Petrogenesis and Tectonic Implications of Carboniferous Granites and Its Dark Enclaves in the Western Awulale Mountain, Western Tianshan
-
摘要:
西天山出露的古生代岩浆岩的岩石成因及动力学背景对于恢复区域构造演化历史具有重要意义。笔者选取阿吾拉勒西段巩乃斯种羊场北西地区的花岗岩及其中暗色包体进行了岩石学研究、锆石U-Pb年代学和岩石地球化学分析。研究表明暗色包体为细粒闪长岩,闪长质包体K2O=0.93~2.50,K2O/Na2O=0.20~0.21,A/CNK=0.83~0.87,里特曼指数σ=2.33~3.02,为准铝质钙碱性岩石系列。寄主花岗岩K2O=2.92~3.48,含量较高,K2O/Na2O=0.60~0.79,里特曼指数σ=1.87~2.17,A/CNK =1.01~1.04,为弱过铝质钙碱性系列岩石,属I型花岗岩。二者均富集大离子亲石元素Rb、Ba、Pb等,亏损高场强元素Nb、Ta、Ti,稀土总量较低,轻稀土元素相对富集,重稀土元素相对亏损。闪长质包体无显著Eu、Sr异常,而花岗岩具明显的负Eu异常,且Sr、P、Ti元素强烈亏损。锆石U-Pb测年结果显示花岗岩成岩年龄为(320.0±2.7) Ma,属晚石炭世早期;闪长质包体成岩时代为(344.5±1.4) Ma,属早石炭世中期。闪长质包体类型为捕掳体,是寄主花岗质岩浆上位过程中捕获的围岩。岩石地球化学和年代学特征揭示二者有不同的成因,闪长质包体为早期北天山洋南向俯冲过程中形成的,而花岗岩侵位于后碰撞伸展环境,是由于软流圈上涌加热导致基性下地壳部分熔融而成。综合区域地质资料分析,早晚石炭世之交很可能是西天山区域构造体制转换的重要阶段,即由碰撞挤压环境转化为伸展拉张环境。
Abstract:The petrogenesis and dynamic background of the magmatic rocks in the West Tianshan Mountains are of great significance to reveal the tectonic evolution history of the restoration area. In this paper, the granite and its dark enclaves in the northwestern area of Kunes Zhongyangchang in the western Awulale Mountain were selected for petrology and zircon U-Pb chronology and petrogeochemical analysis. The results show that the dark enclaves are fine-grained diorite, with K2O=0.93~2.50, K2O/Na2O=0.20~0.21, A/CNK=0.83~0.87 and σ=2.33~3.02, which are quasi-aluminous calc-alkaline rock series. Host granites belong to I type granites with K2O=2.92~3.48, K2O/Na2O=0.60~0.79, Ritman index σ=1.87~2.17, and A/CNK =1.01~1.04, which are weakly peraluminous calc-alkaline rock series. Both of them are enriched in large ion lithophile elements (LILE, e.g. Rb、Ba、Pb) and depleted in high field strength elements (HSFE, e.g. Nb, Ta, Ti), The total amount of rare earth elements is low, accompanied by the relative enrichment of light rare earth elements, and the relative loss of heavy rare earth element. The diorite enclaves have no significant Eu and Sr anomalies, while the granites have obvious negative Eu anomalies and strong loss of Sr, P and Ti elements. Zircon U-Pb dating shows that the formation age of granite is (320.0±2.7) Ma, belonging to the early Late Carboniferous. The diagenetic age of the diorite enclaves is (344.5±1.4) Ma, belonging to the Early Carboniferous. The type of diorite enclaves is xenolith, which were captured during the rising of the host granitic magma. The geochemical and chronological characteristics of the rocks reveal that they have different petrogenesis. The dioritic enclaves were formed during the northern Tianshan Ocean subduction southward, and the granite intrusion was located in the post-collision extension environment, which was formed due to the upwelling of the asthenosphere, leading to the partial melting of the lower crust. Based on regional geological data, it is likely that the early Carboniferous to late Carboniferous is an important stage of tectonic system transformation in the western Tianshan Mountain, that is, the tectonic environment transformed from compression to extension.
-
Keywords:
- Western Tianshan /
- granite /
- enclave /
- zircon U-Pb dating /
- petrogenesis
-
-
图 1 中国西天山地质简图(a据Long et al.,2011修)和研究区地质简图(b)
Figure 1. (a) Simplified geological map of western Tianshan and (b) the distribution of the granites and enclaves in the study region
图 5 花岗岩和闪长质包体TAS图解(a据 Middlemost,1994)和K2O-SiO2图解(b据Peccerillo et al.,1976,虚线据Middlemost,1985)
Figure 5. (a) TAS and (b) K2O-SiO2 diagram for the granites and enclaves
图 7 花岗岩FeOT/MgO-10000Ga/Al分类图解(a)(据Whalen et al.,1987)和P2O5-SiO2图解(b)
Figure 7. (a) FeOT/MgO-10 000Ga/Al and (b) P2O5-SiO2 diagrams of the granites
图 8 研究区闪长质包体Th/Yb-Ta/Yb(a据Pearce,1982)和La/Yb-Th(b据Bailey,1981)图解
Figure 8. (a) Diagrams of Th/Yb-Ta/Yb and (b) La/Yb-Th for diorite enclaves in the study area
图 9 花岗岩和包体R1-R2(a据Batchelor et al.,1985)和Rb-Yb+Nb(b据Pearce,1996)构造环境判别图解
Figure 9. (a) R1-R2 and (b) Rb-Yb+Nb diagrams of granites and enclaves
表 1 花岗岩LA-ICP-MS锆石U-Pb定年测试数据
Table 1 Zircon LA-ICP-MS U-Pb analytical data of granites
测点 含量(10−6) Th/U 同位素比值 年龄(Ma) Th U 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 1 207 229 0.91 0.0530 0.0024 0.3685 0.0167 0.0504 0.0003 327.5 102.6 318.5 14.5 317.3 2.1 2 140 159 0.88 0.0531 0.0037 0.3821 0.0265 0.0522 0.0004 333.0 156.0 328.6 22.8 328.0 2.3 3 156 196 0.80 0.0534 0.0025 0.3742 0.0181 0.0508 0.0004 347.3 107.3 322.8 15.6 319.4 2.5 4 289 226 1.28 0.0529 0.0018 0.3838 0.0130 0.0526 0.0004 326.1 75.6 329.8 11.2 330.4 2.2 5 191 187 1.03 0.0533 0.0027 0.3693 0.0188 0.0502 0.0003 342.6 114.6 319.1 16.2 315.9 2.1 6 159 166 0.96 0.0536 0.0034 0.3715 0.0239 0.0503 0.0004 354.7 144.1 320.8 20.6 316.1 2.3 7 344 297 1.2 0.0536 0.0014 0.3832 0.0103 0.0519 0.0003 353.6 59.9 329.4 8.9 325.9 2.1 8 137 168 0.82 0.0528 0.0027 0.3721 0.0194 0.0511 0.0004 321.2 117.6 321.2 16.8 321.2 2.3 9 272 263 1.04 0.0531 0.0019 0.3827 0.0136 0.0522 0.0003 334.8 79.3 329.0 11.7 328.2 2.2 10 206 242 0.86 0.0536 0.0025 0.3703 0.0177 0.0501 0.0003 354.5 106.5 319.9 15.3 315.1 2.2 11 141 161 0.88 0.0532 0.0040 0.3637 0.0272 0.0496 0.0004 335.3 169.5 315.0 23.6 312.2 2.5 12 64 102 0.63 0.0533 0.0041 0.3624 0.0281 0.0493 0.0005 343.0 174.6 314.0 24.3 310.2 2.9 13 122 162 0.76 0.0529 0.0020 0.3729 0.0153 0.0511 0.0004 339.7 87.4 309.1 12.2 305.1 2.2 14 93 120 0.78 0.0528 0.0051 0.3773 0.0362 0.0518 0.0004 324.9 87.2 321.8 13.2 321.4 2.8 15 101 136 0.75 0.0529 0.0032 0.3772 0.0228 0.0517 0.0004 319.9 218.2 325.0 31.2 325.8 2.7 16 70 133 0.53 0.0538 0.0045 0.3720 0.0312 0.0502 0.0004 274.3 234.9 266.9 27.2 266.0 2.3 17 73 111 0.66 0.0536 0.0064 0.3734 0.0445 0.0505 0.0005 325.9 136.7 325.0 19.6 324.9 2.8 18 123 193 0.64 0.0536 0.0029 0.3665 0.0199 0.0496 0.0003 360.6 188.0 321.2 26.9 315.8 2.6 19 101 129 0.78 0.0533 0.0026 0.3701 0.0184 0.0504 0.0004 354.2 267.7 322.1 38.4 317.7 3.0 20 80 99 0.81 0.0532 0.0037 0.3746 0.0270 0.0511 0.0006 563.1 92.5 361.4 15.5 330.7 2.2 21 160 150 1.07 0.0534 0.0023 0.3791 0.0166 0.0515 0.0004 353.3 123.1 317.0 17.3 312.1 2.1 22 14 215 0.06 0.0589 0.0025 0.4275 0.0184 0.0526 0.0004 341.3 111.2 319.7 15.9 316.8 2.7 23 176 164 1.07 0.0535 0.0031 0.4047 0.0235 0.0548 0.0004 351.1 131.6 345.1 20.1 344.2 2.8 24 82 94 0.88 0.0534 0.0020 0.4034 0.0157 0.0548 0.0005 335.8 158.8 323.1 23.3 321.3 3.7 25 60 87 0.69 0.0534 0.0025 0.4010 0.0198 0.0545 0.0007 343.8 84.8 344.1 13.4 344.1 3.4 26 205 198 1.03 0.0530 0.0022 0.3934 0.0165 0.0538 0.0004 344.9 107.0 342.3 16.9 342.0 4.6 表 2 闪长质包体LA-ICP-MS锆石U-Pb定年测试数据
Table 2 Zircon LA-ICP-MS U-Pb analytical data of diorite enclaves
测点 含量(10−6) Th/U 同位素比值 年龄(Ma) Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 1 150 284 0.53 0.0538 0.0033 0.4050 0.0258 0.0546 0.0004 361.5 140.3 345.3 22.0 342.9 2.6 2 239 344 0.69 0.0014 0.0014 0.4825 0.0128 0.0636 0.0004 413.7 57.7 399.8 10.6 397.4 2.7 3 157 284 0.55 0.0540 0.0020 0.4086 0.0153 0.0549 0.0003 371.8 83.7 347.8 13.0 344.3 2.1 4 153 262 0.59 0.0533 0.0026 0.4000 0.0195 0.0545 0.0003 340.0 111.1 341.6 16.7 341.8 2.0 5 218 413 0.53 0.0543 0.0016 0.4091 0.0125 0.0547 0.0003 382.3 67.9 348.2 10.6 343.1 1.9 6 225 424 0.53 0.0538 0.0023 0.3953 0.0168 0.0533 0.0003 364.3 95.3 338.2 14.4 334.5 2.0 7 256 369 0.69 0.0537 0.0016 0.4107 0.0125 0.0555 0.0003 356.9 67.3 349.4 10.6 348.2 1.9 8 311 505 0.62 0.0542 0.0016 0.4076 0.0119 0.0546 0.0003 377.7 64.8 347.2 10.1 342.6 2.0 9 426 597 0.71 0.0535 0.0010 0.4082 0.0082 0.0553 0.0003 351.3 44.0 347.6 7.0 347.0 2.2 10 139 929 0.45 0.0539 0.0014 0.4122 0.0103 0.0555 0.0003 365.1 56.8 350.4 8.8 348.2 1.9 11 232 366 0.63 0.0537 0.0012 0.4102 0.0096 0.0554 0.0003 360.5 51.5 349.0 8.2 347.3 2.0 12 170 347 0.49 0.0535 0.0016 0.4045 0.0124 0.0549 0.0003 348.7 68.7 344.9 10.6 344.3 2.0 13 135 237 0.57 0.0534 0.0030 0.4056 0.0229 0.0550 0.0003 347.7 125.5 345.7 19.5 345.4 2.2 14 294 402 0.73 0.0541 0.0015 0.4096 0.0117 0.0549 0.0003 375.2 64.2 348.6 10.0 344.6 2.2 15 195 348 0.56 0.0540 0.0020 0.4066 0.0150 0.0546 0.0003 370.6 82.5 346.4 12.8 342.8 2.0 16 147 285 0.52 0.0536 0.0020 0.4058 0.0155 0.0550 0.0003 352.2 85.2 345.8 13.2 344.9 2.0 17 110 346 0.32 0.0539 0.0016 0.4130 0.0128 0.0555 0.0003 368.2 67.9 351.0 10.9 348.4 2.1 18 205 404 0.51 0.0540 0.0013 0.4077 0.0103 0.0547 0.0003 372.2 56.1 347.2 8.7 343.5 2.0 19 243 426 0.57 0.0541 0.0015 0.4054 0.0114 0.0544 0.0003 374.5 62.1 345.5 9.7 341.2 1.9 20 200 319 0.06 0.0536 0.0020 0.4037 0.0148 0.0546 0.0003 353.3 82.4 344.3 12.6 343.0 1.9 21 136 256 0.53 0.0536 0.0020 0.4040 0.0147 0.0546 0.0003 356.0 82.2 344.6 12.6 342.9 2.0 22 180 421 0.43 0.0537 0.0012 0.4104 0.0094 0.0554 0.0003 357.9 50.8 349.2 8.0 347.9 2.2 23 320 516 0.62 0.0540 0.0013 0.4039 0.0101 0.0543 0.0003 332.2 75.8 350.1 12.0 352.8 2.0 24 271 457 0.59 0.0537 0.0013 0.4114 0.0098 0.0556 0.0004 369.1 55.4 344.5 8.6 340.8 2.0 25 266 559 0.48 0.0541 0.0014 0.4122 0.0103 0.0552 0.0003 363.6 66.4 341.5 10.2 338.3 1.9 26 181 349 0.52 0.0537 0.0015 0.4047 0.0115 0.0546 0.0003 357.3 54.0 349.8 8.3 348.7 2.3 27 126 281 0.45 0.0540 0.0025 0.4097 0.0192 0.0550 0.0003 377.2 56.2 350.4 8.8 346.4 2.0 28 202 387 0.52 0.0538 0.0016 0.4120 0.0125 0.0555 0.0003 360.6 62.6 345.1 9.8 342.8 2.0 29 226 395 0.57 0.0538 0.0015 0.4080 0.0112 0.0550 0.0003 371.9 105.6 348.7 16.4 345.2 2.2 30 239 344 0.69 0.0550 0.0014 0.4825 0.0128 0.0636 0.0004 363.3 67.0 350.3 10.7 348.4 2.0 31 226 395 0.57 0.0538 0.0015 0.4080 0.0112 0.0550 0.0003 363.7 61.3 347.4 9.5 345.0 2.0 表 3 花岗岩和闪长质包体主量元素(%)与微量元素(10−6)地球化学分析数据
Table 3 Major element (%) and trace element (10−6) composition of the granite and diorite enclaves
样品 13XY-13h 13XY-29h 13XY-30h 13XY-31h 13XY-32h 13XY-24-1h 13XY-24-2h 13XY-24-3h 13XY-24-4h 样品 13XY-13h 13XY-29h 13XY-30h 13XY-31h 13XY-32h 13XY-24-1h 13XY-24-2h 13XY-24-3h 13XY-24-4h 闪长质包体 寄主花岗岩 闪长质包体 寄主花岗岩 SiO2 57.03 59.44 57.05 56.72 57.77 75.48 75.34 74.57 73.5 Zn 48.5 35.6 41.2 52.8 40.7 16.8 18.7 17.2 14.4 Al2O3 16.01 15.93 16.23 15.91 16.51 12.91 12.86 13.27 13.44 Cr 50.6 17.5 0.63 3.39 13.7 7.01 9.18 10 4.43 Fe2O3 3.39 3.41 3.4 2.17 3.55 0.82 0.85 0.8 0.82 Ni 15.3 8.02 3.79 10.6 9.26 1.18 2.7 2.2 1.49 FeO 5.26 4.2 6.15 7.18 4.65 1.01 0.96 1.07 1.48 Co 22.3 14.3 19.7 24.2 17.2 2.1 2.45 5.02 7.34 CaO 5.77 5.16 5.36 6.13 5.21 0.81 0.87 1.06 0.93 Li 7.49 6.15 5.42 4.41 6.48 2.46 2.04 1.91 3.83 MgO 3.71 2.82 3.2 3.68 3.08 0.27 0.26 0.35 0.54 Rb 39.7 34.2 12.8 14 29.5 57.5 66 44.8 48.9 K2O 1.98 2.18 0.93 1.05 2.5 3.29 3.48 2.92 3.44 Cs 0.26 0.23 0.14 0.2 0.31 0.36 0.31 0.18 0.11 Na2O 3.9 4.34 4.71 4.17 4.1 4.5 4.43 4.88 4.7 Mo 1.09 0.48 0.64 0.45 0.66 1.2 1.12 1.33 15.6 TiO2 0.76 0.74 0.97 0.93 0.72 0.23 0.22 0.28 0.29 Sr 364 321 376 367 299 88.4 89.4 117 108 P2O5 0.14 0.13 0.24 0.19 0.13 0.03 0.03 0.04 0.04 Ba 499 533 386 396 599 696 718 736 934 MnO 0.15 0.12 0.17 0.18 0.13 0.04 0.05 0.04 0.04 V 238 216 264 301 225 7.89 7.16 10.3 12.4 LOI 1.86 1.5 1.54 1.63 1.59 0.61 0.65 0.72 0.76 Sc 31.9 27.6 26.7 25.2 25.5 5.83 5.72 7.05 6.23 H2O+ 0.95 0.71 0.94 0.81 0.83 0.45 0.41 0.48 0.45 Nb 5.57 6.73 4.9 5.54 5.83 11.1 10.5 10.1 9.25 Total 100.91 100.68 100.89 100.75 100.77 100.45 100.41 100.48 100.43 Ta 0.44 0.5 0.38 0.39 0.44 0.85 0.85 0.81 0.82 La 19.3 20.6 18.4 14.5 16.4 27.1 25.4 28.4 19.8 Zr 99.1 142 112 139 103 269 260 282 263 Ce 42.2 46.5 42.2 34.2 38.9 60.1 55.5 61.3 43.9 Hf 2.59 3.52 2.73 3.15 2.7 6.77 6.35 6.8 6.03 Pr 5.5 6 5.77 4.49 5.42 7.99 7.46 7.54 5.58 Ga 17.5 17.6 19.5 17.8 16.8 14.6 14.2 13.7 13.8 Nd 22 22.7 23.2 18.5 21.7 29.8 27.8 27.3 21.8 U 0.9 1.3 0.59 0.58 0.76 1.72 1.73 1.34 1.36 Sm 5.18 5.33 5.54 4.53 5.4 6.55 6.21 5.75 5.13 Th 3.2 3.53 2.61 2.36 3.24 7.86 7.87 7.78 6.56 Eu 1.44 1.47 1.73 1.41 1.36 0.96 0.98 1.26 1.13 σ 2.55 2.63 2.33 2.07 3.02 1.87 1.93 1.92 2.17 Gd 5.46 5.75 6.12 4.77 5.96 6.71 6.4 5.75 5.32 R1 1672 1668 1605 1742 1551 2615 2589 2504 2359 Tb 0.91 0.96 1 0.8 1.03 1.16 1.07 0.99 0.94 R2 1097 993 1036 1130 1021 355 360 393 391 Dy 5.63 5.94 6.09 5.02 6.5 7.18 6.77 6.63 5.96 (La/Yb)N 3.88 3.72 3.75 3.32 2.92 3.80 3.80 4.27 3.18 Ho 1.24 1.28 1.29 1.08 1.38 1.62 1.52 1.49 1.32 (La/Sm)N 0.83 0.95 0.70 0.71 1.11 2.07 2.07 1.82 2.06 Er 3.57 3.72 3.61 3.12 4.02 4.87 4.51 4.41 4.06 (Gd/Yb)N 53.70 43.11 54.95 58.86 37.09 10.43 10.21 14.19 14.69 Tm 0.54 0.59 0.55 0.48 0.62 0.76 0.72 0.72 0.65 A/CNK 0.84 0.84 0.88 0.83 0.87 1.04 1.02 1.01 1.02 Yb 3.57 3.97 3.52 3.13 4.03 5.12 4.8 4.77 4.46 Mg# 44.31 40.88 38.25 41.80 41.17 21.59 21.18 25.85 30.27 Lu 0.57 0.64 0.56 0.49 0.63 0.85 0.8 0.8 0.76 Rb/ Sr 0.11 0.11 0.03 0.04 0.10 0.65 0.74 0.38 0.45 Y 32.2 34.5 33.4 27.9 36.1 42.1 38.4 38.7 35.7 δEu 0.82 0.81 0.90 0.92 0.73 0.44 0.47 0.66 0.66 Cu 58.3 33.4 28.7 54.9 24.7 6.69 7.22 10.7 2.88 δCe 0.99 1.01 1.00 1.03 1.01 0.99 0.98 1.01 1.01 Pb 8.25 4.55 4.09 3.92 4.72 5.37 12.7 6.03 3.44 -
白建科, 李智佩, 徐学义, 等. 西天山阿吾拉勒地区下石炭统大哈拉军山组火山岩LA-ICPMS锆石U-Pb年龄及地质意义[A]. 中国矿物岩石地球化学学会. 中国矿物岩石地球化学学会第13届学术年会论文集[C].2011, 558. 陈伟, 宋杨, 刘洪章, 等 . 同源岩浆不同期次之间混合产生的暗 色包体——以北拉萨地块中部晚白垩世桑心日岩体为例[J]. 岩石学报,2019 ,35 (07 ):2143 −2157 .CHEN Wei, SONG Yang, LIU Hongzhang, et al . MMEs formed by magma mixing of differentepisodes of the same sourced magma: A case study of the Late Cretaceous Sangxinri pluton in the middle part of the northernLhasa Block[J]. Acta Petrologica Sinica,2019 ,35 (07 ):2143 −2157 .邓晋福, 刘翠, 冯艳芳, 等 . 高镁安山岩/闪长岩类(HMA)和镁安山岩/闪长岩类(MA): 与洋俯冲作用相关的两类典型的火成岩类[J]. 中国地质,2010 ,37 (4 ):1112 −1118 .DENG Jinfu, LIU Cui, FENG Yanfang, et al . High magnesian andesitic/dioritic rocks (HMA) and magnesian andesitic/dioritic rocks (MA): two igneous rock types related to oceanic subduction[J]. Geology in China,2010 ,37 (4 ):1112 −1118 .丁振信, 薛春纪, 赵晓波, 等 . 西天山阿吾拉勒西段早二叠世粗安岩年代学和地球化学特征[J]. 岩石矿物学杂志,2019 ,38 (5 ):587 −605 .DING Zhenxin, XUE Chunji, ZHAO Xiaobo, et al . Geochronology and geochemistry of the Early Permian trachyandesites in the western Awulale area, West Tianshan Mountains[J]. Acya Petrlolocica et Mineralogica,2019 ,38 (5 ):587 −605 .韩琼, 弓小平, 马华东, 等 . 西天山阿吾拉勒成矿带大哈拉军山组火山岩时空分布规律及其地质意义[J]. 中国地质,2015 ,42 (3 ):570 −586 .HAN Qiong, GONG Xiaoping, MA Huadong, et al . Temporal and spatial distribution of Dahalajumshan Group volcanic rocks in the AwulaleMetalogenic belt of West Tianshan Mountaims and its geological significance[J]. Geology in China,2015 ,42 (3 ):570 −586 .江西省地质矿产勘探开发局. 新疆维吾尔自治区1∶5万区域地质矿产调查报告[R].江西省地质矿产勘探开发局, 2005. 荆德龙, 汪帮耀, 张博, 等 . 西天山松湖铁矿区火山岩地球化学特征、成岩时代及其地质意义[J]. 地球学报,2015 ,36 (6 ):729 −741 .JING Delong, WANG Bangyao, ZHANG Bo, et al . Geochemistry and Geochronology of the Volcanic Rocks in the Songhu IronDeposit of Western Tianshan Mountains and Their Geological Significance[J]. Acta Geoscientica Sinica,2015 ,36 (6 ):729 −741 .李继磊, 苏文, 张喜, 等 . 西天山阿吾拉勒西段麻粒岩相片麻岩锆石Cameca U-Pb年龄及其地质意义[J]. 地质通报,2009 ,28 (12 ):1852 −1862 .LI Jilei, SU Wen, ZHANG Xi, et al . Zircon Cameca U-Pb dating and its significance for granulite-facies gneisses from the western Awulale Mountain, West Tianshan, China[J]. Geological Bulletin of China,2009 ,28 (12 ):1852 −1862 .李锦轶, 何国琦, 徐新, 等 . 新疆北部及邻区地壳构造格架及其形成过程的初步探讨[J]. 地质学报,2006a ,80 (1 ):148 −168 .LI Jinyi, HE Guoqi, XU Xin, et al . Crustal Tectonic Framework of Northern Xinjiang and Adjacent Regions and Its Formation[J]. Acta Geologica Sinica,2006a ,80 (1 ):148 −168 .李锦轶, 王克卓, 孙桂华, 等 . 东天山吐哈盆地南缘古生代活动陆缘残片: 中亚地区古亚洲洋板块俯冲的地质记录[J]. 岩石学报,2006b ,22 (5 ):1087 −1102 .LI Jinyi, WANG kezhuo, SUN Guihua, et al . Paleozoic active margin slices in the southernTurfan-Hami basin: geological records of subduction of the Paleo-Asian Ocean plate in central Asian regions[J]. Acta Petrologica Sinica,2006b ,22 (5 ):1087 −1102 .李强, 程学芹, 陈伟, 等 . 额尔古纳地块早-中三叠世安山岩的发现及其对蒙古-鄂霍茨克洋南向俯冲的指示[J]. 地球科学,2021 ,46 (8 ):2768 −2785 .LI Qiang, CHENG Xueqin, CHEN Wei, et al . Discovery of Early-Middle Triassic Andesite in Erguna Massif and ItsIndication of Southward Subduction of Mongol-Okhotsk Ocean Plate[J]. Earth Science,2021 ,46 (8 ):2768 −2785 .李永军, 李注苍, 周继兵, 等 . 西天山阿吾拉勒一带石炭系岩石地层单位厘定[J]. 岩石学报,2009 ,25 (6 ):1332 −1340 .LI Yongjun, LI Zhucang, ZHOU Jibing, et al . Division of the Carboniferous lithostratigraphic units in Awulale area western Tianshan[J]. Acta Petrologica Sinica,2009 ,25 (6 ):1332 −1340 .李永军, 张天继, 栾新东, 等 . 西天山特克斯达坂晚古生代若干不整合的厘定及地质意义[J]. 地球学报,2008 ,29 (2 ):145 −154 .LI Yongjun, ZHANG Tianji, LUAN Xindong, et al . Clarification of Late Paleozoic Unconformities in the Tekes Daban area of West Tianshan and Its Geological Significance[J]. Acta Geoscientica Sinica,2008 ,29 (2 ):145 −154 .李钊. 伊宁地块阿吾拉勒—巩乃斯地区大哈拉军山组与伊什基里克组火山岩对比研究[D]. 西安: 长安大学, 2016, 1−179. LI Zhao. Comparative study on the volcanic rocks of Dahalajunshan Formation and Yishijilike Formation, Awulale-Gongnaisi area, Yining Block, Xinjiang[D]. Xi’an: Chang’an University, 2016, 1−179.
刘新, 钱青, 苏文, 等 . 西天山阿吾拉勒西段木汗巴斯陶侵入岩体的地球化学特征、时代及地质意义[J]. 岩石学报,2012 ,28 (8 ):2401 −2413 .LIU Xin, QIAN Qing, SU Wen, et al . Pluton from Muhanbasitao in the western of Awulale, Western Tianshan Geochemistry, geochronology and geological implications[J]. Acta Petrologica Sinica,2012 ,28 (8 ):2401 −2413 .茹艳娇. 西天山大哈拉军山组火山岩地层序列、岩石成因与构造环境[D]. 西安: 长安大学, 2012, 1−123. RU Yanjiao. The Stratigraphic Sequanence, Petrogenesis and Tectonic Setting of the Volcanic Rocks of the Dahalajunshan Formation, Western Tianshan Mountain, China[D]. Xi’an: Chang’an University, 2012, 1−123.
汪帮耀, 姜常义 . 西天山查岗诺尔铁矿区石炭纪火山岩地球化学特征及岩石成因[J]. 地质科技情报,2011 ,30 (6 ):18 −27 .WANG Bangyao, JIANG Changyi . Petrogenesis and Geochemical Characteristics of Carboniferous VolcanicRocks of Chagannur Iron Deposit Area in Western Tianshan, Xinjiang[J]. Geological Science and Technology Information,2011 ,30 (6 ):18 −27 .王博, 宋芳, 倪兴华, 等 . 天山古生代增生造山作用及其构造转换事件[J]. 地质学报,2022 ,96 (10 ):3514 −3540 .WANG Bo, SONG Fang, NI Xinghua, et al . Paleozoic accretionary orogenesis and major transitional tectonic events of the Tianshan orogen[J]. Acta Geologica Sinica,2022 ,96 (10 ):3514 −3540 .王建中, 赵军, 段俊 . 西天山察哈乌苏侵入体LA-ICP-MS锆石U-Pb年龄、Hf同位素特征及其地质意义[J]. 世界地质,2021 ,40 (3 ):560 −575 .WANG Jianzhong, ZHAO Jun, DUAN Jun . LA-CP-MS zircon U-Pb ages and Hf isotopic characteristics of Chahawusu intrusion in West Tianshan, Xinjiang and their geological implication[J]. Global Geology,2021 ,40 (3 ):560 −575 .王盟, 裴先治, 张进江, 等 . 伊犁地块北缘早石炭世阿拉斯坦闪长岩成因及其对北天山洋俯冲过程的启示[J]. 地质通报,2023 ,42 (5 ):771 −787 .WANG Meng, PEI Xianzhi, ZHANG Jinjiang, et al . Petrogenesis of the Early Carboniferous Alasitandiorites from the northern margin of Yili Block and implication for subduction process of the North Tianshan Ocean[J]. Geological Bulletin of China,2023 ,42 (5 ):771 −787 .吴元保, 郑永飞 . 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报,2004 ,49 (16 ):1589 −1604 .WU Yuanbao, ZHENG Yongfei . Genetic mineralogy of zircon and its restriction on U-Pb age interpretation[J]. Chinese Science Bulletin,2004 ,49 (16 ):1589 −1604 .肖庆辉, 邢作云, 张昱, 等 . 当代花岗岩研究的几个重要前沿[J]. 地学前缘,2003 ,10 (3 ):221 −229 .XIAO Qinghui, XING Zuoyun, ZHANG Yu, et al . The major frontiers of the recent studies of granite[J]. Earth Science Frontiers,2003 ,10 (3 ):221 −229 .徐学义, 李荣社, 陈隽璐, 等 . 新疆北部古生代构造演化的几点认识[J]. 岩石学报,2014 ,30 (6 ):1521 −1534 .XU Xueyi, LI Rongshe, CHEN Junlu, et al . New constrais on the Paleozoic tectonic evolution of the northern Xinjiang area[J]. Acta Petrologica Sinica,2014 ,30 (6 ):1521 −1534 .徐学义, 夏林圻, 马中平, 等 . 北天山巴音沟蛇绿岩斜长花岗岩SHRIMP锆石U-Pb年龄及蛇绿岩成因研究[J]. 岩石学报,2006 ,22 (1 ):83 −94 .XU Xueyi, XIA Linqi, MA Zhongping, et al . SHRIMP zrcon U-Pb geochronology of the plagiogranites from Bayingou ophiolite in North Tianshan Mountains and the petrogenesis of the ophiolite[J]. Acta Petrologica Sinica,2006 ,22 (1 ):83 −94 .闫永红, 薛春纪, 张招崇, 等 . 西天山阿吾拉勒西段群吉萨依花岗斑岩地球化学特征及其成因[J]. 岩石矿物学杂志,2013 ,32 (2 ):139 −153 .YAN Yonghong, XUE Chunji, ZHANG Zhaochong, et al . Geochemistry and genesis of the Qunjisayi granite porphyry in the west of Awulale area, estern Tianshan Mountains[J]. Acta Petrologica et Mineralogica,2013 ,32 (2 ):139 −153 .袁洪林, 吴福元, 高山, 等 . 东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J]. 科学通报,2003 ,48 (14 ):1511 −1520 . doi: 10.1360/csb2003-48-14-1511YUAN Honglin, WU Fuyuan, GAO Shan, et al . Zircon laser probe U-Pb age determination and REE composition analysis of Cenozoic invasions in Northeast China[J]. Chinese Science Bulletin,2003 ,48 (14 ):1511 −1520 . doi: 10.1360/csb2003-48-14-1511张博, 荆德龙, 汪帮耀, 等 . 西天山备战铁矿石炭纪火山岩地球化学特征及岩石成因[J]. 地球科学与环境学报,2015 ,37 (6 ):82 −100 .ZHANG Bo, JING Delong, WANG Bangyao, et al . Geochemical Characteristics and Petrogenesis of Carboniferous Volcanic Rocks from Beizhan Iron Deposit of West Tianshan[J]. Journal of Earth Sciences and Environment,2015 ,37 (6 ):82 −100 .张永玲, 张治国, 刘希军, 等. 内蒙朝克山辉长岩中单斜辉石矿物化学特征及地质意义[J]. 西北地质, 2024, 57(1): 122−138. ZHANG Yongling, ZHANG Zhiguo, LIU Xijun, et al. Mineralogical Chemistry Characteristics and Geological Significance of the Clinopyroxene from Chaokeshan Gabbro, Inner Mongolia[J]. Northwestern Geology, 2024, 57(1): 122−138.
赵军. 新疆阿吾拉勒成矿带西段铜矿成矿环境与成矿规律研究[D]. 西安: 长安大学, 2013, 1−161. ZHAO Jun. Study on the Metallogenic Settings and Metallogenic Regularity Of copper Deposits in Western Awulale Mountain, Xinjiang[D]. Xi’an: Chang’an University, 2013, 1−161.
周新民, 徐夕生 . 花岗质岩石中岩石包体的成因类型及研究意义[J]. 矿物岩石地球化学通讯,1991 ,01 :6 −8 .ZHOU Xinmin, XU Xisheng . Genetic types and research significance of rock inclusions in granitic rocks[J]. Bulletin of Mineralogy Petrology and Geochemistry,1991 ,01 :6 −8 .朱永峰, 王涛, 徐新 . 新疆及邻区地质与矿产研究进展[J]. 岩石学报,2007 ,23 (8 ):1785 −1794 .ZHU Yongfeng, WANG Tao, XU Xin . Progress of geology study in Xinjiang and its adjacent regions[J]. Acta Petrologica Sinica,2007 ,23 (8 ):1785 −1794 .朱弟成, 莫宣学, 王立全, 等 . 西藏冈底斯东部察隅高分异I型花岗岩的成因: 锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素约束[J]. 中国科学(D辑:地球科学),2009 ,39 (7 ):833 −848 .ZHU Dicheng, MO Xuanxue, WANG Liquan, et al . Petrogenesis of highly fractionated I-type granites in the Chayu area of eastern Gangdese, Tibet: Constraints from zircon. U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopes[J]. Sci China Ser D-Earth Science,2009 ,39 (7 ):833 −848 .朱永峰, 张立飞, 古丽冰, 等 . 西天山石炭纪火山岩SHRIMP年代学及其微量元素地球化学研究[J]. 科学通报,2005 ,50 (18 ):78 −88 .ZHU Yongfeng, ZHANG Lifei, GU Libing, et al . SHRIMP chronology and trace element geochemistry of Carboniferous volcanic rocks in the West Tianshan Mountains[J]. Chinese Science Bulletin,2005 ,50 (18 ):78 −88 .朱永峰, 周晶, 郭璇 . 西天山石炭纪火山岩岩石学及Sr-Nd同位素地球化学研究[J]. 岩石学报,2006 ,22 (5 ):1341 −1350 .ZHU Yongfeng, ZHOU Jing, GUO Xuan . Petrolopy and Sr-Nd isotopic geochemistry of the Carboniferous volcanic rocks in the western Tianshan Mountains, NW China[J]. Acta Petrologica Sinica,2006 ,22 (5 ):1341 −1350 .朱志新, 李锦轶, 董连慧, 等 . 新疆西天山古生代侵入岩的地质特征及构造意义[J]. 地学前缘,2011 ,18 (2 ):170 −179 .ZHU Zhixin, LI Jinyi, DONG Lianhui, et al . Geological characteristics and tectonic significance of Paleozoic intrusive rocks inWestern Tianshan of Xinjiang Province[J]. Earth Science Frontiers,2011 ,18 (2 ):170 −179 .Allen M B, Windley B F, Zhang C . Palaeozoic collisional tectonics and magmatism of the Chinese Tien Shan, central Asia[J]. Tectonophysics,1992 ,220 (1−4 ):89 −115 .Atherton M P, Petford N . Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust[J]. Nature,1993 ,362 (6416 ):144 −146 .Bailey J C . Geochemical Criteria for a Refined Tectonic Discrimination of Orogenic Andesites[J]. Chemical Geology,1981 ,32 (1−4 ):139 −154 .Batchelor R A and Bowden P . Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemical Geology,1985 ,48 (1−4 ):43 −55 .Bedard J . Enclaves from the A-type granite of the Mèganic Complex, White Mountain magma series: Clues to granite magmagenesis[J]. Journal of Geophysical,1990 ,95 (B11 ):17797 −17819 . doi: 10.1029/JB095iB11p17797Castro A, Moreno-Vent as I, de la Rosa J D . H-type (hybrid) granitoids: a proposed revision of the granite-type classification and nomenclature[J]. Earth Science Reviews,1991 ,31 (3−4 ):237 −253 .Chappell B W, Stephens W E . Origin of infracrustal (I-type) granite magmas[J]. Transactions of the Royal Society of Edinburgh Earth Sciences,1988 ,79 (2−3 ):71 −86 .Chappell B W, White A J R . Two contrasting granite types[J]. Pacific Geology,1974 ,8 :173 −184 .Claesson S, Vetrin V, Bayanova T . U-Pb zircon age from a Devonian carbonatite dyke, Kola peninsula, Pussia: Arecord of geological evolution from the Archaeanto the Palaeozoic[J]. Lithos,2000 ,51 (1−2 ):95 −108 .Coleman R G . Continental growth of northwest China[J]. Tectonics,1989 ,8 (3 ):621 −635 .Eby G N, Krueger H W, Creasy J W. Geology, Geochronology and geochemistry of the White Moutain batholith, New Hampshire[A]. In Puffer J H and Ragland P C, eds, Eastern North American Mesozoic magmatism[C]. Geological Society of America Special Paper, 1992, 268: 379−398.
Gao J, Li M S, Xia X C, et al . Paleozoic tectonic evolution of the Tianshan Orogen, northwestern China[J]. Tectonophysics,1998 ,287 (1−4 ):213 −231 .Gorton M . P, Schandl E S. From Continents to Island Arcs: A Geochemical Index of Tectonic Setting for Arc- Related and within-Plate Felsic to Intermediate Volcanic Rocks[J]. The Canadian Mineralogist,2000 ,38 (5 ):1065 −1073 .Han B F, Guo Z J, Zhang Z C, et al . Age, geochemistry, and tectonic implications of a late Paleozoic stitching pluton in the North Tian Shan suture zone, western China[J]. Geological Society of America Bulletin,2010 ,122 (3-4 ):627 −640 .Han Y, Zhao G . Final amalgamation of the Tianshan and Junggar orogenic collage in the southwestern Central Asian Orogenic Belt: Constraints on the closure of the Paleo-Asian Ocean[J]. Earth Science Reviews,2018 ,186 :129 −152 . doi: 10.1016/j.earscirev.2017.09.012Hildreth W, Moorbath S . Crustal Contributions to Arc Magmatism in the Andes of Central Chile[J]. Contributions to Mineralogy and Petrology,1988 ,98 (4 ):455 −489 .Hoskin P W O, Irel and T R . Rare earth element chemistry of zircon and its use as a provenance indicator[J]. Geology,2000 ,28 (7 ):627 −630 .Huang Z Y, Long X P, Kroner A, et al . Geochemistry, zircon U-Pb agesand Lu -Hf isotopes of early Paleozoic plutons in the northwestern Chinese Tianshan: Petrogenesis and geological implications[J]. Lithos,2013 ,182 :48 −66 .Kosler J, Fonnel and H, Sylvester P . U-Pb dating of detrital zircons for sediment provenance studies-a comparison of laser ablation LACPMS and SIMS techniques[J]. Chemical Geology,2002 ,182 (2−4 ):605 −618 .Li N B, Niu H C, Shan Q, et al . Two episodes of Late Paleozoic A-type magmatism in the Qunjisayi area, western Tianshan: Petrogenesis and tectonic implications[J]. Journal of Asian Earth Sciences,2015 ,113 :238 −253 . doi: 10.1016/j.jseaes.2014.12.015Li X H, Li Z X, Li W X, et al . U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I- and A-type granites from central Guangdong, SE China: a major igneous event in response to foundering of a subducted flat-slab?[J]. Lithos,2007 ,96 (1−2 ):186 −204 .Li S M, Zhu D C, Wang Q, et al . Northward subduction of Bangong-Nujiang Tethys: Insight from Late Jurassic intrusive rocks from Bangong Tso in western Tibet[J]. Lithos,2014 ,205 :284 −297 .Long L L, Gao J, Klemd R, et al . Geochemical and geochronological studies of granitoid rocks from the Western Tianshan Orogen: Implications for continental growth in the southwestern Central Asian Orogenic Belt[J]. Lithos,2011 ,126 (3−4 ):321 −340 .Middlemost E A K. Magmas and Magmatic Rocks[M]. London: Longman, 1985, 1−266.
Middlemost E A K . Naming materials in the magma/igneous rock system[J]. Earth Science Reviews,1994 ,37 (3−4 ):215 −224 . doi: 10.1016/0012-8252(94)90029-9Miller C F, Mcdowell S M, Mapes R W . Hot and cold granites? Implication of zircon saturation temperatures and preservation of inhertance[J]. Geology,2003 ,31 (6 ):529 −532 .Pearce J A. Trace Element Characteristics of Lavas from Destructive Plate Boundaries[A]. In: Thoepe R S, ed. Andesites[M]. John Willey and Suns, New York, 1982.
Pearce J . Sources and settings of granitic rocks[J]. Episodes,1996 ,19 (4 ):120 −125 . doi: 10.18814/epiiugs/1996/v19i4/005Peccerillo R, Taylor S R . Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy and Petrology,1976 ,58 (1 ):63 −81 .Picher W S. Granite type and tectonic environment. Mountain Building Processes[M]. London: Academic Press, 1983, 19−40.
Rapp R, Shimizu N, Norman, M . D, et al. Reaction between Slab- Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8GPa[J]. Chemical Geology,1999 ,160 (4 ):335 −356 .Rapp R P, Watson E B . Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust - Mantle Recycling[J]. Journal of Petrology,1995 ,36 (4 ):891 −931 .Richards J P . Magmatic to Hydrothermal Metal Fluxes in Convergent and Collided Margins[J]. Ore Geology Reviews,2011 ,40 (1 ):1 −26 .Rogers G, Hawkesworth C J . A geochemical traverse across the North Chilean Andes: evidence for crust generation from the mantle wedge[J]. Earth and Planetary Science Letters,1989 ,91 (3−4 ):271 −285 .Rudnick R L, Gao S. Composition of the Continental Crust[A]. In: Rudnick R, ed. The Crust, Treatise on Geochemistry[M]. Elsevier, Amsterdam, 2003, 3: 1−64.
Sajona F G, Maury R C, Bellon HJ, et al . High field strength element enrichment of Pliocene-Pleistocene island arc basalts, Zamboanga Peninsula, Western Mindanao ( Philippines)[J]. Journal of Petrology,1996 ,37 (3 ):693 −726 .Silva M M V G, Neiva A M R, White house M J . Geochemistry of enclaves and host granties from the Nelas area, central Portugal[J]. Lithos,2000 ,50 (1−3 ):153 −170 .Sun S S, McDonough W F . Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes[J]. Geological Society, London, Special Publications,1989 ,42 (1 ):313 −345 .Wang B, Cluzel D, Shu L S, et al . Evolution of calc-alkaline to alkaline magmatism through Carboniferous convergence to Permian transcurrent tectonics, western Chinese Tianshan[J]. International Journal of Earth Sciences,2009 ,98 (6 ):1275 −1298 . doi: 10.1007/s00531-008-0408-yWang B, Faure M, Cluzel D . et al. Late Paleozoic tectonic evolution of the northern West Chinese Tianshan belt[J]. Geodynamica Acta,2006 ,19 (3−4 ):227 −237 .Wang X, Cai K, Sun M, et al . Evolution of late Paleozoic magmatic arc in the Yili Block, NW China: Implications for oroclinal bending in the western Central Asian Orogenic Belt[J]. Tectonics,2020 ,39 (12 ):e2019TC005822 . doi: 10.1029/2019TC005822Whalen J B, Currie K L, Chappell B W . A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology,1987 ,95 :407 −419 .Windley B F, Allen M B, Zhang C, et al . Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan Range, central Asia[J]. Geology,1990 ,18 (2 ):128 −131 .Wolf M B, London D . Apatite dissolution into peraluminous haplogranitic melts: an experimental study of solubilities and mechanism[J]. Geochimica et Cosmochimica Acta,1994 ,58 (19 ):4127 −4145 .Yang T N, Wang Y, Li J Y, et al . Vertical and horizontal strain partitioning of the Central Tianshan(NW China): evidence from structures and 40Ar/39Ar geochronology[J]. Journal of Structural Geology,2007 ,29 (10 ):1605 −1621 . doi: 10.1016/j.jsg.2007.08.002