Mesozoic-Cenozoic Tectonic Evolution in the Central Taiyue Mountain: Constraints from Apatite Fission Track Analysis
-
摘要:
应用磷灰石裂变径迹年代学方法研究太岳山脉中段构造隆升与剥露过程,这对于进一步认识华北地块构造演化过程具有重要的意义。结果表明:太岳山脉中段自中侏罗世末期以来经历了持续隆升剥露过程,并受到了热事件的影响。模拟结果显示,太岳山脉中段中生代—新生代共经历了4期快速隆升剥露:165~112 Ma、103~85 Ma、80~50 Ma及28 Ma以来。样品裂变径迹年龄与海拔高程呈正相关关系,隆升速率为8.4 m/Ma。剥蚀速率从早白垩世晚期以来的14.9~18.1 m/Ma逐渐增加到始新世以来的50.5~64.7 m/Ma,太岳山脉中段早白垩世晚期以来的隆升过程具有多期性,总体上呈加速隆升的特点。太岳山脉中段中生代—新生代的隆升史与太行山、吕梁山等山西地块的同期演化史具有一定的一致性,与汾渭裂谷系的快速沉降相耦合。
-
关键词:
- 太岳山脉 /
- 磷灰石裂变径迹 /
- 热演化史模拟 /
- 中生代—新生代多期次剥露 /
- 剥蚀速率
Abstract:In order to shed light on the tectonic evolution processes of the north China block, we applied apatite fission track thermochronology method to the central Taiyue Mountain as a major mountain range in Shanxi massif. The results reveal that since the late middle Jurassic the central Taiyue Mountain experienced a pulsed uplift and exhumation at shallow crustal levels, which could be summarized as four rapid uplift and exhumation stages at 165~112 Ma, 103~85 Ma, 80~50 Ma and since ~28 Ma. These fission track ages show a positive correlation with the altitude, and the exhumation rate is estimated as ~8.4 m/Ma. The denudation rate increases gradually from 14.9~18.1 m/Ma since the late early Cretaceous to 50.5~64.7 m/Ma since the Eocene, reflecting the episodic and accelerated uplift and exhumation of the central Taiyue Mountains since the late Early Cretaceous. The Mesozoic-Cenozoic uplift history of the central Taiyue Mountain has a certain consistency with the evolution history of the Taihang Mountain, Lüliang Mountain in Shanxi massif, which is also coupled with the rapid subsidence of the Fenwei rift valley.
-
秦岭造山带是中央造山带的重要组成部分,构造–岩浆活动强烈,矿产资源丰富,成矿具有多期次、多作用、多成因等特征,是中国重要的有色金属基地之一(张国伟, 2001; 姚书振等, 2002; 杜玉良等, 2003; 谢才富等, 2004; 徐林刚等, 2021;王汉辉等,2023;陈龙龙等,2024;冉亚洲等,2024)。秦岭成矿带是世界第二大卡林型–类卡林型金矿省,为秦岭–西亚全球第三大汞锑矿带的重要组成部分,且蕴含中国最重要的钡矿田和铅锌矿田(陈衍景, 2010a,2010b)(图1)。作为秦岭造山带的主要组成单元,南秦岭地区也赋存众多金、汞锑、铅锌等矿床(薛春纪等, 2005; Zhang et al., 2014; Ma et al., 2020)。自20世纪80年代以来,该区金矿找矿工作取得了较好进展,相继评价了金龙山、烂木沟、淋湘等一批金矿床(刘新会等,2008;沙亚洲等,2013),使南秦岭成为中国微细浸染型金矿床重要矿集区之一。
镇旬盆地是南秦岭成矿带中极具潜力的Au-Hg-Sb-Pb-Zn-Cu多金属成矿带(邹海洋等, 2001; 唐永忠等, 2016; 孟五一等, 2021),盆地南侧发育以泗人沟、关子沟等为代表的志留纪—中泥盆世热水沉积改造型铅锌矿床,北部沿板岩镇断裂发育有金龙山超大型金矿床,盆地中部分布有小河、惠家沟等中小型金矿床及公馆、青铜沟超大型汞锑矿床等,构成沿南羊山断裂东西展布的重要金汞锑成矿带。由于盆地中部存在两个超大型汞(锑)矿(Zhang et al., 2014),导致过去金矿床的调查研究一直被忽视,随着近年汞矿勘查工作的逐渐停止,王庄金矿、老君庙金矿等多个具有大型资源前景金矿床的新发现,使得此区域逐渐具备形成大型金资源基地的潜力。
王庄金矿床是近年地质调查工作新发现的金矿床,对其开展矿物组构、物质组成方面的研究,可以查明该矿床载金矿物类型、是否存在自然金等重要信息,对于该矿床的理论研究、指导下步找矿工作均具有实际意义。
1. 区域地质地球化学特征
王庄金矿床位于南秦岭造山带镇旬裂陷盆地之旬阳盆地晚古生代热水沉积盆地北部。区域古生代地层出露较为齐全,从寒武纪到三叠纪均有出露,中生代地层仅有三叠纪。围绕南羊山断裂带产出的矿床主要赋存于上泥盆统星红铺组(D3x)、中上泥盆统古道岭组(D2-3g)、中泥盆统大枫沟组(D2d)、中泥盆统西岔河组(D2x),而王庄金矿床位于上泥盆统—下石炭统铁山组中(D3C1t),拓展了区内的含矿地层(图2a)。区内的含矿建造主要为中上泥盆统碳酸盐岩和细碎屑岩建造,主要赋矿岩性为灰岩、砂屑灰岩、含泥质粉砂质灰岩、泥质板岩、钙质板岩等,均为碳酸盐岩、细碎屑岩互层,表现为物理化学界面成矿。
王庄金矿位于白石河–冷水河复向斜之砂硐沟背斜的北西端,NW向送驾园断层、干沟台–青沟断层切过背斜转折端,经遥感解译这些断层向北西方向延伸至矿区,构成了褶皱+断层的有利成矿构造样式组合。王庄、小河金矿床构成的弧形构造带与南羊山断裂相交,区内1∶5万水系沉积物异常W-Au-Hg-Sb呈EW向展布,亦受控于南羊山断裂,且含矿地层有一定相似性,成为岩性+构造的有利成矿条件。区内金成矿作用与断裂构造关系密切,与成矿作用有关的断裂多具有先张后压多期活动的特点。NE向主干断裂以及层间破碎带控制金矿床的分布,金矿体多赋存于近EW向次级断裂构造破碎带中,并且沿断裂破碎带常出现膨胀收缩、尖灭再现等特点。
笔者依托在镇旬盆地开展的1∶5万矿产地质调查工作,发现区内金、钨元素EW向展布呈现出西部为钨异常、东部为金钨异常(图2b),矿产的分布由西向东为松树湾钨矿、小河金(钨)矿、王庄金矿、老君庙金矿(图2a),明显存在规律性。金矿床当中金钨异常关系密切,互相嵌合叠加,从宏观层面显示金钨相关性,进而呈现区内W→Au、As(W)→Hg、Sb(Au、W)异常分带。矿区范围未发现岩浆岩出露,但区内1∶5万水系沉积物测量工作显示王庄金矿西部有Cu-Cr-Co-Ni-W异常组合,指示矿区西侧存在隐伏岩体。
2. 矿区地质特征
矿区主要分布有上泥盆统—下石炭统铁山组(D3C1t)、上泥盆统星红铺组(D3x),铁山组以碳酸盐岩为主夹少量细碎屑岩,星红铺组主要为灰岩和浅变质细碎屑岩建造。矿体主要赋存于砂硐沟背斜西沿轴部延伸部位的铁山组中,向西延伸进入星红铺组(图3)。矿体整体呈NE向展布,主体受控于灰岩千枚岩构成的层间破碎带(片理化带),主要矿石矿物毒砂、黄铁矿呈浸染状、星点状分布。
根据目前已见矿槽探、老硐(WZTC16、WZBT02、WZLD02、WZLD04)和钻孔(ZK7-1、ZK7-2、ZK7-3、ZK15-1、ZK103-1、ZK103-2)共10个工程,其中ZK7-1、ZK7-2均见两层矿化体,赋矿地层均为碎裂岩化泥钙质千枚岩,发育强烈的硅化,金属矿物主要为针状毒砂、他形微细粒黄铁矿,呈微细浸染状、星点状分布。结合区内成矿认识,划分为两条矿体,地表出露矿体整体为K1矿体,深部为盲矿体M1(图4)。K2矿(化)体未做深部验证,仅有地表槽探(WZTC07)控制矿化,矿体的产态整体均以舒缓波状展布,K1矿体的整体产状为120°~165°∠30°~40°,由于矿体产态呈波浪状,在波峰和波谷位置倾角较陡,走向与地表垂交,如在WZBT02位置,矿体产状约为236°∠79°。K1矿体EW向在地表延伸约480 m,块段平均品位为1.41×10−6,平均厚度为1.13 m,控制潜在资源为596 kg,M1矿体平均品位为1.51×10−6,平均厚度为5.45×10−6,控制潜在资源为1977 kg,合计控制潜在资源为2.57 t。
3. 矿石矿物及物质组成
王庄金矿矿石类型以碎裂岩化含毒砂泥钙质(碳质)千枚岩型(图5a、图5d)、石英硫化物型(图5a)、毒砂黄铁绢云岩型(图5d)为主,其中以碎裂岩化含毒砂泥钙质(碳质)千枚岩型矿石为主。矿石矿物组成以黄铁矿、含砷黄铁矿、毒砂、闪锌矿、方铅矿、褐铁矿为主,脉石矿物以石英、方解石、高岭石等为主(图5)。矿石结构以细脉状、微细浸染状、似层状为主,金属矿物当中黄铁矿多为胶状集合体、立方体以及他形粒状(图5a、图5b、图5i);毒砂以针柱状结构为主,局部为交代残余结构(图5e、图5h、图5i);闪锌矿以他形围绕前期形成的金属硫化物生长(图5f);黄铜矿较少,为乳滴状,与闪锌矿呈固溶体分离结构(图5f)。矿石构造整体为碎裂状(图5a、图5d),少量矿石存在后期交代重结晶。微细粒含砷黄铁矿化、针状毒砂集合体与金品位关系较为密切,尤其毒砂含量高的矿石,金品位均较高。
王庄金矿载金矿物以毒砂为主,其次为黄铁矿。毒砂主要表现为针状、细柱状,呈细脉状、星点状分布于矿石中,在石英脉中含量较低,零星分布,在石英脉与围岩接触部位富集,呈细脉状,黄铁矿呈微细粒状零星分布。通过显微镜及电子探针分析,在王庄金矿未见自然金,金主要以不可见金形式赋存于毒砂、含砷黄铁矿中,电子探针显示毒砂、黄铁矿中金元素含量均小于1%,最高为0.65%,且可通过显微镜下矿物接触关系判断出毒砂是热液中期产物,毒砂后期有被黄铁矿交代现象,这可能反映了金元素的沉淀富集和毒砂结晶消耗流体中As元素有关。
4. 成矿阶段划分
综合前文矿石矿物宏微观特征表现出矿物组合特征,王庄金矿的成矿过程主要经历3个时期:①沉积成岩期。②热液成矿期。③表生氧化期。根据矿化体、矿物共生组合及其交生关系,可以将热液成矿期划分为4个成矿阶段(图6):I.黄铁矿石英脉成矿早阶段(图5a、图5b、图5f),主要为烟灰色石英脉,表现出顺层产出特征,局部可见少量黄铁矿呈立方体、星点状分布;II.毒砂、黄铁矿、石英脉成矿主阶段(图5a、图5e、图5g、图5h),可见大量针状毒砂、黄铁矿沿石英脉体边部分布,以及在I阶段黄铁矿基础上形成环带;III.石英脉伴少量多金属硫化物阶段(图5f、图5h、图5i),此阶段可见少量闪锌矿、黄铜矿、方铅矿围绕前期毒砂、黄铁矿边部分布,也可见少量黄铁矿交代前期形成的毒砂;IV.碳酸盐岩晚阶段,主要为纯净方解石脉体切割前期形成的石英、金属硫化物脉体。其中与成矿关系密切的为II、III阶段。
5. 采样及实验分析
本次工作主要针对王庄金矿K1、M1矿体控制钻孔ZK7-1、ZK7-2采集矿体及上、下蚀变带样品,磨制探针片30件,在进行详细的显微镜下分析基础上,针对不同阶段的金属硫化物开展电子探针分析。
电子探针分析工作在中国地质调查局西安地质调查中心国土资源部岩浆作用成矿与找矿重点实验室完成,分析仪器为日本电子JXA-8230电子探针仪。仪器主要工作条件为:加速电压20 kv,束斑电流为1×10−8 A,束斑直径为1 um,峰值计数时间20 s,背景计数时间10 s。
6. 讨论
载金矿物中微量元素的组合特征以及赋存状态能反映重要的成因矿物学信息,是研究金矿成矿机理的重要方法手段(杨荣生等, 2009)。微细浸染型金矿的主要载金矿物是黄铁矿、毒砂,金常以“不可见金”形式赋存于载金矿物中(Bowell et al., 1999; Cline et al., 2005; Martin et al., 2005; 陈懋弘等, 2009;葛战林等,2023)。毒砂在热液成矿期普遍含有金,载金黄铁矿以细粒自形含砷黄铁矿为主。通过王庄金矿矿石矿物电子探针分析数据(表1)可以看出,成矿前I阶段的黄铁矿普遍存在贫As、Au,富Fe、S特征,王庄金矿主成矿阶段(II阶段)细粒黄铁矿多为均质结构,具高As、Au,低S、Fe特征,且此阶段生成大量针状毒砂,具有较高的Au显示,表明Au与As存在一定的正相关关系,Au元素的富集和富砷流体密切相关(图7)。
表 1 王庄金矿床矿石中黄铁矿、毒砂电子探针分析结果(%)Table 1. Electron probe analysis results of pyrite and arsenopyrite in Wangzhuang gold deposit (%)样品编号 矿物类型 As Zn Cu Ni Co Fe Sb Ag Bi Pb S Au Total ZK7-1BT4 I-py 0.564 0 0 0.031 0.087 46.08 0 0 0.011 0.101 52.881 0 99.755 I-py 2.508 0.007 0.012 0.022 0.054 44.983 0 0 0 0 53.724 0 101.31 II-py 2.276 0.022 0.068 0.091 0.07 45.351 0 0.006 0 0 50.586 0 98.47 II-py 4.218 0 0 0.01 0.069 45.376 0.021 0.029 0 0.011 50.432 0.01 100.176 II-py 4.055 0.052 0 0.16 0.11 44.676 0.059 0 0.016 0 50.624 0 99.752 II-py 6.68 0 0.01 0.156 0.072 44.272 0.018 0 0 0 46.418 0.018 97.644 Apy 39.466 0 0.028 0.068 0.094 34.134 0.071 0 0 0 24.022 0.037 97.92 Apy 41.206 0 0.04 0 0.045 34.468 0.079 0 0 0.207 23.26 0 99.305 Apy 40.423 0 0.015 0 0.044 34.55 0.08 0.047 0 0 23.111 0.045 98.315 Apy 42.555 0 0 0 0.089 34.585 0.019 0 0 0.049 22.65 0.029 99.976 Apy 41.116 0 0 0.096 0.059 33.959 0.206 0.006 0 0 22.881 0 98.323 Apy 41.975 0 0 0 0.041 34.209 0.022 0 0 0 22.648 0 98.895 Apy 42.433 0.087 0 0 0 34.654 0.07 0.022 0 0.061 21.882 0.091 99.3 Apy 39.188 0.013 0 0 0.07 33.597 0.077 0 0 4.009 22.57 0 99.524 Apy 43.225 0.001 0.012 0 0.027 34.201 0 0.003 0 0 22.102 0.108 99.679 Apy 42.925 0.015 0.01 0.011 0.03 34.03 0.006 0.009 0 0 21.999 0.017 99.052 Apy 44.282 0.051 0 0.066 0.024 34.297 0.036 0.001 0 0.075 21.585 0 100.417 Apy 44 0.022 0.025 0.031 0.007 33.894 0.01 0 0 0 21.782 0 99.771 ZK7-1TZ1 Apy 44.252 0.01 0 0 0.046 33.97 0.019 0 0 0 21.021 0.017 99.335 I-py 0.074 0 0.013 0 0.039 46.113 0.036 0.004 0 0 53.708 0 99.987 I-py 1.247 0.007 0.017 0.082 0.096 45.815 0.025 0.015 0 0.047 52.233 0 99.584 III-py 0.647 0 0 0.106 0.401 44.042 0.032 0.004 0 0 52.629 0.003 97.864 III-py 3.113 0 0.027 0.412 0.199 45.183 0.035 0 0 0 51.119 0 100.088 III-py 2.417 0 0 0.116 0.168 43.772 0.064 0.021 0 0.056 50.495 0 97.109 Apy 42.448 0.057 0.014 0 0.058 34.184 0.04 0 0 0.021 22.439 0.055 99.316 Apy 43.778 0.019 0.052 0.034 0.043 34.3 0 0 0 0.066 21.448 0.119 99.859 Apy 44.609 0.004 0 0 0.022 34.09 0 0.011 0 0 21.386 0.068 100.19 Apy 41.142 0.012 0.034 0 0.059 33.175 0.101 0 0 0 21.17 0.135 95.828 ZK7-1TZ2 I-py 1.99 0.017 0.043 0.382 0.173 45.417 0 0 0 0 51.978 0 100 I-py 0.111 0 0.062 0.018 0.097 44.793 0.034 0.003 0 0 52.656 0 97.774 I-py 2.799 0 0.021 0.084 0.008 45.416 0 0.044 0 0 51.559 0 99.931 I-py 2.776 0 0 0 0.038 45.561 0.022 0.007 0 0 51.232 0 99.636 II-py 1.134 0.045 0.005 0.184 0.277 44.576 0.042 0.037 0 0 52.241 0.02 98.561 II-py 2.444 0 0.023 0.026 0.084 44.845 0 0 0 0 51.637 0.06 99.119 II-py 3.752 0 0.023 0 0.04 45.091 0 0.009 0 0 50.617 0.058 99.59 II-py 3.938 0 0.003 0.999 0.44 44.02 0.017 0 0.012 0 50.332 0 99.761 II-py 1.293 0.003 0 0.153 0.253 42.633 0.013 0.019 0 0.147 50.286 0.003 94.803 Apy 41.809 0 0.026 0.267 0.061 34.506 0.021 0.001 0 0 23.301 0 99.992 Apy 43.142 0 0.045 0 0.044 34.621 0.059 0 0 0.005 22.48 0.012 100.408 Apy 43.085 0.029 0.016 0.019 0.034 34.545 0.036 0 0 0.02 22.4 0.045 100.229 Apy 42.46 0 0 0.129 0.086 34.394 0 0 0 0 22.099 0 99.168 Apy 44.269 0 0 0 0.039 34.351 0.001 0 0 0.072 21.305 0.046 100.083 Apy 44.269 0 0 0 0.039 34.351 0.001 0 0 0.072 21.305 0.046 100.083 Apy 44.197 0 0.001 0 0.048 33.929 0 0.025 0 0 21.38 0 99.58 Apy 40.299 0 0.06 0.051 0.042 33.936 0.001 0.017 0 0.005 21.195 0.021 95.627 Apy 44.005 0 0.025 0.04 0.064 34.026 0 0.031 0 0 20.809 0.037 99.037 ZK7-1TZ3 I-py 0.075 0.036 0 0.012 0.054 46.366 0.024 0 0 0 53.35 0.055 99.972 I-py 0.178 0 0 0 0.058 46.249 0.012 0.012 0 0.066 52.599 0 99.174 II-py 2.805 0 0.005 0 0.045 45.825 0 0 0 0 52.271 0.014 100.965 II-py 1.217 0 0.015 0.059 0.439 45.343 0.018 0.006 0 0.039 52.461 0 99.597 II-py 2.099 0 0.026 0.022 0.034 45.677 0.026 0.002 0 0 51.588 0.041 99.515 II-py 2.331 0 0 0 0.017 45 0.038 0.023 0 0 52.186 0 99.595 II-py 2.97 0 0 0 0.091 45.284 0.021 0 0 0 51.495 0.092 99.953 II-py 2.289 0.037 0 0 0.037 45.099 0.014 0.022 0 0.072 51.426 0.027 99.023 III-py 1.844 0 0 0.396 0.188 44.829 0.027 0 0 0 51.634 0.01 98.928 III-py 2.187 0.002 0.032 0.038 0.052 44.741 0.008 0.035 0 0.004 51.49 0 98.589 II-py 3.836 0.059 0.027 0.024 0.081 44.973 0 0.019 0 0 50.352 0.003 99.374 II-py 4.142 0 0.056 0.128 0.057 44.851 0 0 0 0.143 50.346 0 99.723 II-py 1.738 0 0 0.109 0.092 43.853 0.017 0 0 0.022 50.521 0.064 96.416 Apy 40.827 0.029 0.007 0 0.044 34.922 0.005 0.01 0 0 24.062 0 99.906 Apy 41.213 0 0.009 0.015 0.085 34.878 0.021 0 0 0.031 23.81 0.053 100.115 Apy 41.462 0 0 0.032 0.026 34.819 0.023 0.042 0 0.005 23.347 0.074 99.83 Apy 41.151 0 0.029 0.182 0.038 34.52 0 0 0 0 23.181 0 99.101 Apy 42.363 0.012 0.006 0 0.065 34.737 0 0.025 0 0 23.015 0.017 100.24 Apy 41.994 0.037 0 0 0.048 34.393 0.02 0.003 0 0.071 22.788 0 99.354 Apy 42.254 0.01 0.052 0.003 0.055 34.4 0.012 0 0 0 22.725 0.058 99.569 Apy 42.012 0 0.018 0 0.017 34.526 0.054 0.048 0 0 22.506 0.042 99.223 Apy 41.686 0.004 0 0 0.033 34.073 0.037 0 0 0 22.739 0 98.572 Apy 43.393 0.017 0.018 0.042 0.042 34.4 0 0 0 0 22.301 0.091 100.304 Apy 42.447 0 0.006 0 0.055 33.781 0.003 0.013 0 0.031 22.603 0.14 99.079 Apy 43.158 0 0.01 0.053 0.024 33.841 0.039 0 0 0.005 21.977 0 99.107 Apy 43.05 0 0 0.001 0.018 34.067 0 0 0 0.08 21.499 0.07 98.785 Apy 44.064 0 0 1.328 0.105 32.694 0.004 0.013 0 0 21.542 0.038 99.788 II-py 6.731 0 0.108 0.06 0.099 44.595 0 0.003 0 0.029 49.508 0.035 101.168 ZK7-1TZ4 I-py 0.019 0.044 0 0 0.022 46.858 0.003 0.001 0 0 53.404 0 100.351 I-py 0.035 0 0 0 0.087 46.57 0 0.005 0.018 0 53.513 0 100.228 I-py 0.032 0.034 0 0.088 0.025 46.471 0.012 0.014 0 0 53.252 0 99.928 III-py 0 0 0.044 0.003 0.002 45.485 0 0.002 0 0.044 53.612 0.051 99.243 Apy 43.192 0.027 0.001 0.025 0.031 33.552 0.02 0.014 0 0 21.252 0.074 98.188 I-py 0 0.01 0.024 0.014 0.08 46.771 0.01 0.01 0 0.015 53.489 0.01 100.433 I-py 0 0.032 0 0.056 0.093 45.381 0.012 0 0 0 54.206 0 99.78 I-py 0.284 0.05 0 0.053 0.076 45.338 0.019 0 0 0.018 52.611 0.048 98.497 I-py 0.542 0 0.057 0.115 0.182 45.446 0.003 0.035 0 0 52.781 0.01 99.171 I-py 0.712 0 0.043 0.121 0.198 45.433 0.017 0 0 0.013 52.657 0.01 99.204 ZK7-2TZ01 III-py 0.096 0 0.035 0.065 0.011 45.759 0.004 0.003 0 0.074 53.309 0.127 99.483 III-py 0.099 0 0.05 0.065 0.068 45.586 0.049 0.005 0 0.089 52.903 0 98.914 III-py 0.216 0.068 0.041 0.056 0.109 45.42 0.082 0.016 0 0.177 52.06 0.033 98.278 III-py 0.392 0 0.096 0.111 0.262 44.737 0 0 0 0.201 52.305 0 98.104 III-py 0.254 0.053 0.074 0.098 0.132 44.656 0.021 0.024 0 0.093 51.978 0.003 97.386 III-py 0.078 0 0 0.013 0.079 44.428 0.015 0.009 0.008 0 51.13 0 95.76 ZK7-2TZ1 II-py 0.699 0.015 0.038 0.231 0.089 45.035 0.007 0 0 0.013 53.807 0.027 99.961 II-py 3.577 0.01 0.028 0.333 0.277 44.037 0.036 0.028 0 0.078 50.641 0.145 99.19 Apy 42.003 0.086 0.013 0 0.03 34.207 0.091 0.019 0 0 22.521 0 98.97 Apy 43.236 0.034 0.054 0 0.019 34.148 0.08 0 0 0.018 22.172 0 99.761 Apy 44.022 0 0 0 0.01 33.962 0 0.002 0 0 21.851 0.16 100.007 Apy 42.502 0.078 0.022 0 0.019 33.894 0 0.024 0 0.136 21.289 0.219 98.183 ZK7-2TZ3 III-py 0.138 0.078 0.029 0.081 0.17 46.323 0.026 0.042 0 0.118 53.032 0.093 100.13 III-py 0.052 0.047 0.005 0.484 0.173 46.049 0 0 0 0 53.232 0.066 100.108 III-py 0.137 0 0.077 0.124 0.2 45.586 0.044 0.014 0 0.146 53.093 0 99.421 III-py 0.068 0 35.467 0.137 0.053 29.769 0 0.031 0 0 35.239 0.029 100.793 ZK7-2TZ4 III-py 0.846 0 0 0 0.077 45.429 0.022 0 0 0 52.774 0 99.148 III-py 0.334 0.064 0.06 0.033 0.216 45.29 0.014 0 0 0 51.871 0.03 97.912 III-py 0.139 0.037 0.052 0.072 0.186 44.657 0.043 0 0 0 52.297 0.007 97.49 II-py 4.224 0.017 0.038 0.028 0.062 45.786 0.009 0 0 0 50.672 0.059 100.895 II-py 4.603 0 0.038 0.166 0.046 45.47 0.029 0.012 0 0 50.103 0.042 100.509 II-py 5.055 0.012 0.02 0.08 0.07 45.211 0 0.016 0 0 50.245 0.01 100.719 Apy 40.241 0 0 0 0.08 34.829 0 0 0 0 24.283 0.099 99.532 Apy 39.389 0 0.003 0 0.017 34.577 0.145 0 0 0.01 24.089 0.012 98.242 Apy 41.54 0.016 0 0.018 0.021 34.842 0.025 0 0 0.005 23.595 0.025 100.087 Apy 43.246 0 0.007 0.005 0.046 34.509 0.008 0.016 0 0.023 23.084 0.029 100.973 Apy 42.95 0.01 0 0 0.037 34.584 0.03 0.007 0 0 22.381 0.013 100.012 Apy 44.053 0 0.022 0.087 0.028 34.007 0.006 0 0 0.018 21.841 0.08 100.142 Apy 40.809 0 0.047 0 0.02 33.195 0.069 0 0 0.033 22.249 0.05 96.472 Apy 40.594 0.004 0 0.005 0.069 32.841 0.005 0.002 0 0.044 21.676 0.099 95.339 I-py 0.087 0.003 0 0.084 0.069 46.498 0 0 0 0.028 53.26 0.024 100.053 I-py 0.087 0.014 0 0.018 0.08 46.379 0.002 0.022 0 0.02 53.269 0 99.891 ZK7-2TZ4 II-py 1.816 0 0.017 0 0.019 46.91 0.022 0.001 0 0 52.041 0 100.826 II-py 4.441 0.005 0.018 0.054 0.045 45.129 0.052 0 0 0 51.863 0.073 101.68 II-py 5.265 0 0.025 0.082 0.054 44.116 0.046 0.002 0 0 48.946 0.651 99.187 II-py 7.653 0.025 0.02 0.041 0.029 44.91 0.008 0 0 0 47.849 0.078 100.613 I-py 0 0.034 35.37 0 0.016 30.507 0.004 0.011 0 0 34.809 0 100.751 I-py 0 0.122 35.132 0 0.037 30.009 0.111 0.034 0 0.05 34.712 0.03 100.237 Apy 41.991 0.022 0 0 0.024 34.643 0.038 0.008 0 0 23.15 0.096 99.972 Apy 42.883 0 0.024 0.115 0.016 34.524 0 0.002 0 0 22.324 0.13 100.018 Apy 43.487 0.056 0.004 0.088 0.04 34.272 0.014 0.023 0 0.031 22.091 0.114 100.22 Apy 48.284 0.02 0 0.008 0.067 33.757 0.019 0 0 0.069 20.271 0 102.495 ZK7-2TZ5 I-py 0 0.008 0 0.053 0.049 46.789 0.011 0 0 0 53.767 0 100.677 I-py 0.104 0.05 0 0.006 0.096 45.864 0.016 0.039 0 0 54.041 0.003 100.219 I-py 0 0.017 0.003 0.024 0.065 46.367 0.01 0.033 0 0.045 53.375 0 99.939 I-py 0.11 0 0.031 0.062 0.138 46.232 0.01 0 0 0 53.16 0 99.743 I-py 0.086 0.01 0.071 0.293 0.108 45.409 0.076 0.007 0 0.047 52.865 0 98.972 I-py 0.036 0 0.043 0.077 0.072 45.174 0.04 0 0 0 52.565 0 98.007 I-py 0.106 0.045 0.007 0.515 0.137 44.688 0.026 0 0 0.037 52.62 0 98.181 I-py 0.122 0.038 0.021 0.192 0.117 44.356 0.055 0 0 0.006 51.775 0 96.682 I-py 0.07 0.033 0 0.269 0.129 43.787 0.04 0.018 0 0 50.751 0 95.097 I-py 0.142 0.018 0 0.189 0.138 42.336 0.009 0 0 0.045 49.969 0 92.846 注:由中国地质调查局西安地质调查中心实验室测试。I-py为I阶段黄铁矿;II-py为II阶段黄铁矿;III-py为III阶段黄铁矿;Apy为II阶段毒砂。 图 7 王庄金矿Au、As关系图解(数据来自表1)a. 含砷黄铁矿中Au、As关系散点图;b. 毒砂中As、Au柱状图Figure 7. Relationship diagram of Fe, S, Au and As in Wangzhuang gold depositCo、Ni常以类质同象的形式替代Fe,且Co、Ni含量变化受黄铁矿沉积时的物理化学条件控制,不同环境形成的黄铁矿Co/Ni值不同,通常表现出与岩浆热液流体相关的黄铁矿比值较高(Co/Ni>1)( Zhang et al., 2014; Chen et al., 2020);沉积期的黄铁矿Co/Ni值较低(Co/Ni<1)(Bralia et al., 1979; Cook et al., 2009; Chen et al., 2020)。王庄金矿矿石中黄铁矿Co/Ni值平均为2.03,中位数为1.34,表明大多数成矿主阶段形成的黄铁矿以岩浆流体为主(图8a),通过Co/Ni值与Au元素含量的柱状图可以看出,在Co/Ni<1及1.2<Co/Ni<2.5范围内均存在含金黄铁矿密集区(图8b),反映具有两种成因的黄铁矿,这两个阶段主要对应II、III阶段,II阶段相对于III阶段更富集Au元素。
通过前述研究,王庄金矿矿物组构中金属硫化物存在后期构造变形特征,表现为柱状毒砂被构造作用错断,后又被毒砂穿插进错断裂隙(图5e、图5h),而通过研究发现毒砂均为成矿主阶段产物,表明成矿过程存在强烈的构造变形,是一个复杂的构造热液过程。
旬北地区铁山组Au元素丰度不足以形成这么大范围的Au地球化学异常,区内大面积的 Au地球化学异常不可能来自地层,而前述矿床西侧10 km可能存在隐伏岩体,且区内地球化学异常的展布出现W→Au、As(W)→Hg、Sb(Au、W)变化,表现出由隐伏岩体位置向东呈现中高温向中低温元素的转换,而王庄金矿刚好处于其过渡带位置,结合黄铁矿微量元素特征,表明成矿热液的来源与岩浆存在一定联系。
7. 结论
(1)王庄金矿床矿石矿物中未见明显自然金,矿石中金属矿物组成以黄铁矿、含砷黄铁矿、毒砂、闪锌矿、方铅矿为主,脉石矿物主要为石英、方解石。金主要以不可见金形式存在于毒砂、含砷黄铁矿中,且Au与As表现出正相关关系。
(2)王庄金矿主要经历3个时期:①沉积成岩期。②热液成矿期。③表生氧化期。其热液成矿期可分为4个阶段:I.黄铁矿石英脉成矿早阶段;II.毒砂、黄铁矿、石英脉成矿主阶段;III.石英脉伴少量多金属硫化物阶段;IV.碳酸盐岩晚阶段。主成矿阶段为II阶段,且矿石品位与金属硫化物含量密切相关。
(3)王庄金矿中载金黄铁矿微量元素Co/Ni均值为2.03,中位数为1.34,表明含矿热液来源可能与岩浆热液关系密切。同时结合区内自西向东的中高温到中低温元素的水系沉积物异常变化特征,进一步说明了王庄金矿的形成与区内岩浆作用存在一定关系。
致谢:感谢中国地质调查局西安地质调查中心滕家欣、李宗会等多位专家一直以来对野外工作的指导,才得以在镇旬盆地王庄地区取得找矿突破。
-
表 1 太岳山脉中段磷灰石裂变径迹测试结果统计表
Table 1 Test results of apatite fission track in the middle part of Taiyue mountain
样品号 岩性 颗粒数
(n)ρs(105/cm2)(Ns) ρi(105/cm2)(Ni) ρd(105/cm2)(Nd) P(χ2)
(%)中值年龄(Ma)(±1σ) 池年龄
(Ma)(±1σ)L (μm)(N) 401-5 黑云角闪二
长片麻岩20 10.454(333) 35.348(1126) 19.35(16174) 20.4 66.0±5.2 66.0±4.8 13.36±1.43(17) GX-1 黑云二长片麻岩 24 12.351(1122) 37.935(3446) 18.23(15680) 23.05 68.7±3.7 68.5±3.4 10.94±1.57(46) GX-2 长石杂砂岩 21 11.235(745) 38.982(2585) 17.71(15680) 99.68 58.9±3.3 58.9±3.3 13.15±1.31(29) GX-3 断层泥 24 14.732(566) 41.072(1578) 16.66(15680) 80.4 68.9±4.2 68.9±4.2 12.69±1.38(26) GX-4 (断层壁)长石砂岩 34 18.679(804) 42.214(1817) 19.63(16174) 74.99 100.1±5.7 100.0±5.6 11.25±1.58(30) GX-5 断层泥 22 13.536(411) 28.192(856) 19.49(16174) 0.0 123.3±16.6 107.6±7.6 12.30±1.40(27) GX-6 长石砂岩 20 10.719(919) 19.151(1642) 16.54(14961) 5.97 113.9±7.7 106.5±5.9 11.86±1.86(41) GX-7 长石石英砂岩 11 9.548(259) 23.63(641) 18.54(15680) 96.5 86.3±7.1 86.3±7.1 10.46±1.81(7) GX-8 长石砂岩 25 17.716(412) 39.598(941) 16.87(16174) 100.0 87.0±6.0 87.0±6.0 12.89±1.25(28) GX-10 长石砂岩 24 12.893(716) 30.703(1705) 17.29(15680) 23.58 84.5±5.2 83.7±4.8 12.92±1.50(34) TB-26 长石岩屑砂岩 3 5.07(106) 20.425(427) 16.1(12945) 97.76 50.4±6.2 50.4±6.2 11.06±2.11(5) 注:ρs(Ns). 自发裂变径迹密度及径迹数量;ρi(Ni).诱发裂变径迹密度及径迹数量;ρd(Nd). 标准铀玻璃诱发径迹密度及数量;P(χ2). 检验概率;L. 平均径迹长度;N. 样品中的封闭径迹长度数。 表 2 太岳山脉中段剥蚀量、剥蚀速率统计表
Table 2 Statistics of denudation amount and denudation rate in the middle part of Taiyue mountain
样号 地质单元 池年龄(Ma) 古地温梯度(℃/100 m) 剥蚀量(km) 剥蚀速率(m/Ma) 速率变化趋势 GX-6 J3r 106.5±5.9 5.5~6 1.67~1.82 14.9~18.1 GX-4 J2t 100.0±5.6 5.5~6 1.67~1.82 15.8~19.3 GX-10 T2e1 83.7±4.8 5~5.5 1.82~2 20.6~25.3 GX-8 T1l 87.0±6.0 5~5.5 1.82~2 19.6~24.7 GX-7 P3sh5 86.3±7.1 5~5.5 1.82~2 19.5~25.3 401-5 Ar3Hgn 66.0±4.8 5~5.5 1.82~2 25.7~32.7 GX-1 Ar3Hgn 68.5±3.4 5~5.5 1.82~2 25.3~30.7 GX-2 P3sh3 58.9±3.3 3.5 2.86 46.0~51.4 TB-26 P3sh3 50.4±6.2 3.5 2.86 50.5~64.7 -
柏道远, 孟德保, 刘耀荣, 等. 青藏高原北缘昆仑山中段构造隆升的磷灰石裂变径迹记录[J]. 中国地质, 2003, 30(3): 240-246 doi: 10.3969/j.issn.1000-3657.2003.03.003 BAI Daoyuan, MENG Debao, LIU, Yaorong, et al. Apatite fission track records of the tectonic uplift of the central segment fo the Kunlun Mountains on the northern margin of the Qinghai-Tibet Plateau[J]. Geology in China, 2003, 30(3): 240-246. doi: 10.3969/j.issn.1000-3657.2003.03.003
柴金钟, 高宇辉, 王瑞军, 等. 1: 5万洪洞县测区区域地质调查报告[R]. 太原: 山西省地质调查院, 2019.
陈平, 柴东浩. 山西地块石炭纪铝土矿沉积地球化学研究[M]. 太原: 山西科学技术出版社, 1997 CHEN Ping, CHAI Donghao. Sedimentary Geochemistry of Carboniferous Bauxite Deposits in S hanxi Massif[M]. Taiyuan: Shanxi Science and Techonology Press, 1997.
邓涛, 王伟铭, 岳乐平, 等. 新近系保德阶建阶研究新进展[J]. 地层学杂志, 2004, 28(1): 41-47 doi: 10.3969/j.issn.0253-4959.2004.01.005 DENG Tao, WANG Weiming, YUE Leping, et al. New advances in the Establishment of the Neogene Baode stage[J]. Journal of Stratigraphy, 2004, 28(1): 41-47. doi: 10.3969/j.issn.0253-4959.2004.01.005
董树文, 张岳桥, 龙长兴, 等. 中国侏罗纪构造变革与燕山运动新诠释[J]. 地质学报, 2007, 81(11): 1449-1461 doi: 10.3321/j.issn:0001-5717.2007.11.001 DONG Shuwen, ZHANG Yueqiao, LONG Changxiang, et al. Jurassic Tectonic Revolution i n Chi na and New Interpretation of the Yanshan Movement[J]. Acta Geologica Sinica, 2007, 81(11): 1449-1461. doi: 10.3321/j.issn:0001-5717.2007.11.001
董树文, 张岳桥, 李海龙, 等. “燕山运动”与东亚大陆晚中生代多板块汇聚构造——纪念“燕山运动”90周年[J]. 中国科学: 地球科学, 2019, 49: 913-938 DONG Shuwen, ZHANG Yueqiao, LI Hailong, et al. The Yanshan orogeny and late Mesozoic multi-plate convergence in East Asia-Commemorating 90th years of the “Yanshan Orogeny” [J]. Science China Earth Sciences, 2019, 49: 913-938.
董挨管, 杜艳伟, 杨俊才, 等. 1: 5万张兰镇测区区域地质调查报告[R]. 太原: 山西省地质调查院, 2019. 冯子睿, 袁万明, 袁二军. 青海省都兰东北部多金属矿床锆石裂变径迹年代学分析[J]. 中国矿业, 2020, 29(S1): 284-286+293. FENG Zirui, YUAN Wanming, YUAN Erju. Zircon fission track dating evidence in polymetallic ore district, north-eastern Dulan, Qinghai provinc[J]. China Mining Magazine, 2020, 29(S1): 284- 286+293.
韩伟, 李玉宏, 刘溪, 等. 鄂尔多斯盆地东南南召地区中生代以来的构造演化研究——来自低温热年代学的证据[J]. 地质学报, 2020, 94(10): 2834-2843 doi: 10.3969/j.issn.0001-5717.2020.10.004 HAN Wei, LI Yuhong, LIU Xi, et al. Tectonic evolution since the Mesozoic of the Nanzhao area in southeast of the Ordos Basin: evidence from low-temperature thermal chronology[J]. Acta Geologica Sinica, 2020, 94(10): 2834-2843. doi: 10.3969/j.issn.0001-5717.2020.10.004
黄志刚, 任战利, 高龙刚. 鄂尔多斯盆地东南缘白垩纪以来构造演化的裂变径迹证据[J]. 地球物理学报, 2016, 59(10): 3753-3764 HUANG Zhigang, REN Zhanli, GAO Longgang. Evidence from detrital zircon and apatite fission track for tectonic evolution since Cretaceous in southeastern margin of Ordos basin[J]. Chinese Journal of Geophysics, 2016, 59(10): 3753-3764.
雷永良, 钟大赉, 季建清, 等. 东喜马拉雅构造结更新世两期抬升―剥露事件的裂变径迹证据[J]. 第四纪研究, 2008(04): 584-590 doi: 10.3321/j.issn:1001-7410.2008.04.010 LEI Yongliang, ZHONG Dalai, JI Jianqing, et al. Fission Track Evidence for two Pleistocene upl Ift- exhumation Events in the eastern himalayan Syntaxis[J]. Quaternary Sciences, 2008(04): 584-590. doi: 10.3321/j.issn:1001-7410.2008.04.010
李洪颜, 徐义刚, 黄小龙, 等. 华北克拉通北缘晚古生代活化: 山西宁武―静乐盆地上石炭统太原组碎屑锆石U-Pb测年及Hf同位素证据[J]. 科学通报, 2009(5): 632-640. LI Hongyan, XU Yigang, HUANG Xiaolong, et al. Activation of northern margin of the North China Craton in Late Paleozoic: Evidence from U-Pb dating and Hf isotopes of detrital zircons from the Upper Carboniferous Taiyuan Formation in the Ningwu-Jingle basin[J]. Chinese Science Bulletin, 2009(5): 632- 640.
李建星, 刘池洋, 岳乐平, 等. 吕梁山新生代隆升的裂变径迹证据及其隆升机制探讨[J]. 中国地质, 2015, 42(4): 960-972 doi: 10.3969/j.issn.1000-3657.2015.04.013 LI Jianxing, LIU Chixang, YUE Leping, et al. Apatite fission track evidence for the Cenozoic uplift of the Lüliang Mountains and a discussion on the uplift mechanism[J]. Geology in China, 2015, 42(4): 960-972. doi: 10.3969/j.issn.1000-3657.2015.04.013
李建星, 岳乐平, 刘池洋, 等. 中新世以来吕梁山及邻区构造―沉积演化[J]. 地层学杂志, 2013, 37(01): 93-100 LI Jianxing, YUE Leping, LIU Chiyang, et al. The Tectonic-Sedimentary Evolution of the Lüliang Mountains since the Miocene[J]. Journal of Stratigraphy, 2013, 37(01): 93-100.
李庶波, 王岳军, 张玉芝, 等. 南太行山中新生代隆升过程: 磷灰石裂变径迹证据[J]. 大地构造与成矿学, 2015(03): 84-93 LI Shubo, WANG Yuejun, ZHANG Yuzhi, et al. Meso-Cenozoic Uplifting of South Taihang Mountains: Constraints from Apatite Fission Track Data[J]. Geotectonica et Metallogenia, 2015, (03): 84-93.
李三忠, 索艳慧, 李玺瑶, 等. 西太平洋中生代板块俯冲过程与东亚洋陆过渡带构造―岩浆响应[J]. 科学通报, 2018, 63(16): 1550-1593 doi: 10.1360/N972017-01113 LI Sanzhong, SUO Yanhui, LI Xiyao, et al. Mesozoic plate subduction in West Pacific and tectono-magmatic response in the East Asian ocean-continent connection zone[J]. Chin Sci Bull, 2018, 63: 1550-1593. doi: 10.1360/N972017-01113
林伟, 曾纪培, 孟令通, 等. 伸展构造与华北克拉通破坏——花岗岩磁组构和变质核杂岩的构造分析[J]. 中国科学: 地球科学, 2021, 51(9): 1558-1593. LIN Wei, ZENG Jipei, MENG Lingtong, et al. Extensional tectonics and North China Craton destruction: Insights from the magnetic susceptibility anisotropy (AMS) of granite and metamorphic core complex[J]. Science China: Earth Sciences, 2021, 64(9): 1557-1589.
刘康, 魏荣珠, 续世超. 山西隆起区燕山期构造变形特征[J]. 中国地质调查, 2019, 6(02): 58- 67. LIU Kang, WEI Rongzhu, XU Shichao. Structure deformation characteristics of Shanxi uplift area during Yanshan movement period[J]. Geological Survey of China, 2019, 6(02): 58- 67.
罗照华, 魏阳, 辛后田, 等. 太行山中生代板内造山作用与华北大陆岩石圈巨大减薄[J]. 地学前缘, 2006, 13(6): 52-63 doi: 10.3321/j.issn:1005-2321.2006.06.008 LUO Zhaohua, WEI Yang, XIN Houtian, et al. The Mesozoic intraplate orogeny of the Taihang Mountains and the thinning of the continental lithosphere in North China[J]. EarthScience Frontiers, 2006, 13(6): 52-63. doi: 10.3321/j.issn:1005-2321.2006.06.008
马晓军, 梁积伟, 李建星, 等. 鄂尔多斯盆地中西部中新生代构造抬升及演化[J]. 西北地质, 2019, 52(4): 127-136 doi: 10.3969/j.issn.1009-6248.2019.04.010 MA Xiaojun, LIANG Jiwei, LI Jianxing, et al. Meso-cenozoic Tectonic Uplift and Evolution of Central and Western Ordos Basin[J]. Northwestern Geology, 2019, 52(4): 127-136. doi: 10.3969/j.issn.1009-6248.2019.04.010
孟元库, 汪新文, 李波, 等. 华北克拉通中部沁水盆地热演化史与山西高原中新生代岩石圈构造演化[J]. 西北地质, 2015, 48(2): 159-168 doi: 10.3969/j.issn.1009-6248.2015.02.016 MENG Yuanku, WANG Xinwen, LI Bo, et al. Thermal Evolution History of Qinshui Basin in the Middle of North China Cratonand Mesozoic-Cenozoic Lithosphere Tectonic Evolution in Shanxi Plateau[J]. Northwestern Geology, 2015, 48(2): 159-168. doi: 10.3969/j.issn.1009-6248.2015.02.016
庆建春, 季建清, 王金铎, 等. 五台山新生代隆升剥露的磷灰石裂变径迹研究[J]. 地球物理学报, 2008(02): 384-392 QING Jianchun, JI Jianqing, WANG Jinduo, et al. Apatite fission track study of Cenozoic uplifting and exhumation of Wutai Mountain, China[J]. Chinese J. Geophys. 2008, 51(2): 384-392.
任星民, 朱文斌, 朱晓青, 等. 山西吕梁山地区中―新生代隆升剥露过程: 磷灰石裂变径迹证据[J]. 地球科学与环境学报, 2015(4): 63-73 doi: 10.3969/j.issn.1672-6561.2015.04.010 REN Xingmin, ZHU Wenbin, ZHU Xiaoqing, et al. Mesozoic-Cenozoic Uplift-exhumation History in Lüliangshan Area of Shanxi: Evidences from Apatite Fission Track[J]. Journal of Earth Sciences and Environment, 2015(4): 63-73. doi: 10.3969/j.issn.1672-6561.2015.04.010
孙蓓蕾, 曾凡桂, 刘超, 等. 太原西山煤田新生代隆升史的磷灰石裂变径迹约束[J]. 地质学报, 2017, 91(01): 43-54 doi: 10.3969/j.issn.0001-5717.2017.01.003 SUN Beilei, ZENG Fangui, LIU Chao, et al. Cenozoic Uplift History of the Xishan Coalfield and Constraints from Apatite Fission Track Dating[J]. Acta Geologica Sinica, 2017, 91(01): 43-54. doi: 10.3969/j.issn.0001-5717.2017.01.003
孙迪, 李秋根, 陈隽璐, 等. 山西五台绿岩带柏枝岩组条带状铁建造(BIFs)成因及其环境意义[J]. 西北地质, 2021, 54(4): 16-41 doi: 10.19751/j.cnki.61-1149/p.2021.04.002 SUN Di, Li Qiugen, CHEN Junlu, et al. The Origin and Environmental Significance of Banded Iron Formations in the Baizhiyan Formation of Wutai Greenstone Belt, Shaanxi Province[J]. Northwestern Geology, 2021, 54(4): 16-41. doi: 10.19751/j.cnki.61-1149/p.2021.04.002
孙建博, 陈刚, 章辉若, 等. 鄂尔多斯盆地中新生代构造事件的峰值年龄及其沉积响应[J]. 西北地质, 2006, 39(3): 91-96 doi: 10.3969/j.issn.1009-6248.2006.03.013 SUN Jianbo, CHEN Gang, ZHANG Huiruo, et al. Peak Ages and Sedimentary Responses of the Mesozo ic-Cenozoic Tectonic Events in Ordos Basin[J]. Northwestern Geology, 2006, 39(3): 91-96. doi: 10.3969/j.issn.1009-6248.2006.03.013
汤艳杰, 英基丰, 赵月鹏, 等. 华北克拉通岩石圈地幔特征与演化过程[J]. 中国科学: 地球科学, 2021, 51(9): 1489-1503. TANG Yanjie, YING Jifeng, ZHAO Yuepeng, et al. Nature and secular evolution of the lithospheric mantle beneath the North China Craton[J]. Science China Earth Sciences, 2021, 64(9): 1492-1503.
田朋飞, 袁万明, 杨晓勇. 热年代学基本原理, 重要概念及地质应用[J]. 地质论评, 2020, 66(04): 975-1004 TIAN Pengfei, YUAN Wanming, YANG Xiaoyong. The basics, essential concepts and geological applications of thermochronology[J]. Geological Review, 2020, 66(04): 975-1004.
王建强, 刘池洋, 赵红格, 等. 鄂尔多斯盆地西南部三叠纪末抬升剥蚀事件及热年代学记录[J]. 岩石学报, 2020, 36(04): 238-251 doi: 10.18654/2095-8927/014 WANG Jianqiang1, LIU Chiyang, ZHAO Hongge, et al. Uplift and exhumation events and thermochronological constraints at the end of Triassic in southwestern Ordos Basin[J]. Acta Petrologica Sinica, 2020, 36(04): 238-251. doi: 10.18654/2095-8927/014
王瑜, 孙立新, 周丽云, 等. 燕山运动与华北克拉通破坏关系的讨论[J]. 中国科学: 地球科学, 2018, 48(5): 521-535. Wang Y, Sun L X, Zhou L Y, et al. Discussion on the relationship between the Yanshanian Movement and cratonic destruction in North China[J]. Science China Earth Sciences, 2018, 61: 499-514.
魏荣珠, 李好斌, 徐朝雷, 等. 对山西隆起区中新生代构造演化的认识[J]. 中国地质调查, 2017, 4(01): 24-34 doi: 10.19388/j.zgdzdc.2017.01.04 WEI Rongzhu, LI Haobin, XU Chaolei, et al. Review on Meso-Cenozoic tectonic evolution in Shanxi uplift[J]. Geological Survey of China, 2017, 4(01): 24-34. doi: 10.19388/j.zgdzdc.2017.01.04
魏荣珠, 杨鹏生, 魏云峰, 等. 1: 5万清徐县测区区域地质调查报告[R]. 太原: 山西省地质调查院, 2021. 卫彦升, 冯志强, 闫涛, 等. 华北板块中部中生代构造演化―以山西为例[J]. 吉林大学学报(地球科学版), 2022, 52(4): 1127-1152 WEI yansheng, FENG Zhiqiang, YAN Tao, et al. Mesozoic Tectonic Evolution of the Central North China Craton: A Case Study from the Shanxi Province[J]. Journal of Jilin University(Earth Science Edition), 2022, 52(4): 1127-1152.
吴中海, 吴珍汉. 鄂尔多斯、沁水盆地晚新生代隆升―剥蚀历史[J]. 地质科技情报, 2001(03): 16- 20. WU Zhonghai, WU Zhenghan. Ordos and Qinshui Basin History of Uplift-Denudation[J]. Geological Science and Technology Information, 2001(03): 16-20.
杨进辉, 许蕾, 孙金凤, 等. 华北克拉通破坏与岩浆―成矿的深部动力学过程[J]. 中国科学: 地球科学, 2021, 51(9): 1401−1419. YANG Jinhui, XU Lei, SUN Jinfeng, et al. Geodynamics of decratonization and related magmatism and mineralization in the North China Craton[J]. Science China: Earth Sciences, 2021, 64(9): 1409−1427.
杨巍然, 王国灿, 李长安. 造山带中―新生代隆升作用构造年代学研究新进展[J]. 地质科技情报, 1999, 18(4): 19-22 YANG Weiran, WANG Guocan, LI Chang’an. Progresses of the study on the Tectono-Chronology of the Mesozoic-Cenozoic uplifting in orogenic Belt[J]. Geological Science and Technology Information, 1999, 18(4): 19-22.
翟明国. 华北克拉通构造演化[J]. 地质力学学报, 2019, 25(5): 722-745 doi: 10.12090/j.issn.1006-6616.2019.25.05.063 ZHAI Mingguo. Tectonic Evolution of the North China Craton[J]. Journal of Geomechanics, 2019, 25(5): 722-745. doi: 10.12090/j.issn.1006-6616.2019.25.05.063
张文高, 陈正乐, 蔡琳博, 等. 西天山白垩纪隆升―剥露的裂变径迹证据[J]. 地质学报, 2017, 91(03): 510-522. ZHANG Wengao, CHEN Zhengle, CAI Linbo, et al. Cretaceous Uplifting-Exhumation Process of west Tianshan: Evidence from Apatite Fission Track[J]. Acta Geologica Sinica, 2017, 91(03): 510- 522.
赵俊峰, 刘池洋, 王晓梅, 等. 吕梁山地区中―新生代隆升演化探讨[J]. 地质论评, 2009, 55(05): 663- 672. Zhao Junfeng, Liu Chiyang, Wang Xiaomei, et al. Uplifting and Evolution Characteristics in the Lüliang Mountain and Its Adjacent Area during the Meso-Cenozoic[J]. Geological Review, 2009, 55 (05): 663- 672.
赵俊峰, 刘池洋, Nigel MOUNTNEY, 等. 吕梁山隆升时限与演化过程研究[J]. 中国科学: 地球科学, 2015, 45(10): 1427-1438 ZHAO Junfeng, LIU Chiyang, Mountney N, et al. Timing of uplift and evolution of the Lüliang Mountains, North China Craton[J]. Science China: Earth Sciences, 2015, 45(10): 1427-1438.
赵祯祥, 杜晋锋. 山西大地构造划分、成矿旋回与演化[R]. 太原: 山西省地质调查院, 2004. 朱日祥, 徐义刚. 西太平洋板块俯冲与华北克拉通破坏[J]. 中国科学: 地球科学, 2019, 49(9): 1346-1356 ZHU Rixiang, XU Yigang. The subduction of the west Pacific plate and the destruction of the North China Craton[J]. Science China Earth Sciences, 2019, 49(9): 1346-1356.
Brown R, Gleadow A. Fission track thermochronology and the long-term denudational response to tectonics[M]. Geomorphology and Global Tectonics, 2000: 57−75.
DV Díaz, S Omodeo-Salé, Ulyanov A, et al. Insights into the Thermal History of North-Eastern Switzerland-Apatite Fission Track Dating of Deep Drill Core Samples from the Swiss Jura Mountains and the Swiss Molasse Basin[J]. Geosciences (Switzerland), 2020, 11(10): 1-21.
Ma Q, Xu Y G. Magmatic perspective on subduction of Paleo-Pacific plate and initiation of big mantle wedge in East Asia[J]. Earth-Science Reviews, 2021, 213: 1-11.
Erhan Gülyüz. Apatite fission track dating of the Beypazar Granitoid: insight for the inception of collision along the Northern Neotethys, Turkey[J]. Geodinamica Acta, 2020, 32(1): 1-10. doi: 10.1080/09853111.2020.1809824
Gelder I, Willingshofer E, Andriessen P, et al. Cooling and Vertical Motions of Crustal Wedges Prior to, During, and After Lateral Extrusion in the Eastern Alps: New Field Kinematic and Fission Track Data from the Mur‐Mürz Fault System[J]. Tectonics, 2020, 39(3): 1-26.
Gleadow A J W. Confined fission track lengths in apatite: a diagnostic tool for thermal history analysis[J]. Cont Min Pet, 1986, 94(4): 405-415. doi: 10.1007/BF00376334
Green, Paul F. On the thermo-tectonic evolution of Northern England: evidence from fission track analysis[J]. Geological Magazine, 1986, 123(05): 493-506. doi: 10.1017/S0016756800035081
Green P F. A new look at statistics in fission track dating[J]. Nuclear Tracks, 1981, 5: 77-86. doi: 10.1016/0191-278X(81)90029-9
Ketcham R A. Forward and Inverse Modeling of Low-Temperature Thermochronometry Data[J]. Reviews in Mineralogy and Geochemistry. 2005, 58(1): 275-314.
Ketcham R A, Donelick R A, Balestrieri M L, et al. Reproducibility of apatite fission-track length data and thermal history reconstruction[J]. Earth and Planetary Science Letters, 2009, 284 (3-4): 504-515. doi: 10.1016/j.jpgl.2009.05.015
Laslett G M, Green P F, Duddy I R, et al. Thermal annealing of fission tracks in apatite 2. A quantitative analysis[J]. Chemical geology, 1987, 65(1): 1-13. doi: 10.1016/0168-9622(87)90057-1
Liang C, Neubauer F, Liu Y, et al. Diachronous onset and polyphase cooling of the Taili-Yiwulüshan metamorphic core complex corridor, NE China, and its relationships to the formation of adjacent extensional basins[J]. Gondwana Research, 2020, 102: 271-298.
Lin W, Faure M, Chen Y, et al. Late Mesozoic compressional to extensional tectonics in the Yiwulüshan massif, NE China and its bearing on the evolution of the Yinshan–Yanshan orogenic belt[J]. Gondwana Research, 2013, 23(1): 54-77. doi: 10.1016/j.gr.2012.02.013
Pan B, Hu Z, Wang J, et al. A magnetostratigraphic record of landscape development in the eastern Ordos Plateau, China: Transition from Late Miocene and Early Pliocene stacked sedimentation to Late Pliocene and Quaternary uplift and incision by the Yellow River[J]. Geomorphology, 2011, 125(1): 225-238. doi: 10.1016/j.geomorph.2010.09.019
Pt A, Xy B, Wy A. Formation and preservation of the Bayan Obo Fe-REE-Nb deposit, Inner Mongolia: Insights from evidences of petrogenesis, geochemistry and apatite fission track dating - ScienceDirect[J]. Solid Earth Sciences, 2020, 1–18.
Sun Y, Kohn B P, Boone S C, et al. Burial and Exhumation History of the Lujing Uranium Ore Field, Zhuguangshan Complex, South China: Evidence from Low-Temperature Thermochronology[J]. Minerals, 2021, 11(2): 1-24.
Wu F Y, Yang J H, Xu Y G, et al. Destruction of the North China Craton in the Mesozoic[J]. Annual Review of Earth and Planetary Sciences, 2019, 47(1): 173-195. doi: 10.1146/annurev-earth-053018-060342
Yang J H, Wu F Y, Wilde S A, et al. Mesozoic decratonization of the North China block[J]. Geology, 2008, 36(6): 467-470. doi: 10.1130/G24518A.1
Zhu G, Jiang D, Zhang B, et al. Destruction of the eastern North China Craton in a backarc setting: Evidence from crustal deformation kinematics[J]. Gondwana Research, 2012, 22(1): 86-103. doi: 10.1016/j.gr.2011.08.005