ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    高级检索

    基于3D实景模型和AHP边坡危险性评价系统的应用:以沿黄公路吴堡–永和段为例

    洪勃, 唐亚明, 冯卫, 李政国, 潘学树, 冯凡, 周永恒, 尹春旺

    洪勃,唐亚明,冯卫,等. 基于3D实景模型和AHP边坡危险性评价系统的应用:以沿黄公路吴堡–永和段为例[J]. 西北地质,2024,57(6):218−233. doi: 10.12401/j.nwg.2023201
    引用本文: 洪勃,唐亚明,冯卫,等. 基于3D实景模型和AHP边坡危险性评价系统的应用:以沿黄公路吴堡–永和段为例[J]. 西北地质,2024,57(6):218−233. doi: 10.12401/j.nwg.2023201
    HONG Bo,TANG Yaming,FENG Wei,et al. Application of Geological Hazard Risk Assessment System Based on 3D Real Scene and AHP: Example from the Wubu-Yonghe Section along the Yellow River Highway[J]. Northwestern Geology,2024,57(6):218−233. doi: 10.12401/j.nwg.2023201
    Citation: HONG Bo,TANG Yaming,FENG Wei,et al. Application of Geological Hazard Risk Assessment System Based on 3D Real Scene and AHP: Example from the Wubu-Yonghe Section along the Yellow River Highway[J]. Northwestern Geology,2024,57(6):218−233. doi: 10.12401/j.nwg.2023201

    基于3D实景模型和AHP边坡危险性评价系统的应用:以沿黄公路吴堡–永和段为例

    基金项目: 陕西省重点产业创新链(群)项目(2019ZDLSF07-07-02), 西安市科技计划项目(20RGZN0004), 陕西省自然科学基础研究计划项目(S2023-JC-QN-1923)”, 中国地质调查局西安地质调查中心主任基金项目(XACGS-2022-04)”联合资助。
    详细信息
      作者简介:

      洪勃(1987−),男,博士,工程师,主要从事黄土工程地质、地质灾害调查评价及防灾减灾方向的研究工作。E−mail:382492004@qq.com

      通讯作者:

      唐亚明(1973−),女,研究员,博士生导师,主要从事黄土地质灾害风险评价、监测预警及其信息化研究工作。E−mail:272738908@qq.com

    • 中图分类号: P642.2

    Application of Geological Hazard Risk Assessment System Based on 3D Real Scene and AHP: Example from the Wubu-Yonghe Section along the Yellow River Highway

    • 摘要:

      为了有效控制、管理和减少公路边坡地质灾害产生的不利影响,本研究提出了一种基于无人机倾斜摄影三维实景边坡信息提取结合层次分析原理的公路边坡危险性评价新方法,开发了以Cesium为框架的沿黄公路边坡危险性评价三维可视化web平台。利用三维实景模型和计算机算法室内即可提取边坡危险性评价信息(包括路-坡距、坡度、坡高和节理密度等),采用层次分析法对各个边坡的危险性进行评估,依据最终得出的危险性综合评分,将其划分为极低、低、中、高、极高5个危险等级。将所提出的方法应用于沿黄公路边坡危险性评估,共评价边坡656个,其中极低危险边坡0个,低危险边坡23个,中危险边坡405个,高危险边坡210个,极高危险边坡18个。评价结果与实地调查结果吻合,说明提出的评价系统是合理的、有效的。该系统不仅实现地质灾害三维可视化调查和危险性评价,也推进了公路边坡防灾减灾技术数字化、智能化应用的发展。

      Abstract:

      In order to effectively control, manage and reduce the adverse effects of highway slope geological disasters, this study proposes a new method of highway slope risk assessment based on UAV tilt photography and three-dimensional real scene slope information extraction combined with analytic hierarchy process, and develops a three-dimensional visualization web platform for highway slope risk assessment along the Yellow River Based on cesium. The three-dimensional real scene model and computer algorithm can be used to extract the slope risk evaluation information (including road slope distance, slope, slope height and joint density, etc.) in the room. The AHP is used to evaluate the risk of each slope. According to the comprehensive final risk score, it is divided into five risk levels: extremely low, low, medium, high and extremely high. The proposed method is applied to the risk assessment of slopes along the Yellow River Highway. A total of 656 slopes are evaluated, including 0 extremely low-risk slope, 23 low-risk slope, 405 medium risk slope, 210 high-risk slope and 18 extremely high-risk slope. The evaluation results are consistent with the field survey results, which show that the evaluation system proposed in this paper is effective and reasonable. The system not only realizes the three-dimensional visualization investigation and risk assessment of geological disasters, but also promotes the development of digital and intelligent application of highway slope disaster prevention and reduction technology.

    • 图  1   沿黄公路吴堡-永和段路线位置图

      Figure  1.   Location map of the Wubu-Yonghe section along the Yellow River Highway

      图  2   研究路段公路沿线地质灾害类型图

      Figure  2.   Photos of geological hazard types of the Wubu-Yonghe section along the Yellow River Highway

      图  3   测区及飞行航线图

      (a).测区位置;(b).航线规划

      Figure  3.   Aerial survey area and flight route map

      图  4   三维实景模型制作流程图

      Figure  4.   3D real scene model making process

      图  5   沿黄公路三维实景模型图

      (a).三维重构建模;(b~d).局部三维实景

      Figure  5.   3D Realistic model of Highway along the Yellow River

      图  6   倾斜摄影数据产品图

      (a). DLG数据;(b). DEM数据;(c). DOM数据;(d). 点云数据

      Figure  6.   Tilt photography data products

      图  7   层次评价结构模型图

      Figure  7.   Hierarchical evaluation structure model

      图  8   沿黄公路边坡危险性评价系统框架图

      Figure  8.   Frame diagram of the risk assessment system for slopes along the Yellow River Highway

      图  9   基于Cesium的Web三维实景模型展示图

      Figure  9.   Web 3D reality model based on Cesium

      图  10   地质灾害综合信息系统Web端展示图

      Figure  10.   Web terminal of geological disaster comprehensive information system

      图  11   沿黄公路斜坡单元划分图

      (a).独立边坡;(b).过长边坡

      Figure  11.   Slope unit division of Highway along the Yellow River

      图  12   评价因子信息提取页面展示图

      Figure  12.   Evaluation factor information extraction

      图  13   研究路段公路边坡坡度统计图

      Figure  13.   Statistics of highway slope gradient of the study section

      图  14   研究路段公路边坡坡高统计图

      (a).土质边坡;(b).岩质边坡

      Figure  14.   Statistics on the slope height of the highway in the research section

      图  15   节理面密度统计图

      (a).黄土、黄土-基岩边坡;(b).岩质边坡

      Figure  15.   Statistics of joint area density

      图  16   路-坡距统计分析图

      (a).路-坡距数量统计;(b).路-坡距区间分布

      Figure  16.   Statistical analysis of road-slope distance

      图  17   沿黄公路边坡危险性评价可视化成果(局部视野)展示图

      Figure  17.   Visualization results of risk assessment of slopes along the Yellow Rever Highway (partial view)

      图  18   危险性评价结果及ROC检验图

      (a).危险性等级统计;(b).ROC校验

      Figure  18.   Risk assessment results and ROC test

      表  1   基础控制点误差表

      Table  1   The error of the base control point

      点号平面位置较差(m)高程较差(m)
      xyh
      GP02−0.0140.0270.038
      GP14−0.019−0.0190.034
      GP27−0.036−0.020−0.033
      GP42−0.0060.027−0.021
      GP480.027−0.023−0.027
      下载: 导出CSV

      表  2   无人机性能参数表

      Table  2   UAV performance parameters

      无人机 纵横CW20 华测P330
      机身长度 1.8 m 1.22 m
      翼展 3.2 m 2.5 m
      实用升限 4500 m 6000 m
      起降方式 垂直起降 垂直起降
      垂直方向定位精度 3 cm 2 cm+1 ppm
      水平方向定位精度 1 cm+1 ppm 1 cm+1 ppm
      巡航速度 100 km/h 75 km/h
      续航时间 180 min 150 min
      抗风能力 7 级 6 级
      测控半径 35 km 15 km
      最大起飞重量 25 kg 14 kg
      下载: 导出CSV

      表  3   倾斜摄影相机性能参数表

      Table  3   Performance parameters of tilt camera

      总有效像素1.2亿图像分辨率6000×4000
      传感器数量5个传感器尺寸23.5 mm×15.6 mm
      最小曝光间隔2 s焦距D2:20 mm/35 mm
      D2 Pro:25 mm/35 mm
      倾斜相机角度45°总重量0.65 kg
      存储器总容量640 G像元大小3.9 μm
      下载: 导出CSV

      表  4   数据质量控制表

      Table  4   Data quality control

      项目 数据类别 检查点数(个) 平面中误差(m) 高程中误差(m)
      空三测量 定向点残差 101 0.169~0.261 −0.260~0.279
      多余控制点不符值较差 83 0.52~0.63 0.160~0.332
      三维实景模型 154 ±0.038 ±0.026
      数字产品 DLG 85 0.793 0.285
      DEM 131 ±0.343
      DOM 130 0.163
      下载: 导出CSV

      表  5   判断矩阵Bij的取值及含义表

      Table  5   The value and meaning of judgment matrix Bij

      Bij的取值 含义
      1 ij同样重要
      3 ij稍微重要
      5 ij明显重要
      7 ij强烈重要
      9 ij极端重要
      2, 4, 6, 8 表示上述相邻判断的中间值
      倒数 若因素ij的重要性之比为Bij,那么因素ji的重要性之比Bji = 1/ Bij
      下载: 导出CSV

      表  6   平均随机一致性指标(RI)取值表

      Table  6   Values of average random consistency index (RI)

      n345678910
      RI0.520.891.121.241.321.411.461.49
      下载: 导出CSV

      表  7   构造A-B判断矩阵表

      Table  7   Construction of A-B judgment matrix

      A B1 B2 B3 B4 Wi λmax CR
      B1 7 3 1 2 0.489 4.109 0.007
      B2 5 2 1/2 1 0.288
      B3 3 1 1/3 1/2 0.162
      B4 1 1/3 1/7 1/5 0.060
      下载: 导出CSV

      表  8   评价因子评分赋值表

      Table  8   Evaluation factor score assignment table

      路-坡距 坡高 坡度 节理密度
      路–坡距( m) 分值 平均坡高(m) 分值 平均坡度(°) 分值 基岩边坡
      (条/m2
      黄土边坡
      (条/m2
      分值
      [0~0.5) (90~100] [0~2) [0~10) [0~5) [0~10) [0~2) [0.01~0.05) [0~10)
      [0.5~1) (80~90] [2~5) [10~20) [5~10) [10~20) [2~4) [0.05~0.1) [10~20)
      [1~2) (70~80] [5~10) [20~30) [10~20) [20~30) [4~7) [0.1~0.2) [20~30)
      [2~3) (60~70] [10~15) [30~40) [20~30) [30~40) [7~10) [0.2~0.3) [30~40)
      [3~4) (50~60] [15~20) [40~50) [30~40) [40~50) [10~15) [0.3~0.5) [40~50)
      [4~5) (40~50] [20~25) [50~60) [40~50) [50~60) [15~20) [0.5~1.0) [50~60)
      [5~10) (30~40] [25~30) [60~70) [50~60) [60~70) [20~25) [1.0~1.5) [60~70)
      [10~15) (20~30] [30~40) [70~80) [60~70) [70~80) [25~30) [1.5~2.0) [70~80)
      [15~30) (10~20] [40~50) [80~90) [70~80) [80~90) [30~35) [2~5) [80~90)
      [30~50) (0~10] [50~80) [90~100) [80~90) [90~100) [35~40) [5~10) [90~100)
      ≥50 m 0 ≥80 100 反倾 100 40以上 10以上 100
      下载: 导出CSV

      表  9   危险评分与危险等级的对应关系

      Table  9   Correspondence of risk value and risk grade

      危险值R [0-20] (20-40] (20-60] (60-80] (80-100]
      危险等级Rg I (极低) II (低) III (中) IV (高) V (极高)
      下载: 导出CSV
    • 陈志华, 张俊贤, 张克铭, 等. 云南高速公路无人机倾斜摄影测量实景三维模型建立方法改进及精度提高[J]. 测绘通报, 2019(S1): 275−279. doi: 10.13474/j.cnki.11-2246.2019.0564

      CHEN Zhihua, ZHANG Junxian, ZHANG Keming, et al. The improved method and accuracy of the establishment of three-dimensional model of UAV tilt photogrammetry scene in Yunnan expressway[J]. Bulletin of Surveying and Mapping,2019(S1):275−279. doi: 10.13474/j.cnki.11-2246.2019.0564

      陈宙翔, 叶咸, 张文波, 等. 基于无人机倾斜摄影的强震区公路高位危岩崩塌形成机制及稳定性评价[J]. 地震工程学报, 2019, 41(1): 257−267. doi: 10.3969/j.issn.1000-0844.2019.01.257

      CHEN Zhouxiang, YE Xian, ZHANG Wenbo, et al. Formation Mechanism Analysis and Stability Evalluationof Dangerous Rock Collapses Based on the Oblique Photography by Unmanned Aerial Vehicles[J]. China Earthquake Engineering Journal,2019,41(1):257−267. doi: 10.3969/j.issn.1000-0844.2019.01.257

      崔溦, 谢恩发, 张贵科, 等. 利用无人机技术的高陡边坡孤立危岩体识别[J]. 武汉大学学报·信息科学版, 2021, 46(6): 836−843.

      CUI Wei, XIE Enfa, ZHANG Guike, et al. Identification of Isolated Dangerous Rock Mass in High and Steep Slope Using Unmanned Aerial Vehicle[J]. Geomatics and Information Science of Wuhan University,2021,46(6):836−843.

      冯卫, 唐亚明, 马红娜, 等. 基于层次分析法的咸阳市多灾种自然灾害综合风险评价[J]. 西北地质, 2021, 54(2): 282−288.

      FENG Wei, TANG Yaming, MA Hongna, et al. Comprehensive Risk Assessment of Multi-hazard Natural Disasters in Xianyang City Based on AHP[J]. Northwestern Geology,2021,54(2):282−288.

      郝瑀然. 中国公路总里程已达528万公里[N]. 北京: 新华社, 2022-04-26

      HAO Yuran. The total mileage of highways in China has reached 5.28 million kilometers[N]. Beijing: The Xinhua News Agency, 2022-04-26.

      贾虎军, 王立娟, 范冬丽. 无人机载LiDAR和倾斜摄影技术在地质灾害隐患早期识别中的应用[J]. 中国地质灾害与防治学报, 2021, 32(2): 60−65.

      JIA Hujun, WANG Lijuan, FAN Dongli. The application of UAV LiDAR and tilt photography in the early identification of geo-hazards[J]. The Chinese Journal of Geological Hazard and Control,2021,32(2):60−65.

      梁涛, 王浩, 泮俊, 等. 公路边坡风险评估软件RASlope的研发与应用[J]. 中国地质灾害与防治学报, 2016, 27(1): 62−70.

      LIANG Tao, WANG Hao, PAN Jun, et al. Development and application of software RASlope for highway slope risk assessment[J]. The Chinese Journal of Geological Hazard and Control,2016,27(1):62−70.

      廖斌, 杨根兰, 覃乙根, 等. 基于无人机技术的高陡危岩体参数获取及稳定性评价[J]. 路基工程, 2021, 217(4): 24−29.

      LIAO Bin, YANG Genlan, QIN Yigen, et al. Parameter Acquisition and Stability Evaluation of High and Steep Dangerous Rock Mass Based on UAV[J]. Subgrade Engineering,2021,217(4):24−29.

      廖小平, 徐风光, 蔡旭东, 等. 香丽高速公路边坡地质灾害发育特征与易发性区划[J]. 中国地质灾害与防治学报, 2021, 32(5): 121−129.

      LIAO Xiaoping, XU Fengguang, CAI Xudong, et al. Development characteristics and susceptibality zoning of slope geological hazards in Xiangli expressway[J]. The Chinese Journal of Geological Hazard and Control,2021,32(5):121−129.

      刘刚, 赵坚, 宋宏伟, 等. 节理密度对围岩变形及破坏影响的试验研究[J]. 岩土工程学报, 2007, 29(11): 1737−1741.

      LIU Gang, ZHAO Jian, SONG Hongwei, et al. Physical modelling of effect of joint density on deformation and failure of surrounding rocks[J]. Chinese Journal of Geotechnical Engineering,2007,29(11):1737−1741.

      刘伟, 翟斌斌, 刘燃, 等. 无人机倾斜航空摄影在三维实景建模中的应用[J]. 地理空间信息, 2020, 18(1): 45−46+8.

      LIU Wei, ZHAI Binbin, LIU Ran, et al. Application of Unmanned Aerial Vehicle Oblique Photography in Real 3D Modeling[J]. Geospatial Information,2020,18(1):45−46+8.

      刘洋洋, 郭增长, 李永强, 等. 基于熵权集对分析和车载激光扫描的公路边坡危险性评价模型[J]. 岩土力学, 2018, 39(S2): 131−141+156.

      LIU Yangyang, GUO Zengzhang, LI Yongqiang, et al. Risk assessment model of highway slope based on entropy weight set pair analysis and vehicle laser scanning[J]. Rock and Soil Mechanics,2018,39(S2):131−141+156.

      吕权儒, 曾斌, 孟小军, 等. 基于无人机倾斜摄影技术的崩塌隐患早期识别及影响区划分方法[J]. 地质科技通报, 2021, 40(6): 313−325.

      LÜ Quanru, ZENG Bin, MENG Xiaojun, et al. Early identification and influence range division method of collapse hazards based on UAV oblique photography technology[J]. Bulletin of Geological Science and Technology,2021,40(6):313−325.

      唐亚明, 程秀娟, 薛强, 等. 基于层次分析法的黄土滑塌风险评价指标权重分析[J]. 中国地质灾害与防治学报, 2012a, 23(4): 40−46.

      TANG Yaming, CHENG Xiujuan, XUE Qiang, et al. Weights analysis of Loess collapse risk assessing factors based on analytical hierarchy process[J]. The Chinese Journal of Geological Hazard and Control,2012a,23(4):40−46.

      唐亚明, 薛强, 毕俊擘, 等. 陕北黄土崩塌灾害风险评价指标体系构建[J]. 地质通报, 2012b, 31(6): 979−988.

      TANG Yaming, XUE Qiang, BI Junbo, et al. The construction of factors for assessing the risk of collapse at loess slopes in northern Shaanxi Province[J]. Geological Bulletin of China,2012b,31(6):979−988.

      田媛, 巨能攀, 解明礼, 等. 滑坡编录表达模式对易发性评价结果的影响[J]. 成都理工大学学报(自然科学版), 2022, 49(5): 606−615.

      TIAN Yuan, JU Nengpan, XIE Mingli, et al. Analysis of the impact of landslide cataloguing expression patterns on the evaluation results of landslide susceptibility[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2022,49(5):606−615.

      王红杰, 卞孝东, 邓晓伟, 等. 基于模糊数学理论的煤矿地下空间开发利用适宜性评价——以白源煤矿为例[J]. 西北地质, 2021, 54(4): 156−170.

      WANG Hongjie, BIAN Xiaodong, DENG Xiaowei, et al. Suitability Evaluation of Underground Space Development and Utilization of Coal Mine Based on Fuzzy Mathematics Theory: Taking Baiyuan Coal Mine as an Example[J]. Northwestern Geology,2021,54(4):156−170.

      王俊豪, 魏云杰, 梅傲霜, 等. 基于无人机倾斜摄影的黄土滑坡信息多维提取与应用分析[J]. 中国地质, 2021, 48(2): 388−401.

      WANG Junhao, WEI Yunjie, MEI Aoshuang, et al. Multidimensional extraction of UAV tilt photography-based information of loess landslide and its application[J]. Geology in China,2021,48(2):388−401.

      王萌, 何思明, 张小刚. S210线芦山-宝兴段崩塌灾害危险性分析及防治对策建议[J]. 中国地质灾害与防治学报, 2014, 25(3): 101−106.

      WANG Meng, HE Siming, ZHANG Xiaogang. Study on S210 line Lushan-Baoxing segment collapse hazard assessment and control measures[J]. The Chinese Journal of Geological Hazard and Control,2014,25(3):101−106.

      谢金, 杨根兰, 覃乙根, 等. 基于无人机与Rockfall的危岩体结构特征识别与运动规律模拟[J]. 河南理工大学学报(自然科学版), 2021, 40(1): 55−64.

      XIE Jin, YANG Genlan, QIN Yigen, et al. Structural feature recognition and motion law simulation of dangerous rock mass based on UAV and Rockfall[J]. Journal of Henan Polytechnic University (Natural Science),2021,40(1):55−64.

      杨波, 管后春, 杨潘, 等. 基于三维GIS的第四系古河道沉积区工程建设适宜性评价研究[J]. 西北地质, 2021, 54(3): 244−252.

      YANG Bo, GUAN Houchun, YANG Pan, et al. Research on 3D GIS-Based Suitability Evaluation of Engineering Construction of the Quaternary Paleo-channel Sedimentary Area[J]. Northwestern Geology,2021,54(3):244−252.

      姚富潭, 吴明堂, 董秀军, 等. 基于贴近摄影测量技术的高陡危岩体结构面调查方法[J]. 成都理工大学学报(自然科学版), 2023, 50(2): 218−228.

      YAO Futan, WU Mingtang, DONG Xiujun, et al. Investigation method of discontinuity in high and steep dangerous rock mass based on nap of the object photogrammetry[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2023,50(2):218−228.

      赵银鑫, 公亮, 吉卫波, 等. 宁夏银川市浅层地温能赋存条件和开发利用潜力评价[J]. 西北地质, 2023, 56(5): 172−184.

      ZHAO Yinxin, GONG Liang, JI Weibo, et al. Conditions for the Occurrence and Development and Utilization Potential Evaluation of Shallow Geothermal Energy in Yinchuan City, Ningxia[J]. Northwestern Geology,2023,56(5):172−184.

      周福军. 高原复杂山区铁路无人机倾斜摄影勘察技术应用研究[J]. 铁道标准设计, 2021, 65(6): 1−5.

      ZHOU Fujun. Application of Unmanned Aerial Vehicle Oblique Photography Survey Technology for Railway in Complex Plateau Mountain Area[J]. Railway Standard Design,2021,65(6):1−5.

      Abdelkarim A, Al-Alola S S, Alogayell H M, et al. Integration of GIS-Based Multicriteria Decision Analysis and Analytic Hierarchy Process to Assess Flood Hazard on the Al-Shamal Train Pathway in Al-Qurayyat Region, Kingdom of Saudi Arabia[J]. Water,2020(12):1702.

      Cheng M L, Matsuoka M. Extracting three-dimensional (3D) spatial information from sequential oblique unmanned aerial system (UAS) imagery for digital surface modeling[J]. International Journal of Remote Sensing,2020(42):1643−1663.

      Ding Y, Wang P, Liu X, et al. Risk assessment of highway structures in natural disaster for the property insurance[J]. Natural Hazards,2020(104):2663−2685.

      Du Y, Sheng Q, Fu X, et al. Risk evaluation of colluvial cutting slope based on fuzzy analytic hierarchy process and multilevel fuzzy comprehensive evaluation[J]. Journal of Intelligent & Fuzzy Systems,2019(37):4253−4271.

      Fan W, Wei X S, Cao Y B, et al. Landslide susceptibility assessment using the certainty factor and analytic hierarchy process[J]. Journal of Mountain Science,2017(14):906−925.

      Ferrero A M, Migliazza M, Roncella R, et al. Rock slopes risk assessment based on advanced geostructural survey techniques[J]. Landslides,2010(8):221−231.

      Gregory Lederer M. Nadir and Oblique Uav Photogrammetry Techniques for Quantitative Rock Fall Evaluation in the Rimrocks of South-Central Montana[D], Montana: Montana Technology. 2020.

      Guo B, Chen Z X, Zhang M, et al. Risk Assessment Index System for Soil-Similar Slopes and Application in Highway Engineering[C]. In "CICTP 2019: Transportation in China—Connecting the World", Nanjing, China. 2019, 799-810.

      Hepdeniz K. Using the analytic hierarchy process and frequency ratio methods for landslide susceptibility mapping in Isparta-Antalya highway (D-685), Turkey[J]. Arabian Journal of Geosciences,2020(13):795.

      Li A J, Khoo S, Lyamin A V, et al. Rock slope stability analyses using extreme learning neural network and terminal steepest descent algorithm[J]. Automation in Construction,2016(65):42−50.

      Myronidis D, Papageorgiou C, Theophanous S. Landslide susceptibility mapping based on landslide history and analytic hierarchy process (AHP)[J]. Natural Hazards,2015(81):245−263.

      Oboni F, Oboni C H. Holistic geoethical slope portfolio risk assessment[J]. Geological Society, London, Special Publications,2020(508):225−243.

      Pal S C, Das B, Malik S. Potential Landslide Vulnerability Zonation Using Integrated Analytic Hierarchy Process and GIS Technique of Upper Rangit Catchment Area, West Sikkim, India[J]. Journal of the Indian Society of Remote Sensing,2019(47):1643−1655.

      Panchal S, Shrivastava A K. Landslide hazard assessment using analytic hierarchy process (AHP): A case study of National Highway 5 in India[J]. Ain Shams Engineering Journal,2022(13):101626.

      Qiang Y, Wang G, Li R, et al. Risk assessment of geological hazards in mountain town scale based on FLO-2D and GIS[J]. IOP Conference Series: Earth and Environmental Science,2021(861):052042.

      Rashid B, Iqbal J, Su L J. Landslide susceptibility analysis of Karakoram highway using analytical hierarchy process and scoops 3D[J]. Journal of Mountain Science,2020(17):1596−1612.

      Saaty T L. Fundamentals of the Analytic Hierarchy Process[A]. Schmoldt D L, Kangas J, Mendoza G A, et al. , eds. The Analytic Hierarchy Process in Natural Resource and Environmental Decision Making, Managing Forest Ecosystems[C]. Springer, Dordrecht, 2001(3): 15-35.

      Saaty T L. Decision making with the analytic hierarchy process[J]. International Journal of Services Sciences,2008(1):83−98.

      Su H Z, Yang M, Wen Z P. Comprehensive evaluation of high rocky slope safety through an integrated analytic hierarchy process and extension matter model[J]. Natural Hazards and Earth System Sciences, 2016(16).

      Svennevig K, Guarnieri P, Stemmerik L. From oblique photogrammetry to a 3D model–Structural modeling of Kilen, eastern North Greenland[J]. Computers & Geosciences,2015(83):120−126.

      Tang F, Ruan Z, Li L. Application of unmanned aerial vehicle oblique photography in 3D modeling of crag[C]. In "Tenth International Conference on Digital Image Processing (ICDIP 2018)", Shanghai, China,2018,Proceedings Volume 10806.

      Tang Y, Guo Z, Wu L, et al. Assessing Debris Flow Risk at a Catchment Scale for an Economic Decision Based on the LiDAR DEM and Numerical Simulation[J]. Frontiers in Earth Science,2022(10):821735.

      Thiebes B, Bell R, Glade T, et al. A WebGIS decision-support system for slope stability based on limit- equilibrium modelling[J]. Engineering Geology,2013(158):109−118.

      Xiao H, Tang X, Zhang H. Risk Assessment of Debris Flow in Longchi Area of Dujiangyan based on GIS and AHP[J]. IOP Conference Series: Earth and Environmental Science,2020(474):042010.

      Yang W, Zheng Z, Zhang X, et al. Analysis of landslide risk based on fuzzy extension analytic hierarchy process[J]. Journal of Intelligent & Fuzzy Systems,2017(33):2523−2531.

      Yao X, Deng H, Zhang T, et al. Multistage fuzzy comprehensive evaluation of landslide hazards based on a cloud model[J]. PLoS One,2019(14):e0224312.

      Zhang J, He P, Xiao J, et al. Risk assessment model of expansive soil slope stability based on Fuzzy-AHP method and its engineering application[J]. Geomatics, Natural Hazards and Risk,2018(9):389−402.

    图(18)  /  表(9)
    计量
    • 文章访问数:  73
    • HTML全文浏览量:  4
    • PDF下载量:  58
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-09-19
    • 修回日期:  2023-09-27
    • 录用日期:  2023-12-11
    • 网络出版日期:  2024-01-02
    • 刊出日期:  2024-12-19

    目录

      /

      返回文章
      返回