ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    高级检索

    沟谷型泥石流特征参数的等代面积递归精细求解

    刘星宇, 朱立峰, 孙建伟, 贾煦, 刘向东, 黄虹霖, 程贤达, 孙亚柯, 胡超进, 张晓龙

    刘星宇,朱立峰,孙建伟,等. 沟谷型泥石流特征参数的等代面积递归精细求解[J]. 西北地质,2024,57(3):272−284. doi: 10.12401/j.nwg.2023166
    引用本文: 刘星宇,朱立峰,孙建伟,等. 沟谷型泥石流特征参数的等代面积递归精细求解[J]. 西北地质,2024,57(3):272−284. doi: 10.12401/j.nwg.2023166
    LIU Xingyu,ZHU Lifeng,SUN Jianwei,et al. Precise Calculation for Characteristic Parameters of Valley-type Debris Flow Using a Methed of Recursive Equivalent Area Substitution[J]. Northwestern Geology,2024,57(3):272−284. doi: 10.12401/j.nwg.2023166
    Citation: LIU Xingyu,ZHU Lifeng,SUN Jianwei,et al. Precise Calculation for Characteristic Parameters of Valley-type Debris Flow Using a Methed of Recursive Equivalent Area Substitution[J]. Northwestern Geology,2024,57(3):272−284. doi: 10.12401/j.nwg.2023166

    沟谷型泥石流特征参数的等代面积递归精细求解

    基金项目: 中国地质调查局地质调查项目“熊耳山–伏牛山矿集区生态修复支撑调查”(ZD20220218)。
    详细信息
      作者简介:

      刘星宇(1987−),男,硕士,工程师,主要从事地质灾害方面工作。E–mail:1538311361@qq.com

      通讯作者:

      朱立峰(1973−),男,正高级工程师,长期从事地质灾害机理与防治研究。E–mail:397871699@qq.com

    • 中图分类号: P642.23

    Precise Calculation for Characteristic Parameters of Valley-type Debris Flow Using a Methed of Recursive Equivalent Area Substitution

    • 摘要:

      为解决“沟谷型”泥石流在不规则断面处特征参数的精细求解问题,笔者以曼宁公式为基础,建立“等代”面积递归逼近的数学模型,实现了最深泥位、流体速度、威胁范围的求解计算,其结果比较符合实际。利用该模型在豫西某泥石流受威胁对象段任取10个断面进行研究分析:①计算出10年一遇、20年一遇、50年一遇、100年一遇等降水概率工况下最深泥位、流速、行洪断面大小,研究其随雨强大小的演变规律。②定量分析了各断面泄洪能力强弱。③结合泥石流强度判定标准对所选区域进行危险度分区,划分了极高危险区、高危险区、中危险区、低危险区。该模型不仅可以为预测泥石流各项指标提供基本参数,而且可为灾害防治提供科学依据。研究成果对泥石流的精细化防治方面具有重要支撑作用。

      Abstract:

      In order to solve the problem of key parameters in predicting "valley-type" debris flow at irregular profiles, based on Manning's formula, this paper establishes an approaching mathematical model of "equivalent area substitution method", which completed calculation for the deepest mud level, the flow rate and the threat range. The result is close to reality. This paper select 10 profiles randomly in the affected area by debris flow in western Henan, by this model: ① the deepest mud level was calculated, the flow velocity, and the area size of the cross-flood profiles under the probability of rainfall once in 10 years, and in 20 years, 50 years, in 100 years. ② Moreover, this paper has done some research for the law of evolution with different rain intensity, and quantitatively analyzed the flood discharge capacity of each profile. ③ Combined with the judgment standard of debris flow intensity, the selected areas were classified into extermely high-risk areas, high-risk areas, medium-risk areas, and low-risk areas. Furthermore, the model can not only provide basic parameters for predicting various indicators of debris flow, but also provide scientific basis for preventing and controlling disaster of debris flow. Finally, the results of this research have a certain significance in the refined prevention and control of debris flow.

    • 图  1   研究区位置及地质背景图

      (a).康山村地质背景图;(b).栾川县地形地貌图

      Figure  1.   The map of Geological condition and the locationfor study area

      图  2   泥石流发育形态特征图和量测断面位置图

      (a).研究区测量断面位置示意图;(b).康山村泥石流隐患沟发育特征示意图

      Figure  2.   The map of characteristics for debris flow developmental features and the location of the measurement profiles

      图  3   AA`断面数学模型构建示意图

      Figure  3.   Schematic diagram of mathematical model construction for AA` profiles

      图  4   数学模型中角度和断面面积函数关系图

      Figure  4.   The relationship between the angle and crossing profiles area function in the mathematical mode

      图  5   模型递归计算示意图

      Figure  5.   Schematic diagram of model iterative calculation

      图  6   行洪断面和雨强关系图

      Figure  6.   The diagram for relationship of water crossing profiles under different rain intensity conditions

      图  7   流速、最深泥位和雨强关系图

      Figure  7.   The diagram for relationship of flow velocity,deepest mud level under different rain intensity conditions

      图  8   AA`断面100年一遇降水工况下泥位深度分区示意图

      (a).最深泥位、淹没区、未淹没区、总行洪宽度示意图 ;(b).泥石流低强度区划分标准及其宽度示意图;(c).泥石流中强度区划分标准及其宽度 ;(d).泥石流高强度区划分标准及其宽度示意图

      Figure  8.   Schematic diagram of the mud level depth division under the 100-year rainfall on the AA` profiles

      图  9   各降水强度下测量断面区域危险度分区图

      (a).100年一遇雨强条件下承灾体危险度分区图;(b).50年一遇雨强条件下承灾体危险度分区图;(c).20年一遇雨强条件下承灾体危险度分区图;(d).10年一遇雨强条件下承灾体危险度分区图

      Figure  9.   Hazard zoning map of the measurement profiles area under various rainfall intensities

      图  10   各断面淹没区、高位区淹没宽度占压其行洪总宽度比例

      (a).各断面淹没区宽度占压其行洪总宽度比例图;(b).各断面高危险区淹没宽度占压其行洪总宽度比例图

      Figure  10.   The ratio of the submerged area and high-level area width to the total flood width of each profiles

      表  1   AA`断面测量数据表

      Table  1   The table of measurement data for AA` profiles

      点号A1A2A3A4A5A6A7A8A9A10
      X3770586377059337706013770608377062937706353770638377066937707153770735
      Y533751533752533754533755533758533759533759533765533772533776
      H1069106910681062106310631064106710681071
      下载: 导出CSV

      表  2   不同雨强条件下各断面的泥位、流速计算表

      Table  2   Calculation table for mud level and flow velocity of each profiles under various rain conditions

      降水概率断面名称A-A`B-B`C-C`D-D`E-E`F-F`G-G`H-H`I-I`J-J`
      100年一遇最深泥位(m)3.956.036.118.486.454.457.054.975.285.38
      流速(m/s)1.681.391.541.371.371.441.341.481.421.46
      断面面积(m2189224229195246249287395460481
      50年一遇最深泥位(m)3.625.545.618.066.174.576.724.564.564.94
      流速(m/s)1.351.301.411.201.251.261.301.371.211.38
      断面面积(m2117190194160218284236333402406
      20年一遇最深泥位(m)3.235.254.997.515.513.995.984.064.064.39
      流速(m/s)1.301.251.231.201.201.101.181.251.051.26
      断面面积(m293145153124159228188264319320
      10年一遇最深泥位(m)2.974.834.606.915.073.675.503.743.744.04
      流速(m/s)1.261.181.111.761.130.991.101.150.931.18
      断面面积(m278123130105135193159224271271
      下载: 导出CSV

      表  3   泥石流强度判定准则

      Table  3   Judgment criteria for debris flow intensity

      泥石流强度泥深H(m)关系泥深H与最大流速V的乘积(m2/s)
      H≥2.5V*H≥2.5
      0.5<H≤2.50.5<V*H≤2.5
      0<H≤0.50<V*H≤0.5
      下载: 导出CSV

      表  4   模型递归的最终角度以及面积误差表

      Table  4   Final angle and area error table for model iterations

      断面名称A-A`B-B`C-C`D-D`E-E`F-F`G-G`H-H`I-I`J-J`
      100年一遇α1(°)86.5784.973753838370.8888.1488.2487.7
      α2(°)47.9645.2385.0574.44748785.51512783.17
      CAD测量实际面积(m2175214237202244278279380501468
      模型求解的理论面积(m2189224229195246249287395460481
      面积误差(%)64.73.53.56.12.134.183
      断面名称A-A`B-B`C-C`D-D`E-E`F-F`G-G`H-H`I-I`J-J`
      50年一遇α1(°)86.5784.97375382836788.1488.587.7
      α2(°)47.9645.2385.0574.44748783512783.17
      CAD测量实际面积(m2116175199157202265251332392409
      模型求解的理论面积(m2117190194160218284236333402406
      面积误差(%)0.908.422.612.008.027.305.660.222.640.77
      断面名称A-A`B-B`C-C`D-D`E-E`F-F`G-G`H-H`I-I`J-J`
      20年一遇α1(°)86.5784375382846788.1488.587.7
      α2(°)47.9645.2385.057273.538783512783.17
      CAD测量实际面积(m296154153119162215184282312338
      模型求解的理论面积(m293145153124159228188264319320
      面积误差(%)3.525.600.284.211.985.662.046.392.135.10
      断面名称A-A`B-B`C-C`D-D`E-E`F-F`G-G`H-H`I-I`J-J`
      10年一遇α1(°)86.5784375382846788.1488.587.7
      α2(°)47.9645.2385.057273.538783512783.17
      CAD测量实际面积(m28512512599130179146246262294
      模型求解的理论面积(m278123130105135193159224271271
      面积误差(%)7.222.074.036.163.787.408.719.043.487.86
      下载: 导出CSV
    • 柴春岭, 陈守煜. 模糊优选神经网络模型在泥石流平均流速预测中应用研究[J]. 大连理工大学学报, 2008, 48 ((6): 887-891

      CHAI Chunling, CHEN Shouyu. Research on application of fuzzy optimization neural network model to debris flow average velocity forecasting[J]. Journal of Dalian University of Technology, 2008, 48 ((6): 887-891.

      常士骠, 张苏民. 工程地质手册(第五版)[M]. 北京: 中国建筑工业出版社, 2018,691

      CHANG Shibiao, ZHANG Sumin. Geological Engineering Handbook(The fifth Edition)[M]. Beijing: China Construction Industry Press, 2018,691.

      丛凯, 李瑞冬, 毕远宏. 基于FLO-2D模型的泥石流治理工程效益评价[J]. 西北地质, 2019, 52(3): 209-216

      CONG Kai, LI Ruidong, BI Yuanhong. Benefit Evaluation of Debris Flow Control Engineering Based on the FLO-2D Model[J]. Northwestern Geology, 2019, 52(3): 209-216.

      杜榕桓, 李鸿琏, 唐邦兴, 等. 三十年来的中国泥石流研究[J]. 自然灾害学报, 1995(01): 64-73

      DU Ronghuan, LI Honglian, TANG Bangxing, et al. Research on debris flow for thirty years in China[J]. Journal of Natural Disasters, 1995(01): 64-73.

      高东光. 桥涵水文[M]. 北京: 人民交通出版社, 2005: 76-87

      GAO Dongguang. Hydrology and Hydraulics for Bridge Engineering[M]. Beijing: China Communications Press, 2005: 76-87.

      韩征, 徐林荣, 苏志满, 等. 基于流域形态完整系数的泥石流容重计算方法[J]. 水文地质工程地质, 2012, 39(2): 100-105

      HAN Zheng, XU Linrong, SU Zhiman, et al. Research on the method for calculating the bulk density of debris flow based on the integrity coefficient of watershed morphology[J]. Hydrogeology&Engineering Geology, 2012, 39(2): 100-105.

      黄崇福. 自然灾害基本定义的探讨[J]. 自然灾害学报, 2009, 18(5): 41-50 doi: 10.3969/j.issn.1004-4574.2009.05.007

      HUANG Chongfu. A discussion on basic definition of natural disaster[J]. Journal of Natural Disasters, 2009, 18(5): 41-50. doi: 10.3969/j.issn.1004-4574.2009.05.007

      康志成, 李焯芬, 马蔼乃, 等. 中国泥石流研究[M]. 北京: 科学出版社, 2004

      KANG Zhicheng, LI Chuofen, MA Ainai, et al. Research on debris flow in China[M]. Beijing: Science Press, 2004.

      刘波, 胡卸文, 何坤, 等. 西藏洛隆县巴曲冰湖溃决型泥石流演进过程模拟研究[J]. 水文地质工程地质, 2021, 48(5): 150-160

      LIU Bo, HU Xiewen, HE Kun, et al. Characteristics and evolution process simulation of the Baqu gully debris flow triggered by ice-lake outburst in Luolong County of Tibet, China[J]. Hydrogeology&Engineering Geology, 2021, 48(5): 150-160.

      刘星宇, 刘向东, 赵浩, 等. 豫西某金矿矿渣转化为泥石流物源的危险性评价[J]. 中国地质灾害与防治学报, 2022, 33(5): 29-39

      LIU Xingyu, LIU Xiangdong, ZHAO Hao, et al. Risk assessment of source of debris flow from a gold slag heap in western Henan[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5): 29-39.

      倪化勇, 唐川. 中国泥石流起动物理模拟试验研究进展[J]. 水科学进展, 2014, 25(4): 606-613

      NI Huayong, TANG Chuan. Advances in the physical simulation experimeng on debris flow initiation in China[J]. Advance in Water Science, 2014, 25(4): 606-613.

      唐亚明, 武立, 冯凡, 等. 泥石流风险减缓措施及经济决策—以山西吉县城北沟为例[J]. 西北地质, 2021, 54(4): 227-238

      TANG Yaming, WU Li, FENG Fan, et al. Risk Mitigation Measures and Economic Decisions on Debris Flow -Taking Beigou of Jixian County, Shanxi Province as an Example[J]. Northwestern Geology, 2021, 54(4): 227-238.

      唐川, 周钜乾, 朱静等. 泥石流堆积扇危险度分区评价的数值模拟研究[J]. 灾害学, 1994(04): 7-13

      TANG Chuan, ZHOU Juqian, ZHU Jing, et al. A Study on the risk zoning debris flow on alluvial fans by applying technology of numerical simulation[J]. Journal of Catastrophology, 1994(4): 7-13.

      王喜安, 陈剑刚, 陈华勇, 等. 考虑浆体黏度的泥石流流速计算方法[J]. 长江科学院院报, 2020, 37(4): 56-61

      WANG Xi`an, CHEN Jiangang, CHEN Huayong, et al. Calculation of Debris Flow Velocity in Consideration of Viscosity of Slurry[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(4): 56-61.

      韦方强, 胡凯衡. 泥石流流速研究现状与发展方向[J]. 山地学报, 2009, 27(5): 545-550 doi: 10.3969/j.issn.1008-2786.2009.05.005

      WEI Fangqiang,HU Kaiheng, Review and Trends on Debris Flow Velocity Research[J]. Jounal of Mountain Science, 2009, 27(5): 545-550. doi: 10.3969/j.issn.1008-2786.2009.05.005

      徐黎明, 王清, 陈剑平, 等. 基于BP神经网络的泥石流平均流速预测[J]. 吉林大学学报(地球科学版), 2013, 43(1): 186-191

      XU Liming, WANG Qing, CHEN Jianping, et al. Forcast for Average Velocity of Debris Flow Based on BP Neural Network[J]. Journal of Jilin University(Earth Science Edition), 2013, 43(1): 186-191.

      徐士彬, 钱德玲, 姚兰飞, 等. 基于结构两相流模型计算泥石流对路基的冲击力[J]. 合肥工业大学学报(自然科学版), 2018, 41(3): 373-376+394

      XU Shibin, QIAN Deling, YAO Lanfei, et al. Calculation of impact force of debris flow on subgrade based on the model of conceptual two phase flow[J]. Journal of HeFei University of technology( natural science edition), 2018, 41(3): 373-376+394.

      杨晓宇. 合作市砂子沟泥石流形成条件及危险度评价[J]. 河北地质大学学报, 2018, 41(3): 37-42

      YANG Xiaoyu. Forming Conditions and Risk Assessment on Debris Flow of Shazigou in the Hezuo City[J]. Journal of Hebei GEO University, 2018, 41(3): 37-42.

      于国强, 张茂省, 王根龙, 等. 支持向量机和BP神经网络在泥石流平均流速预测模型中的比较与应用[J]. 水利学报, 2012, 43(S2): 105-110 doi: 10.3969/j.issn.0559-9350.2012.z2.019

      YU Guoqiang, ZHANG Maosheng, WANG Genglong, et al. Application and comparison of prediction models of support vector machines and back-propagation artificial neural network for debris flow average velocity[J]. Journal of Hydraulic Engineering, 2012, 43(S2): 105-110. doi: 10.3969/j.issn.0559-9350.2012.z2.019

      朱立峰, 赵成, 于国强等. 三眼峪特大泥石流堆积特征[J]. 西北地质, 2011, 44(3): 30-37

      ZHU Lifeng, ZHAO Cheng, YU Guoqiang, et al. Accumulation Characteristics of Sanyanyu Extremely Big Debris Flow[J]. Northwestern Geology, 2011, 44(3): 30-37.

      张罗号, 张红武, 张锦方, 等. 泥石流流速计算与模型设计方法[J]. 人民黄河, 2015, 37(4): 18-24

      ZHANG Luohao, ZHANG Hongwu, ZHANG Jingfang, et al. Calculation Method of Debris Flow Velocity and Debris Flow Model Design[J]. Yellow River, 2015, 37(4): 18-24.

      中国科学院水利部成都山地灾害与环境研究所. 中国泥石流[M]. 北京: 商务印书馆, 2000

      Institute of Mountain Hazards and Environment, CAS. China debris flow[M]. Beijing: The Commercial Press, 2000.

      ASCH, TH. W. J. VAN, TANG, C. , ALKEMA, D. , et al. An integrated model to assess critical rainfall thresholds for run-out distances of debris flows. [J]. Natural Hazards, 2014, 70(1): 299-311. doi: 10.1007/s11069-013-0810-z

      Iverson, Richard M. The physics of debris flows[J]. Reviews of Geophysics, 1997, 35(3): 245-296. doi: 10.1029/97RG00426

    图(10)  /  表(4)
    计量
    • 文章访问数:  141
    • HTML全文浏览量:  16
    • PDF下载量:  44
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-06-07
    • 修回日期:  2023-08-21
    • 录用日期:  2023-08-22
    • 网络出版日期:  2023-08-27

    目录

      /

      返回文章
      返回