130.61 73.88 4.72 0.57 0.0467 0.0030 0.1832 0.0115 0.0284 0.0007 35.4 144.9 170.8 9.9 180.7 4.2 94% H-D-3-030 707.68 276.05 24.24 0.39 0.0507 0.0014 0.1979 0.0057 0.0283 0.0006 227.7 63.8 183.3 4.8 179.9 3.9 98% 表 3 绥化村花岗岩(S-SH-1)与阿城区花岗岩(H-D-3)花岗岩微量与稀土元素(10–6)
Table 3 Trace and rare earth elements of Suihuacun granite (S-SH-1) and Acheng granite (H-D-3) (10–6)
元素 SH1 SH2 SH3 SH4 SH5 SH平 H1 H2 H3 H4 H5 H平 Ti 2.52 3.23 2.78 5.15 1.75 3.09 9.94 5.85 2.95 5.52 9.92 6.84 Fe 10.17 13.58 41.84 17.72 17.56 20.17 3.65 4.12 2.12 2.69 2.29 2.97 Zr 4898.00 4898.00 4898.00 4898.00 4898.00 4898.00 4898.00 4898.00 4898.00 4898.00 4898.00 4898.00 Nb 4.31 4.52 4.19 4.28 4.85 4.43 1.16 4.29 5.89 1.00 2.49 2.97 Hf 139.88 146.23 142.79 143.53 147.32 143.95 109.15 129.19 142.22 116.40 118.78 123.15 Ta 1.91 1.94 1.70 1.99 2.24 1.96 0.44 1.37 1.93 0.35 0.90 1.00 Pb 21.39 24.10 19.66 21.32 26.93 22.68 9.27 33.06 30.29 9.64 16.21 19.70 Th 332.24 366.37 289.23 324.97 448.71 352.30 232.46 865.63 543.12 206.93 348.41 439.31 U 610.16 693.84 565.66 622.87 739.51 646.41 239.30 891.02 843.67 249.08 427.61 530.14 Y 9.41 9.64 9.00 9.64 10.37 9.61 10.68 18.00 19.43 10.97 13.58 14.53 La 13.87 11.96 27.79 9.55 17.39 16.11 5.80 11.12 15.82 2.32 2.18 7.45 Ce 77.35 59.24 95.88 58.60 82.09 74.63 28.43 58.08 66.51 27.36 30.62 42.20 Pr 4.07 3.28 9.02 2.94 5.11 4.88 1.78 3.37 2.28 0.81 0.73 1.79 Nd 15.58 14.37 34.55 13.17 20.03 19.54 9.74 17.12 8.04 6.11 5.23 9.25 Sm 4.75 4.75 7.83 4.70 6.33 5.67 6.18 9.71 5.53 5.82 5.82 6.61 Eu 0.41 0.34 0.55 0.48 0.61 0.48 1.67 1.82 1.07 1.53 1.46 1.51 Gd 0.16 0.16 0.17 0.15 0.18 0.16 0.26 0.40 0.32 0.28 0.28 0.31 Tb 0.05 0.05 0.05 0.05 0.06 0.05 0.08 0.13 0.12 0.08 0.09 0.10 Dy 0.71 0.73 0.69 0.72 0.78 0.73 0.94 1.52 1.52 0.95 1.13 1.21 Ho 0.28 0.30 0.28 0.29 0.32 0.29 0.35 0.56 0.60 0.35 0.43 0.46 Er 1.54 1.56 1.47 1.56 1.69 1.56 1.69 2.71 3.01 1.73 2.12 2.25 Tm 0.36 0.35 0.34 0.36 0.39 0.36 0.36 0.57 0.65 0.37 0.47 0.48 Yb 3.55 3.45 3.30 3.58 3.89 3.56 3.56 5.21 6.21 3.60 4.53 4.62 Lu 0.74 0.73 0.70 0.76 0.83 0.75 0.77 1.08 1.29 0.76 0.94 0.97 ∑REE 123.42 101.28 182.63 96.92 139.70 128.79 61.59 113.38 112.95 52.08 56.02 79.21 LREE 116.03 93.94 175.62 89.44 131.56 121.32 53.60 101.22 99.25 43.95 46.04 68.81 HREE 7.39 7.34 7.01 7.48 8.14 7.47 7.99 12.16 13.70 8.13 9.99 10.40 LREE/HREE 15.70 12.80 25.07 11.96 16.16 16.34 6.71 8.32 7.24 5.41 4.61 6.46 δEu 1.46 1.18 1.46 1.75 1.76 1.52 4.03 2.84 2.45 3.64 3.49 3.29 δCe 2.52 2.32 1.48 2.71 2.14 2.23 2.17 2.33 2.72 4.90 5.97 3.62 La/Yb 2.80 2.48 6.03 1.91 3.21 3.29 1.17 1.53 1.83 0.46 0.35 1.07 La/Sm 1.89 1.63 2.29 1.31 1.77 1.78 0.61 0.74 1.85 0.26 0.24 0.74 Gd/Yb 0.04 0.04 0.04 0.03 0.04 0.04 0.06 0.06 0.04 0.07 0.05 0.06 -
曹怀仁, 胡建芳, 彭平安, 等. 松辽盆地青山口组二段下部湖泊水体环境变化[J]. 地学前缘, 2017, 24(01): 205-215 CAO Huairen, HU Jianfang, PENG Ping’an, et al. Environmental change of lake water in the lower part of Qingshankou Formation II in Songliao Basin [J]. Geoscience Front, 2017, 24 (01): 205-215.
程顺波, 付建明, 徐德明, 等. 湖南雪花顶花岗岩及其包体的地质地球化学特征和成因分析[J]. 大地构造与成矿学, 2009, 33(04): 588-597 doi: 10.3969/j.issn.1001-1552.2009.04.013 CHENG Shunbo, FU Jianming, XU Deming, et al. Geological and geochemical characteristics and genetic analysis of Xuehuading granite and its xenoliths in Hunan [J]. Geotectonics and Metallogeny, 2009, 33 (04): 588-597. doi: 10.3969/j.issn.1001-1552.2009.04.013
冯光英, 牛晓露, 刘飞, 等. 张广才岭地块早侏罗世晚期花岗闪长岩及其闪长质包体的岩石成因及构造意义[J]. 地质学报, 2019, 93(10): 2598-2616 doi: 10.3969/j.issn.0001-5717.2019.10.014 FENG Guangying, NIU Xiaolu, LIU Fei, et al. Petrogenesis and tectonic significance of late Early Jurassic granodiorites and dioritic inclusions in the Zhangguangcailing block [J]. Journal of Geology, 2019, 93 (10): 2598-2616. doi: 10.3969/j.issn.0001-5717.2019.10.014
付秀丽, 蒙启安, 文政, 等. 松辽盆地白云岩沉积环境及成因机理[J]. 沉积学报, 2024, 42(1): 113−129. FU Xiuli, MENG Qi’an, WEN Zheng, et al. Sedimentary environment and genetic mechanism of dolomite in Songliao Basin [J]. Acta Sedimentologica Sinica, 2024, 42(1):113−129
句高, 梁一鸿, 孙晓, 等. 张广才岭南段两个侏罗纪花岗岩体的地球化学特征及其地质意义[J]. 世界地质, 2018, 37(02): 374-384 GU Gao, LIANG Yihong, SUN Xiao, et al. Geochemical characteristics and geological significance of two Jurassic granites in the southern section of the Zhangguangcai Ridge [J]. World Geology, 2018, 37 (02): 374-384
李冰, 杨红霞. 电感耦合等离子体质谱原理和应用[M]. 北京: 地质出版社, 2005. 李蓉, 孙德有, 苟军, 等. 张广才岭北部苇河花岗岩基的地球化学特征与岩石成因[J]. 世界地质, 2012, 31(03): 462-470 LI Rong, SUN Deyou, GOU Jun, et al. Geochemical characteristics and petrogenesis of the Weihe granite batholith in the north of Zhang Guangcai Ling [J]. World Geology, 2012, 31 (03): 462-470
李宗怀, 韩宝福, 李辛子, 等. 新疆准噶尔地区花岗岩中微粒闪长质包体特征及后碰撞花岗质岩浆起源和演化[J]. 岩石矿物学杂志, 2004,24(3): 214-226 doi: 10.3969/j.issn.1000-6524.2004.03.003 LI Zonghuai, HAN Baofu, LI Xinzi, et al. Characteristics of micro-diorite xenoliths and origin and evolution of post-collisional granitic magma in granites in Junggar, Xinjiang [J]. Journal of Rock Mineralogy, 2004,23 (3): 214-226 doi: 10.3969/j.issn.1000-6524.2004.03.003
刘大明, 肖渊甫, 李宁, 等. 松潘—甘孜造山带北部达日泽龙花岗岩体地球化学、年代学及构造意义[J]. 矿物学报, 2022, 42(03): 270-284. LIU Daming, XIAO Yuanfu, LI Ning, et al. Geochemistry, chronology and tectonic significance of the Darizelong granite body in the northern Songpan-Ganzi orogenic belt [J]. Journal of Minerals, 2022, 42 (03): 270-284.
刘颖, 刘海臣, 李献华. 用ICP-MS准确测定岩石样品中的40余种微量元素[J]. 地球化学, 1996(06): 552-558 doi: 10.3321/j.issn:0379-1726.1996.06.004 LIU Ying, LIU Haichen, LI Xianhua. Accurate determination of more than 40 trace elements in rock samples by ICP-MS [J]. Geochemistry, 1996 (06): 552-558. doi: 10.3321/j.issn:0379-1726.1996.06.004
骆念岗, 高莲凤, 张璟, 等. 大兴安岭北段宜里地区早侏罗世二长花岗岩U-Pb年龄、地球化学特征及其构造意义[J]. 地质论评, 2021, 67(06): 1649-1669 LUO Niangang, GAO Lianfeng, ZHANG Jing, et al. U-Pb age, geochemical characteristics and tectonic significance of the early Jurassic monzogranite in the Yili area of the northern section of the Great Hinggan Mountains [J]. Geological Review, 2021, 67 (06): 1649-1669.
孟恩, 许文良, 杨德彬, 等. 满洲里地区灵泉盆地中生代火山岩的锆石U-Pb年代学、地球化学及其地质意义[J]. 岩石学报, 2011, 27(04): 1209-1226 MENG En, XU Wenliang, YANG Debin, et al. Zircon U-Pb chronology, geochemistry and geological significance of the Mesozoic volcanic rocks in the Lingquan Basin in the Manzhouli region [J]. Acta Petrologica Sinica, 2011, 27 (04): 1209-1226
钱烨, 赵昌吉, 张涛, 等. 吉林中部早侏罗世A型花岗岩的地球化学特征及地质意义[J]. 黑龙江科技大学学报, 2021, 31(05): 562-568+577 doi: 10.3969/j.issn.2095-7262.2021.05.005 QIAN Ye, ZHAO Changji, ZHANG Tao, et al. Geochemical characteristics and geological significance of the early Jurassic A-type granite in central Jilin [J]. Journal of Heilongjiang University of Science and Technology, 2021, 31 (05): 562-568+577 doi: 10.3969/j.issn.2095-7262.2021.05.005
任永健, 程烁, 张明明, 等. 黑龙江张家湾地区中侏罗世A型花岗岩地球化学特征及构造环境分析[J]. 现代地质, 2020, 34(05): 1067-1076 REN Yongjian, CHENG Shuo, ZHANG Mingming, et al. Geochemical characteristics and tectonic environment analysis of the Middle Jurassic A-type granite in Zhangjiawan area, Heilongjiang Province [J]. Modern Geology, 2020, 34 (05): 1067-1076.
任永健. 张广才岭南部早—中侏罗世花岗质岩浆作用及构造演化[J]. 地质学报, 2019, 93(11): 2813-2831 REN Yongjian. Early to Middle Jurassic granitic magmatism and tectonic evolution in the south of Zhang Guangcai Ling [J]. Journal of Geology, 2019, 93 (11): 2813-2831.
邵济安, 刘福田, 陈辉, 等. 大兴安岭—燕山晚中生代岩浆活动与俯冲作用关系[J]. 地质学报, 2001(01): 56-63 SHAO Ji'an, LIU Futian, CHEN Hui, et al. The relationship between late Mesozoic magmatism and subduction in the Greater Khingan-Yanshan Mountains [J]. Journal of Geology, 2001 (01): 56-63
舒良树. 普通地质学(第三版)[M]. 北京: 地质出版社, 2010. 隋振民, 葛文春, 吴福元, 等. 大兴安岭东北部侏罗纪花岗质岩石的锆石U-Pb年龄、地球化学特征及成因[J]. 岩石学报, 2007(02): 461-480 SUI Zhenmin, GE Wenchun, WU Fuyuan, et al. Zircon U-Pb age, geochemical characteristics and genesis of Jurassic granitic rocks in the northeast of the Great Hinggan Mountains [J]. Acta Petrologica Sinica, 2007 (02): 461-480
孙德有, 吴福元, 高山, 等. 吉林中部晚三叠世和早侏罗世两期铝质A型花岗岩的厘定及对吉黑东部构造格局的制约[J]. 地学前缘, 2005(02): 263-275 SUN Deyou, WU Fuyuan, GAO Shan, et al. Determination of the late Triassic and early Jurassic aluminous A-type granites in central Jilin and their constraints on the tectonic framework in the eastern part of Jilin and Heihe [J]. Geologic Front, 2005 (02): 263-275
唐杰, 许文良, 王枫, 等. 古太平洋板块在欧亚大陆下的俯冲历史: 东北亚陆缘中生代-古近纪岩浆记录[J]. 中国科学: 地球科学, 2018, 48(05): 549-583 TANG Jie, XU Wenliang, WANG Feng, et al. The subduction history of the ancient Pacific plate under the Eurasian continent: the Mesozoic-Paleogene magmatic record of the northeastern Asian continental margin [J]. Chinese Science: Earth Science, 2018, 48 (05): 549-583
王得权, 王建国, 杨帅, 等. 陕西秋树坪金矿似斑状奥长花岗岩脉锆石U-Pb年龄、地球化学特征及地质意义[J]. 矿物岩石, 2022, 42(01): 90-97 WANG Dequan, WANG Jianguo, YANG Shuai, et al. Zircon U-Pb age, geochemical characteristics and geological significance of porphyry anorthite vein in Qiushuping gold deposit, Shaanxi [J]. Mineral and Rock, 2022, 42 (01): 90-97.
吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004(16): 1589-1604 doi: 10.1360/csb2004-49-16-1589 WU Yuanbao, ZHENG Yongfei. Zircon genetic mineralogy and its constraints on U-Pb age interpretation [J]. Science Bulletin, 2004 (16): 1589-1604 doi: 10.1360/csb2004-49-16-1589
肖庆辉, 邱瑞照, 邢作云, 等. 花岗岩成因研究前沿的认识[J]. 地质论评, 2007(S1): 17-27 XIAO Qinghui, QIU Ruizhao, XING Zuoyun, et al. Understanding of the frontier of granite genesis research [J]. Geological Review, 2007 (S1): 17-27.
杨雅军, 杨晓平, 江斌, 等. 大兴安岭中生代火山岩地层时空分布与蒙古—鄂霍茨克洋、古太平洋板块俯冲作用响应[J]. 地学前缘, 2022, 29(02): 115-131 YANG Yajun, YANG Xiaoping, JIANG Bin, et al. The spatial and temporal distribution of Mesozoic volcanic rock strata in the Great Khingan Mountains and the response to the subduction of the Mongolia-Okhotsk Ocean and the Paleo-Pacific Plate [J]. Geologic Front, 2022, 29 (02): 115-131.
杨长江, 王亚春. 小兴安岭东南部伊春中生代花岗岩的锆石U-Pb测年及其地质意义[J]. 吉林地质, 2010, 29(04): 1-5+31 doi: 10.3969/j.issn.1001-2427.2010.04.001 YANG Changjiang, WANG Yachun. Zircon U-Pb dating of the Yichun Mesozoic granite in the southeast of the Xiaoxing'an Mountains and its geological significance [J]. Jilin Geology, 2010, 29 (04): 1-5+31 doi: 10.3969/j.issn.1001-2427.2010.04.001
俞胜, 贾轩, 姚皓骞, 等. 西秦岭白龙江地区志留系迭部组岩石地球化学特征及碎屑锆石原位U–Pb年代学研究[J]. 西北地质, 2023, 56(5): 245−261. YU Sheng, JIA Xuan, YAO Haoqian, et al. Geochemistry Characteristics and Detrital Zircon In–Site U–Pb Geochronology of Silurian Diebu Formation in Bailongjiang Area, West Qinling Mountains[J]. Northwestern Geology, 2023, 56(5): 245−261.
袁洪林, 吴福元, 高山, 等. 东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J]. 科学通报, 2003(14): 1511-1520 doi: 10.3321/j.issn:0023-074X.2003.14.008 YUAN Honglin, WU Fuyuan, GAO Shan, et al. Zircon laser probe U-Pb dating and rare earth element composition analysis of Cenozoic intrusions in Northeast China [J]. Science Bulletin, 2003 (14): 1511-1520 doi: 10.3321/j.issn:0023-074X.2003.14.008
张健, 张海华, 贺君玲, 等. 东北地区氦气成藏条件与资源前景分析[J]. 西北地质, 2023, 56(1): 117−128. ZHANG Jian, ZHANG Haihua, HE Junling, et al. Analysis of Helium Accumulation Conditions and Resource Prospect in Northeast China[J]. Northwestern Geology, 2023, 56(1): 117−128.
张旗, 金惟俊, 王元龙, 等. 大洋岩石圈拆沉与大陆下地壳拆沉: 不同的机制及意义——兼评“下地壳+岩石圈地幔拆沉模式”[J]. 岩石学报, 2006(11): 2631-2638 doi: 10.3321/j.issn:1000-0569.2006.11.002 ZHANG Qi, JIN Weijun, WANG Yuanlong, et al. Ocean lithospheric delamination and continental lower crust delamination: different mechanisms and significance-also comment on "lower crust+lithospheric mantle delamination model" [J]. Journal of Rock, 2006 (11): 2631-2638 doi: 10.3321/j.issn:1000-0569.2006.11.002
赵越, 刘敬党, 张国宾, 等. 张广才岭南部帽儿山岩体二长花岗岩年代学、地球化学特征及其构造意义[J]. 吉林大学学报(地球科学版), 2021, 51(04): 1098-1118 ZHAO Yue, LIU Jingdang, ZHANG Guobin, et al. Chronology, geochemical characteristics and tectonic significance of the monzogranite of the Maoershan pluton in the southern part of Zhang Guangcai Ling [J]. Journal of Jilin University (Earth Science Edition), 2021, 51 (04): 1098-1118.
Allègre C. J., Minster J. F. Quantitative models of trace element behavior in magmatic processes[J]. Earth and Planetary Science Letters, 1978, 38(1). doi: 10.1016/0012-821X(78)90123-1
Champion D C, Chappell B W. Petrogenesis of felsic I-ype granites: An example from northern Queensland[J]. Transactions of the Royal Society of Edinburgh Earth Science, 1992, 83: 115- 126. doi: 10.1017/S026359330000780X
Defant M J, Drummond M S. Derivation of some morden arc magmas by of young subducted lithosphere[J]. Nature, 1990, 47: 62-665
Dong Yu, Ge Wenchun, Yang Hao. Geochronology and geochemistry of Early Cretaceous volcanic rocks from the Baiyingaolao Formation in the central Great Xing’an Range, NE China, and its tectonic implications[J]. Lithos, 2014, 205: 168-184. doi: 10.1016/j.lithos.2014.07.004
Fan Weiming, Guo Feng, Wang Yuejun, et al. Late Mesozoic calc-alkaline volcanism of post-orogenic extension in the northern Da Hinggan Mountains, Northeastern China[J]. Journal of Volcanology & Geothermal Rsearch, 2003, 121(1): 115-135.
Feng Zhiqiang, Jia Jie, Liu Yongjiang, et al. Geochronology and geochemistry of the Carboniferous magmatism in the northern Great Xing’an Rang, NE China: Constraints on the timing of amalgamation of Xing’an and Songnen blocks[J]. Journal of Asian Earth Sciences, 2015, 113: 411-426. doi: 10.1016/j.jseaes.2014.12.017
Kravchinsky V A, Cogne J P, Harbert W P. Evolution of the Mongol-Okhotsk Ocean as constrained by new palaeomagnetic data from the Mongol-Okhotsk suture zone, Siberia[J]. Geophysical Journal International, 2002, 148(1): 34-57. doi: 10.1046/j.1365-246x.2002.01557.x
Meng Qingren. What drove late Mesozoic extension of the northern China-Mongolia tract[J]. Tectonophysics, 2003, 369(3): 155-174.
Möller A, O’Brien P J, Kennedy A, et al. Linking growth epi‐sodes of zircon and metamorphic textures to zircon chemistry: An example from the ultrahigh-temperature granulites of Rogaland(SW Norway) [J]. Geological Society, London, SpecialPublications, 2003, 220: 65-82. doi: 10.1144/GSL.SP.2003.220.01.04
Paterno R, Castillo. An Overview Of Adakite Petrogenesis[J]. Chinese Science Bulletin, 2006(03): 258-268.
Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4): 956-983. doi: 10.1093/petrology/25.4.956
Richards J P. Magmatic to hydrothermal metal fluxes in convergent and collided margins[J]. Ore Geology Reviews, 2011, 40(1): 1-26. doi: 10.1016/j.oregeorev.2011.05.006
Daniela Rubatto, Dieter Gebauer. Use of Cathodoluminescence for U-Pb Zircon Dating by Ion Microprobe: some Examples from the Western Alps[J]. Cathodoluminescence in Geosciences, 2000, 373-400
Rudnick R L, Gao S. Composition of the continental crust[J]. Treatise on Geochemistry, 2003, 33: 1-64.
Rudnick R L. Making continental crust[J]. Nature, 1995, 378(6557): 571-578. doi: 10.1038/378571a0
Sengor A M C, Natalin B A, Burtman V S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature, 1993, 364( 6435): 299-307. doi: 10.1038/364299a0
Shi Lu, Zheng Changqing, Yao Wengui, et al. Geochronological framework and tectonic setting of the granitic magmatism in the Chaihe-Moguqi region, central Great Xing’an Range, China[J]. Journal of Asian Earth Sciences, 2015, 113: 443-453. doi: 10.1016/j.jseaes.2014.12.013
Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders A D and Norry M J(eds). Magmatism in ocean basins[J]. Geological Society London Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution[D]. Oxford: Blackwell Scientific Publications, 1985, 1−312.
Tomurtogoo O, Windley B F, Kroner A. Zircon age and occurrence of the Adaatsag ophiolite and Muron shear zone, central Mongolia: constraints on the evolution of the Mongol-Okhotsk ocean, suture and orogen[J]. Journal of the Geological Society, 2005, 162(1): 125-134. doi: 10.1144/0016-764903-146
Valley J W, Lackey J S, Cavosie A J. Billion Years of Crustal Maturation: Oxygen Isotope Ratios of Magmatie Zircon[J]. Contributions to Mineralogy and Petrology, 2005, 150(6): 561-580. doi: 10.1007/s00410-005-0025-8
Wang Fei, Zhou Xinhua, Zhang Lianchang, et al. Late Mesozoic volcanism in the Great Xing'an Range (NE China): Timing and implications for the dynamic setting of NE Asia[J]. Earth and Planetary Science Letters, 2006, 251(1): 179-198.
Wu Fu Y, Sun De Y, Ge W C, et al. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41: 1-30. doi: 10.1016/j.jseaes.2010.11.014
Wu Fuyuan, Yang Jinhui, Lo Chinghua. The Heilongjiang Group: A Jurassic accretionary complex in the Jiamusi Massif at the western Pacific margin of northeastern China[J]. Island Arc, 2010, 16 (1): 156-172.
Xu Wenliang, Wang Feng, Pei Fuping, et al. Mesozoic tectonic regimes and regional ore-forming background in NE China: Constraints from spatial and temporal variations of Mesozoic volcanic rock associations[J]. Acta Petrologica Sinica, 2013, 29(2): 339-353.
Ying Jiheng, Zhou Xinhua, Zhang Lianchang, et al. Geochronological framework of Mesozoic volcanic rocks in the Great Xing’an Range, NE China, and their geodynamic implications[J]. Journal of Asian Earth Sciences, 2010, 39(6): 786-793. doi: 10.1016/j.jseaes.2010.04.035
Zhang Jiheng, Ge Wenchun, Wu Fuyuan, et al. Large-scale Early Cretaceous volcanic events in the northern Great Xing’an Range, Northeastern China[J]. Lithos, 2008, 102(1-2): 138-157. doi: 10.1016/j.lithos.2007.08.011
Zhou Jianbo, Wilde S A, Zhang Xingzhou. The onset of Pacific margin accretion in NE China: Evidence from the Heilongjiang highpressure metamorphic belt[J]. Tectonophysics, 2009, 478 (3): 230-246.
-
期刊类型引用(2)
1. 何泽宇,陈磊,李成元,樊松浩,薄海军,高琪,苏攀云,刘伟,靖安. 内蒙古川井坳陷巴彦花组砂岩碎屑锆石年代学特征对物源及砂岩型铀矿勘查的启示. 西北地质. 2025(01): 186-203 . 本站查看
2. 代新宇,周斌,李新林,杜彪,范鹏,赵江林,杨文博,武忠山. 西昆仑奇台达坂北中新世石英二长岩侵入岩年代学、地球化学及其构造意义. 西北地质. 2024(04): 191-205 . 本站查看
其他类型引用(0)