Comparison on Metallogenic Differences of Porphyry Deposits between Luanchuan Mo-W and Zhashui-Shanyang Cu-Mo Ore-clusters in Qinling Orogenic Belt: Constraints of Magmatic Source and Metallogenic Conditions
-
摘要:
栾川Mo-W矿集区和柞水–山阳Cu-Mo矿集区是秦岭造山带内152~140 Ma后碰撞造山环境下形成的两个典型斑岩型矿集区,其成矿差异显著,但控制因素尚不清楚。笔者收集两个矿集区的全岩地球化学、Sr-Nd-Hf同位素、锆石和磷灰石成分,从岩浆源区、岩浆水含量、氧逸度、挥发分和S含量等方面进行对比研究,揭示其成矿差异性的主控因素。柞水−山阳矿集区Cu-Mo矿的εHf(t)和εNd(t)值为−5~2和−6.6~−1.5,(87Sr/86Sr)i值接近于上地幔(平均为0.7051),指示岩浆源区为增厚的新生下地壳部分熔融与幔源岩浆的混合。栾川矿集区具有相对较低的εHf(t)和εNd(t)值(平均值为−18.38和−14.63)以及较老的Hf二阶段模式年龄表明富Mo-W斑岩来源于古老的太华群基底和扬子板块俯冲陆壳沉积物部分熔融。柞水−山阳矿集区和栾川矿集区成矿斑岩具有高Sr低Y,全岩Eu/Eu*>0.6,锆石饱和温度较低(<750 ℃),锆石EuN/EuN*>0.3,锆石CeN/CeN*>100,Ce/Nd>10,全岩V/Sc>5,氧化还原状态>FMQ+3等,指示其成矿岩浆均具有高水含量和高氧逸度特征。此外,柞水−山阳矿集区斑岩Cu-Mo体系更富集Cl ,而栾川矿集区斑岩Mo-W体系更富集F,二者的S含量相近。以上表明岩浆源区的不同是造成二者成矿差异的根本原因;Cl和F作为Cu和Mo在岩浆热液中迁移的主要配体,是造成两个矿集区成矿差异的另一关键因素;富水、高S和高氧逸度岩浆是两个矿集区斑岩型矿床形成的重要条件,但并不是造成矿化差异的直接原因。
Abstract:The Luanchuan Mo-W ore district and the Zhashui-Shanyang Cu-Mo ore district are two typical porphyry ore districts formed in the post-collision setting during 152-140Ma in the Qinling Orogenic Belt. Despite significant differences in their mineralization, the controlling factors remain unclear. This study collected whole-rock geochemical data, Sr-Nd-Hf isotopes, and the compositions of zircon and apatite from both ore districts. A comparative analysis was conducted on aspects such as magmatic source, water content, oxygen fugacity, volatiles(F, Cl)and sulfur content to reveal the key controlling factors of their metallogenic differences. The Zhashui-Shanyang Cu-Mo ore district shows εHf(t) and εNd(t) variations ranging from −5 to 2 and −6.6 to −1.5, with (87Sr/86Sr)i value close to the upper mantle (averaging 0.7051), indicating a mixture of melting of thickened juvenile lower crustal components with mantle-derived magmas in the magma source. The Luanchuan Mo-W ore district exhibits relatively low εHf(t) and εNd(t) values (averaging −18.38 and −14.63) and older Hf two-stage model ages, suggesting that the Mo-W-rich porphyries originated from the ancient Taihua Group basement and partial melting of the Yangtze Plate subducted continental crust sediment. Both ore districts' mineralized porphyries have high Sr and low Y, whole-rock Eu/Eu*>0.6, low zircon saturation temperatures (<750 ℃), zircon Eu/Eu*>0.3, zircon CeN/CeN*>100, Ce/Nd>10, whole-rock V/Sc>5, and oxidation state>FMQ+3, indicating characteristics of high water content and high oxygen fugacity in their mineralizing magmas. Furthermore, the Cu-Mo system in the Zhashui-Shanyang ore district is enriched in Cl, while the Mo-W system in the Luanchuan ore district is enriched in F, with similar S contents. These differences in the magma source are the fundamental reasons for the mineralization disparities between the two districts. Cl and F, as the main ligands for the migration of Cu and Mo in magmatic hydrothermal fluids, are another key factor causing the mineralization differences between the two ore districts. Enriched water, high S, and high oxygen fugacity magmas are important conditions for the formation of porphyry ore deposits in both districts, but they are not the direct causes of the mineralization differences.
-
古玉器,华夏文明之瑰宝。穿越千年时光,承载深厚文化底蕴。从新石器时代初期开始,古人便开始对优质玉石料进行加工,用作日常礼器和装饰物。透闪石型玉石(软玉),作为中国古玉器中最主要的类型之一,其原料来源一直是众多学者研究和讨论的热点话题(廖任庆等,2005;刘飞等,2009;杨萍等,2009;钟友萍等,2013;于海燕等,2019;张跃峰等,2022)。龙溪玉矿(点)位于四川省汶川县龙溪乡马灯村附近。前人对该地的玉料开展了细致岩相学、矿物学、宝石学以及光谱学研究,认为其是“三星堆遗址”和“金沙遗址”古玉器玉料的重要产地(王春云,1989,1993;向芳等,2008a,2008b;王蔚宁等,2022;徐琳抒等,2022;白洞洲等,2022;付宛璐等,2023)。龙溪软玉颜色多样,主要有青色、青白色、青色、墨绿色等;主要矿物为透闪石,含少量方解石、白云石、滑石及磷灰石等次要矿物;品质不同,次要矿物含量也不同(王蔚宁等,2022;徐琳抒等,2022;白洞洲等,2022;付宛璐等,2023)。龙溪玉平均密度为2.95 g·cm−3,折射率为1.61~1.62,在长、短波紫外光下呈荧光惰性(王蔚宁等,2022;徐琳抒等,2022)。付宛璐等(2023)通过X射线荧光光谱和XRF微区面扫分析,认为V和Cr可能是青绿色龙溪玉的致色元素。对于龙溪玉的成因,王春云(1989,1993)最早提出龙溪玉含玉体是通过白云质大理岩与硅酸溶液相互作用,由白云石向透闪石转变而成。前人在综述国内外典型软玉产地玉石的特征时,将龙溪玉划归为变质热液型或区域变质型(刘飞等,2009;景云涛等,2022)。白洞洲等(2022)对龙溪玉样品进行化学成分分析,认为龙溪玉的化学成分与接触交代作用形成的透闪石玉类似,成玉过程很可能有岩浆热液的参与。先前的研究重点关注了龙溪玉的地质和宝石学特性,但在地球化学识别标志方面的研究尚显不足。然而,这方面的研究对于三星堆和金沙遗址玉器的产地溯源具有重要意义。因此,笔者在野外地质考察和室内岩相学观察的基础上,对典型龙溪玉样品开展了系统的X射线粉晶衍射、X射线荧光光谱、电子探针和电感耦合等离子体质谱分析,对比了龙溪玉与其他产地软玉的差别,探讨了龙溪玉与古蜀三星堆和金沙遗址的玉器矿料的可能联系。
1. 地质背景
研究区位于青藏高原东部松潘–甘孜地体内。地体东西向延伸,东宽西窄,呈三角状。地体东南缘以龙门山断裂带为界,与扬子板块毗邻(Zhang et al.,1984;Chen et al.,1995,1996;宋明伟等,2024;肖倩等,2024;谢佐彬等,2024),西南缘以金沙江缝合带与羌塘–昌都地块相接。金沙江缝合带被认为是晚古生代俯冲带(Sengör,1985),北侧为东昆仑–西秦岭造山带(图1a)。
区内自西向东分别出露三叠纪西康群、石炭系+二叠系、泥盆系危关群和月里寨群、志留系茂县群、奥陶系以及震旦系地层。巨厚的(5~10 km)三叠系西康群复理石沉积整合覆盖于4~6 km厚震旦系-古生界系列之上;在松潘–甘孜地体东部龙门山断裂带附近出露有前震旦纪(太古代—中元古代)结晶基底(图1b)。印支期扬子、华北和羌塘3个块体之间的收敛使沉积盆地缩短、古特提斯闭合,形成松潘–甘孜造山带(Sengör,1985;Mattauer et al.,1992;Nie et al.,1994)。造山期,三叠系的沉积层向南推覆于扬子板块之上,同时震旦纪—古生代序列强烈变形,形成大规模滑脱构造,使地壳明显增厚(Mattauer et al.,1992)。三叠系的沉积经历了极低到低级的绿片岩相变质,但震旦纪—古生界序列(丹巴地区)经历了Barrovian型变质作用(Mattauer et al.,1992;Huang et al.,2003)。Huang等(2003)通过对松潘甘孜地体内丹巴变质地体的测年和变质作用温压条件分析,对比中生代花岗岩体形成时代的分布,认为中生代第一次变质作用主要发生于204~190 Ma,与扬子–华北两陆块碰撞造成的地壳加厚和缩短有关;第二次变质事件相对较弱,发生于165 Ma前后,被认为是局部热扰动的产物。松潘–甘孜地体内广泛出露花岗岩侵入体。这些花岗岩体的空间分布没有明显的规律性,其形成时代主要在三叠纪末到侏罗纪时期(197~230 Ma),与印支运动有关(Roger et al.,2004;胡健民等,2005;龚大兴等,2019)。
四川龙溪软玉矿(点)位于松潘–甘孜地体东部,靠近NE–SW走向的茂汶断裂(图1b)。在玉矿(点)西部的三叠纪西康群地层中出露印支晚期—燕山期的老君沟和孟通沟花岗岩体,东边靠近茂汶断裂出露晋宁–澄江第四期牟托黑云花岗岩,南部出露雪隆包斜长花岗岩(图1b)。龙溪软玉的含玉体产于志留系茂县群结晶灰岩夹透闪片岩、石榴角闪斜长变粒岩、透闪片岩、角闪黑云片岩之中,与下伏结晶灰岩平行不整合接触,同时被上覆变质火山岩所超复(图2a)。
图 2 龙溪玉地质剖面简图(a)(据王春云,1993修改)、龙溪玉野外露头照片(b~d)Figure 2. (a) The geological profile of Longxi nephrite, (b-d) the field photograph of Longxi nephrite软玉产于由灰白色中厚层状透闪石化大理岩夹透闪石岩(透闪片岩)组成的含玉体中,通常呈不规则透镜状或薄层状,发育于透闪片岩和白云质大理岩局部强烈变形处,与大理岩相互间为整合接触(图2)。依据龙溪软玉的颜色和矿物组成,大致可以将其分为黄绿色玉石、青灰色玉石、墨绿色玉石和黄绿色含放射状闪石矿物的玉石(图3),且玉石通常呈现墨绿色–黄绿色–浅绿色–青白色(白色)的对称色环,部分样品内核为透闪片岩或透闪石化白云质大理岩(图2d、图3i~图3k)。玉石中矿物主要为透闪石,其次为方解石、白云石,含少量磷灰石、金红石、滑石、黄铁矿、黄铜矿以及磁铁矿等(图4)。玉石具有典型的纤维交织结构和叶片交织结构(图4d~图4h),可见方解石被透闪石交代形成的交代结构(图4c);部分玉石中透闪石和方解石等矿物具有定向排列特征(图4f)。
图 4 龙溪玉玉石及部分围岩样品镜下照片a. 石榴角闪黑云片岩中自形石榴子石;b. 大理岩中可见少量浸染状透闪石;c. 品质较差的玉石中见较多方解石;d. 透闪石化大理岩-黄绿色软玉-墨绿色软玉;e. 黄绿色软玉-墨绿色软玉;f. 墨绿色软玉中透闪石粒度较粗;g. 黄绿色玉石中透闪石颗粒细小;h. 黄绿色玉石中见粗粒透闪石+方解石脉;i. 青灰色玉石中见针柱状闪石矿物;j~l. 玉石中方解石与金红石、黄铜矿、黄铁矿以及方铅矿共生;m~n. 玉石中存在细粒金红石和磷灰石;Am. 角闪石;Bi. 黑云母;Grt. 石榴子石;Q. 石英;Tl. 透闪石;Cal. 方解石;Py. 黄铁矿;Ccp. 黄铜矿;Gn. 方铅矿;Rt. 金红石;Ap. 磷灰石;a~i. 正交偏光;j~k. 反射光;l~n. 背散射图像Figure 4. Mircophotos of Long nephrite and some host rocks samples2. 样品采集及分析方法
2.1 样品采集
本次研究共采集了49块样品,用于分析的样品共12件,其中有2件角闪黑云片岩、1件大理岩、9件龙溪玉样品。所有样品均采来自于四川汶川龙溪乡马灯村“龙溪玉”矿洞口(N31°35′9″;E103°33′22″)。样品详细描述见表1。测试前先对样品进行观察,按照颜色、光泽、透明度、质地等基本特征对样品进行分类。选择典型样品制备探针片,开展岩相学观察和电子探针(EPMA)分析。对部分样品进行碎样处理,把粗碎过的样品放入玛瑙钵中进行手工研磨,研磨至200目的粉末,随后进行X射线粉晶衍射(XRD)、X射线荧光光谱(XRF)和电感耦合等离子体质谱(ICP-MS)分析(黄杰等,2020;杨眉等,2021)。
表 1 四川龙溪玉及部分围岩样品的基本特征Table 1. Gemmological characteristics of nephrite and some host rocks samples from Longxi, Sichuan Province编号 岩性 描述 LX-1 角闪黑云片岩 深黑色,片状构造,主要矿物为角闪石、黑云母,呈定向排列。 LX-3 角闪黑云片岩 深黑色,片状构造,主要矿物为角闪石、黑云母以及少量石榴子石。 LX-4 大理岩 灰白色,具粒状变晶结构,块状构造。 LX-6 龙溪玉 黄绿色、品质优、质地纯、油脂光泽。 LX-7 龙溪玉 黄绿色、品质优、质地纯、油脂光泽,表皮为灰白色大理岩。 LX-10 龙溪玉 黄绿色、品质较优,表皮可见水草花状的深色物质。 LX-13 龙溪玉 青灰色、品质较差、质地较粗,丝绢-玻璃光泽。 LX-14 龙溪玉 青灰色、品质较差、质地较粗,丝绢-玻璃光泽。 LX-23 龙溪玉 青灰色、质地较粗,丝绢-玻璃光泽,可见针柱状矿物(直径可达0.8 cm)。 LX-24 龙溪玉 黄绿色、质地较细腻,油脂光泽,含较多针柱状矿物。 LX-40 龙溪玉 墨绿色、品质优,表皮为黄绿色玉石。 LX-45 龙溪玉 墨绿色,品质优,表皮为黄绿色玉石,中间夹淡黄色玉石和灰白色大理岩。 2.2 测试方法
X射线粉晶衍射分析和全岩主量元素分析测试在成都南达微构质检技术服务有限公司完成,电子探针实验在西南石油大学地球科学与技术学院电子探针实验室完成。
(1)X射线粉晶衍射分析(XRD):测试仪器为日本理学Rigaku X射线粉末衍射仪ULTIMA IV。测试条件:Cu靶,电压40 kV,电流40 mA,扫描范围(2θ)为5°~70°,步进扫描速度4°/min,步长为0.020°。采用MDI Jade 6 处理实验数据。
(2)X射线荧光光谱仪(XRF):采用Rigaku公司的日本理学ZSX Primus III+型波长色散X射线荧光光谱仪对不同样品进行主量元素含量分析。熔化无水四硼酸锂和偏硼酸锂作为试料,硝酸铵作氧化剂,氟化锂和少量溴化锂作助熔剂和脱模剂。试料∶熔剂(1∶10),在熔样机上熔融,制成玻璃样片。分析元素均用理论α系数校正元素间的吸收–增强效应,根据荧光强度计算主、次成分的量。
(3)电子探针(EPMA):采用型号为JEOL-JXA-8230,配备有4道波谱仪的电子探针显微分析仪(EPMA)对不同类型玉石进行分析。样品在上机测试之前先按照Zhang等(2016)提供的办法镀碳,将样品镀上厚度约20 nm的均匀碳膜。电子探针工作条件为:加速电压15 Kv,加速电流20 nA,束斑直径10 μm。所有测试数据均进行了ZAF校正处理。Na,Mg,K,Ca,Fe,Ti,Al,Si,Ni,Cr,Mn元素特征峰的测量时间为10s,上下背景测量时间为峰测量时间的一半。使用的国际SPI标样如下:Na(NaAlSi3O8)、Mg(MgCaSi2O6)、Al(NaAlSi3O8)、Si(NaAlSi3O8)、K(KAlSi3O8)、Ca(MgCaSi2O6)、Fe(FeCr2O4)、Cr(FeCr2O4)、Ti(TiO2)、Mn(CaMnSi2O6)、Ni(Fe, Ni)9S8。
(4)电感耦合等离子体质谱仪(ICP-MS):微量元素含量分析采用美国PerkinElmer公司的NexION 1000G 电感耦合等离子体质谱仪进行。随同试料进行双份空白试验,所用试剂相同。随同试料,对标准物质进行分析。向封闭溶样器的内罐中称取100 mg试料,随后加入1 ml氢氟酸和0.5 ml硝酸,并进行密封处理。将溶样器放入烘箱中,在(185±5)℃左右加热24 h。冷却后取出内罐,置于电热板上加热蒸干,再加入0.5 ml硝酸蒸发近干,重复操作此步骤一次。加入5 ml硝酸,再次密封,放入烘箱中,130 ℃加热3 h。冷却后取出内罐,将溶液定量转移至塑料瓶中。用蒸馏水稀释,定容至25 ml(或50 ml)。此溶液直接用于ICP-MS测定。
3. 分析结果
3.1 矿物成分
透闪石的主要谱峰位置为
9.0553 ~9.0707 Å(020)、8.4352 ~8.4500 Å(110)、3.1251 ~3.1271 Å(310)、2.7073 ~2.7089 Å(151)、1.6501 Å(461)(JCPDS标准卡片)。笔者共对9块龙溪玉样品开展了X射线粉末衍射实验。测试结果显示,所有玉石主要谱峰位置与强度几乎相同,与透闪石标准数据衍射谱线基本一致(图5,表2),说明龙溪玉的矿物组分较单一,主要由透闪石组成。所有样品中均存在白云石(2.8912 ),在部分样品(LX-6、LX-10、LX-13和LX-23)中还可见滑石(9.34)、方解石(3.0325 )以及云母(10.097)的特征谱线,说明龙溪玉中可能含少量滑石、方解石、白云石和云母,这与镜下观察及电子探针测试结果一致。从测试结果来看,一部分优质玉石样品(LX-6、LX-7、LX-23、LX-40和LX-45)的透闪石含量高(>80%),为典型透闪石玉;另外一部分品质较差的玉石(LX-10、LX-13、LX-14和LX-24)的透闪石含量较低(<80%),白云石含量在30%以上,属于白云石透闪石玉(表2)。表 2 四川龙溪玉XRD分析结果统计表(%)Table 2. The XRD analysis results from Longxi, Sichuan Province(%)样品编号 LX-6 LX-7 LX-10 LX-13 LX-14 LX-23 LX-24 LX-40 LX-45 白云石 1.18 7.15 30.33 34.20 39.69 14.82 44.32 4.93 13.05 方解石 0.00 0.00 0.00 26.91 0.00 0.00 0.00 0.00 0.00 云母 0.00 0.00 0.00 0.00 0.00 3.98 0.00 0.00 0.00 闪石 94.63 92.85 66.15 38.89 60.31 81.20 55.68 95.07 86.95 滑石 4.19 0.00 3.52 0.00 0.00 0.00 0.00 0.00 0.00 3.2 主量元素
角闪黑云片岩成分较为复杂,主要化学成分为SiO2(51.1%~51.2%)、Al2O3(14.5%~14.8%)、Fe2O3(14.0%~14.7%)、CaO(5.1%~5.6%)和Na2O(3.2%~4.0%)(表3)。矿体上盘大理岩的化学成分主要为CaO(33.1%)和MgO(18.5%),其烧失量大(LOI:44.5%)。龙溪玉不同样品的元素含量和烧失量略有差异。其中,黄绿色优质玉料(LX-6和LX-7)SiO2含量为55.2%~56.6%,MgO含量为23.4%~23.8%,CaO含量为13.5%~14.2%,烧失量为2.6%~3.2%。表皮见水草花状深色物质的黄绿色玉料(LX-10)SiO2含量为50.3%,MgO含量为23.3%,CaO含量为14.9%,烧失量为7.1%。青灰色玉料(LX-13和LX-14)SiO2含量为34.6%~42.0%,MgO含量为18.7%~22.1%,CaO含量为17.8%~23.7%,烧失量大(12.8%~17.7%),这与其中含较多碳酸盐矿物有关。含针柱状矿物的玉料(LX-23和LX-24)SiO2含量为45.5%~52.2%,MgO含量为22.4%~23.6%,CaO含量为14.4%~17.1%,烧失量为4.9%~9.9%。墨绿色玉料(LX-40和LX-45)SiO2含量为55.3%~55.4%,MgO含量为23.5%~23.7%,CaO含量为13.6%~13.9%,烧失量为3.1%~3.2%(表3)。
表 3 龙溪软玉及部分围岩样品XRF分析结果统计表(%)Table 3. The table of XRF results of Longxi nephrite and some host rock samples(%)样品编号 LX-1 LX-3 LX-4 LX-6 LX-7 LX-10 LX-13 LX-14 LX-23 LX-24 LX-40 LX-45 名称 角闪黑
云片岩角闪黑
云片岩大理岩 黄绿色
龙溪玉黄绿色
龙溪玉黄绿色
龙溪玉青灰色
龙溪玉青灰色
龙溪玉青灰色
龙溪玉黄绿色
龙溪玉墨绿色
龙溪玉墨绿色
龙溪玉Na2O 4.01 3.17 0.07 0.25 0.28 0.23 0.24 0.26 0.29 0.30 0.23 0.21 MgO 3.70 3.74 18.52 23.87 23.44 23.63 18.68 22.05 23.58 22.40 23.52 23.68 Al2O3 14.76 14.49 0.77 1.46 2.01 1.76 1.44 1.80 2.56 2.19 1.72 1.17 SiO2 51.10 51.27 1.08 56.59 55.18 50.30 34.63 42.00 52.17 45.52 55.32 55.37 P2O5 0.86 1.20 0.51 0.23 0.19 0.25 0.70 0.32 0.25 0.63 0.05 0.20 SO3 0.41 0.05 0.07 0.03 0.04 0.04 0.03 0.04 0.04 0.05 0.04 0.04 K2O 1.51 2.30 0.01 0.05 0.05 0.04 0.04 0.03 0.29 0.07 0.03 0.04 CaO 5.56 5.11 33.08 13.51 14.24 14.91 23.74 17.76 14.37 17.01 13.60 13.95 TiO2 2.20 2.30 0.00 0.01 0.02 0.03 0.05 0.15 0.02 0.06 0.00 0.00 MnO 0.26 0.31 1.56 0.23 0.13 0.64 0.20 0.44 0.30 0.41 0.32 0.12 Fe2O3 13.95 14.72 0.22 0.67 0.69 0.28 0.38 0.47 0.60 0.52 0.38 0.46 LOI 1.06 0.38 44.52 2.60 3.22 7.08 17.77 12.81 4.89 9.93 3.08 3.24 3.3 矿物主量元素
所有样品的主要成分为MgO、CaO、SiO2,其次为Na2O、K2O、P2O5、FeO和Al2O3等(表4,图6)。墨绿色(粗粒透闪石)、墨绿色(细粒透闪石)、黄绿色–青灰色(粗粒透闪石)、青灰色(细粒透闪石)玉石环带MgO含量分别为23.27%~23.95%、23.21%~24.14%、22.94%~23.91%、22.76%~24.17%和23.21%~23.96%;CaO含量分别为13.24%~13.80%、13.02%~13.75%、12.79%~13.75%、13.32%~13.72%和12.96%~13.61%;SiO2含量分别为58.09%~59.14%、57.26%~59.48%、55.66%~59.42%、56.37%~59.38%和57.4%~59.19%。墨绿色、黄绿色、青灰色玉石的FeO含量逐渐减少,而MnO含量逐渐升高,其余的成分(如Na2O、Al2O3、SiO2、P2O5和TiO2等)则无明显变化(图6)。
表 4 龙溪软玉电子探针分析结果统计表(%)Table 4. The table of EPMA results of Longxi nephrite(%)颜色 样品编号 Na2O MgO K2O CaO P2O5 FeO SiO2 Al2O3 MnO Cr2O3 TiO2 Total 墨绿色 LX-8-1-1 0.24 23.50 0.05 13.51 0.04 0.52 58.60 1.20 0.07 0.00 0.04 97.76 墨绿色 LX-8-1-2 0.13 23.78 0.05 13.72 0.03 0.50 58.80 0.45 0.08 0.01 0.00 97.55 墨绿色 LX-8-1-3 0.11 23.75 0.06 13.61 0.00 0.47 59.08 0.53 0.09 0.03 0.04 97.77 墨绿色 LX-8-1-4 0.18 23.52 0.05 13.50 0.01 0.55 58.65 1.10 0.09 0.03 0.00 97.68 墨绿色 LX-8-1-5 0.13 23.95 0.05 13.56 0.02 0.45 59.14 0.63 0.11 0.00 0.03 98.06 墨绿色 LX-8-1-6 0.29 23.54 0.06 13.51 0.01 0.51 58.13 1.60 0.10 0.00 0.01 97.75 墨绿色 LX-8-1-7 0.20 23.53 0.05 13.32 0.00 0.51 58.70 0.92 0.09 0.01 0.00 97.34 墨绿色 LX-8-1-8 0.25 23.52 0.05 13.24 0.02 0.52 58.46 1.30 0.12 0.05 0.05 97.57 墨绿色 LX-8-1-9 0.18 23.79 0.05 13.80 0.00 0.54 58.36 1.04 0.09 0.00 0.04 97.88 墨绿色 LX-8-1-10 0.26 23.27 0.02 13.35 0.06 0.55 58.45 1.45 0.09 0.00 0.00 97.50 墨绿色 LX-8-3-1 0.09 24.08 0.05 13.47 0.02 0.53 59.20 0.22 0.12 0.00 0.00 97.78 墨绿色 LX-8-3-2 0.10 23.99 0.06 13.59 0.01 0.47 59.36 0.28 0.14 0.00 0.00 98.00 墨绿色 LX-8-3-3 0.06 23.80 0.01 13.75 0.00 0.42 59.21 0.31 0.06 0.00 0.01 97.63 墨绿色 LX-8-3-4 0.16 23.74 0.06 13.59 0.00 0.51 58.62 0.64 0.11 0.02 0.00 97.45 墨绿色 LX-8-3-5 0.11 23.91 0.04 13.60 0.02 0.43 58.98 0.45 0.10 0.02 0.00 97.64 墨绿色 LX-8-3-6 0.11 23.85 0.03 13.56 0.02 0.47 58.69 0.42 0.09 0.00 0.00 97.26 墨绿色 LX-8-3-7 0.16 23.92 0.02 13.12 0.01 0.53 58.92 0.93 0.11 0.00 0.03 97.72 墨绿色 LX-8-3-8 0.07 24.02 0.06 13.65 0.00 0.50 59.48 0.19 0.13 0.00 0.01 98.11 墨绿色 LX-8-3-9 0.14 23.67 0.04 13.60 0.07 0.52 59.04 0.54 0.10 0.00 0.03 97.75 墨绿色 LX-8-3-10 0.27 23.21 0.07 13.21 0.02 0.50 57.26 1.43 0.11 0.00 0.04 96.13 黄绿色 LX-24-2-1 0.07 23.92 0.03 13.75 0.02 0.43 59.42 0.17 0.24 0.00 0.00 98.05 黄绿色 LX-24-2-2 0.22 23.35 0.05 13.33 0.00 0.58 58.50 1.50 0.25 0.05 0.00 97.82 黄绿色 LX-24-2-3 0.39 22.99 0.03 13.36 0.00 0.53 57.57 2.52 0.24 0.14 0.01 97.86 黄绿色 LX-24-2-4 0.13 23.44 0.02 13.43 0.00 0.41 58.31 0.73 0.27 0.04 0.04 96.81 黄绿色 LX-24-2-5 0.03 23.78 0.01 13.72 0.00 0.34 58.94 0.04 0.16 0.01 0.01 97.03 黄绿色 LX-24-2-6 0.18 23.74 0.05 13.33 0.00 0.44 58.50 0.89 0.22 0.00 0.01 97.37 黄绿色 LX-24-2-7 0.10 23.86 0.02 13.41 0.01 0.38 59.20 0.25 0.21 0.01 0.00 97.45 黄绿色 LX-24-2-8 0.08 23.90 0.02 13.59 0.02 0.36 59.12 0.13 0.25 0.04 0.02 97.51 黄绿色 LX-24-2-9 0.30 22.94 0.02 12.79 0.02 0.44 55.66 3.38 0.23 0.06 0.02 95.86 黄绿色 LX-24-2-10 0.06 23.80 0.04 13.53 0.01 0.38 58.97 0.32 0.23 0.00 0.01 97.34 青灰色 LX-18-1-1 0.02 24.17 0.03 13.64 0.02 0.27 59.38 0.01 0.22 0.00 0.00 97.77 青灰色 LX-18-1-2 0.11 23.45 0.02 13.50 0.13 0.37 58.79 0.44 0.21 0.01 0.01 97.04 青灰色 LX-18-1-3 0.10 23.88 0.00 13.39 0.00 0.38 58.52 0.52 0.22 0.01 0.02 97.03 青灰色 LX-18-1-4 0.13 23.90 0.03 13.52 0.03 0.38 58.92 0.56 0.26 0.00 0.00 97.72 青灰色 LX-18-1-5 0.08 23.83 0.03 13.51 0.00 0.49 58.33 0.29 0.20 0.03 0.00 96.79 青灰色 LX-18-1-6 0.47 22.76 0.06 13.32 0.05 0.42 56.37 3.01 0.27 0.02 0.02 96.76 青灰色 LX-18-1-7 0.08 23.56 0.05 13.57 0.00 0.45 58.70 0.36 0.27 0.00 0.00 97.05 青灰色 LX-18-1-8 0.02 23.81 0.00 13.40 0.00 0.31 59.27 0.03 0.20 0.00 0.02 97.06 青灰色 LX-18-1-9 0.04 23.94 0.01 13.72 0.00 0.35 59.32 0.05 0.22 0.00 0.03 97.68 青灰色 LX-18-1-10 0.05 23.92 0.01 13.71 0.00 0.27 59.24 0.07 0.22 0.00 0.02 97.50 青灰色 LX-18-2-1 0.22 23.52 0.02 12.96 0.00 0.41 58.31 1.22 0.26 0.00 0.03 96.94 青灰色 LX-18-2-2 0.21 23.48 0.02 13.29 0.04 0.33 58.47 1.35 0.25 0.00 0.02 97.46 青灰色 LX-18-2-3 0.21 23.35 0.04 13.21 0.03 0.43 57.88 1.33 0.28 0.01 0.02 96.79 青灰色 LX-18-2-4 0.22 23.46 0.07 13.04 0.00 0.40 58.26 1.48 0.29 0.01 0.03 97.25 青灰色 LX-18-2-5 0.10 23.62 0.02 13.38 0.00 0.28 58.58 0.47 0.23 0.01 0.03 96.71 青灰色 LX-18-2-6 0.16 23.72 0.05 13.36 0.00 0.43 58.49 0.77 0.22 0.00 0.02 97.22 青灰色 LX-18-2-7 0.25 23.21 0.06 13.02 0.00 0.35 58.12 1.42 0.24 0.00 0.02 96.72 青灰色 LX-18-2-8 0.03 23.96 0.00 13.61 0.00 0.23 59.19 0.05 0.18 0.00 0.01 97.26 青灰色 LX-18-2-9 0.23 23.38 0.02 13.19 0.00 0.37 58.15 1.29 0.26 0.02 0.02 96.97 青灰色 LX-18-2-10 0.22 23.53 0.02 13.34 0.02 0.33 58.37 1.43 0.23 0.00 0.00 97.47 3.4 全岩微量元素(稀土元素)
3.4.1 微量元素特征
玉石及围岩微量元素测试结果(表5)显示,角闪黑云片岩中Ba(
1500.2 ×10−6~2997.1 ×10−6)、Ce(105.6×10−6~143.39×10−6)、Nd(70.6×10−6~87.8×10−6)、Sr(362.5×10−6~369.9×10−6)、Zn(159.0×10−6~244.1×10−6)和V(41.8×10−6~56.5×10−6)等微量元素含量高;大理岩中Ba(18.4×10−6)、Pb(41.3×10−6)、Sr(463.2×10−6)、Zn(13.7×10−6)和Ni(19.8×10−6)等微量元素含量较高;玉石样品中Ba(6.4×10−6~156.2×10−6)、Pb(1.98×10−6~70.25×10−6)、Sr(27.8×10−6~278.8×10−6)、Zn(84.6×10−6~302.8×10−6)、V(75.9×10−6~291.9×10−6)、Ni(19.0×10−6~103.5×10−6)和Cr(19.9×10−6~357.2×10−6)等微量元素含量较高。表 5 龙溪软玉及部分围岩样品的微量元素质量分数统计表(10−6)Table 5. Trace elements mass fraction of Longxi nephrite and some host rocks samples(10−6)编号 LX-1 LX-3 LX-4 LX-6 LX-7 LX-10 LX-13 LX-14 LX-23 LX-24 LX-40 LX-45 名称 角闪黑
云片岩角闪黑
云片岩大理岩 黄绿色
龙溪玉黄绿色
龙溪玉黄绿色
龙溪玉青灰色
龙溪玉青灰色
龙溪玉青灰色
龙溪玉黄绿色
龙溪玉墨绿色
龙溪玉墨绿色
龙溪玉Ba 1500.24 2997.06 18.38 13.24 9.95 14.57 12.32 6.43 156.20 34.78 12.84 8.23 Be 4.63 3.76 0.15 1.02 0.88 1.22 1.00 1.23 1.07 1.39 1.01 0.76 Bi 0.15 1.10 0.59 0.23 0.16 0.29 0.18 0.24 0.12 0.14 0.12 0.14 Cd 0.23 0.19 0.29 1.79 1.37 3.92 2.48 4.32 2.42 9.33 2.90 0.89 Cs 2.60 3.85 0.12 0.07 0.05 0.05 0.04 0.03 0.26 0.11 0.07 0.04 Cu 18.62 9.25 7.65 13.16 14.38 15.33 19.43 16.01 3.34 16.10 5.31 9.74 Ga 29.70 26.38 1.08 2.00 2.14 2.79 1.93 2.70 3.15 3.71 2.61 1.54 Hf 1.39 1.00 0.19 0.22 0.25 0.24 0.21 0.45 1.72 0.74 0.17 0.16 In 0.32 0.12 0.01 0.00 0.00 0.01 0.00 0.01 0.01 0.02 0.01 0.01 Li 33.53 43.06 1.57 1.78 3.07 3.46 3.34 2.97 7.45 7.26 3.95 2.81 Mo 2.63 0.49 2.57 0.38 7.10 15.21 0.98 1.79 6.72 7.99 0.72 0.34 Nb 43.82 46.28 0.77 0.56 0.84 0.53 1.99 5.88 4.51 3.59 0.42 0.41 Pb 5.54 6.89 41.26 5.83 1.98 70.25 20.81 46.35 46.54 37.51 16.78 2.45 Rb 43.50 60.20 1.49 1.50 1.03 0.76 0.75 0.67 5.58 2.04 0.57 0.65 Sc 45.65 19.47 0.43 1.06 1.01 1.47 1.21 1.69 3.04 2.49 0.46 0.36 Sr 362.47 369.91 463.24 34.83 30.91 89.00 278.82 187.93 62.33 165.12 27.83 28.96 Ta 2.73 2.93 0.35 0.24 0.64 0.12 0.22 1.48 0.80 0.74 0.36 0.34 Th 5.65 7.59 0.21 0.32 0.30 0.61 0.83 1.02 1.08 2.55 0.23 0.20 Tl 0.25 0.46 0.05 0.01 0.00 0.00 0.00 0.00 0.06 0.02 0.00 0.00 U 1.45 1.36 4.13 2.33 2.78 3.19 2.21 6.16 1.66 8.93 1.04 0.69 W 2.20 1.08 0.56 0.32 0.29 0.35 0.27 0.23 0.55 0.47 0.43 0.63 Y 88.19 75.91 8.95 20.40 16.78 15.46 28.50 32.23 13.94 26.85 6.10 3.81 Yb 9.80 6.25 0.65 1.90 1.28 1.38 1.83 2.00 0.96 1.59 0.40 0.18 Zn 159.00 244.10 13.72 128.73 148.11 174.96 91.00 186.43 146.87 302.82 207.65 84.56 Zr 20.54 12.81 5.16 3.22 3.95 3.83 3.62 9.18 16.14 6.60 3.44 3.31 V 56.50 41.82 13.00 193.57 170.44 132.94 226.71 274.18 75.85 291.90 146.75 111.60 Co 13.00 25.48 0.60 1.67 2.19 2.72 1.64 3.86 1.60 3.80 1.69 1.73 Ni 11.40 22.64 19.78 57.24 34.52 35.12 58.43 86.15 19.35 103.47 95.40 18.97 As 2.07 1.68 1.27 1.00 1.22 1.80 1.77 1.58 0.72 1.47 0.55 2.11 Cr 14.73 12.01 5.80 42.76 85.11 144.68 298.16 208.41 43.29 357.24 39.72 19.89 3.4.2 稀土元素特征
玉石及部分围岩微量元素测试结果(表6,图7)显示,2件角闪黑云片岩的稀土元素总量(ΣREE)较高,介于322.27×10−6~400.72×10−6之间,轻重稀土分异较为明显,其中轻稀土元素(LREE)为263.35×10−6~347.41×10−6,重稀土元素(HREE)为53.31×10−6~58.91×10−6;LREE/HREE=4.47~6.52,(La/Yb)N=3.97~8.21,δEu=0.89~0.95,δCe =0.88~0.91,Eu、Ce均无异常趋势(图7a)。
表 6 龙溪软玉及部分围岩样品的稀土元素质量分数统计表(10−6)Table 6. Rare earth elements mass fraction of Longxi nephrite and some host rocks samples(10−6)编号 LX-1 LX-3 LX-4 LX-6 LX-7 LX-10 LX-13 LX-14 LX-23 LX-24 LX-40 LX-45 名称 角闪黑
云片岩角闪黑
云片岩大理岩 黄绿色
龙溪玉黄绿色
龙溪玉黄绿色
龙溪玉青灰色
龙溪玉青灰色
龙溪玉青灰色
龙溪玉黄绿色
龙溪玉墨绿色
龙溪玉墨绿色
龙溪玉La 54.17 71.49 6.40 0.74 0.76 2.03 15.26 1.75 0.61 15.15 0.80 0.93 Ce 105.62 143.39 3.48 0.91 0.94 1.88 7.06 2.98 0.78 13.74 1.04 0.83 Pr 15.49 20.49 1.10 0.36 0.48 0.85 3.01 1.50 0.29 3.63 0.33 0.30 Nd 70.64 87.84 4.78 2.39 3.15 4.42 12.31 9.40 2.04 15.98 1.71 1.33 Sm 13.44 18.56 0.70 0.87 1.13 1.22 2.25 2.89 0.83 2.62 0.43 0.36 Eu 3.99 5.64 0.19 0.18 0.18 0.20 0.45 0.40 0.14 0.34 0.09 0.08 Gd 13.80 17.05 0.80 1.33 1.49 1.51 2.67 3.32 1.06 2.94 0.50 0.38 Tb 2.55 2.91 0.19 0.34 0.34 0.33 0.48 0.67 0.23 0.53 0.10 0.08 Dy 16.70 14.95 0.89 2.45 2.33 2.17 3.44 4.35 1.52 3.48 0.68 0.47 Ho 3.43 2.90 0.23 0.57 0.51 0.49 0.78 0.91 0.37 0.74 0.15 0.12 Er 9.68 7.22 0.62 1.63 1.29 1.39 2.19 2.40 1.03 1.91 0.43 0.27 Tm 1.48 1.06 0.10 0.29 0.22 0.21 0.30 0.37 0.16 0.28 0.07 0.04 Yb 9.80 6.25 0.65 1.90 1.28 1.38 1.83 2.00 0.96 1.59 0.40 0.18 Lu 1.47 0.97 0.14 0.31 0.20 0.23 0.29 0.24 0.14 0.22 0.06 0.02 大理岩的ΣREE=20.26×10−6,轻重稀土分异不明显,LREE=16.64×10−6,HREE=3.62×10−6,LREE/HREE=4.59,(La/Yb)N=7.01,δEu=0.77,δCe=0.29,具明显Eu负异常和Ce负异常(图7a)。
软玉样品的稀土元素总量差异比较大,介于5.39×10−6~63.14×10−6之间,品质差的玉料ΣREE要略高于品质好的玉料,黄绿色玉料(LX-6和LX-7)ΣREE要略高于墨绿色玉料(LX-40和LX-45)。总的来说,玉石的轻重稀土分异不明显,其中轻稀土元素(LREE)为3.83×10−6~51.45×10−6,重稀土元素(HREE)为1.57×10−6~14.26×10−6,LREE/HREE=0.62~4.40,(La/Yb)N=0.28~6.85,δEu=0.39~0.69,δCe=0.24~0.49,Eu、Ce均具明显负异常到轻微负异常特征(图7a)。在微量元素原始地幔标准化蛛网图(图7b)中,角闪黑云片岩的曲线呈右倾型,相对富集Ba和Sm,相对亏损高场强元素K、Th、Sr、Zr和Ti。大理岩样品和软玉样品具有相似的特征,曲线呈右倾型,相对富集U、La、Sr、P,相对亏损K、Nb、Cs、Zr、Ti。
4. 讨论
4.1 龙溪玉地球化学识别标志
4.1.1 主量元素特征
软玉是一种以透闪石矿物为主的矿物集合体,软玉中常存在各类元素间的类质同象替代现象(赵慧博等,2022)。不同产地的软玉,由于成玉条件不同,各元素间的类质同象替代作用也存在差异。本次研究对比了不同产地软玉的电子探针(EPMA)数据,发现新疆和田、青海、广西大化等地的软玉FeOT含量变化较大;江苏溧阳、黑龙江铁力、贵州罗甸、河南栾川、辽宁岫岩以及四川龙溪等地软玉FeOT数据点较为集中;其中辽宁岫岩和河南栾川软玉FeOT含量总体较高;四川龙溪、贵州罗甸以及黑龙江铁力软玉FeOT含量较为接近;江苏溧阳FeOT含量则总体较低(图8a、图8b)。所有产地FeOT+MgO和CaO+Na2O+K2O含量无明显差别,其中新疆和田和广西大化软玉FeOT+MgO含量变化大,贵州罗甸玉FeOT+MgO含量较高,江苏溧阳CaO+Na2O+K2O含量略微较高(图8a、图8b)。在图8c中可明显发现龙溪玉的P2O5和MnO明显高于其余产地,尤其MnO含量平均值达到了0.2%;除广西大化MnO含量平均值可达到0.1%以外,其余产地均小于0.1%。综上所述,本文认为高P2O5和MnO含量可以作为龙溪软玉的地球化学标型特征之一。
图 8 中国典型软玉产地玉石主量元素特征对比图数据引自刘晶,2002;阴江宁,2006;李红军,2008;凌潇潇等,2008;韩磊,2009;Liu et al.,2010;秦瑶,2013;高诗佳,2014;吴之瑛等,2014;朴庭贤,2014;徐立国等,2014;杜季明,2015;李晶,2016;于海燕,2016;郝爽,2016;张小冲,2016;李晶,2016;吴璘洁,2016;陈慕雨,2017;申晓萍,2017;韩冬等,2018;贾玉衡,2018;刘喜锋等,2019;郑奋等,2019;姜颖,2020;黄倩心,2021;徐琳抒等,2022;王蔚宁等,2022;赵素鹏等,2023Figure 8. Characteristic comparison of main element characteristics of nephrite from different areas in China4.1.2 微量元素特征
在地球化学研究过程中,不同微量元素常具有不同的性质,其可作为地球化学指示剂、示踪剂等(赵振华,2016)。笔者对中国不同产地软玉的全岩微量元素数据(ICP-MS)进行收集,不同产地软玉微量元素存在较为明显的差异(图9)。
新疆和田玉Zn含量较高,Sr和U含量较低,且Rb/Sr和Nb/Ta值较大,在Sr-Rb图解中集中分布于两个区域;青海软玉数据点总体变化较大,且Sr含量低,在Sr-Rb和Sr-V图解中具有较好的区分度;广西大化软玉Cr、Ni、Sr含量均较高,Cu含量以及Rb/Sr比值较低;贵州罗甸玉Co、Ni和Cr含量较低,在Ni-Co和Cr-Co图解中数据点较为集中,且具有较好的区分度;辽宁岫岩软玉Cr、Co、Ni和U含量较低,Cu含量较高,在Cr-Co、Cr-Ni和Zn-Cu图解中,可明显与其他产地的玉石相区别;四川龙溪软玉Ni、Cr、V和U含量高,在Ni-Co、Cr-Ni、Sr-V以及U-Th图解中均能很好的与其他产地软玉数据相区别。通过上述总结,本文认为高V、Cr和Ni含量可以作为龙溪软玉的地球化学标型特征之一,其他微量元素也可以较好的区别不同产地玉石。
4.1.3 稀土元素特征
稀土元素是一组特殊的微量元素,拥有独特的4f电子轨道。由于所有稀土元素均形成稳定的三价阳离子、且离子半径相近,因此他们具有非常相似的物理和化学特征,在任何地质体中都倾向于成组出现(张宏飞等,2012)。笔者对中国不同产地软玉的稀土元素数据进行了收集,并绘制了稀土元素配分模式图和散点图。
不同产地软玉的稀土元素配分模式图具有明显不同的特征(图10)。新疆和田软玉呈现轻稀土元素富集特征,Ce无明显异常,Eu具明显负异常,稀土元素配分曲线基本呈海鸥状(图10a);江苏溧阳软玉呈现轻稀土元素富集特征,Ce和Eu无明显异常特征,稀土元素配分曲线基本呈右倾的曲线(图10b);广西大化软玉具明显Ce、Eu负异常特征,稀土元素配分曲线较为平缓(图10c);青海软玉呈现轻稀土元素轻微富集特征,Ce、Eu无明显异常特征,稀土元素配分曲线呈轻微右倾的曲线(图10d);黑龙江铁力软玉呈现轻稀土元素富集特征,Ce具明显正异常、Eu无明显异常特征,稀土元素配分曲线呈明显右倾的曲线(图10e);辽宁岫岩软玉Ce无明显异常、Eu具明显负异常特征,稀土元素配分曲线呈海鸥状,且轻稀土段曲线较为陡立,重稀土段曲线较为平缓(图10f);四川龙溪软玉具明显Ce、Eu负异常特征,稀土元素配分曲线较平缓(图10g);贵州罗甸软玉具明显Ce、Eu负异常特征,稀土元素配分曲线呈右倾的曲线(图10h);河南栾川软玉无明显Ce和Eu异常特征,稀土元素配分曲线呈右倾的曲线(图10i)。通过对比可知,仅有广西大化软玉与龙溪软玉具有相识特征,其他产地的软玉和龙溪玉均有较大差别。
图 10 中国软玉稀土元素配分模式图数据引自阴江宁,2006;王时麒,2007;向芳等,2008a,2008b;程军等,2000;李晶等,2010;Liu et al.,2011a,2011b;杨林等,2012;高诗佳,2014;张亚东,2015;吴璘洁,2016;雷成,2016;张勇,2018;于海燕,2018;贾玉衡,2018;刘喜锋等,2019;郑奋等,2019;姜颖,2020;尹作为,2021;蓝叶,2022;陆俐合等,2023Figure 10. Chondrite-normalized REE patterns of nephrite from different areas in China对不同产地软玉的稀土元素进行投图,不同产地的点相对分散,有较好的区分度。新疆和田玉、江苏溧阳和辽宁岫岩等地软玉的δCe接近于1,垂向上具有直线分布特征;青海软玉和黑龙江铁力软玉δCe大于1,且青海软玉数据点相对分散、黑龙江铁力软玉则相对集中;四川龙溪、贵州罗甸以及广西大化等地软玉的δCe明显小于1,且数据点较为集中(图11)。各地区软玉ΣREE变化均较小,贵州罗甸ΣREE相对较高,青海软玉相对较低。龙溪软玉数据点与贵州罗甸玉和广西大化软玉的数据点难以区分(图11a、图11b)。龙溪软玉LREE/HREE值主要集中分布于1附近,明显区别于其他产地(图11c、图11d)。各地区软玉的LREE和HREE、LaN/YbN和LREE/HREE均具有明显的正相关性,龙溪软玉HREE含量最高,青海软玉HREE含量最低,其余产地较为集中,无明显区分度。综上所述,低δCe值,高HREE含量,LREE/HREE比值接近1,稀土元素配分曲线呈海鸥状,具明显Ce、Eu负异常特征可以作为龙溪软玉的地球化学标型特征之一。
图 11 中国软玉稀土元素散点图数据引自阴江宁,2006;王时麒,2007;向芳等,2008a,2008b;程军等,2000;李晶等,2010;Liu et al.,2011a,2011b;杨林等,2012;高诗佳,2014;张亚东,2015;吴璘洁,2016;雷成,2016;张勇,2018;于海燕,2018;贾玉衡,2018;刘喜锋等,2019;郑奋等,2019;姜颖,2020;尹作为,2021;蓝叶,2022;陆俐合等,2023Figure 11. Scatter diagram of rare earth elements of nephrite from different areas in China4.2 三星堆和金沙玉器软玉矿料溯源
我国著名的三星堆遗址和金沙遗址出土了大量玉石器,玉料以闪石玉(软玉)为主,属于狭义的“玉石”;其他玉料包括蛇纹石玉、红色玛瑙、大理岩、石英岩等,属于广义的“玉石”;另外还有少量砂岩、灰岩、斑岩等“石质”材料(朱章义等,2002,2004;鲁昊等,2021)。关于三星堆遗址和金沙遗址玉器的玉料来源众说纷纭(陈显丹,2007;向芳等,2008a,2008b;杨骊等,2015;鲁昊等,2021),主要观点有:①距三星堆不远的西部地区;②新疆和田玉;③江苏溧阳小梅岭玉矿;④外地直接输入;⑤岷江上游的“龙溪玉”或“珉玉”。由于三星堆和金沙玉器具有强烈的地域性色彩,因此目前大多学者认为玉器应该是就地取材加工而成的作品(陈显丹,2007;向芳等,2008a,2008b;杨骊等,2015;鲁昊等,2021)。
金沙文化(距今3200~2600年)晚于三星堆文化(距今4500~3000年),时代上有所重叠,二者不管是青铜器还是玉石器的造型和成分均具有一致性,差别在于金沙遗址玉器个体较小、数量更多、造型更加丰富、制作更为精良。金沙玉器的制作工艺仍沿袭了三星堆时期的加工技术,但整体水平更加精湛娴熟,器物的形制更为规整,钻孔后对孔眼等细节的处理亦越发细致,打磨抛光也是非常细腻。装饰方面,金沙玉器沿袭了三星堆玉器崇尚简单、朴素的传统风格,流行在器身外侧雕琢凸起牙饰和在器身上加刻线纹,体现出对三星堆玉器的继承和发展关系(朱章义等,2002,2004)。尤其是金沙遗址中出土的一件玉神人头像,造型风格与三星堆二号坑铜神坛第三层山形座旁边的侧面人头像几乎完全相同,与二号坑出土的大型铜兽面具也有相似之处,同样表明了金沙遗址与三星堆之间有极其紧密的关系(干福熹等,2017)。因此,大部分学者认为金沙文化是三星堆文化的延续,它们的玉石器很可能具有一致来源(向芳等,2008a,2008b;杨骊等,2015)。
前人对三星堆玉器(软玉)的外观研究表明,虽经过次生变化难以辨别玉材原本的颜色,但从器物细节处可见玉材颜色多为青黑色、青绿色和暗绿色等,半透明-不透明,具油脂光泽(鲁昊等,2021)。在金沙遗址,多数玉器(软玉)表现为不透明,材料疏松,多孔缝隙,表面硬度很低,在显微特征上表现为鳞片状滑石与柱状或细粒状透闪石组成的集合体(向芳等,2008a,2008b)。这些特征与龙溪软玉的外观特征很接近。龙溪软玉以墨绿色、黄绿色、浅绿色为主,有少量龙溪软玉样品局部显示为白色-青白色,玉石质地较软,裂纹较发育,主要为半透明—不透明,具油脂光泽或蜡状光泽。其矿物组合主要为透闪石,其次为方解石、白云石和滑石。品质较好的玉石主要为毛毡状交织结构、纤维定向结构等;品质差的玉石主要为纤维定向结构、叶片状定向结构。大部分样品中透闪石矿物均匀分布(图4g、图4h),部分样品中透闪石具定向分布特征(图4d~图4f)。这种定向排列的特征在其他产地软玉中较为罕见。另外,龙溪软玉和三星堆古玉的拉曼光谱相似,均具有674 cm−1主峰(鲁昊等,2021;徐琳抒等,2022)。
软玉的稀土元素在不同产地间的差异远远大于同一产地由于实验条件不同而产生的误差,这种不同产地软玉之间的差别,对物源示踪具有一定指示意义(程军等,2000,2005;王时麒,2007;向芳等,2008a,2008b;李晶等,2010;Liu et al.,2011a,2011b;钟友萍等,2013)。金沙遗址软玉的ΣREE平均值为8.21,轻(平均值为5.85)、重稀土元素(平均值为2.28)分异不明显,LREE/HREE值平均为2.57,具明显Ce、Eu负异常特征,稀土元素配分曲线呈海鸥状(图12a~图12d)。将金沙玉器与不同产地和遗址中软玉的稀土元素进行对比,不难发现,金沙遗址出土玉器的稀土配分模式图与贵州罗甸玉、广西大化玉以及四川龙溪玉具有相似性,均表现出明显的Ce、Eu负异常特征(图10;图12)。另外,金沙遗址软玉的δCe平均值为0.14,明显小于1。仅有贵州罗甸,广西大化以及四川龙溪软玉的δCe值符合这一特征(图10)。贵州罗甸玉轻重稀土分馏明显,这一特征明显不同于金沙玉器。相比之下,仅有四川龙溪以及广西大化软玉的稀土元素配分模式与金沙遗址软玉最为相似(图10、图12)。
金沙遗址和三星堆遗址出土的玉石器除了透闪石玉以外,还有部分蛇纹石玉、红色玛瑙、大理岩、石英岩等。金沙遗址和三星堆遗址北西汶川一带(图12e)出产“龙溪玉”(软玉),其围岩发育蛇纹岩、大理岩、石英岩、砂岩等,与两地遗址出土玉石器材质组合极为类似。从地理位置上来说,四川龙溪玉矿与两地遗址距离较近,且之间均有河流连通,据《续汉书·郡国志》记载:“有玉垒山,出璧玉,湔水所出”。因此,该地很可能为金沙遗址和三星堆遗址玉石器提供原料来源。综上所述,对于三星堆与金沙遗址的软玉玉器材质可能的来源,本研究倾向于四川龙门山地区汶川–茂县一带。
5. 结论
(1)龙溪软玉的颜色以墨绿色、黄绿色、浅绿色为主,少量为白色-青灰色,通常呈现墨绿色-黄绿色-浅绿色-青灰色环带。
(2)龙溪软玉具有高P、Mn、V、Cr、Ni、U含量和低δCe值(>1),LREE/HREE值接近1,稀土元素配分曲线呈海鸥状,具明显Ce、Eu负异常特征,可以作为龙溪软玉的地球化学识别标志。
(3)三星堆与金沙遗址的软玉玉器材质可能主要来源于四川龙门山地区汶川–茂县一带。
-
图 1 秦岭造山带构造格架图(a)(据Tang et al.,2022修)和秦岭Mo矿带斑岩–矽卡岩型Cu、Mo矿床分布图(b)(据朱赖民等,2019修)
Figure 1. (a) Tectonic framework of the Qinling Orogen and (b) porphyry-skarn Cu and Mo deposits distribution in Qinling Mo ore belt
图 2 柞水–山阳矿集区地质简图(修改自Xie et al.,2017)
Figure 2. Simplified geological map of the Zhashui-Shanyang ore cluster
图 3 柞水–山阳矿集区和栾川矿集区成矿岩体TAS岩石分类图解(a)、SiO2-K2O岩石系列判别图解(b)、A/CNK-A/NK铝饱和指数判别图解(c)和AR- SiO2碱度率判别图解(d)(底图分别据Wright,1969;Peccerillo et al.,1976;Maniar et al.,1989;Middlemost,1994)
柞水–山阳矿集区Cu-Mo矿床全岩主量元素数据引自吴发富(2013)、吴发富等(2014)、任涛等( 2014)、Xie等(2015,2017)、Xiong等(2019)、Luo等(2020)、Zhang等(2021)、Chen等(2023);栾川矿集区Mo-W矿床全岩主量数据引自Li等(2012)、Bao等(2014)、张云辉(2014)、韩江伟等(2015)、王赛等 (2016)、Xue等(2018)、 Zhang等(2018)、Yang等(2019)、Guo等(2020)
Figure 3. (a) TAS, (b) SiO2-K2O, (c) A/CNK-A/NK and (d) AR- SiO2 diagrams for the metallogenic rocks of the ore cluster in Zhashui-Shanyang and Luanchuan
图 5 栾川矿集区地质简图(据Guo et al.,2020修改)
Figure 5. Simplified geological map of the Luanchuan ore ore cluster
图 6 柞水–山阳矿集区和栾川矿集区εHf(t)–年龄图解(a)、TDM2(Hf)分布直方图(b)、εNd(t)–年龄d图解(c)和(87Sr/86Sr)i-εNd(t)图解(d)(d底图据Xie et al.,2017)
柞水–山阳矿集区Cu-Mo矿床全岩Sr-Nd数据引自Xie等(2015)、Luo等(2020),锆石Lu-Hf数据引自吴发富(2013)、吴发富等(2014)、Xiong等(2019)、Luo等(2020)、Zhang等( 2021)、Chen等(2023);栾川矿集区Mo-W矿床全岩Sr-Nd数据引自Bao等(2014)、Wang等(2018)、Zhan等(2021),锆石Lu-Hf数据引自杨阳等(2012)、Bao等(2014)、Li等(2015)、王赛等(2016)、Xue等(2018)、 Zhang等(2018)、 Guo等(2020)、Zhang等(2021)、Qian等(2022)
Figure 6. (a) εHf (t)–age, (b) histogram of zircon Hf TDM2, (c) εHf (t)–age and (d) (87Sr/86Sr)i–εNd (t) diagrams for the metallogenic rocks of the ore cluster in Zhashui-Shanyang and Luanchuan
图 7 柞水–山阳矿集区和栾川矿集区成矿岩体Y-Nb(a)和(Y+Nb)-Rb(b)构造环境判别图解(底图据Pearce et al.,1984)
柞水–山阳矿集区Cu-Mo矿床全岩主量元素数据引自吴发富(2013)、吴发富等(2014)、任涛等( 2014)、Xie等(2015,2017)、Xiong等(2019)、Luo等(2020)、Zhang等(2021)、Chen等(2023);栾川矿集区Mo-W矿床全岩主量数据引自Li等(2012)、Bao等(2014)、张云辉(2014)、韩江伟等(2015)、王赛等 (2016)、Xue等(2018)、 Zhang等(2018)、Yang等(2019)、Guo等(2020)
Figure 7. (a) Y-Nb and (b) (Y+Nb)-Rb diagrams for the metallogenic rocks of the ore cluster in Zhashui-Shanyang and Luanchuan
图 8 柞水–山阳矿集区和栾川矿集区成矿岩体的成矿年龄-Sr图解(a)、SiO2-Y图解(b)、成矿年龄-锆饱和温度图解(c)和SiO2-全岩EuN/EuN*图解图解(d)
柞水–山阳矿集区Cu-Mo矿床全岩主量元素数据引自吴发富(2013)、吴发富等(2014)、任涛等( 2014)、Xie等(2015,2017)、Xiong等(2019)、Luo等(2020)、Zhang等(2021)、Chen等(2023);栾川矿集区Mo-W矿床全岩主量数据引自Li等(2012)、Bao等(2014)、张云辉(2014)、韩江伟等(2015)、王赛等 (2016)、Xue等(2018)、 Zhang等(2018)、Yang等(2019)、Guo等(2020)
Figure 8. (a) Age-Sr, (b) SiO2-Y, (c) Age-zircon saturation temperature and (d) SiO2-whole rock EuN/EuN*diagrams for the metallogenic rocks of the ore cluster in Zhashui-Shanyang and Luanchuan
图 9 柞水–山阳矿集区和栾川矿集区稀土元素球粒陨石标准化配分图(a、b)和微量元素原始地幔标准化蛛网图(c、d)(球粒陨石和原始地幔标准化值据Sun et al.,1989)
柞水–山阳矿集区Cu-Mo矿床全岩主量元素数据引自吴发富(2013)、吴发富等(2014)、任涛等( 2014)、Xie等(2015,2017)、Xiong等(2019)、Luo等(2020)、Zhang等(2021)、Chen等(2023);栾川矿集区Mo-W矿床全岩主量数据引自Li等(2012)、Bao等(2014)、张云辉(2014)、韩江伟等(2015)、王赛等 (2016)、Xue等(2018)、 Zhang等(2018)、Yang等(2019)、Guo等(2020)
Figure 9. (a, b) Chondrite normalized REE and (c, d) primitive mantle-normalized trace elements diagrams for the metallogenic rocks of the ore cluster in Zhashui-Shanyang and Luanchuan
图 10 柞水–山阳矿集区和栾川矿集区成矿岩体的SiO2- Fe2O3/FeO图解(a)、Rb/Sr- Fe2O3/FeO图解(b)、全岩V/Sc-锆石EuN/EuN*图解(c)和锆石CeN/CeN*-EuN/EuN*图解(d) (b底图据Hart et al.,2004)
柞水–山阳矿集区Cu-Mo矿床全岩主量元素数据引自吴发富(2013)、吴发富等(2014)、任涛等( 2014)、Xie等(2015,2017)、Xiong等(2019)、Luo等(2020)、Zhang等(2021)、Chen等(2023);柞水–山阳矿集区Cu-Mo矿床锆石微量元素数据引自 Luo等(2020)、Zhang等( 2021)、Chen等(2023); 栾川矿集区Mo-W矿床全岩主量数据引自Li等(2012)、Bao等(2014)、张云辉(2014)、韩江伟等(2015)、王赛等 (2016)、Xue等(2018)、 Zhang等(2018)、Yang等(2019)、Guo等(2020);栾川矿集区Mo-W矿床锆石微量元素数据引自Li等(2015)、Xue等(2018)、Qian等(2022)
Figure 10. (a) SiO2- Fe2O3/FeO, (b) Rb/Sr- Fe2O3/FeO, (c) whole-rock V/Sc- zircon EuN/EuN* and (d) zircon CeN/CeN* - zircon EuN/EuN* diagrams for the metallogenic rocks of the ore cluster in Zhashui-Shanyang and Luanchuan
图 11 柞水–山阳矿集区和栾川矿集区磷灰石中SO3-Cl(a)、SO3-F/Cl(b)和MnO-F/Cl(c)图解
柞水–山阳矿集区Cu-Mo矿床磷灰石成分数据引自Chen等(2023)、陈雷等(2014a, 2017);栾川矿集区Mo-W矿床磷灰石成分数据引自陈雷等(2017)、Du等(2019)
Figure 11. (a) Apatite SO3-Cl, (b) SO3-F/Cl and (c) MnO-F/Cl diagrams for the metallogenic rocks of the ore cluster in Zhashui-Shanyang and Luanchuan
表 1 柞水–山阳矿集区斑岩-矽卡岩型Cu-Mo矿床成矿特征简表
Table 1 Summary of characteristics of porphyry-skarn Cu-Mo deposits in Zhashui-Shanyang area
矿床名称/
矿化类型金属储量/品位 赋矿围岩 岩体岩性 岩体蚀变类型 矿石矿物 脉石矿物 成矿时间(Ma) 资料来源 池沟/矽卡岩型Cu,伴生Mo Cu:64 Mt/0.22% 池沟组石英砂岩、粉砂质板岩、大理岩 石英闪长斑岩、二长花岗岩、花岗闪长斑岩 矽卡岩化、钾化、绢云母化、角岩化、硅化、 黄铁矿、黄铜矿、辉钼矿、褐铁矿、闪锌矿、方铅矿 钾长石、斜长石、绢云母、透辉石、绿帘石、绿泥石、沸石、方解石 148.1~146.5
Molybdenite Re-Os任涛等,2014;Zhang et al.,2021 下官坊/矽卡岩型Cu,伴生Fe – 二峪河组变石英砂岩、板岩、粉砂岩 花岗闪长斑岩、闪长岩、花岗斑岩 钾化、硅化、绿泥石化、绢云母化 磁铁矿、磁黄铁矿、黄铁矿、赤铁矿、黄铜矿、辉铜矿、辉铜矿、辉钼矿、褐铁矿 石榴子石、透辉石、阳起石、绿帘石、绿泥石、石英、方解石 142.8~142.7
Zircon U-Pb吴发富,2013;Chen et al.,2023 元子街矽卡岩型Cu,伴生Fe-Au - 二峪河组变石英砂岩、板岩、粉砂岩 石英闪长斑岩、花岗闪长斑岩 绢云母化、绿泥石化、硅化、黏土化 磁铁矿、黄铜矿、白铁矿、磁黄铁矿、黄铁矿、赤铁矿、褐铁矿 透辉石、石榴子石、绿帘石、绿泥石、阳起石、石英、方解石 142.3~142.1
Zircon U-Pb吴发富,2013;Chen et al.,2023 小河口/矽卡岩型Cu Cu:>0.05 Mt 东沟组粉砂质板岩、泥质碳酸盐岩;桐峪寺组大理岩 花岗闪长斑岩、
花岗斑岩钾化、硅化、绢云母化、黏土化、绿泥石化 黄铜矿、黄铁矿、磁黄铁矿、磁铁矿 石榴子石、透辉石、阳起石、绿帘石、绿泥石、方解石、石英 150.2~149.6
Zircon U-Pb吴发富,2013;Chen et al.,2023 袁家沟/矽卡岩型Cu – 东沟组粉砂质板岩、泥质碳酸盐岩;桐峪寺组大理岩 石英闪长斑岩、花岗闪长斑岩 钾化、泥化、硅化 黄铁矿、辉钼矿、褐铁矿、黄铜矿 石英、石榴子石、透辉石、钾长石、方解石、绿帘石 147.5~141.5
Molybdenite Re-OsMao et al.,2008 双元沟/斑岩型Cu Cu:0.079 Mt/
0.51%~2.34%池沟组石英砂岩、粉砂质板岩、大理岩 石英闪长斑岩、花岗闪长斑岩 钾化、硅化、绿泥石化、绢云母化、黏土化 黄铜矿、黄铁矿、辉铜矿、黝铜矿、磁铁矿、褐铁矿 钾长石、绿泥石、石英、方解石、石榴子石、透辉石 151~144
Zircon U-PbXie et al.,2015;Chen et al.,2023 土地沟/斑岩型Cu-Mo – 池沟组石英砂岩、粉砂质板岩、大理岩 石英闪长斑岩、花岗闪长斑岩 钾化、绢云母化、碳酸盐化、高岭土化 黄铁矿、黄铜矿、辉钼矿 石榴子石、透辉石、绿泥石、钾长石、石英、方解石、 150~148
Molybdenite Re-OsZhang et al.,2023 冷水沟/矽卡岩Cu,斑岩型Cu-Mo Cu:44 Mt/0.25 % 云镇组千枚岩、石英砂岩;龙洞沟组大理岩、灰岩、千枚岩 花岗闪长斑岩、
石英闪长岩、花岗斑岩钾化、硅化、绢云母化、绿泥石化、高岭土化 黄铜矿、黄铁矿、辉钼矿、辉铜矿、黝铜矿、褐铁矿 石榴子石、透辉石、绿帘石、绿泥石、透闪石、石英、方解石 150.0~145.6
Molybdenite Re-OsXie et al.,2017 注:“–”表示无数据来源。 表 2 栾川矿集区斑岩–矽卡岩型Mo-W矿床成矿特征简表
Table 2 Summary of characteristics of porphyry-skarn Mo-W deposits in Luanchuan area
矿床名称/
矿化类型金属储量/品位 赋矿围岩 岩体岩性 蚀变类型 矿石矿物 脉石矿物 成矿时间(Ma) 资料来源 南泥湖/斑岩–矽卡岩Mo-W Mo:1.24 Mt/0.079%~0.143%;WO3:0.64 Mt 栾川群碳硅泥岩系 花岗斑岩、斑状二长花岗岩 矽卡岩化、钾化、硅化、绢云母化、绿泥石化、碳酸盐化 黄铁矿、磁黄铁矿、辉钼矿、黄铜矿、方铅矿、闪锌矿、白钨矿 阳起石、绿帘石、石英、钾长石、黑云母、方解石、萤石、绿泥石、沸石 145.8~143.9
Molybdenite Re-OsLi et al.,2004;向君峰等,2012 三道庄/斑岩–矽卡岩Mo-W Mo:0.75 Mt/0.109%;WO3:0.55 Mt/0.112% 栾川群碳硅泥岩系 花岗斑岩、斑状二长花岗岩 矽卡岩化、钾化、硅化、绢云母化、绿泥石化、碳酸盐化 黄铁矿、磁黄铁矿、辉钼矿、黄铜矿、方铅矿、闪锌矿、白钨矿 石榴子石、透辉石、阳起石、绿帘石、石英、黑云母、方解石、绿泥石、沸石 146.5~143.5
Molybdenite Re-OsMao et al.,2008;向君峰等,2012 上房沟/斑岩–矽卡岩Mo-W Mo:0.72 Mt/0.134% 栾川群碳硅泥岩系 花岗斑岩、黑云母二长花岗岩 矽卡岩化、硅化、绢云母化、碳酸盐化 黄铁矿、磁黄铁矿、辉钼矿、闪锌矿、白钨矿、磁黄铁矿 透辉石、透闪石、阳起石、金云母、蛇纹石、滑石、绿泥石、石英、方解石、钾长石 144.8~141.8
Molybdenite Re-OsLi et al.,2004;Mao et al.,2008 东鱼库/斑岩–矽卡岩Mo-W Mo:1.5 Mt/0.055%~0.186%;WO3:0.3 Mt/0.06%~0.13% 栾川群碳硅泥岩系 花岗斑岩、石英二长斑岩 硅化、绢云母化、矽卡岩化、钾化、绿泥石化 辉钼矿、白钨矿、黄铁矿、磁黄铁矿、闪锌矿、方铅矿、黄铜矿 钾长石、石英、透辉石、石榴子石、绢云母、萤石、电气石 147.1~145.9
Molybdenite Re-OsLi et al.,2015 石宝沟/斑岩-矽卡岩Mo-W Mo:0.2 Mt/0.05%~0.1%, WO3:0.17 Mt/0.07%~0.18% 栾川群碳硅泥岩系 花岗斑岩、二长花岗岩 钾化、硅化、矽卡岩化、碳酸盐化、绢云母化 辉钼矿、黄铁矿、白钨矿、磁黄铁矿 石英、石榴子石、透辉石、钾长石、方解石、绿帘石 147.5~141.5
Molybdenite Re-OsMao et al.,2008 榆木沟/斑岩–矽卡岩Mo-W Mo:0.14 Mt/0.05%~0.1%; WO3:0.17 Mt/0.07%~0.18% 栾川群碳硅泥岩系 斑状二长花岗岩和黑云母二长花岗岩 钾化、硅化、碳酸盐化 辉钼矿、白钨矿、闪锌矿、方铅矿、黄铁矿 钾长石、斜长石、石英、绿泥石、绿帘石 147.7~147.2
Molybdenite Re-OsQian et al.,2022;Yang et al.,2022 大坪/斑岩–矽卡岩Mo-W - 栾川群碳硅泥岩系 二长花岗斑岩 矽卡岩化、钾化、硅化、绢云母化、绿泥石化、碳酸盐化 黄铁矿、磁黄铁矿、辉钼矿、黄铜矿、方铅矿、闪锌矿、白钨矿 阳起石、绿帘石、透辉石、斜长石 141.2±0.5
Zircon U-Pb张云辉,2014 火神庙/ 矽卡岩Mo-W Mo:0.053 Mt/0.11% 栾川群碳硅泥岩系 花岗斑岩、石英闪长岩 矽卡岩化、钾化、硅化、绢云母化 辉钼矿、黄铁矿、磁黄铁矿、黄铜矿、方铅矿、闪锌矿 透辉石、透闪石、石英、钾长石、黑云母、方解石、绿帘石 148.1~146.1
Molybdenite Re-Os王赛等,2014 马圈/斑岩–矽卡岩Mo-W Mo:0.01 Mt/0.109% 官道口群白云石大理岩 花岗斑岩 矽卡岩化、硅化、绢云母化、绿泥石化、碳酸盐化 黄铁矿、辉钼矿、磁黄铁矿、方铅矿、闪锌矿、黄铜矿、白钨矿 透辉石、石榴子石、斜长石、方解石、石英 141.8±2.1
Molybdenite Re-Os李诺等,2007 -
陈建林, 许继峰, 任江波, 等. 俯冲型和碰撞型含矿斑岩地球化学组成的差异[J]. 岩石学报, 2011, 27: 2733-2742. CHEN Jianlin, XU Jifeng, REN Jiangbo, et al. Geochemical differences between the subduction-and collisional type ore-bearing porphyric rocks[J]. ACTA PETROLOGICA SINICA, 2011, 27: 2733-2742.
陈雷, 闫臻, 王宗起, 等. 陕西山阳-柞水矿集区燕山期岩体矿物学特征: 对岩浆性质及成矿作用的指示[J]. 地质学报, 2014a, 88: 109-133 CHEN Lei, YAN Zhen, WANG Zongqi, et al. Mineralogical characteristic of the Yanshanian granitic rocks in Shanyang–Zhashui ore concentration area: an indicator for the magmatic nature and metallogenesis[J]. Acta Geol Sin, 2014a, 88: 109-133.
陈雷, 王宗起, 闫臻, 等. 秦岭山阳-柞水矿集区150~140Ma斑岩-矽卡岩型CuMoFe(Au)矿床成矿作用研究[J]. 岩石学报, 2014b, 30: 415-436 CHEN Lei, WANG Zongqi, YAN Zhen, et al. Metallogenesis of 150–140 Ma porphyry–skarn CuMoFe (Au) deposit in Shanyang–Zhashui ore concentration area, Qinling[J]. Acta Petrol Sin, 2014b, 30: 415-436.
陈雷, 闫臻, 王宗起, 等. 东秦岭160~140Ma Cu(Mo)和Mo(W)成矿作用的差异性: 来自成矿岩体的地球化学及其岩浆源区的证据[J]. 岩石学报, 2015, 31: 2383-2401 CHEN Lei, YAN Zhen, WANG Zongqi, et al. Diversity of the 160–140Ma Cu (Mo) and Mo (W) mineralization in East Qinling: constraint on the geochemistry and magma source of the metallogenic rocks[J]. ACTA PETROLOGICA SINICA, 2015, 31: 2383-2401.
陈雷, 闫臻, 王宗起, 等. 东秦岭160~140Ma Cu(Mo)和Mo(W)矿床磷灰石成分特征[J]. 地质学报, 2017, 91: 1925-1941 CHEN Lei, YAN Zhen, WANG Zongqi, et al. Characteristics of apatite from 160–140 Ma Cu (Mo) and Mo (W) deposits in East Qinling[J]. Acta Geologica Sinica, 2017, 91: 1925-1941.
陈衍景, 李诺, 邓小华, 等. 秦岭造山带钼矿床成矿规律[M]. 北京: 科学出版社, 2020 CHEN Yanjing, LI Nuo, DENG Xiaohua, et al. Molybdenum Mineralization in Qinling Orogen[M]. Beijing: Science Press, 2020.
戴宝章, 蒋少涌, 王孝磊 河南东沟钼矿花岗斑岩成因: 岩石地球化学、锆石U-Pb年代学及Sr-Nd-Hf同位素制约[J]. 岩石学报, 2009, 25: 2889-2901 DAI Baozhang, JIANG Shaoyong, WANG Xiaolei Petrogenesis of the granitic porphyry related to the giant molybdenum deposit in Donggou, Henan Province, China: Constraints from petrogeochemistry, zircon U-Pb chronology and Sr-Nd-Hf isotopes[J]. ACTA PETROLOGICA SINICA, 2009, 25: 2889-2901.
韩江伟, 郭波, 王宏卫, 等. 栾川西鱼库隐伏斑岩型Mo-W矿床地球化学及其意义[J]. 岩石学报, 2015, 31: 1789-1796 HAN Jiangwei, GUO Bo, WANG Hongwei, et al. Geochemistry of the Xiyuku large concealed porphyry Mo-W ore deposit, Luanchuan County[J]. ACTA PETROLOGICA SINICA, 2015, 31: 1789-1796.
侯增谦, 王涛. 同位素填图与深部物质探测(Ⅱ): 揭示地壳三维架构与区域成矿规律[J]. 地学前缘, 2018, 25: 20-41. HOU Zengqian, WANG Tao. Isotopic mapping and deep material probing (Ⅱ): imaging crustal architecture and its control on mineral systems[J]. Earth Science Frontiers, 2018, 25: 20.
侯增谦, 杨志明. 中国大陆环境斑岩型矿床: 基本地质特征、岩浆热液系统和成矿概念模型[J]. 地质学报, 2009, 83: 1779-1817 HOU Zengqian, YANG Zhiming. Porphyry deposits in continental settings of China: Geological characteristics, magmatic-hydrothermal system, and metallogenic model[J]. Acta Geologica Sinica, 2009, 83: 1779-1817.
侯增谦, 杨志明, 王瑞, 等. 再论中国大陆斑岩Cu-Mo-Au矿床成矿作用[J]. 地学前缘, 2020, 27: 20-44 HOU Zengqian, YANG Zhiming, WANG Rui, et al. Further discussion on porphyry Cu-Mo-Au deposit formation in Chinese mainland[J]. Earth Science Frontiers, 2020, 27: 20-44.
黄典豪, 吴澄宇, 杜安道, 等. 东秦岭地区钼矿床的铼-锇同位素年龄及其意义[J]. 矿床地质, 1994, 13(3): 221−230. HUANG Dianhao, WU Chengyu, DU Andao, et al. Re-Os isotope ages of molybdenum deposits in East Qinling and their significance[J]. Mineral Deposits, 1994, 13(3): 313−322.
李诺, 陈衍景, 张辉, 等. 东秦岭斑岩钼矿带的地质特征和成矿构造背景[J]. 地学前缘, 2007, 05): 186-198 LI Nuo, CHEN Yanjing, ZHANG Hui, et al. Molybdenum deposits in east Qinling[J]. Earth Science Frontiers, 2007, (05): 186-198.
李永峰, 毛景文, 白凤军, 等. 东秦岭南泥湖钼(钨)矿田Re-Os同位素年龄及其地质意义[J]. 地质论评, 2003: 652-659 doi: 10.3321/j.issn:0371-5736.2003.06.014 LI Yongfeng, MAO Jingwen, BAI Fengjun, et al. Re–Os isotopic dating of molybdenites in the Nannihu molybdenum (tungsten) ore field in the eastern Qinling and its geological significance[J]. Geological Review, 2003, 49: 652-659. doi: 10.3321/j.issn:0371-5736.2003.06.014
李永峰, 毛景文, 刘敦一, 等. 豫西雷门沟斑岩钼矿SHRIMP锆石U-Pb和辉钼矿Re-Os测年及其地质意义[J]. 地质论评, 2006: 122-131 LI Yongfeng, MAO Jingwen, LIU Dunyi, et al. SHRIMP zircon U-Pb and molybdenite Re-Os datings for the Leimengou porphyry molybdenum deposit, western Henan and its geological implication[J]. Geological Review, 2006, 52: 122-131.
刘凯, 赵亮, 任涛, 等. 南秦岭柞水—山阳矿集区成矿特征及找矿方向[J]. 矿产勘查, 2020, 11: 849-857 LIU Kai, ZHAO Liang, REN Tao, et al. Analysis on metallogenic characteristics and prospecting direction of Zhashui-Shanyang ore cluster in South Qinling Mountains[J]. Mineral Exploration, 2020, 11: 849-857.
冉亚洲, 陈涛, 梁文天, 等. 西秦岭郎木寺组火山岩锆石U–Pb年龄及其构造意义[J]. 西北地质, 2024, 57(1), 110−121 RAN Yazhou, CHEN Tao, LIANG Wentian, et al. Zircon U–Pb Age of Volcanic Rocks from the Langmusi Formation in the Western Qinling Mountains and Its Tectonic Significance[J]. Northwestern Geology, 2024, 57(1), 110−121
任涛, 王瑞廷, 谢桂青, 等. 陕西池沟斑岩型铜矿床含矿岩体地球化学特征、成岩成矿时代及其意义[J]. 矿床地质, 2014, 33: 807-820 REN Tao, WANG Ruiting, XIE Guiqin, et al. Geochemistry and rock-forming and ore-forming epochs of Chigou Cu porphyry deposit in Shaanxi Province, and their implications[J]. Mineral Deposits, 2014, 33: 807-820.
孙卫东, 李聪颖, 凌明星, 等. 钼的地球化学性质与成矿[J]. 岩石学报, 2015, 31: 1807-1817 SUN Weidong, LI Congying, LING Mingxing, et al. The geochemical behavior of molybdnum and mineralization[J]. ACTA PETROLOGICA SINICA, 2015, 31: 1807-1817.
唐利, 张寿庭, 曹华文, 等. 河南栾川矿集区钼钨铅锌银多金属矿成矿系统及演化特征[J]. 成都理工大学学报(自然科学版), 2014, 41: 356-368. TANG Li, ZHANG Shouting, CAO Huawen, et al. Metallogenic system and evolutionary characteristics of Mo-W-Pb-Zn-Ag polymetallic metallogenic concentration area in Luanchuan, Henan[J]. China. J. Chengdu Univ. Technol.(Sci. Technol. Ed.), 2014, 41: 356-368
陶威, 郭岭, 李阳, 等. 南秦岭小寨沟银矿地质特征及其构造约束[J]. 西北地质, 2021 ,54(3): 108−120. TAO Wei, GUO Ling, LI Yang, et al. The Geological Characteristics and Structural Constraints of Xiaozhaigou Silver Deposit in South Qinling[J]. Northwestern Geology, 2021, 54(3): 108−120.
王汉辉, 唐利, 杨勃畅, 等. 东秦岭黄水庵碳酸岩型Mo–REE矿床方解石地球化学特征和氟碳铈矿U–Th–Pb年龄及其意义[J]. 西北地质, 2023, 56(1): 48−62. WANG Hanhui, TANG Li, YANG Bochang, et al. Geochemical Characteristics of Calcite and Bastnäsite U–Th–Pb Age of the Huangshui’an Carbonatite–hosted Mo–REE Deposit, Eastern Qinling[J]. Northwestern Geology, 2023, 56(1): 48−62.
王瑞, 罗晨皓, 夏文杰, 等. 冈底斯后碰撞斑岩成矿带高水、高氧逸度岩浆成因研究进展[J]. 矿物岩石地球化学通报, 2021, 40: 1061-1077 WANG Rui, LUO Chenhao, XIA Wenjie, et al. Progresses in the study of high magmatic water and oxidation state of post-collisional magmas in the Gangdese porphyry deposit belt[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40: 1061-1077.
王瑞, 朱弟成, 王青, 等. 特提斯造山带斑岩成矿作用[J]. 中国科学: 地球科学, 2020, 50: 1919-1946. WANG Rui, ZHU Dicheng, WANG Qing, et al. Porphyry mineralization in the Tethyan orogen[J]. Science China Earth Sciences, 2020, 63: 2042-2067.
王瑞廷, 刘凯, 冀月飞, 等. 陕西柞水-山阳金铜银多金属矿集区典型矿床模型和找矿预测. 地质通报, 2023, 42(6): 895−908. WANG Ruiting, LIU Kai, JI Yuefei, et al. Typical deposit model and prospecting prediction of the Zhashui-Shanyang Au-Cu-Ag polymetallic ore-concentration area, Shaanxi Province. Geological Bulletin of China, 2023, 42(6): 895−908.
王赛, 叶会寿, 杨永强, 等. 河南栾川火神庙钼矿床辉钼矿Re-Os同位素年龄及其地质意义[J]. 地质通报, 2014, 33: 1430-1438 WANG Sai, YE Huishou, YANG Yongqiang, et al. Molybdenite Re‐Os Isochron Age of the Huoshenmiao Mo Deposit in Luanchuan Henan Province and Its Geological Implications[J]. Geological Bulletin of China, 2014, 33: 1430-1438.
王赛, 叶会寿, 杨永强, 等. 豫西火神庙岩体锆石U-Pb年代学、地球化学及Hf同位素组成[J]. 地球科学, 2016, 41(2): 293−316. WANG Sai, YE Huishou, YANG Yongqiang, et al. Zircon U-Pb chronology, geochemistry and Hf isotopic compositions of the Huoshenmiao pluton, western Henan[J]. Earth Science, 2016, 41(2): 293−316.
王晓霞, 王涛, 齐秋菊, 等. 秦岭晚中生代花岗岩时空分布、成因演变及构造意义[J]. 岩石学报, 2011, 27: 1573-1593 WANG Xiaoxia, WANG Tao, QI Qiuju, et al. Temporal-spatial variations, origin and their tectonic significance of the Late Mesozoic granites in the Qinling, Central China[J]. ACTA PETROLOGICA SINICA, 2011, 27: 1573-1593.
王晓霞, 王涛, 张成立. 秦岭造山带花岗质岩浆作用与造山带演化[J]. 中国科学: 地球科学, 2015, 45: 1109-1125. WANG Xiaoxia, WANG Tao, ZHANG Chengli Granitoid magmatism in the Qinling orogen, central China and its bearing on orogenic evolution[J]. Science China Earth Sciences, 2015, 58: 1497-1512.
王宗起, 闫全人, 闫臻, 等. 秦岭造山带主要大地构造单元的新划分[J]. 地质学报, 2009, 83: 1527-1546 WANG Zongqi, YAN Quanren, YAN Zhen, et al. New division of the main tectonic units of the Qinling Orogenic Belt, Central China[J]. Acta Geologica Sinica, 2009, 83: 1527-1546.
吴发富, 王宗起, 闫臻, 等. 秦岭山阳-柞水地区燕山期中酸性侵入岩地球化学特征、锆石U-Pb年龄及Lu-Hf同位素组成[J]. 岩石学报, 2014, 30: 451-471 WU Fafu, WANG Zongqi, YAN Zhen, et al. Geochemical characteristics, zircons U-Pb ages and Lu-Hf isotopic composition of the Yanshanian intermediate-acidic plutons in the Shanyang-Zhashui areas, Qinling Orogenic Belt[J]. ACTA PETROLOGICA SINICA, 2014, 30: 451-471.
吴发富. 中秦岭山阳—柞水地区岩浆岩及其成矿构造环境研究[D]. 北京:中国地质科学院, 2013. WU Fafu. Research on the magmatite and its metallogenic tectonic setting in the Shanyang-Zhashui area, Middle Qinling Orogenic Belt[D]. Beijing: Chinese Academy of Geological Sciences, 2013.
向君峰, 毛景文, 裴荣富, 等. 南泥湖—三道庄钼(钨)矿的成岩成矿年龄新数据及其地质意义[J]. 中国地质, 2012, 39: 458-473 XIANG Junfeng, MAO Jingwen, PEI Rongfu, et al. New geochronological data of granites and ores from the Nannihu-Sandaozhuang Mo (W) deposit[J]. Geology in China, 2012, 39: 458-473.
谢桂青, 任涛, 李剑斌, 等. 陕西柞山盆地池沟铜钼矿区含矿岩体的锆石U-Pb年龄和岩石成因[J]. 岩石学报, 2012, 28: 15-26 XIE Guiqing, REN Tao, LI Jianbin, et al. Zircon U-Pb age and petrogenesis of ore-bearing granitoid for the Chigou Cu-Mo deposit from the Zhashan basin, Shaanxi Province[J]. Acta Petrol Sin, 2012, 28: 15-26.
薛飞. 栾川矿集区花岗岩地质地球化学特征及其找矿指示意义[D]. 北京: 中国地质大学(北京), 2017 XUE Fei. Geology and Geochemistry of Granites in Luanchuan Ore District and Their Implications for Mineral Exploration[D]. Beijing: China University of Geosciences (Beijing), 2017.
闫臻, 王宗起, 陈雷, 等. 南秦岭山阳-柞水矿集区构造-岩浆-成矿作用[J]. 岩石学报, 2014, 30: 401-414 YAN Zhen, WANG Zongqi, CHEN Lei, et al. Tectono-magmatism and metallogeneses of Shanyang-Zhashui ore concentration area, Qinling Orogen[J]. ACTA PETROLOGICA SINICA, 2014, 30: 401-414.
燕长海, 刘国印, 彭翼, 等. 豫西南地区铅锌银成矿规律[M]. 北京: 地质出版社, 2009 YAN Changhai, LIU Guoyin, PENG Yi, et al. The Metallogenetical Characteristics of the Pb-Zn-Ag Deposits in Southwest Henan [M]. Beijing: Geological Publishing House, 2009.
杨航, 秦克章, 吴鹏, 等. 斑岩铜-钼-金矿床: 构造环境、成矿作用与控制因素[J]. 矿床地质, 2023, 42: 128-156 YANG Hang, QIN Kezhang, Wu Peng, et al. Tectonic setting, mineralization and ore-controlling factors of porphyry Cu-Mo-Au deposits[J]. Mineral Deposits, 2023, 42: 128-156.
杨阳, 王晓霞, 柯昌辉, 等. 豫西南泥湖矿集区石宝沟花岗岩体的锆石U-Pb年龄、岩石地球化学及Hf同位素组成[J]. 中国地质, 2012, 39(6): 1525−1542. YANG Yang, WANG Xiaoxia, KE Changhui, et al. Zircon U-Pb age, geochemistry and Hf isotopic compositions of Shibaogou granitoid pluton in the Nannihu ore district, western Henan Province[J]. Geology in China, 2012, 39(6): 1525−1542.
叶会寿, 毛景文, 李永峰, 等. 东秦岭东沟超大型斑岩钼矿SHRIMP锆石U-Pb和辉钼矿Re-Os年龄及其地质意义[J]. 地质学报, 2006: 1078-1088 doi: 10.3321/j.issn:0001-5717.2006.07.014 YE Huishou, MAO Jingwen, LI Yongfeng, et al. SHRIMP zircon U-Pb and molybdenite Re-Os dating for the superlarge Donggou porphyry Mo deposit in East Qinling, China, and its geological implication[J]. Acta Geol. Sin. , 2006, 80: 1078-1088. doi: 10.3321/j.issn:0001-5717.2006.07.014
张国伟, 郭安林, 董云鹏, 等. 关于秦岭造山带[J]. 地质力学学报, 2019, 25: 746-768 doi: 10.12090/j.issn.1006-6616.2019.25.05.064 ZHANG Guowei, GUO Anlin, DONG Yunpeng, et al. Rethinking of the Qinling orogen[J]. Journal of Geomechanics, 2019, 25: 746-768. doi: 10.12090/j.issn.1006-6616.2019.25.05.064
张国伟, 张宗清, 董云鹏. 秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义[J]. 岩石学报, 1995: 101-114 ZHANG Guowei, ZHANG Zongqing, DONG Yunpeng, et al. Nature of main tectono-lithostratigraphic units of the Qinling orogen: implications for the tectonic evolution[J]. Acta Petrol. Sinica, 1995, 11: 101-114.
张国伟, 张本仁, 肖庆辉, 等. 秦岭造山带与大陆动力学[M]. 北京: 科学出版社, 2001 ZHANG Guowei, ZHANG Benren, XIAO Qinghui, et al. Qinling orogenic belt and continental dynamics [M]. Beijing: Science Press, 2001.
张云辉. 栾川地区晚中生代构造-岩浆演化与成矿关系探讨[D]. 北京: 中国地质大学(北京), 2014 ZHANG Yunhui. Late-Mesozoic tectonic-magma evolution and its relationship with mineralization in Luanchuan County[D]. Beijing: China University of Geosciences (Beijing), 2014.
郑俊, 朱赖民, 姜航, 等. 南秦岭柞水-山阳矿集区印支期和燕山期花岗岩对比研究[J]. 矿物岩石地球化学通报, 2015, 34: 1155-1172 ZHENG Jun, ZHU Laimin, JIANG Hang, et al. A Comparisonal Study on the Indosinian and Yanshanian Granites of the Zhashui-Shanyang ore Cluster District in the Southern Qinling, China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34: 1155-1172.
朱赖民, 张国伟, 郭波, 等. 东秦岭金堆城大型斑岩钼矿床LA-ICP-MS锆石U-Pb定年及成矿动力学背景[J]. 地质学报, 2008: 204-220 ZHU Laimin, ZHANG Guowei, GUO Bo, et al. U–Pb (LA-ICP-MS) zircon dating for the large Jinduicheng porphyry Mo deposit in the East Qinling, China, and its metallogenetic geodynamical setting[J]. Acta Geologica Sinica, 2008, 82: 204-220.
朱赖民, 郑俊, 熊潇, 等. 南秦岭柞水—山阳矿集区园子街岩体岩石地球化学与成矿潜力探讨[J]. 地学前缘, 2019, 26: 189-205. ZHU Laimin, ZHENG Jun, XIONG Xiao, et al. Petrogeochemistry and mineralization potential of the Yuanzijie intrusion in the ZhashuiShanyang ore deposit cluster in southern Qinling[J]. Earth Science Frontiers, 2019, 26: 189.
Andersson Stefan S, Wagner Thomas, Jonsson Erik, et al. Apatite as a tracer of the source, chemistry and evolution of ore-forming fluids: The case of the Olserum-Djupedal REE-phosphate mineralisation, SE Sweden[J]. Geochimica et Cosmochimica Acta, 2019, 255: 163-187. doi: 10.1016/j.gca.2019.04.014
Ayers John C, Watson E Bruce. Solubility of apatite, monazite, zircon, and rutile in supercritical aqueous fluids with implications for subduction zone geochemistry[J]. Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences, 1991, 335: 365-375.
Ayers John C, Watson E Bruce. Apatite/fluid partitioning of rare-earth elements and strontium: Experimental results at 1.0 GPa and 1000 C and application to models of fluid-rock interaction[J]. Chemical Geology, 1993, 110: 299-314. doi: 10.1016/0009-2541(93)90259-L
Ballard Julian R, Palin Michael J, Campbell Ian H. Relative oxidation states of magmas inferred from Ce (IV)/Ce (III) in zircon: application to porphyry copper deposits of northern Chile[J]. Contributions to Mineralogy and Petrology, 2002, 144: 347-364. doi: 10.1007/s00410-002-0402-5
Bao Zhiwei, Wang Christina Yan, Zhao Taiping, et al. Petrogenesis of the Mesozoic granites and Mo mineralization of the Luanchuan ore field in the East Qinling Mo mineralization belt, Central China[J]. Ore Geology Reviews, 2014, 57: 132-153. doi: 10.1016/j.oregeorev.2013.09.008
Berndt Jasper, Koepke JÜrgen, Holtz Francois. An experimental investigation of the influence of water and oxygen fugacity on differentiation of MORB at 200 MPa[J]. Journal of Petrology, 2005, 46: 135-167.
Berry Andrew J, Harris Anthony C, Kamenetsky Vadim S, et al. The speciation of copper in natural fluid inclusions at temperatures up to 700 C[J]. Chemical Geology, 2009, 259: 2-7. doi: 10.1016/j.chemgeo.2008.10.018
Boudreau Ae, Kruger Fj. Variation in the composition of apatite through the Merensky cyclic unit in the western Bushveld Complex[J]. Economic geology, 1990, 85: 737-745. doi: 10.2113/gsecongeo.85.4.737
Buddington Arthur F, Lindsley Dh. Iron-titanium oxide minerals and synthetic equivalents[J]. Journal of Petrology, 1964, 5: 310-357. doi: 10.1093/petrology/5.2.310
Cao Mingjian, Li Guangming, Qin Kezhang, et al. Major and trace element characteristics of apatites in granitoids from Central Kazakhstan: implications for petrogenesis and mineralization[J]. Resource Geology, 2012, 62: 63-83. doi: 10.1111/j.1751-3928.2011.00180.x
Chelle-Michou Cyril, Chiaradia Massimo. Amphibole and apatite insights into the evolution and mass balance of Cl and S in magmas associated with porphyry copper deposits[J]. Contributions to Mineralogy and Petrology, 2017, 172: 105. doi: 10.1007/s00410-017-1417-2
Chelle-Michou Cyril, Chiaradia Massimo, Ovtcharova Maria, et al. Zircon petrochronology reveals the temporal link between porphyry systems and the magmatic evolution of their hidden plutonic roots (the Eocene Coroccohuayco deposit, Peru)[J]. LITHOS, 2014, 198: 129-140.
Chen Lei, Yan Zhen, Wang Zongqi, et al. Contributions of juvenile lower crust and mantle components to porphyry Cu deposits in an intracontinental setting: evidence from late Mesozoic porphyry Cu deposits in the South Qinling Orogenic Belt, Central China[J]. Mineralium Deposita, 2023, 58: 489-509. doi: 10.1007/s00126-022-01138-8
Chiaradia Massimo. How much water in basaltic melts parental to porphyry copper deposits?[J]. Frontiers in Earth Science, 2020, 8: 138.
Cooke David R, Hollings Peter, Walshe John L. Giant porphyry deposits: characteristics, distribution, and tectonic controls[J]. Economic geology, 2005, 100: 801-818. doi: 10.2113/gsecongeo.100.5.801
Cooke D R, Hollings P, Wilkinson J J, et al. Geochemistry of porphyry deposits[J]. In: editor(s): Holland H D, Turekian KK (editors). Treatise on Geochemistry (Second Edition)[M]. Elsevier, 2014: 357−381.
Dong Yunpeng, Sun Shengsi, Santosh M, et al. Central China orogenic belt and amalgamation of East Asian continents[J]. Gondwana Research, 2021, 100: 131-194. doi: 10.1016/j.gr.2021.03.006
Du Jingguo, Wang Gongwen, Jia Lihui. In situ major and trace element compositions of apatites from Luanchuan orecluster: Implications for porphyry Mo mineralization[J]. Ore Geology Reviews, 2019, 115: 103174. doi: 10.1016/j.oregeorev.2019.103174
Gammons Ch, Williams-Jones Ae. Chemical mobility of gold in the porphyry-epithermal environment[J]. Economic geology, 1997, 92: 45-59. doi: 10.2113/gsecongeo.92.1.45
Griffin Wl, Wang Xiang, Jackson Se, et al. Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. LITHOS, 2002, 61: 237-269. doi: 10.1016/S0024-4937(02)00082-8
Grondahl Carter, Zajacz Zoltán. Sulfur and chlorine budgets control the ore fertility of arc magmas[J]. Nature communications, 2022, 13: 4218. doi: 10.1038/s41467-022-31894-0
Guo Bo, Yan Changhai, Zhang Shouting, et al. Geochemical and geological characteristics of the granitic batholith and Yuku concealed Mo–W deposit at the southern margin of the North China Craton[J]. Geological Journal, 2020, 55: 95-116. doi: 10.1002/gj.3372
Hart Craig Jr, Mair John L, Goldfarb Richard J, et al. Source and redox controls on metallogenic variations in intrusion-related ore systems, Tombstone-Tungsten Belt, Yukon Territory, Canada[J]. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 2004, 95: 339-356.
Hou Zengqian, Duan Lianfeng, Lu Yongjun, et al. Lithospheric architecture of the Lhasa terrane and its control on ore deposits in the Himalayan-Tibetan orogen[J]. Economic geology, 2015a, 110: 1541-1575. doi: 10.2113/econgeo.110.6.1541
Hou Zengqian, Yang Zhiming, Lu Yongjun, et al. A genetic linkage between subduction-and collision-related porphyry Cu deposits in continental collision zones[J]. Geology, 2015b, 43: 247-250. doi: 10.1130/G36362.1
Hou Zengqian, Zhang Hongrui. Geodynamics and metallogeny of the eastern Tethyan metallogenic domain[J]. Ore Geology Reviews, 2015c, 70: 346-384. doi: 10.1016/j.oregeorev.2014.10.026
Hou Zengqian, Li Qiuyun, Gao Yongfeng, et al. Lower-Crustal magmatic hornblendite in North China Craton: insight into the genesis of porphyry Cu deposits[J]. Economic geology, 2015d, 110: 1879-1904. doi: 10.2113/econgeo.110.7.1879
Hou Zengqian, Zhang Hongrui, Pan Xiaofei, et al. Porphyry Cu (–Mo–Au) deposits related to melting of thickened mafic lower crust: examples from the eastern Tethyan metallogenic domain[J]. Ore Geology Reviews, 2011, 39: 21-45. doi: 10.1016/j.oregeorev.2010.09.002
Hou Zengqian, Zheng Yuanchuan, Yang Zhiming, et al. Contribution of mantle components within juvenile lower-crust to collisional zone porphyry Cu systems in Tibet[J]. Mineralium Deposita, 2013, 48: 173-192. doi: 10.1007/s00126-012-0415-6
Hu Xin-Kai, Tang Li, Zhang Shou-Ting, et al. Geochemistry, zircon U-Pb geochronology and Hf-O isotopes of the Late Mesozoic granitoids from the Xiong'ershan area, East Qinling Orogen, China: Implications for petrogenesis and molybdenum metallogeny[J]. Ore Geology Reviews, 2020, 124: 103653. doi: 10.1016/j.oregeorev.2020.103653
Imai Akira. Metallogenesis of porphyry Cu deposits of the western Luzon arc, Philippines: K‐Ar ages, SO3 contents of microphenocrystic apatite and significance of intrusive rocks[J]. Resource Geology, 2002, 52: 147-161. doi: 10.1111/j.1751-3928.2002.tb00127.x
Imai Akira. Variation of Cl and SO3 contents of microphenocrystic apatite in intermediate to silicic igneous rocks of Cenozoic Japanese island arcs: Implications for porphyry Cu metallogenesis in the Western Pacific Island arcs[J]. Resource Geology, 2004, 54: 357-372. doi: 10.1111/j.1751-3928.2004.tb00211.x
Jugo Pedro J. Sulfur content at sulfide saturation in oxidized magmas[J]. Geology, 2009, 37: 415-418. doi: 10.1130/G25527A.1
Kemp Ais, Hawkesworth Cj, Paterson Ba, et al. Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon[J]. nature, 2006, 439: 580-583. doi: 10.1038/nature04505
Kendall-Langley Lillian A, Kemp Anthony Is, Hawkesworth Chris J, et al. Quantifying F and Cl concentrations in granitic melts from apatite inclusions in zircon[J]. Contributions to Mineralogy and Petrology, 2021, 176: 1-19. doi: 10.1007/s00410-020-01755-4
Keppler Hans, Wyllie Peter J. Partitioning of Cu, Sn, Mo, W, U, and Th between melt and aqueous fluid in the systems haplogranite-H2O− HCl and haplogranite-H2O− HF[J]. Contributions to Mineralogy and Petrology, 1991, 109: 139-150. doi: 10.1007/BF00306474
Ketcham Richard A Calculation of stoichiometry from EMP data for apatite and other phases with mixing on monovalent anion sites[J]. American Mineralogist, 2015, 100: 1620-1623. doi: 10.2138/am-2015-5171
Koleszar Am, Saal Ae, Hauri Eh, et al. The volatile contents of the Galapagos plume; evidence for H2O and F open system behavior in melt inclusions[J]. Earth and Planetary Science Letters, 2009, 287: 442-452. doi: 10.1016/j.jpgl.2009.08.029
Kress Victor C, Carmichael Ian Se. The compressibility of silicate liquids containing Fe 2 O 3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states[J]. Contributions to Mineralogy and Petrology, 1991, 108: 82-92. doi: 10.1007/BF00307328
Li Dong, Han Jiangwei, Zhang Shouting, et al. Temporal evolution of granitic magmas in the Luanchuan metallogenic belt, east Qinling Orogen, central China: Implications for Mo metallogenesis[J]. Journal of Asian Earth Sciences, 2015a, 111: 663-680. doi: 10.1016/j.jseaes.2015.05.017
Li Dong, Zhang Shou-Ting, Yan Chang-Hai, et al. Late Mesozoic time constraints on tectonic changes of the Luanchuan Mo belt, East Qinling orogen, Central China[J]. Journal of Geodynamics, 2012, 61: 94-104. doi: 10.1016/j.jog.2012.02.005
Li Huijuan, Hermann Joerg Chlorine and fluorine partitioning between apatite and sediment melt at 2.5 GPa, 800 C: A new experimentally derived thermodynamic model[J]. American Mineralogist, 2017, 102: 580-594. doi: 10.2138/am-2017-5891
Li Nuo, Chen Yan-Jing, Santosh M. , et al. Late Mesozoic granitoids in the Qinling Orogen, Central China, and tectonic significance[J]. Earth-Science Reviews, 2018, 182: 141-173. doi: 10.1016/j.earscirev.2018.05.004
Li Z X A, Lee C T A. The constancy of upper mantle fO2 through time inferred from V/Sc ratios in basalts[J]. Earth and Planetary Science Letters, 2004, 228: 483−493.
Loader Matthew A, Wilkinson Jamie J, Armstrong Robin N The effect of titanite crystallisation on Eu and Ce anomalies in zircon and its implications for the assessment of porphyry Cu deposit fertility[J]. Earth and Planetary Science Letters, 2017, 472: 107-119. doi: 10.1016/j.jpgl.2017.05.010
Loucks Rr. Distinctive composition of copper-ore-forming arcmagmas[J]. Australian Journal of Earth Sciences, 2014, 61: 5-16. doi: 10.1080/08120099.2013.865676
Loucks Robert R, Fiorentini Marco L, Henríquez Gonzalo J. New magmatic oxybarometer using trace elements in zircon[J]. Journal of Petrology, 2020, 61: egaa034. doi: 10.1093/petrology/egaa034
Lowell J David, Guilbert John M. Lateral and vertical alteration-mineralization zoning in porphyry ore deposits[J]. Economic geology, 1970, 65: 373-408. doi: 10.2113/gsecongeo.65.4.373
Lu Yong-Jun, Kerrich Robert, Kemp Anthony Is, et al. Intracontinental Eocene-Oligocene porphyry Cu mineral systems of Yunnan, western Yangtze Craton, China: compositional characteristics, sources, and implications for continental collision metallogeny[J]. Economic geology, 2013, 108: 1541-1576. doi: 10.2113/econgeo.108.7.1541
Lu Yong-Jun, Loucks Robert R, Fiorentini Marco L, et al. Fluid flux melting generated postcollisional high Sr/Y copper ore–forming water-rich magmas in Tibet[J]. Geology, 2015, 43: 583-586. doi: 10.1130/G36734.1
Luo Biji, Zhang Hongfei, Zhang Liqi, et al. The magma plumbing system of Mesozoic Shanyang porphyry groups, South Qinling and implications for porphyry copper mineralization[J]. Earth and Planetary Science Letters, 2020, 543: 116346. doi: 10.1016/j.jpgl.2020.116346
Maniar Papu D, Piccoli Philip M. Tectonic discrimination of granitoids[J]. Geological society of America bulletin, 1989, 101: 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
Mao J W, Xie G Q, Pirajno Franco, et al. Late Jurassic–Early Cretaceous granitoid magmatism in Eastern Qinling, central-eastern China: SHRIMP zircon U–Pb ages and tectonic implications[J]. Australian Journal of Earth Sciences, 2010, 57: 51-78. doi: 10.1080/08120090903416203
Mao J W, Pirajno Franco, Xiang Jf, et al. Mesozoic molybdenum deposits in the east Qinling–Dabie orogenic belt: characteristics and tectonic settings[J]. Ore Geology Reviews, 2011, 43: 264-293. doi: 10.1016/j.oregeorev.2011.07.009
Mao J W, Xie Gq, Bierlein Frank, et al. Tectonic implications from Re–Os dating of Mesozoic molybdenum deposits in the East Qinling–Dabie orogenic belt[J]. Geochimica et Cosmochimica Acta, 2008, 72: 4607-4626. doi: 10.1016/j.gca.2008.06.027
Mccubbin Fm, Jones Rh. Naming materials in the magma/igneous rock system[J]. Elements, 2015, 11: 183-188. doi: 10.2113/gselements.11.3.183
Middlemost Eric Ak. Extraterrestrial apatite: planetary geochemistry to astrobiology[J]. Earth-Science Reviews, 1994, 37: 215-224. doi: 10.1016/0012-8252(94)90029-9
Munoz Marcia, Charrier R, Fanning Cm, et al. Zircon trace element and O–Hf isotope analyses of mineralized intrusions from El Teniente ore deposit, Chilean Andes: constraints on the source and magmatic evolution of porphyry Cu–Mo related magmas[J]. Journal of Petrology, 2012, 53: 1091-1122. doi: 10.1093/petrology/egs010
Naney Mt. Phase equilibria of rock-forming ferromagnesian silicates in granitic systems[J]. American journal of science, 1983, 283: 993-1033. doi: 10.2475/ajs.283.10.993
Parat Fleurice, Holtz François, Klügel Andreas. S-rich apatite-hosted glass inclusions in xenoliths from La Palma: constraints on the volatile partitioning in evolved alkaline magmas[J]. Contributions to Mineralogy and Petrology, 2011, 162: 463-478. doi: 10.1007/s00410-011-0606-7
Pearce Julian A, Harris Nigel Bw, Tindle Andrew G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25: 956-983. doi: 10.1093/petrology/25.4.956
Peccerillo Angelo, Taylor Sr. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58: 63-81. doi: 10.1007/BF00384745
Qian Zesheng, Yang Fan, Liu Chao, et al. Late Mesozoic Huangbeiling S-type granite in the East Qinling Orogen, China: Geochronology, petrogenesis and implications for tectonic evolution[J]. Geochemistry, 2022, 82: 125857. doi: 10.1016/j.chemer.2021.125857
Richards Jeremy P. Magmatic to hydrothermal metal fluxes in convergent and collided margins[J]. Ore Geology Reviews, 2011, 40: 1-26. doi: 10.1016/j.oregeorev.2011.05.006
Richards Jeremy P. Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: From subduction to collision[J]. Ore Geology Reviews, 2015, 70: 323-345. doi: 10.1016/j.oregeorev.2014.11.009
Richards Jeremy P. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation[J]. Economic geology, 2003, 98: 1515-1533. doi: 10.2113/gsecongeo.98.8.1515
Ridolfi Filippo, Renzulli Alberto, Puerini Matteo. Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes[J]. Contributions to Mineralogy and Petrology, 2010, 160: 45-66. doi: 10.1007/s00410-009-0465-7
Riker Jenny, Humphreys Madeleine Cs, Brooker Richard A, et al. First measurements of OH-C exchange and temperature-dependent partitioning of OH and halogens in the system apatite–silicate melt[J]. American Mineralogist, 2018, 103: 260-270. doi: 10.2138/am-2018-6187CCBY
Shu Qihai, Chang Zhaoshan, Lai Yong, et al. Zircon trace elements and magma fertility: insights from porphyry (-skarn) Mo deposits in NE China[J]. Mineralium Deposita, 2019, 54: 645-656. doi: 10.1007/s00126-019-00867-7
Sillitoe Richard H. Characteristics and controls of the largest porphyry copper‐gold and epithermal gold deposits in the circum‐Pacific region[J]. Australian Journal of Earth Sciences, 1997, 44: 373-388. doi: 10.1080/08120099708728318
Sillitoe Richard H. A plate tectonic model for the origin of porphyry copper deposits[J]. Economic geology, 1972, 67: 184-197. doi: 10.2113/gsecongeo.67.2.184
Sillitoe Richard H. Porphyry copper systems[J]. Economic geology, 2010, 105: 3-41. doi: 10.2113/gsecongeo.105.1.3
Sisson Tw, Grove Tl. Experimental investigations of the role of H 2 O in calc-alkaline differentiation and subduction zone magmatism[J]. Contributions to Mineralogy and Petrology, 1993, 113: 143-166. doi: 10.1007/BF00283225
Sun Weidong, Huang Rui-Fang, Li He, et al. Porphyry deposits and oxidized magmas[J]. Ore Geology Reviews, 2015, 65: 97-131. doi: 10.1016/j.oregeorev.2014.09.004
Sun S-S, Mcdonough William F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
Tang Li, Wagner Thomas, Fusswinkel Tobias, et al. Fluid inclusion evidence for the magmatic-hydrothermal evolution of closely linked porphyry Au, porphyry Mo, and barren systems, East Qinling, China[J]. GSA Bulletin, 2022, 134: 1529-1548. doi: 10.1130/B36170.1
Tang Li, Zhao Yu, Zhang Shou-Ting, et al. Origin and evolution of a porphyry-breccia system: Evidence from zircon U-Pb, molybdenite Re-Os geochronology, in situ sulfur isotope and trace elements of the Qiyugou deposit, China[J]. Gondwana Research, 2021, 89: 88-104. doi: 10.1016/j.gr.2020.08.013
Trail Dustin, Watson E Bruce, Tailby Nicholas D. Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas[J]. Geochimica et Cosmochimica Acta, 2012, 97: 70-87. doi: 10.1016/j.gca.2012.08.032
Ulmer Peter, Kaegi Ralf, Müntener Othmar. Experimentally derived intermediate to silica-rich arc magmas by fractional and equilibrium crystallization at 1· 0 GPa: an evaluation of phase relationships, compositions, liquid lines of descent and oxygen fugacity[J]. Journal of Petrology, 2018, 59: 11-58. doi: 10.1093/petrology/egy017
Wang Rui, Richards Jeremy P, Hou Zeng-Qian, et al. Increasing magmatic oxidation state from paleocene to miocene in the eastern Gangdese Belt, Tibet: implication for collision-related porphyry Cu-Mo±Au mineralization[J]. Economic geology, 2014a, 109: 1943-1965. doi: 10.2113/econgeo.109.7.1943
Wang Rui, Richards Jeremy P, Hou Zengqian, et al. Increased magmatic water content—the key to Oligo-Miocene porphyry Cu-Mo±Au formation in the eastern Gangdese belt, Tibet[J]. Economic geology, 2014b, 109: 1315-1339. doi: 10.2113/econgeo.109.5.1315
Wang Rui, Weinberg Roberto F, Collins William J, et al. Origin of postcollisional magmas and formation of porphyry Cu deposits in southern Tibet[J]. Earth-Science Reviews, 2018, 181: 122-143. doi: 10.1016/j.earscirev.2018.02.019
Webster James D, Tappen Christine M, Mandeville Charles W. Partitioning behavior of chlorine and fluorine in the system apatite–melt–fluid. II: Felsic silicate systems at 200 MPa[J]. Geochimica et Cosmochimica Acta, 2009, 73: 559-581. doi: 10.1016/j.gca.2008.10.034
Williamson Bj, Herrington Rj, Morris A. Porphyry copper enrichment linked to excess aluminium in plagioclase[J]. Nature Geoscience, 2016, 9: 237-241. doi: 10.1038/ngeo2651
Wright Jb. A simple alkalinity ratio and its application to questions of non-orogenic granite genesis[J]. Geological Magazine, 1969, 106: 370-384. doi: 10.1017/S0016756800058222
Wu Chao, Chen Huayong, Lu Yongjun. Magmatic water content and crustal evolution control on porphyry systems: insights from the Central Asian Orogenic Belt[J]. Journal of Petrology, 2021, 62: egab021. doi: 10.1093/petrology/egab021
Xie Gui Qing, Mao Jing Wen, Wang Rui Ting, et al. Origin of the Lengshuigou porphyry–skarn Cu deposit in the Zha-Shan district, South Qinling, central China, and implications for differences between porphyry Cu and Mo deposits[J]. Mineralium Deposita, 2017, 52: 621-639. doi: 10.1007/s00126-016-0688-2
Xie Guiqing, Mao Jingwen, Wang Ruiting, et al. Origin of Late Mesozoic granitoids in the newly discovered Zha-Shan porphyry Cu district, South Qinling, central China, and implications for regional metallogeny[J]. Journal of Asian Earth Sciences, 2015, 103: 184-197. doi: 10.1016/j.jseaes.2014.09.018
Xiong Xiao, Zhu Laimin, Zhang Guowei, et al. Origin of the Xiaohekou skarn copper deposit and related granitoids in the Zha-Shan ore cluster area, South Qinling, China[J]. Ore Geology Reviews, 2019, 114: 103143. doi: 10.1016/j.oregeorev.2019.103143
Xu Lei-Luo, Bi Xian-Wu, Zhang Xing-Chun, et al. Mantle contribution to the generation of the giant Jinduicheng porphyry Mo deposit, Central China: New insights from combined in-situ element and isotope compositions of zircon and apatite[J]. Chemical Geology, 2023, 616: 121238. doi: 10.1016/j.chemgeo.2022.121238
Xue Fei, Wang Gongwen, Santosh M, et al. Geochemistry and geochronology of ore-bearing and barren intrusions in the Luanchuan ore fields of East Qinling metallogenic belt, China: Diverse tectonic evolution and implications for mineral exploration[J]. Journal of Asian Earth Sciences, 2018, 157: 57−77.
Yang Fan, Xue Fei, Santosh M, et al. Late Mesozoic magmatism in the East Qinling Orogen, China and its tectonic implications[J]. Geoscience Frontiers, 2019, 10(5): 1803−1821.
Yang Fan, Maojing Wen, Ren Weidong, et al. Temporal evolution and origin of the Yumugou Mo-W deposit, East Qinling, China: Evidence from molybdenite Re-Os age and U-Pb dating and geochemistry of titanite[J]. Ore Geology Reviews, 2022, 150: 105172.
Yang Zhi-Ming, Lu Yong-Jun, Hou Zeng-Qian, et al. High-Mg diorite from Qulong in southern Tibet: Implications for the genesis of adakite-like intrusions and associated porphyry Cu deposits in collisional orogens[J]. Journal of Petrology, 2015, 56: 227-254. doi: 10.1093/petrology/egu076
Zhang Chan-Chan, Sun Wei-Dong, Wang Jin-Tuan, et al. Oxygen fugacity and porphyry mineralization: A zircon perspective of Dexing porphyry Cu deposit, China[J]. Geochimica et Cosmochimica Acta, 2017, 206: 343-363. doi: 10.1016/j.gca.2017.03.013
Zhang Zhong-Yu, Wang Yin-Hong, Zhang Fang-Fang, et al. Origin of high Ba-Sr granitoids at Chigou in central China and implications for Cu mineralization: Insights from whole-rock geochemistry, zircon U–Pb dating, Lu–Hf isotopes and molybdenite Re–Os systematics[J]. Ore Geology Reviews, 2021, 138: 104416. doi: 10.1016/j.oregeorev.2021.104416
Zhang Yunhui, Cao Huawen, Xu Mo, et al. Petrogenesis of the late Mesozoic highly fractionated I-type granites in the Luanchuan district: implications for the tectono-magmatic evolution of eastern Qinling[J]. Geosciences Journal, 2018, 22(2): 253–272.
Zhang Zhong‐Yu, Wang Yin‐Hong, Liu Jia‐Jun, et al. Origin of the Tudigou intrusion and associated porphyry Cu mineralization in the southern Qinling, Central China: Implication for regional tectonic setting[J]. Geological Journal, 2023, 58: 368-392. doi: 10.1002/gj.4598
Zheng Yong-Fei. Subduction zone geochemistry[J]. Geoscience Frontiers, 2019, 10: 1223-1254. doi: 10.1016/j.gsf.2019.02.003
Zou Shaohao, Xu Deru, Deng Teng, et al. Geochemical variations of the Late Mesozoic granitoids in the southern margin of North China Craton: A possible link to the tectonic transformation from compression to extension[J]. Gondwana Research, 2019, 75: 118-133. doi: 10.1016/j.gr.2019.04.012