ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

克拉玛依克百断槽火山岩岩石组合、层位归属及地质意义:来自古66井的约束

王玉伟, 李永军, 王盼龙, 王韬, 黄家瑄, 张新远, 郑孟林, 张越迁

王玉伟,李永军,王盼龙,等. 克拉玛依克百断槽火山岩岩石组合、层位归属及地质意义:来自古66井的约束[J]. 西北地质,2024,57(5):209−223. doi: 10.12401/j.nwg.2023197
引用本文: 王玉伟,李永军,王盼龙,等. 克拉玛依克百断槽火山岩岩石组合、层位归属及地质意义:来自古66井的约束[J]. 西北地质,2024,57(5):209−223. doi: 10.12401/j.nwg.2023197
WANG Yuwei,LI Yongjun,WANG Panlong,et al. Volcanic Rock Assemblage, Stratigraphic Attribution and Geological Significance of Volcanic Reservoir in Kebai Fault-trough in Karamay: Constraints from Well Gu 66[J]. Northwestern Geology,2024,57(5):209−223. doi: 10.12401/j.nwg.2023197
Citation: WANG Yuwei,LI Yongjun,WANG Panlong,et al. Volcanic Rock Assemblage, Stratigraphic Attribution and Geological Significance of Volcanic Reservoir in Kebai Fault-trough in Karamay: Constraints from Well Gu 66[J]. Northwestern Geology,2024,57(5):209−223. doi: 10.12401/j.nwg.2023197

克拉玛依克百断槽火山岩岩石组合、层位归属及地质意义:来自古66井的约束

基金项目: 国家科技重大专项“新疆北部深层区域构造格架、沉积演化与有利区带评价”(2017ZX05008-006-003-001),国家重点研发计划“深地资源勘查开采重点专项”(2018YFC060400),中国石油天然气股份有限公司科学研究与技术开发项目“北疆海相泥盆-石炭系油气地质研究”(2022DJ0507),中石油前瞻性基础研究项目“地层不整合油气藏成藏主控因素与关键要素定量评价技术研究”(2021DJ0405)联合资助。
详细信息
    作者简介:

    王玉伟(1980−),男,高级工程师,长期从事油气勘探工作。E−mail:wyuwei1@petrochina.com.cn

    通讯作者:

    李永军(1961−),男,教授,博士生导师,长期从事地质学教学及相关研究工作。E−mail:yongjunl@chd.edu.cn

  • 中图分类号: P618.13;TE122.2

Volcanic Rock Assemblage, Stratigraphic Attribution and Geological Significance of Volcanic Reservoir in Kebai Fault-trough in Karamay: Constraints from Well Gu 66

  • 摘要:

    克百断槽始于克拉玛依市北的克北断裂,NE向延伸并被大侏罗沟断裂、盆缘断裂、克-百断裂围限。火山岩储层是该断槽内的主要储层,其层位时代无据、层序不清、归属不明。笔者通过对克百断槽古66井242.14~800.18 m井段详细的岩心编录、测井曲线岩电识别及关键层位火山岩锆石U-Pb年代学研究,结果表明:古66井242.14~800.18 m井段是被两层陆源粗碎屑岩(标志层)分隔的3套火山岩建造,于玄武安山岩中获得(304±3)Ma和(303±2)Ma的LA-ICP-MS锆石U-Pb年龄,其岩石组合、时代、层序、地层厚度均与井北缘哈山一带哈拉阿拉特组建组剖面C2h1~C2h3岩段总体可对比。古66井所处的克百断槽是一个四周被断层围限的相对独立火山岩型储层断槽油气藏,这一油气藏新类型丰富了西准噶尔盆内油气藏类型。同时,该断槽具有向南西延伸的构造条件、储层类型和圈闭样式,因而是后续扩大油气勘探的新靶区。

    Abstract:

    The Kebai fault-trough originates from the Kebei fault at the southwest end and extends northeastward, intersected by the Dazhuluogou fault, which begins in the northern region of Karamay City. It is bounded by the basin-edge fault on its northwest edge and the Kebai fault on its southeast edge. The primary reservoirs within this fault-trough are composed of volcanic rock. However, the stratigraphic allocation, age, and sequence of these volcanic rocks remain uncertain. This study employs a comprehensive approach involving detailed core logging, lithodensity identification using well logging curves, and zircon U-Pb dating of key volcanic rock layers within the interval of 242.14~800.18 m in the well Gu 66, located within the Kebai fault-trough. The results of our investigation reveal the following insights: The interval from 242.14~800.18 m in the well Gu 66 encompasses three distinct sets of volcanic rock formations, interspersed by two layers of terrestrial clastic rocks functioning as marker beds. Through zircon LA-ICP-MS U-Pb dating, we determined ages of 304±3 Ma and 303±2 Ma for the andesite in the well Gu 66. The rock composition, ages, stratigraphy, and thickness of these formations show notable similarity to the C2h1~C2h3 sections of the Hala’alate Formation profile situated in the northern edge of the Hashan region. The Kebai fault-trough, hosting the well Gu 66, represents a distinctive fault-trough characterized by volcanic rock reservoirs, enclosed by surrounding fault structures. This novel type of hydrocarbon reservoir expands the repertoire of oil and gas reservoir types found in the western Junggar. Furthermore, the fault-trough exhibits structural attributes, reservoir characteristics, and trap styles that extend southwestward, rendering it a promising new target area for forthcoming oil and gas exploration.

  • 大别造山带是中国研究程度较高的高压−超高压变质带之一,也是2个陆−陆碰撞造山后,中生代的岩浆活动之最强烈地区(Ma et al.,1998)。前人的研究表明,大别造山带在早白垩世发生了大规模岩浆活动(120~138 Ma) (李曙光等,1999Jahn et al.,1999Xu et al.,2007穆可斌等,2019张凯等,2020) , 侵入的岩体主体为中酸性岩,镁铁−超镁铁质岩次之,大量与其年代相近的中酸性、基性脉岩穿切岩体(王世明等,2010)。中基性岩脉的研究对于了解区域的壳幔相互作用及构造环境具有十分重要的意义。

    基性岩浆能反映地幔源区性质,成因环境和形成演化过程,能为底侵以及壳幔岩浆相互作用提供可靠信息,对大别地区镁铁–超镁铁质岩石为碰撞后侵入岩的认识已逐渐统一(Hacker et al.,1995Hacker et al.,1998葛宁洁等,1999赵子福等,2003),但对于大别基性岩岩浆来源存在较大分歧: ①认为地幔和地壳混合形成(戚学祥等,2002)。②由俯冲的扬子岩石圈地幔部分熔融产生(赵子福等,2003Zhao et al.,2005 )。上述岩浆来源的地质构造背景,前人将之归纳成3种观点:①观点认为陆−陆碰撞造山后环境形成于三叠纪时期(Chen et al.,2002Xu et al.,2007)。②认为不是三叠纪时期的陆−陆碰撞,可能与中国东部的岩石圈发生减薄构造事件有关,是由太平洋板块在晚中生代时期西向俯冲导致的(任志等,2014刘清泉等,2015)。③认为可能与岩石的部分熔融有关,该部分熔融是由地幔柱在早白垩世时期对岩石圈热扰动所引起的 (赵子福等,2004)。针对大别基性岩的岩浆源区性质及大地构造背景的认识还存在的差异,笔者以翔实的野外观察为基础,通过研究大悟地区出露的闪长玢岩脉地球化学特征,结合野外闪长玢岩脉穿切花岗斑岩脉的地质事实,分析闪长玢岩的岩浆源区性质及所处大地构造环境,探讨大别造山带的壳−幔相互作用。

    秦岭–大别造山带是扬子地块在三叠纪时期与华北地块发生俯冲–碰撞,而产生的高压–超高压变质带,东被郯城–庐江断裂所截,北连华北克拉通,南为扬子地块(图1)。在大悟地区早白垩世时期基性脉岩侵位分布广泛,种类较多,包括辉绿(玢)岩、煌斑岩、辉长岩、闪长玢岩等,有的基性脉岩切割或穿插晚中生代时期的中酸性岩体,基性岩脉的走向分布主要为北东东,北西向脉岩占据部分,岩脉倾角均较陡,与其围岩的接触界线清晰(王世明等,2010)。

    图  1  大别山地区构造简图(据索书田等,1993修改)
    1. 新元古代木兰山−张八岭蓝片岩带;2. 中元古代随县千枚岩带;3. 古元古代—中元古代大悟−宿松−连云港含磷岩带;4. 新太古代桐柏−大别−胶南杂岩带;5. 燕山期花岗岩;6. 断裂
    Figure  1.  Structural sketch of Dabie Mountain area

    闪长玢岩脉分布规模小,出露宽度为10~25 cm,延伸长度一般为1~3 m,围岩岩性主要为马吼岭群白云钠长石英变粒岩(图2a),个别闪长玢岩脉交截花岗斑岩脉(图2b)。

    图  2  闪长玢岩野外地质和显微特征图
    a. 闪长玢岩侵入白云钠长石英变粒岩;b. 闪长玢岩脉穿切花岗斑岩脉;c. 闪长玢岩斑状结构 (单偏光);d. 不规则状斑晶(正交偏光)
    Figure  2.  Field geology and microscopic characteristics of diorite porphyrite

    闪长玢岩表现为黑色或黑褐色,具斑状结构,呈块状构造。斑晶成份几乎为暗色矿物,少量基性斜长石,斑晶总量约为20%,暗色矿物绝大多数被碳酸盐矿物、绿泥石交代为残余柱状、六边形假象(属角闪石),极少数被绿泥石、白云母交代为残余片状假象(属黑云母)。基性斜长石发生交代作用被碳酸盐矿物所取代,呈现出残余柱状构造的型式。

    基质总量约为80%,成分主要由具碳酸盐化、钠黝帘化残余自形小板条状的基性斜长石组成,许多玻璃质充填三角形空隙格架内,无序分布(在单偏光下显浅褐色,外形呈隐晶集合体,在正交偏光下显黑色并具均质性全消光)、暗色矿物及少量的铁质矿物(种类有磁铁矿和钛铁矿)、微量的石英而组成变余间隐间粒结构的特征(图2c)。岩石中还可见一颗外形呈不规则状的杏仁体,沿其内充填着粗大粒状的石英晶体(图2d)。

    野外采集新鲜的闪长玢岩样品,在自然资源部武汉矿产资源检测中心完成样品的主量元素、微量元素及稀土元素的测试,利用X射线荧光光谱分析熔铸玻璃片法分析主量元素,分析仪器的型号为XRF-1500,对于分析精度要求精于1%,FinningMAT公司生产的等离子质谱仪(ICP−MS)测定样品中的微量元素、稀土元素,分析精度要求高于5%。

    闪长玢岩 (样品D2073/1、D2073/2、D2073/3、D2073/4、D2073/5和D4078/4)的主量元素和微量元素分析结果显示,SiO2含量为49.97%~55.01%,属于基性−中基性成分,样品号为D2073/2、D2073/3的SiO2含量较高,可能与脉岩侵位过程中与花岗斑岩发生交代作用有关。MgO含量为4.63%~5.49%,Al2O3含量为14.01%~14.65%,P2O5 含量为0.52%~0.80%,CaO 含量为 4.70%~6.17%,K2O含量为3.41%~4.39%,Na2O含量为1.82%~3.86%,岩石富碱,K2O/Na2O值为 0.41~1.11(表1)。样品中MgO含量与SiO2 含量相反,随之增高而降低,Al2O3、P2O5含量随SiO2含量增高而升高,表现出岩浆分异演化的一般规律。

    表  1  闪长玢岩主量元素、微量元素、稀土元素分析结果表
    Table  1.  Analysis results of major elements, trace elements and rare earth elements of diorite porphyrite
    样号D2073/1D2073/2D2073/3D2073/4D2073/5D4078/4BZK21-02BZK21-03BZK21-04
    岩性闪长玢岩
    Na2O1.823.783.862.123.571.924.414.63.21
    MgO5.384.814.635.164.785.492.242.73.39
    Al2O314.0414.4714.6514.1114.5214.0115.1815.2317.05
    SiO249.9754.6455.0152.2352.0650.0452.1253.2456.12
    P2O50.520.790.80.580.610.540.350.590.51
    K2O4.393.413.693.493.524.263.12.934.73
    CaO5.934.75.064.654.916.173.334.721.86
    TiO21.231.151.141.091.121.220.820.840.87
    MnO0.150.10.10.110.130.160.320.380.17
    Fe2O32.280.930.930.910.962.379.316.647.45
    FeO5.40.790.790.810.85.254.223.95.24
    H2O+3.140.280.160.190.253.28
    CO25.254.28
    LOST7.834.683.624.573.917.558.277.564.53
    Th6.7212.112.0912.0512.115.982119.9625
    Nb13.9420.7320.1220.6920.4112.2514.613.6317.1
    Ta1.071.141.141.121.150.810.920.891.1
    Sr625.321102.021112.551107.051109.42670.4213254.17363
    Zr218.8262.66258.98259.13260.32223.3241229.39280
    Hf5.095.965.935.955.915.5765.817.17
    Eu1.962.532.522.552.572.151.651.521.83
    Yb1.461.321.271.311.291.692.232.122.5
    La45.6881.4381.6181.4781.5853.0944.927.1945.4
    Ce91.52151.97153.01152.03152.8697.7190.956.9895.2
    Pr11.7216.3916.3116.4716.5313.3710.56.8511
    Nd45.7159.2759.7659.3559.6151.3239.627.0542.2
    Sm7.579.549.319.429.518.577.25.987.6
    Eu1.962.532.522.552.532.151.651.521.83
    Gd5.896.66.926.836.976.815.285.035.98
    Tb0.820.790.780.790.770.960.760.720.82
    Dy3.873.883.873.863.894.44.213.864.69
    Ho0.70.650.660.640.660.820.830.730.87
    Er1.691.711.711.751.732.012.292.132.51
    Tm0.240.230.220.250.220.280.340.30.38
    Yb1.461.321.271.311.291.692.232.122.5
    Lu0.220.190.20.180.210.270.350.320.4
    Y17.319.4819.0219.4319.2920.7924.722.4526.9
    总和236.35355.98357.17356.33357.65264.24235.74163.23248.28
    LREE/HREE9.4513.6213.9713.6413.798.756.344.486.06
    (La/Yb)N21.0921.1841.5943.3241.9342.6413.578.6512.24
    δEu0.870.840.910.930.920.930.810.870.89
     注:主量元素含量%,稀土与微量元素含量10−6
    下载: 导出CSV 
    | 显示表格

    闪长玢岩稀土总量为219.04×10−6~338.08×10−6。其中,轻重稀土比为13.29~20.74,平均值为17.05。Zr含量为218.8×10−6~262.66×10−6,Y含量为17.3×10−6~20.79×10−6表1),Nb异常值0.16~0.25,(La/Yb)N值为21.21~43.34,表明闪长玢岩轻稀土富集,轻、重稀土分异程度较大,整体表现为右倾型,较陡(图3a)。其中,样品的δEu值为0.84~0.93,负异常不明显,说明斜长石结晶分异作用较弱(刘军等,2022)。大悟地区的闪长玢岩样品脉稀土配分模式总体同安徽庐枞地区的闪长玢岩类似,显示为右倾型特征,稀土模式表明LREE富集、HREE亏损,但庐枞盆地的样品稀土配分更平缓。

    图  3  闪长玢岩球粒陨石标准化稀土配分模式(a)和原始地幔标准化微量元素蛛网图(b)
    庐枞盆地样品转引自汪晶等(2014);球粒陨石和原始地幔标准化值据Mcdonough等(1995)
    Figure  3.  (a) Normalized REE distribution pattern of diorite porphyrite chondrite and(b) primitive mantle normalized trace element spider web

    微量元素蛛网图显示闪长玢岩的微量元素分配型式整体变化趋势相近(图3b),亏损高场强元素Nb、Ta、Hf、Ti,富集元素Gd、Nd、Sr、Th,可能与俯冲板片形成的熔体有关。庐枞盆地闪长玢岩的蛛网图也表现出亏损高场强元素Nb、Ta、Hf、Ti,大离子亲石元素Th等富集,Sr元素不同程度亏损,可能受到了地幔交代作用和斜长石的分离结晶作用的影响(汪晶等,2014)。

    野外出露特征显示闪长玢岩脉晚期侵入至花岗斑岩体中,因此其形成时代应该略晚于或晚于该花岗斑岩结晶年代。曹正琦(2016)通过锆石U–Pb定年测试获得研究区花岗斑岩的侵位年龄为(130.8±1.8)Ma,本研究中的闪长玢岩岩浆结晶年龄应晚于花岗斑岩侵位年龄。范裕等(2010)在宁芜盆地中利用LA–ICP–MS同位素定年方法获得闪长玢岩中同位素锆石U–Pb年龄为(130.2±2.0)Ma。黄丹峰等(2010)在大别山北缘利用SHRIMP同位素定年方法得到闪长玢岩中同位素锆石U–Pb年龄为(129.1±2.2)Ma。综上所述,西大别大悟地区闪长玢岩的形成很可能约为130 Ma。

    闪长玢岩的岩石地球化学烧失量为3.62%~7.83%,表明样品遭受一定程度蚀变。Nb、Ti、Zr等不相容元素具有活动性小,对岩石风化、交代和蚀变等作用过程反应不灵敏,利用与其他元素的图解,讨论相关元素的活动特点(Gibson et al.,1982),可以为岩石源区地幔性质和成分提供信息。

    脉岩是母岩浆的代表,能有效反映源区物质组成(Westerman et al.,2003),闪长玢岩脉具有较低SiO2含量(49.97%~55.01%)、MgO含量(4.63%~5.49%),较高Al2O3含量(14.01%~14.65%)、 FeO*含量(1.63%~7.45%),壳源混染会使岩浆中SiO2含量明显增高、降低MgO值,但脉岩的SiO2−MgO不相关,说明壳源混染对脉岩影响不大。其次脉岩中微量元素、稀土元素含量变化不大,表明脉岩的岩浆在上升时没有受到壳源混染作用的干扰。轻稀土富集,轻、重稀土分异的程度较大,整体表现为较陡右倾型,(La/Yb)N值为21.21~43.34,δEu值为0.84~0.93,负异常不明显,表明在岩浆源区没有残留斜长石,而存在石榴子石和金红石残留,说明脉岩的岩浆来自深度较大(俞胜等,2022)。 Mg#值为60.17~90.19,大于下地壳的熔融产物Mg#值<40(Rapp et al.,1995); Nb/Ta值为13.06~18.47,大于地壳平均值(11.4)(Rudnik et al.,2003),接近于地幔值(17. 5±2) (Hofmann,1988Green,1995);Zr/Hf值为40.09~44.05,接近于地幔值(36.7),样品投点均接近于Zr–Y图解的富集地幔区域(图4),表明脉岩的岩浆源区可能来自于富集地幔,与安徽庐枞盆地闪长玢岩的Sr–Nd–Pb同位素特征反映富集地幔岩浆源区的认识较为一致(汪晶等,2014)。

    图  4  闪长玢岩Zr−Y判别图解(据Maitre et al.,1989
    Figure  4.  Zr−Y discrimination diagram of diorite porphyrite

    从三叠纪开始,扬子板块俯冲碰撞华北板块后,区域岩石圈地幔成分变化较大,早白垩世时期,中国东部岩石圈拉张构造事件对大别造山带产生影响,大量镁铁–超镁铁质岩体侵位至西大别地区,其同位素显示出富集特征(εNdt<−12),Zr−Y判别图解显示闪长玢岩样品均靠近富集地幔(图4)。以上特征表明区域岩浆源区为富集地幔(王世明等,2010)。

    微量元素蛛网图分配型式的变化趋势表现为整体相近,亏损不相容元素Nb、Ta、Hf、Ti;富集亲石元素Sr,其中不相容元素Nb、Ta的亏损是由板块俯冲时岩浆喷发造成(Gill,1981),脉岩Nb异常值范围0.16~0.25,Nb的负异常特征通常被认为是俯冲带上火山岩或者陆壳岩石的明显特征(Jahn et al.,1999),微量元素特征可能是与俯冲板片作用相关的岩石圈地幔部分熔融有关(Pearce et al.,1995彭松柏等,2016),与庐枞盆地中受古板块俯冲交代作用影响而形成的火山岩类似(袁峰等,2008),岩石中Sr含量为625.32×10−6~1112.55×10−6,明显高于地幔值(17.8×10−6)(Taylor et al.,1985),暗示脉岩的岩浆源区受到了俯冲板片流体交代作用的影响,使Sr含量增高(McCulloch et al.,1991),深俯冲大陆岩石圈可能在上地幔顶部滞留几十甚至上百个百万年之后,才形成熔融岩浆(赵子福等,2004)。从闪长玢岩的野外空间分布形态(图2a图2b),间接反映了地区断裂构造结构面力学性质和断裂结构特征,大致可以辨别该脉岩充填的裂隙具剪张性,符合镁铁质岩浆贯入长英质岩浆结晶度及流变学特征的4个阶段混合模式,第一阶段为长英质岩浆结晶;第二阶段为花岗质岩浆近处于固态,在应力作用下产生岩石裂隙;第三阶段为具流变特征的基性岩浆注入到已经形成的花岗岩石裂隙,并在局部与其发生化学反应,形成具两者特性的复合岩墙,闪长玢岩呈角砾或锯齿状斑块产出;第四阶段为花岗质岩石已经固结,同时较为连续的基性岩墙(Fernandez et al.,1991)。区域深部的岩浆源区可能存在镁铁质和花岗质2种类型岩浆,前者可能稍晚侵位至后者,两者进一步进行混合作用。

    综上所述,闪长玢岩脉的地球化学特征综合显示其岩浆来源于富集地幔,但俯冲而来的板片流体与其发生交代作用,使基性脉岩兼具俯冲作用的地球化学特征,该脉岩的岩浆源区可能受到了富集地幔与俯冲板片流体交代作用的影响,花岗斑岩、闪长玢岩为造山后伸展−拉张环境下形成的脉岩组合 。

    脉岩是研究深部岩石圈动力演化过程的重要“探针”(Poland et al.,2004),脉岩一般认为是岩浆在区域性地壳在拉张作用下而形成,对研究区域构造演化具有十分重要的意义(Halls,1982),闪长玢岩脉岩地球化学特征为中基性岩,TiO2–K2O–P2O5判别图解显示样品均落于大陆玄武岩区(图5a),TiO2–Zr(P2O5×10000)图解显示脉岩样品属于拉斑玄武岩系列(图5b),与庐枞盆地的样品均为板内玄武岩(图5c),Th/Nb值为0.48~0.60,Nb/Zr值为0.05~0.08,符合大陆拉张带玄武岩特征(0.27<Th/Nb<0.67,Nb/Zr>0.04)(孙书勤等,2003);且脉岩样品均落于Th/Hf−Ta/Hf图解的大陆拉张带玄武岩区(图5d)。

    图  5  TiO2−K2O−P2O5判别图解(a)(Pearce,1975); TiO2−Zr(P2O5×10000)判别图解(b)(Winchester et al.,1976);Ti−Zr判别图解(c)(Pearce et al.,1973);Th/Hf−Ta/Hf判别图解(d)(据汪云亮等,2001
    Ⅰ.板块发散边缘区(N−MORB);Ⅱ1.大洋岛弧玄武岩;Ⅱ2.陆缘岛弧及陆缘火山弧玄武岩;Ⅲ.大洋板内洋岛、海山玄武岩区及T−MORB、E−MORB区;Ⅳ1.陆内裂谷及陆缘裂谷拉斑玄武岩区;Ⅳ2.陆内裂谷碱性玄武岩区;Ⅳ3.大陆拉张带(或初始裂谷)玄武岩区;Ⅴ.地幔热柱玄武岩区
    Figure  5.  (a) Discriminant diagram of TiO2−K2O−P2O5, (b) Discriminant diagram of TiO2−Zr (P2O5×10000),(c) TiZr discriminant diagram, and (d) Th/ Hf−Ta/Hf discrimination diagram

    大别地区位于华北板块与扬子板块之间,是苏鲁−大别超高压变质带的重要组成部分,经历了洋−陆碰撞、陆−陆碰撞等构造演化过程。前人研究显示,大别地区的高压与超高压榴辉岩相反映了扬子地块陆壳向北俯冲至华北陆块之下, 240~220 Ma是其变质作用发生的重要时期,即大别造山带形成时间 (Li et al. ,1993Hacker et al.,1998李曙光等,2005刘福来等,2006);碰撞造山导致地壳增厚(Leech et al. ,2001),随后出现应力松弛,区域应力状态从挤压转换到伸展,由伸展作用所引起的花岗岩侵位,通常会稍晚于区域地壳部分熔融,所以加厚地壳部分熔融作用发生时间通常被当作区域构造体制开始转换时间的最低值(David et al.,2001Whitney et al.,2003)。马昌前等(2003)通过研究大别地区镁铁质岩石侵位年代学和花岗岩侵位年代学以及分别分析其岩石地化综合特征,认为135 Ma是区域地壳构造体制的转换时间。吴元保等(2001)以北大别地区岩石发生混合岩化时的年代学证据为依据,分析认为(137±4)Ma是大别地区从挤压向伸展发生转换的时间;并提出早白垩世大别造山带发生伸展垮塌,发生大量中酸性花岗岩侵位。吴开彬等(2013)通过对比西大别石鼓尖岩体、天堂寨岩体、薄刀峰岩体的Sr同位素比值及结晶年龄,将其分为三期,第一期石鼓尖岩体具同构造侵位变形特征,反映了挤压环境;第二期天堂寨岩体,变形发育在接触带和剪切带内,暗示着大别造山带的伸展垮塌;第三期薄刀尖岩体无变质变形,被认为是形成于大别造山带垮塌之后,反映了伸展环境。根据笔者对岩石地球化学特征研究及野外地质特征,认为大悟地区闪长玢岩为板内拉斑玄武岩系列,反映了大陆拉张构造环境,结合闪长玢岩脉侵位时代为早白垩世。因此,大悟地区早白垩世闪长玢岩形成于造山后大陆拉张环境,与前人认为大别造山带伸展时期较为一致(吴开彬等,2013)。

    (1)岩石地球化学特征显示,闪长玢岩属于中基性岩,为大陆拉斑玄武岩系列;稀土元素有较高的总量,稀土配分模式显示强烈富集轻稀土的右倾型,亏损不相容元素Nb、Ta、Hf、Ti;大离子亲石元素Sr富集。

    (2)研究区闪长玢岩脉的岩浆源区可能受到了俯冲板片流体交代作用的影响,地球化学特征综合显示其可能来源于富集地幔;

    (3)脉岩野外地质特征及前人研究资料表明,闪长玢岩侵位于早白垩世,为大别造山后伸展−拉张环境下形成的脉岩。

    致谢:衷心感谢中国地质调查局西安地质调查中心陈隽璐正高级工程师对论文写作的指导!

  • 图  1   研究区构造位置图(a)(据王韬等,2022修)、克拉玛依–乌尔禾地区地质简图(b)、克百断槽过古66-金3-金龙3井和过古34-555井地震剖面(c)及克百断槽和推测储油断槽示意图(d)

    Figure  1.   (a) Structural location map of the study area, (b) geological map of the Karamay-Urho area, (c) seismic cross-sections of well Gu 66-Jin 3-Jinlong 3 and well Gu 34-555 in Kebai fault trough and (d) schematic diagram of Kebai fault trough and presumed oil storage fault trough

    图  2   古66井代表性火山岩手标本及镜下特征

    a. 737.57~738.91 m井段灰黑色含集块安山质火山角砾岩;b. 436.35~437.05 m井段灰黑色含集块火山角砾岩;c. 397.20~398.00 m井段灰绿色含集块岩屑晶屑角砾凝灰岩;d. 737.57~738.91 m井段灰黑色含集块安山质火山角砾岩(正交偏光);e. 276.22~278.20 m井段深灰色安山质角砾岩;f. 635.00~635.33 m井段安山质火山角砾岩(正交偏光);g. 351.27~351.60 m井段灰黑色玄武质角砾岩;h. 672.40~673.83 m井段杂色安山质火山凝灰岩;i. 672.40~673.83 m井段杂色安山质火山凝灰岩(正交偏光);j. 713.00~713.63 m井段杂色角砾凝灰岩;k~m. 玄武安山岩(G66-4-2TW)手标本及镜下照片;n~p. 玄武安山岩(G66-10-6TW)手标本及镜下照片

    Figure  2.   Hand specimen and microscope photos of representative volcanic rocks in well Gu 66

    图  3   古66井242.14~800.18 m井段岩心综合地层柱状图

    Figure  3.   Comprehensive stratigraphic histogram of 242.14~800.18 m in well Gu 66

    图  4   古66井玄武安山岩代表性锆石CL图像、U-Pb年龄图及Th-U图

    Figure  4.   Representative zircon CL images, U-Pb age diagrams and Th-U diagrams of basaltic andesite in well Gu 66

    a~c. 样品G66-4-2TW;d~f. 样品G66-10-6TW

    图  5   古66井与哈拉阿拉特山建组剖面哈拉阿拉特组柱状对比图(据佟丽莉,2023修)

    Figure  5.   Columnar correlation diagram of Hala’alate Formation in well Gu 66 and building Formation section in Hala'alate Mountain area

    图  6   克百断槽石炭纪火山岩储层地质年代频率分布直方图(年龄数据引自李涤,2016王韬等,2022佟丽莉,2023、本研究及部分未发表数据)

    Figure  6.   Histogram of zircon U-Pb ages for Carboniferous volcanic reservoir in Kebai fault trough

    图  7   克-百油田区泥盆系—石炭系不同层位试油气统计图

    a. D-C层位试油气结果;b. D-C含油层位比例;c. 不同岩类含油层位比例; d. C2h各岩性段试油结果;e. 火山岩类不同岩性含油层位比例;f. C2h上、下部含油层位比例

    Figure  7.   Statistical chart of oil and gas testing in different layers of Devonian-Carboniferous in the Kebai oilfield area

    表  1   准噶尔盆地西北缘石炭纪地层格架表

    Table  1   Carboniferous stratigraphic framework of the northwestern margin of the Junggar basin

    岩石组合时代依据
    阿腊德依克赛组C2al “下碎屑岩上火山岩”层序(下段以正常沉积岩为主,上段以火山岩为主)。上段火山岩中熔岩总体多于火山碎屑岩 AthyriscircularisRoemeriporellajunggarensis,Linoproductuscora,Neospiriferfasciger
    (303.8±2.4) Ma(向坤鹏等,2015a
    哈拉阿拉特组C2h 下部以气孔状玄武岩为主,向上见安山岩,上部以玄武质角砾岩、集块岩为主。以深灰色、灰绿色区别于红色调的成吉思汗山组。本组与包古图组、希贝库拉斯组的区别是层序上总休下熔岩上火山碎屑岩;火山喷发旋回极为发育与有别于成吉思汗山组火山岩 Balakhoniasilimica sp.,Kotorginella tentoria,StenoscismamazhalaicaRhomobopora sp.
    Declinognathoduscf. noduliferous
    (306.9±5.5 )Ma和(304.5±3.1)Ma(李甘雨等,2015
    成吉思汗山组C2c 宏观露头以“暗红色、紫褐色”色调最为特色,正常沉积的细、粗碎屑岩均有发现。本组有别于包古图组、希贝库拉斯组的一个重要特征是灰岩层相对较厚,产出较为稳定,且多有生物化石,火山岩相对较发育,岩性以玄武岩为主 Choristites sp.,Pseudotimania sp.;LA-ICP-MS锆石U-Pb年龄319~310 Ma(向坤鹏等,2013Zhi et al., 2020
    希贝库拉斯组C1x 以粗碎屑类为主,主要岩石组合为岩屑粗砂岩、含砾粗岩、含砾凝灰质砂岩,局地见细砾岩,偶见砾岩夹层或砾岩透镜体,本组区别于包古图组的主要标志是“粗”并且“三无”(无火山熔岩、无灰岩、无硅质岩) 碎屑锆石年龄最年轻值322 Ma(孙羽等,2014
    包古图组
    C1b
    以细碎屑岩为主,这是有别于区内其他各组重要标志,主要岩石组合为粉砂岩、细砂岩、凝灰岩,基本层序多为厘米级小层序,火山熔岩(以(玄武)安山岩为主,局地有玄武岩,硅质岩、灰岩均呈夹层状产于包古图组内 Gigantoproductuscf. edelburgensis,Linoproductuspraelongatus,Asterpylorus sp.,Rotiphyllumsokolovi
    LA-ICP-MS锆石U-Pb年龄347~328 Ma(安芳等,2009佟丽莉等,2009郭丽爽等,2010Zhi et al., 2021b
    下载: 导出CSV

    表  2   古66井玄武安山岩LA-ICP-MS锆石U-Pb分析结果统计表

    Table  2   LA-ICP-MS zircon U-Pb analysis results of basaltic andesite in well Gu 66

    样号同位素比值同位素年龄232Th
    (10−6
    238U
    (10−6
    Th/U
    207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb207Pb/235U206Pb/238U
    比值σ比值σ比值σ年龄σ年龄σ年龄σ
    G66-4-2TW
    4-2TW-1 0.0533 0.0012 0.3550 0.0066 0.0483 0.0008 342 19 308 5 304 5 307 535 0.57
    4-2TW-2 0.0536 0.0012 0.3581 0.0071 0.0485 0.0008 353 20 311 5 305 5 327 427 0.77
    4-2TW-3 0.0539 0.0012 0.3516 0.0067 0.0474 0.0008 366 19 306 5 298 5 513 508 1.01
    4-2TW-4 0.0517 0.0013 0.3430 0.0073 0.0482 0.0008 270 22 299 6 303 5 129 222 0.58
    4-2TW-5 0.0524 0.0014 0.3526 0.0083 0.0488 0.0009 304 25 307 6 307 5 69.5 143 0.48
    4-2TW-6 0.0529 0.0012 0.3557 0.0071 0.0488 0.0008 326 20 309 5 307 5 112 276 0.41
    4-2TW-7 0.0537 0.0012 0.3567 0.0066 0.0482 0.0008 360 19 310 5 303 5 359 589 0.61
    4-2TW-8 0.0534 0.0011 0.3568 0.0065 0.0485 0.0008 347 18 310 5 305 5 353 565 0.63
    4-2TW-9 0.0521 0.0012 0.3521 0.0067 0.0490 0.0008 292 19 306 5 308 5 446 465 0.96
    4-2TW-10 0.0520 0.0012 0.3413 0.0066 0.0477 0.0008 284 20 298 5 300 5 288 324 0.89
    4-2TW-11 0.0533 0.0011 0.3554 0.0065 0.0484 0.0008 341 18 309 5 305 5 324 567 0.57
    4-2TW-12 0.0523 0.0011 0.3439 0.0064 0.0478 0.0008 297 19 300 5 301 5 350 475 0.74
    4-2TW-13 0.0535 0.0013 0.3577 0.0073 0.0485 0.0008 350 21 310 5 305 5 162 341 0.48
    4-2TW-14 0.0537 0.0013 0.3533 0.0076 0.0477 0.0008 360 22 307 6 300 5 133 214 0.62
    4-2TW-15 0.0530 0.0012 0.3520 0.0070 0.0482 0.0008 330 20 306 5 303 5 261 267 0.98
    4-2TW-16 0.0530 0.0014 0.3551 0.0082 0.0486 0.0009 329 24 309 6 306 5 102 133 0.77
    4-2TW-17 0.0530 0.0011 0.3503 0.0064 0.0479 0.0008 330 19 305 5 302 5 281 467 0.60
    4-2TW-18 0.0515 0.0017 0.3373 0.0099 0.0475 0.0009 265 36 295 8 299 5 54.5 78.9 0.69
    4-2TW-19 0.0514 0.0012 0.3405 0.0072 0.0481 0.0008 257 22 298 5 303 5 132 193 0.69
    4-2TW-20 0.0522 0.0012 0.3518 0.0071 0.0489 0.0008 294 21 306 5 308 5 159 277 0.57
    4-2TW-21 0.0541 0.0014 0.3543 0.0080 0.0475 0.0008 376 24 308 6 299 5 127 209 0.61
    4-2TW-22 0.0537 0.0016 0.3506 0.0092 0.0474 0.0009 358 29 305 7 298 5 101 124 0.82
    4-2TW-23 0.0531 0.0011 0.3554 0.0063 0.0486 0.0008 333 18 309 5 306 5 412 622 0.66
    4-2TW-24 0.0528 0.0011 0.3491 0.0064 0.0480 0.0008 320 19 304 5 302 5 341 430 0.79
    4-2TW-25 0.0521 0.0011 0.3424 0.0061 0.0477 0.0008 289 18 299 5 300 5 445 616 0.72
    G66-10-6TW
    10-6TW-1 0.0521 0.0015 0.3475 0.0087 0.0484 0.0008 290 29 303 7 305 5 118 138 0.85
    10-6TW-2 0.0516 0.0019 0.3435 0.0116 0.0483 0.0009 268 46 300 9 304 5 74.9 92.9 0.81
    10-6TW-3 0.0524 0.0015 0.3490 0.0083 0.0484 0.0008 301 27 304 6 304 5 163 172 0.95
    10-6TW-4 0.0532 0.0014 0.3513 0.0073 0.0479 0.0007 337 22 306 6 302 5 139 197 0.70
    10-6TW-5 0.0514 0.0013 0.3454 0.0071 0.0488 0.0008 258 22 301 5 307 5 221 285 0.78
    10-6TW-6 0.0532 0.0019 0.3551 0.0111 0.0484 0.0008 338 40 309 8 305 5 60.9 82.9 0.73
    10-6TW-7 0.0519 0.0015 0.3461 0.0084 0.0484 0.0008 279 28 302 6 305 5 144 147 0.98
    10-6TW-8 0.0496 0.0013 0.3357 0.0074 0.0491 0.0008 174 25 294 6 309 5 120 212 0.57
    10-6TW-9 0.0527 0.0012 0.3520 0.0066 0.0485 0.0007 315 19 306 5 305 5 374 353 1.06
    10-6TW-10 0.0522 0.0015 0.3450 0.0081 0.0480 0.0008 294 27 301 6 302 5 130 134. 0.97
    10-6TW-11 0.0532 0.0020 0.3526 0.0120 0.0481 0.0009 336 46 307 9 303 5 44.3 54.6 0.81
    10-6TW-12 0.0522 0.0016 0.3505 0.0089 0.0487 0.0008 295 30 305 7 306 5 247 227 1.09
    10-6TW-13 0.0522 0.0012 0.3484 0.0066 0.0484 0.0007 293 20 303 5 305 5 299 384 0.78
    10-6TW-14 0.0531 0.0019 0.3480 0.0113 0.0475 0.0008 334 43 303 9 299 5 75.3 99.1 0.76
    10-6TW-15 0.0518 0.0013 0.3446 0.0067 0.0483 0.0007 276 21 301 5 304 5 400 360 1.11
    10-6TW-16 0.0523 0.0016 0.3475 0.0090 0.0482 0.0008 298 31 303 7 304 5 65.7 114 0.58
    下载: 导出CSV

    表  3   准噶尔盆地西北缘哈山一带哈拉阿拉特组岩石组合特征统计表(据李甘雨等,2016

    Table  3   Rock assemblage characteristics of Hala’alate Formation in Hala'alate Mountain area of northwestern Junggar Basin

    岩性段岩性标志锆石U-Pb年龄
    哈拉阿拉
    特组(C2h
    C2h7 以灰色杏仁状玄武安山质角砾岩、含角砾岩屑凝灰岩为主,顶部见沉凝灰岩夹层 (304±3.5) Ma
    C2h6 灰绿色安山质-英安质岩屑凝灰岩为主,玄武岩、安山岩多呈夹层状出露 (304±4.3) Ma
    C2h5 灰绿色安山质-英安质岩屑凝灰岩为主,玄武岩、安山岩多呈夹层状出露
    C2h4 灰褐色火山角砾岩、角砾凝灰岩为主,少量岩屑晶屑凝灰岩、玄武岩和安山岩,灰岩透镜体
    C2h3 深灰色火山角砾岩为主,少量角砾凝灰岩、岩屑晶屑凝灰岩、火山集块岩,见少量流纹岩
    C2h2 灰黑色玄武岩为主,少量细砂岩和细砾岩、玄武安山岩 (305.9±2.0) Ma
    C2h1 深灰色安山岩为主,夹火山角砾岩、凝灰岩及杂色砾岩,可见少量流纹岩 (306.0±2.0) Ma
    下载: 导出CSV

    表  4   克-百油田区泥盆系—石炭系不同层位试油气结果统计表

    Table  4   Oil and gas testing results in different layers of the Devonian-Carboniferous in the Kebai oilfield area

    井号井深(m)试油岩性层位井号井深(m)试油岩性层位
    古66662~686干层安山岩C2h243321222144油层火山角砾岩C2al
    518~538干层火山角砾岩C2h220472059油层泥岩C2al
    472~496干层含砾砂岩C2h319761992间喷油层火山角砾岩C2al
    326~348油层砾岩C2h317651831间喷油层砂岩C2al
    古13116541670干层角砾熔岩C2h3古99884.4~904.4油层凝灰岩C1b
    16001616干层角砾熔岩C2h3795.4~835.4油层气孔杏仁玄武岩C1b
    15461560干层角砾熔岩C2h3767.4~779.4干层砂岩C1b
    古8111801206油层凝灰岩C2h1731~746干层砂岩C1b
    11351163油层凝灰岩C2h1古9612121218油层砂岩C2al
    10981108油层玄武岩C2h112351244干层砂岩C2al
    10781086油层火山集块岩C1b13301350干层砂岩C2al
    10601086油层凝灰岩C1b14081423油层砾岩C2al
    古31470~480干层砂岩C1b15331554干层砂岩C2al
    430~480干层砂岩C1b15651589水层砂岩C2al
    258~280水层砂岩C1b43825662588干层火山角砾岩C2h2
    白1716941724油层气孔杏仁玄武岩C2h324202438干层角砾凝灰岩C2h2
    18141834油层含角砾玄武岩C2h317421778水层玄武岩C2h3
    九浅9482~508水层凝灰岩D3h19751987干层凝灰岩C2h3
    256~270水层砂岩D3h14691487油水同层玄武岩C2h3
    白2919112149油层火山集块岩C2h413851410油层玄武岩C2h3
    980~1200油层火山角砾岩C2h6白2919112149油层火山集块岩C2h4
    克95831~851干层砂岩C2h5980~1200油层气孔杏仁玄武岩C2h6
    893~904水层砂岩C2h5克95831~851干层砂岩C2h5
    白杨145924620水层玄武安山岩C2h1893~904水层粉砂岩C2h5
    42904325油层凝灰岩C2h3金龙329252935稠油层火山角砾岩C2h1
    32463258水层凝灰岩C2h6+758132573277干层火山角砾岩C2h7
    27262828水层砂岩C2al23422361气层凝灰岩C2al
    古5016371652干层火山角砾岩D3h30253044干层砂泥岩C2al
    15351550干层火山角砾岩D3h22782294气层砂岩C2al
    13701402干层砂岩C1b22412257气层砂岩C2al
    10311050干层砂岩C1b23422360气层砂岩C2al
    830~870干层砂岩C1b24152434干层角砾凝灰岩C2al
    白919575~597油层角砾凝灰岩C1b23412360气层砂岩C2al
    古1511141125干层砂岩C1b42084212干层玄武岩C2al
    10461065干层砂岩C1b34423488油水同层玄武岩C2al
    18801910水层砂泥岩C1b32813286油水同层火山角砾岩C2al
    16701730干层砂岩C1b
    15441571干层玄武岩C1b
    下载: 导出CSV
  • 安芳, 朱永峰. 新疆西准噶尔包古图组凝灰岩锆石SHRIMP年龄及其地质意义[J]. 岩石学报, 2009, 25(6): 1437-1445

    AN Fang, ZHU Yongfeng. SHRIMP U-Pb zircon ages of tuff in Baogutu Formation and their geological significances[J]. Acta Petrologica Sinica, 2009, 25(6): 1437-1445.

    陈荣灿. 克拉玛依油田古16井区石炭系火山岩储层评价[D]. 成都: 西南石油学院, 2003

    CHEN Rongcan. Evaluation of Volcanic Reservoir in Gu 16th Well Area, Kramay Oil-field[D]. Chengdu: Southwest Petroleum Institute, 2003.

    陈宪. 准噶尔盆地西北缘哈山地区石炭系火山岩储层特征研究[D]. 长春: 吉林大学, 2017

    CHEN Xian. Characteristics of Carboniferous volcanic reservoirs in Hashan Area, northwest margin of Junggar Basin [D]. Changchun: Jilin University, 2017.

    陈江新, 徐倩, 李永军, 等. 车排子地区车47井石炭系划分及对比[J]. 新疆石油地质, 2022, 43(4): 410-416

    CHEN Jiangxin, XU Qian, LI Yongjun, et al. Stratigraphic Division and Correlation of Carboniferous Strata in Well Che 47 in Chepaizi Area[J]. Xinjiang Petroleum Geology, 2022, 43(4): 410-416.

    郭丽爽, 刘玉琳, 王政华, 等. 西准噶尔包古图地区地层火山岩锆石LA-ICP-MS U-Pb年代学研究[J]. 岩石学报, 2010, 26(2): 471-477

    GUO Lishuang, LIU Yuling, WANG Zhenghua, et al. The zircon U-Pb LA-ICP-MS geochronology of Volcanic rocks in Baogutu areas, western Junggar[J]. Acta Petrologica Sinica, 2010, 26(2): 471-477

    何登发, 陈新发, 况军, 等. 准噶尔盆地石炭系油气成藏组合特征及勘探前景[J]. 石油学报, 2010, 31(1): 1-11 doi: 10.7623/syxb201001001

    HE Dengfa, CHEN Xinfa, KUANG Jun, et al. Characteristics and exploration potential of Carboniferous hydrocarbon plays in Junggar Basin[J]. Acta Petrolei Sinica, 2010, 31(1): 1-11. doi: 10.7623/syxb201001001

    蒋志斌, 黄家瑄, 李永军, 等. 克拉玛依油田424井2 140~3 551.63 m井段层序、年代学新证及“盆−山”地层对比[J]. 西北地质, 2023, 56(2): 1-9 doi: 10.12401/j.nwg.2022044

    JIANG Zhibin, HUANG Jiaxuan, LI Yongjun, et al. New Evidence on the Stratigraphy and Chronology of 2 140~3 551.63 m Well 424 Section in Karamay Oilfield and “Basin-Mountain” Stratigraphic Comparison[J]. Northwestern Geology, 2023, 56(2): 1-9. doi: 10.12401/j.nwg.2022044

    靳军, 王剑, 杨召, 等. 准噶尔盆地克——百断裂带石炭系内幕储层测井岩性识别[J]. 岩性油气藏, 2018, 30(2): 85-92

    JIN Jun, WANG Jian, YANG Zhao, et al. Well logging identification of Carboniferous volcanic inner buried-hill reservoirs in Kebai fault zone in Junggar Basin[J]. Lithologic Reservoirs, 2018, 30(2): 85-92.

    孔垂显, 邱子刚, 秦军, 等. 准噶尔盆地西北缘石炭系火山岩储层特征研究[J]. 特种油气藏, 2017, 24(6): 28-32

    KONG Chuixian, QIU Zigang, QIN Jun, Study on the Characteristics of Carboniferous Volcanic Reservoir along the Northwestern Margin of Junggar Basin[J]. Special Oil and Gas Reservoirs, 2017, 24(6): 28-32.

    匡立春, 薛新克, 邹才能, 等. 火山岩岩性地层油藏成藏条件与富集规律——以准噶尔盆地克—百断裂带上盘石炭系为例[J]. 石油勘探与开发, 2007(3): 285-290 doi: 10.3321/j.issn:1000-0747.2007.03.003

    KUANG Lichun, XUE Xinke, ZOU Caineng, et al. Oil accumulation and concentration regularity of volcanic lithostratigraphic oil reservoir: A case from upper-plate Carboniferous of KA-BAI fracture zone, Junggar Basin[J]. Petroleum Exploration and Development, 2007(3): 285-290. doi: 10.3321/j.issn:1000-0747.2007.03.003

    李晨, 季汉成, 靳军, 等. 准噶尔盆地克—百断裂带上盘石炭系内幕火山岩储集层特征及展布[J]. 古地理学报, 2017, 19(4): 677-691 doi: 10.7605/gdlxb.2017.04.053

    LI Chen, JI Hancheng, JIN Jun, et al. Characteristics and distribution of inside volcanic reservoirs of the Carboniferous in upper-plate of Ke-Bai fault zone in Junggar Basin[J]. Journal of Palaeogeography, 2017, 19(4): 677-691. doi: 10.7605/gdlxb.2017.04.053

    李涤. 准噶尔盆地及邻区石炭纪构造格架与沉积充填演化[D]. 北京, 中国地质大学(北京), 2016

    LI Di. Carboniferous tectonic framework and sedimentary filling evolution in the Junggar Basin and adjacent area, NW China [D]. Beijing, China University of Geosciences, 2016.

    李甘雨, 李永军, 王冉, 等. 西准噶尔哈拉阿拉特山一带晚石炭世赞岐岩的发现及其地质意义[J]. 岩石学报, 2017, 33(1): 16-30

    LI Ganyu, LI Yongjun, WANG Ran, et al. The discovery and significance of Late Carboniferous sanukitoids in Hala’alate mountain, West Junggar[J]. Acta Petrologica Sinica, 2017, 33(1): 16-30.

    李甘雨, 李永军, 王冉, 等. 西准噶尔哈拉阿拉特组火山岩LA-ICP-MS锆石U-Pb年龄[J]. 西北地质, 2015, 48(3): 12-21 doi: 10.3969/j.issn.1009-6248.2015.03.002

    LI Ganyu, LI Yongjun, WANG Ran, et al. Zircon LA-ICP-MS U-Pb Dating of Volcanics in Hala'alate Formation of Western Junggar[J]. Northwestern Geology, 2015, 48(3): 12-21. doi: 10.3969/j.issn.1009-6248.2015.03.002

    李甘雨, 李永军, 向坤鹏, 等. 西准噶尔哈拉阿拉特组的重新厘定及区域对比[J]. 地层学杂志, 2016, 40(1): 76-84 doi: 10.19839/j.cnki.dcxzz.2016.01.009

    LI Ganyu, LI Yongjun, XIANG Kunpeng, et al. Revision and regional correlation of the Hal’alate formation in western Junggar basin[J]. Journal of Stratigraphy, 2016, 40(1): 76-84. doi: 10.19839/j.cnki.dcxzz.2016.01.009

    李军. 准噶尔盆地西北缘石炭系火山岩油藏储层分布规律及控制因素研究[D]. 北京: 中国地质大学(北京), 2008

    LI Jun. The Study on Distribution Characteristics and Controlling Factors of Carboniferous Volcanic Reservoir of the Northwestern Margin, Junggar Basin[D]. Beijing: China University of Geosciences, 2008.

    李艳广, 靳梦琪, 汪双双, 等. LA–ICP–MS U–Pb定年技术相关问题探讨[J]. 西北地质, 2023, 56(4): 274-282 doi: 10.12401/j.nwg.2023104

    LI Yanguang, JIN Mengqi, WANG Shuangshuang, et al. Exploration of Issues Related to the LA–ICP–MS U–Pb Dating Technique[J]. Northwestern Geology, 2023, 56(4): 274-282. doi: 10.12401/j.nwg.2023104

    李永军, 佟丽莉, 张兵, 等. 论西准噶尔石炭系希贝库拉斯组与包古图组的新老关系[J]. 新疆地质, 2010, 28(2): 130-136 doi: 10.3969/j.issn.1000-8845.2010.02.003

    LI Yongjun, TONG Lili, ZHANG Bing, et al. On the old and new relationship between Xibeikulasi Formation and Baogutu Formation of the Carboniferous system, West Jaggar[J]. Xinjiang Geology, 2010, 28(2): 130-136. doi: 10.3969/j.issn.1000-8845.2010.02.003

    李永军, 李卫东, 杨高学, 等. 新疆东西准噶尔泥盆系-石炭系建组剖面及区域对比[M]. 北京: 地质出版社, 2021

    LI Yongjun, LI Weidong, YANG Gaoxue, et al. Formation section and regional comparison of the Devonian-Carboniferous in the east and west Junggar, Xinjiang[M]. Beijing: Geological Publishing House, 2021.

    柳双权, 张顺存, 戴龙, 等. 准噶尔盆地石炭系火山岩优质储层特征及主控因素[J]. 兰州大学学报(自然科学版), 2014, 50(6): 786-794 doi: 10.13885/j.issn.0455-2059.2014.06.004

    LIU Shuangquan, ZHANG Shuncun, DAI Long, et al. Characteristics and main controlling factors of high quality carboniferous volcanic reservoirs in Junggar Basin[J]. Journal of Lanzhou University (Natural Sciences), 2014, 50(6): 786-794. doi: 10.13885/j.issn.0455-2059.2014.06.004

    刘凯, 张新远, 李永军, 等. 新疆油田百72井火山地层层序、时代及其与后山层型剖面对比[J]. 西北地质, 2023, 56(04): 40-48 doi: 10.12401/j.nwg.2023035

    LIU Kai, ZHANG Xinyuan, LI Yongjun, et al. Volcanic Stratigraphic Sequence, Age and Comparison with Mountain Layer Type Profile of Bai 72 Well in Xinjiang Oilfield[J]. Northwestern Geology, 2023, 56(04): 40-48. doi: 10.12401/j.nwg.2023035

    马尚伟, 陈春勇, 罗静兰, 等. 准噶尔盆地西泉地区石炭系火山岩有利储层主控因素研究[J]. 高校地质学报, 2019, 25(2): 197-205 doi: 10.16108/j.issn1006-7493.2018087

    MA Shangwei, CHEN Chunyong, LUO Jinglan, et al. Research of Major Controlling Factors on Favorable Reservoir of the Carboniferous Volcanic Rocks in Xiquan Area, Junggar Basin[J]. Geological Journal of China Universities, 2019, 25(2): 197-205. doi: 10.16108/j.issn1006-7493.2018087

    彭湘萍, 李永军, 李卫东, 等. 西准哈拉阿拉特山一带阿腊德依克赛组层序、化石组合及沉积环境[J]. 新疆地质, 2016, 34(3): 297-301 doi: 10.3969/j.issn.1000-8845.2016.03.001

    PENG Xiangping, LI Yongjun, LI Weidong, et al. The stratigraphic sequence, fossil assemblage and sedimentary environment of Aladeyikesai formation in Hala’alate mountain, west Junggar[J]. Xinjiang Geology, 2016, 34(3): 297-301. doi: 10.3969/j.issn.1000-8845.2016.03.001

    孙羽, 李永军, 佟丽莉, 等. 西准噶尔希贝库拉斯组整合于包古图组之上的确认[J]. 新疆地质, 2014, 32(2): 153-157

    SUN Yu, LI Yongjun, TONG Lili, et al. The Affirmance of Xibeikulasi Formation Conformable above Baogutu Formation in West Junggar[J]. Xinjiang Geology, 2014, 32(2): 153-157.

    佟丽莉, 李永军, 张兵, 等. 新疆西准噶尔达尔布特断裂带南包古图组安山岩LA-ICP-MS锆石U-Pb测年及地质时代[J]. 新疆地质, 2009, 27(3): 226-230 doi: 10.3969/j.issn.1000-8845.2009.03.006

    TONG Lili, LI Yongjun, ZHANG Bing, et al. Zircon LA-ICP-MS U-Pb dating and geologic age of the Baogutu Formation andesite in the south of Daerbute Faulted zone, western Junggar[J]. Xinjiang Geology, 2009, 27(3): 226-230. doi: 10.3969/j.issn.1000-8845.2009.03.006

    佟丽莉. 新疆乌尔禾哈拉阿拉特组火山岩年代学、地球化学特征及岩石成因[D]. 西安: 长安大学, 2023.

    TONG Lili. The chronology, geochemical characteristics and petrogenesis of volcanic rocks of Hala'alate Formation in Urho, Xinjiang[D]. Xi’an: Chang’an University, 2023.

    王韬, 徐倩, 李永军, 等. 车排子油田南部火山岩地质时代及成因[J]. 新疆石油地质, 2022, 43(2): 160-168

    WANG Tao, XU Qian, LI Yongjun, et al. Geological Age and Petrogenesis of Volcanic Rocks in Southern Chepaizi Oilfield[J]. Xinjiang Petroleum Geology, 2022, 43(2): 160-168.

    向坤鹏, 李永军, 徐磊, 等. 新疆西准噶尔白碱滩一带成吉思汗山组的建立及地质意义[J]. 西北地质, 2013, 46(2): 63-68 doi: 10.3969/j.issn.1009-6248.2013.02.008

    XIANG Kunpeng, LI Yongjun, XU Lei, et al. The definition of Chengjisihanshan formation and its significances in Baijiantan region, west Junggar, Xinjiang[J]. Northwestern Geology, 2013, 46(2): 63-68. doi: 10.3969/j.issn.1009-6248.2013.02.008

    向坤鹏, 李永军, 李钊, 等. 新疆西准噶尔哈拉阿拉特山火山岩LA ICP-MS锆石U-Pb年龄、地球化学特征及意义[J]. 地质学报, 2015a, 89(5): 843-855 doi: 10.3969/j.issn.0001-5717.2015.05.002

    XIANG Kunpeng, LI Yongjun, LI Zhao, et al. LA ICP-MS Zircon Age and Geochemistry of the Aladeyikesai Formation Volcanic Rocks in the Halaalate Mountain of West Junggar, Xinjiang, and Their Tectonic Significance[J]. Acta Geologica Sinica, 2015, 89(5): 843-855. doi: 10.3969/j.issn.0001-5717.2015.05.002

    向坤鹏. 新疆西准噶尔包古图-哈拉阿拉特山一带石炭纪沉积盆地分析及构造意义[D]. 西安: 长安大学, 2015b.

    XIANG Kunpeng. Carboniferous sedimentary basin analysis and significance in the Baogutu-Halaalate Mountain, Western Junggar, Xinjiang[D]. Xi’an: Chang’an University, 2015.

    于洪洲. 准西北缘哈山地区石炭系火山岩储层特征及影响因素[J]. 地质力学学报, 2019, 25(2): 206-214 doi: 10.12090/j.issn.1006-6616.2019.25.02.019

    YU Hongzhou. Characteristics and influencing factors of Carboniferous volcanic reservoirs in Hashan area, northwestern margin of the Junggar basin[J]. Journal of Geomechanics, 2019, 25(2): 206-214. doi: 10.12090/j.issn.1006-6616.2019.25.02.019

    张明玉. 克拉玛依六区—九区石炭系火山岩油藏岩性识别与岩相划分[J]. 海相油气地质, 2009, 14(3): 31-36 doi: 10.3969/j.issn.1672-9854.2009.03.004

    ZHANG Mingyu. Lithology and Lithofacies Classification of Carboniferous Volcanic Rock Reservoir at Block-6 to Block-9 in Karamay Oil Field, Junggar Basin[J]. Marine origin Petroleum Geology, 2009, 14(3): 31-36. doi: 10.3969/j.issn.1672-9854.2009.03.004

    张越迁, 陈中红, 唐勇, 等. 准噶尔盆地克—百断裂带火山岩储层特征研究[J]. 沉积学报, 2014, 32(4): 754-765 doi: 10.14027/j.cnki.cjxb.2014.04.015

    ZHANG Yueqian, CHEN Zhonghong, TANG Yong, et al. Characteristics of Volcanic Reservoirs in Kebai Fault Zone of Northwestern Junggar Basin, China[J]. Acta Sedimentologica Sinica, 2014, 32(4): 754-765. doi: 10.14027/j.cnki.cjxb.2014.04.015

    赵飞, 罗静兰, 张有平, 等. 克拉玛依油田六、七、九区石炭系火山岩储集层特征及其控制因素[J]. 吉林大学学报(地球科学版), 2010, 40(1): 48-55 doi: 10.13278/j.cnki.jjuese.2010.01.020

    ZHAO Fei; LUO Jinglan, ZHANG Youping, et al. Investigation on Characteristics and Controlling Factors of Carboniferous Volcanic Reservoir in the 6th, the 7th and the 9th Areas of Karamay Oil Field[J]. Journal of Jilin University(Earth Science Edition), 2010, 40(1): 48-55. doi: 10.13278/j.cnki.jjuese.2010.01.020

    支倩. 新疆东、西准噶尔上石炭统典型剖面对比研究[D]. 西安: 长安大学, 2018

    ZHI Qian. A comparative study on the upper Carboniferous standard stratotype-section profiles in the eastern and western Junggar, Xinjiang, NW China[D]. Xi’an: Chang’an University, 2018.

    支倩, 李永军, 段丰浩, 等. 新疆西准噶尔乌尔禾地区早二叠世A1型花岗岩成因及其地质意义[J]. 地质学报, 2021a, 95(8): 2453-2470 doi: 10.3969/j.issn.0001-5717.2021.08.013

    ZHl Qian, LI Yongjun, DUAN Fenghao, et al. Petrogenesis and its geological implications of Early Permian A1-type granite in Urho area, Western Junggar, Xinjiang[J]. Acta Geologica Sinica, 2021, 95(8): 2453-2470. doi: 10.3969/j.issn.0001-5717.2021.08.013

    Fan Cunhui, Li Hu, Qin Qirong, et al. Formation mechanisms and distribution of weathered volcanic reservoirs: A case study of the carboniferous volcanic rocks in Northwest Junggar Basin, China[J]. Energy Science & Engineering, 2020, 8(8): 2841-2858.

    Hoskin P W O, Black L P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology, 2000, 18(4): 423-439. doi: 10.1046/j.1525-1314.2000.00266.x

    Li Ganyu, Li Yongjun, Wang Xuance, et al. Identifying late Carboniferous sanukitoids in Hala’alate Mountain, Northwest China: new constraint on the closing time of remnant ocean basin in West Junggar[J]. International Geology Review, 2017, 59(9): 1116-1130. doi: 10.1080/00206814.2016.1193773

    Ludwig K R I. 3.00: A geochronological toolkit for Microsoft Excel[J]. Berkeley Geochronology Center Special Publication, 2003, 4: 1-70.

    Mao Zhiguo, Zhu Rukai, Luo Jinglan, et al. Reservoir characteristics, formation mechanisms and petroleum exploration potential of volcanic rocks in China[J]. Petroleum Science, 2015, 12(1): 54-66. doi: 10.1007/s12182-014-0013-6

    YANG Zhi, ZHU Aiguo, CHEN Yanhui, et al. The characteristics of Carboniferous volcanic lithofacies and volcanic reservoirs of Kebai Fault Belt, northwestern Junggar Basin[J]. Geological Journal, 2021, 56(8), 4280-4292. doi: 10.1002/gj.4162

    Zhi Qian, Li Yongjun, Yang Gaoxue, et al. The discovery of 310 Ma back-arc basin basalt in the West Junggar, Xinjiang, NW China and its geological significance[J]. Acta Geologica Sinica (English Edition), 2019, 93(2): 496-498. doi: 10.1111/1755-6724.13848

    Zhi Qian, Li Yongjun, Duan Fenghao, et al. Geochemical, Sr-Nd-Pb and zircon U-Pb-Hf isotopic constraints on the Late Carboniferous back-arc basin basalts from the Chengjisihanshan Formation in West Junggar, NW China[J]. Geological Magazine, 2020, 157(11): 1781-1799. doi: 10.1017/S0016756820000059

    Zhi Qian, Li Yongjun, Duan Fenghao, et al. Geochronology and geochemistry of early carboniferous basalts from baogutu formation in west Junggar, northwest china: evidence for a back-arc extension[J]. International Geology Review, 2021b, 63(12): 1521-1539. doi: 10.1080/00206814.2020.1783704

    Zhu Danping, Liu Xuewei, Guo Shaobin. Reservoir Formation Model and Main Controlling Factors of the Carboniferous Volcanic Reservoir in the Hong-Che Fault Zone, Junggar Basin[J]. Energies, 2020, 13(22): 6114. doi: 10.3390/en13226114

  • 期刊类型引用(3)

    1. 陈雪,汪小祥,景山,张杰,张响荣. 宁镇矿集区岩石风化成土过程中重金属迁移富集特征. 西北地质. 2025(01): 231-244 . 本站查看
    2. 于婉婷,王卓,布多,崔小梅. 西藏纳木错近岸带水体中重金属赋存特征、风险评价及来源探究. 环境生态学. 2025(01): 21-26 . 百度学术
    3. 黄加忠,张龙,叶雷,李金旺,杨明龙. 模糊综合评价法在南华土壤肥力评价中的应用. 环境生态学. 2024(10): 25-32 . 百度学术

    其他类型引用(1)

图(7)  /  表(4)
计量
  • 文章访问数:  51
  • HTML全文浏览量:  21
  • PDF下载量:  31
  • 被引次数: 4
出版历程
  • 收稿日期:  2023-05-05
  • 修回日期:  2023-11-09
  • 录用日期:  2023-11-12
  • 网络出版日期:  2024-08-15
  • 刊出日期:  2024-10-19

目录

/

返回文章
返回