Spatial and Temporal Framework, Evolution of Magma Sources, and Tectonic Settings of Paleozoic Magmatic Rocks in West Tianshan, China
-
摘要:
中亚造山带是全球最大、最典型的增生造山带,是全球显生宙陆壳生长最显著的地区之一。在中亚造山带形成过程中,伴随古亚洲洋的闭合,以及不同性质构造块体的拼贴碰撞,形成了巨量的岩浆岩。笔者以中亚造山带西段西天山出露的古生代岩浆岩为研究对象,系统总结了岩浆岩的时空格架、成因类型、源区特征和构造背景等特征。区内岩浆岩主要形成于3个阶段:寒武纪早期—中泥盆世早期(497~388 Ma)、晚泥盆世—早石炭世(375~323 Ma)、晚石炭世—中二叠世(322~263 Ma)。第一阶段和第二阶段的侵入岩组合主要为钙碱性I型花岗岩,以及具有“岛弧”地球化学特征的中、基性岩石,部分岩体具有埃达克质岩石的性质,并发育少量A型花岗岩。晚石炭世—中二叠世花岗岩等侵入岩以多样性的成分为特征,包括“正常的”钙碱性I型花岗岩、埃达克质岩石、A型花岗岩,以及局部出露的S型花岗岩,基性岩石中也出现较多具洋岛玄武岩特征的辉长岩和玄武岩。结合其他地质证据,笔者认为寒武纪早期—中泥盆世早期、晚泥盆世—早石炭世岩浆岩形成于与古亚洲洋洋分支洋盆俯冲有关的构造环境中,且岩浆活动的迁移和地球化学成分演化趋势均揭示俯冲过程中发生了多次从前进型、低角度俯冲到后撤型、高角度俯冲的转化。西天山南北洋盆的最终闭合均发生在晚石炭世。在南侧,古南天山洋的闭合跟随着大陆板块之间的“硬碰撞”。而在北侧,伊犁地块和中天山地块北缘与一不成熟/新生岛弧发生了“软碰撞”。就地壳演化的方式而言,基于Hf同位素资料所揭示的长英质岩浆岩源区物质演化,识别出西天山地区在在古生代交替发生大陆地壳物质再循环(continental reworking)和大陆生长(continental growth)。在俯冲阶段,大洋板片后撤(回卷)占据了主导性地位,导致了微陆块中增生造山作用开始之前形成的古老物质大量被同增生阶段形成的新生物质所置换,伊犁地块、中天山地块等块体是在古生代被显著“再更新(rejuvenation)”的古老微陆块。后碰撞伸展阶段大范围幔源岩浆底侵进一步造成了显著的地壳生长。整个古生代,西天山及邻区以地壳生长为主导。
Abstract:The Central Asian Orogenic Belt (CAOB) is Earth's largest and most representative accretionary belt and records the most extensive growth and reworking of the continental crust. Accompanying the closure of the giant Paleo-Asian Ocean and the amalgamation of tectonic blocks in the CAOB regime, with different origins and evolutionary histories, voluminous magmatic rocks were formed. This study focuses on Paleozoic magmatic rocks exposed in West Tianshan and systemically summarizes the spatiotemporal frameworks, genetic types, evolution of their magma sources in space and time, and tectonic settings of these rocks. Paleozoic magmatic rocks in West Tianshan were mainly formed at three stages, i.e., Early Cambrian to Middle Devonian (~479 to ~388 Ma), Late Devonian to Early Carboniferous (~375 to ~372 Ma), and Late Carboniferous to Middle Permian (~322 to ~263 Ma). Magmatic rocks formed at the first and second stages are mainly of calc-alkaline I-type granite and intermediate and mafic rocks with "arc-like" geochemical fingerprints, with a few rocks bearing "adakite-like" features; a few A-type granites are also found. By contrast, Late Carboniferous to Middle Permian magmatic rocks show a diversity in rock types, including calc-alkaline I-type, adakite-like, and A-type felsic rocks, with a few locally exposed S-type granites; OIB-like mafic rocks formed in this period, such as gabbros and basalts, occur locally. In combination with other geological evidence, this study proposes that Early Cambrian to early Middle Devonian and Late Devonian to Early Carboniferous magmatic activities took place in convergent continental margin settings, which were associated with the subduction of branches of the Paleo-Asian Ocean. Besides, both magmatic migration and secular changes in geochemical proxies indicate the transition from advancing low-angle to retreating high-angle subduction. The final closure of oceanic basins plausibly occurred in the Late Carboniferous. Following the closure of the South Tianshan Ocean, a "hard" collision with the arriving Tarim Craton occurred; by contrast, in the north, the northern margin of the Yili-Central Tianshan Block amalgamated with an immature/nascent island arc. In terms of continental evolution, based on Hf isotopic datasets, this study identifies alternating occurrences of growth and reworking. During subduction stages, retreating subduction (slab rollback) played a predominant role, resulting in large-scale replacement of ancient, pre-accretionary materials by new-formed, syn-accretionary materials. Therefore, Yili and Central Tianshan blocks, can be viewed as ancient microcontinents that were significantly rejuvenated during accretionary processes. In the post-collisional stage, large-scale underplating of mantle-derived magmas represents another phase of continental growth. During the Paleozoic, West Tianshan and adjacent regions were characterized dominantly by continental growth.
-
Keywords:
- Central Asian Orogenic Belt /
- West Tianshan /
- Paleozoic /
- magmatic rock /
- continental crustal growth
-
研究区南临祁连造山带,北接中亚造山带,其所处构造环境的特殊性对区域构造演化及板块运动有着重大意义。该地区岩浆演化期次及构造背景研究较为薄弱且存在较大争议,前人通过对合黎山地区五坝和张家窑岩体锆石U-Pb年代学及同位素地球化学特征研究,其年龄介于432~397 Ma,为中志留世—早泥盆世,认为阿拉善地块西南缘早古生代很可能受控于祁连造山带的构造演化,处于后碰撞拉伸环境(王增振等,2020);通过对龙首山西山头窑地区三期岩体锆石U-Pb年代学研究,其年龄介于304.3~281.2 Ma,为晚石炭世—早二叠世,处于弧后洋盆闭合过程,是古亚洲洋向南俯冲的结果(董国强等,2022);而强利刚等(2019)认为龙首山地壳在晚古生代处于拉伸的稳定阶段。对合黎山地区岩浆岩形成时代及构造环境研究存在重要意义。龙首山成矿带区内侵入岩发育广泛,主要为酸性、中酸性岩石,主要岩性以花岗岩、花岗闪长岩、英云闪长岩等为主(张甲民等,2017),前人对龙首山成矿带的研究工作主要以东段为主,且主要集中在早古生代(牛宇奔等,2018;刘文恒等,2019;王增振等,2020)。而不同构造环境下的侵入岩具有不同的地球化学特征及同位素特征,能有效反映其岩浆源区及构造演化等重要信息。笔者在前人工作基础上对该区花岗闪长岩开展了锆石U-Pb年代学、岩石地球化学及Lu-Hf同位素特征的研究,确定该岩体形成时代并探讨这些黑云母花岗闪长岩的成因问题及龙首山成矿带西南缘构造环境特征。
1. 区域地质概况
合黎山地处阿拉善地块龙首山成矿带西南缘,大地构造位置属于华北板块西南边缘(图1a)(谭文娟等,2012),北以龙首山北缘断裂与潮水中新生代断陷相邻(汤中立等,1999),南以南缘断裂与走廊过渡带分开。区内成矿条件有利(焦建刚等,2007)。龙首山成矿带是中国西北重要的铀成矿带(王承花,2010),同时中国著名的金川镍矿也位于该成矿带内(强利刚等,2019;张照伟等,2023)。
区内地质构造复杂,次级构造发育,逆冲构造及伸展构造叠加,总体构造为NWW向(甘肃省地质局,1974),出露地层包括前震旦系龙首山群的角闪岩相–绿片岩相变质岩等中级区域变质岩系,其与上覆地层均为不整合接触;震旦系下统及中上统的云母石英片岩、变粒岩及变质砂岩、大理岩等为主的浅变质岩,其下统与中—上统之间多为断层接触;侏罗系青土井群的砂岩、砂砾岩等为主的陆源碎屑岩夹煤层,其与上覆地层及下伏地层均为不整合接触;白垩系以砂砾岩、泥岩等为主的碎屑岩;第三系以砾岩、含砾砂岩为主的沉积岩及第四系松散堆积物(图1b)。
测区内岩浆岩发育广泛,主要为酸性、中酸性岩石为主,侵入活动主要是在加里东中期及华力西期,以华力西期侵入岩最为发育,主要岩性以花岗岩、花岗闪长岩、英云闪长岩等为主,其中以花岗闪长岩出露最为广泛,其次为英云闪长岩。罗城岩体主要为花岗闪长岩发育,其中可见花岗岩、闪长岩呈脉状发育。区内五坝和张家窑岩体锆石U-Pb年代学年龄介于432~397 Ma,为中志留世—早泥盆世(王增振等,2020);西山头窑地区岩体锆石U-Pb年代学年龄介于304.3~281.2 Ma,为晚石炭世—早二叠世。
2. 样品采集及岩石学特征
罗城岩体主要位于甘肃省高台县罗城镇北侧,其岩性主要为黑云母花岗闪长岩,野外岩体出露较为完整,笔者选取了合黎山地区高台县罗城幅的黑云母花岗闪长岩进行锆石U-Pb定年分析,共采集样品5件,其中岩石年龄同位素样品1件,并在岩石年龄同位素样品采集处配套采集岩石地球化学样品4件。样品采集地理坐标:E 99°43′39″,N 39°46′30″和E 99°41′43″,N 39°48′20″。为确保锆石数据准确性,样品均为未风化蚀变的新鲜岩石。
岩石新鲜面为灰白色,具半自形粒状结构,块状构造(图2a)。主要矿物及含量:斜长石(45%),石英(20%),碱性长石(15%),普通角闪石(15%),黑云母(5%)。斜长石粒径约0.30~1.30 mm,呈半形粒状、板状,具聚片双晶,表面浑浊,微裂隙发育,次生绢云母化,均匀分布。碱性长石粒径约0.20~1.10,呈半自形板状,具卡式双晶,少量分布。石英粒径约0.10~2.00 mm,呈他形粒状,波状消光,沿长石粒间分布。普通角闪石粒径约0.20~1.60 mm,呈他形柱状,黄褐色,截面呈菱面体状,具角闪石式解理,绿泥石化,沿长英质粒间定向分布。黑云母粒径约0.15~2.25 mm,呈鳞片状、片状,褐黄色-红褐色,沿长英质粒间定向分布。副矿物有磷灰石、绿帘石(图2b、图2c、图2d)。
3. 样品分析方法
样品的锆石挑选、制靶、CL照相由西安瑞石地质科技有限公司完成,采用标准重矿物分离技术分选出重矿物,随后在双目镜下挑选出锆石颗粒,将不同特征的锆石颗粒粘在双面胶上,并用无色透明的环氧树脂固定,待其固化之后将表面抛光至锆石内部暴露。然后拍摄阴极发光图像、透射光图像和反射光图像,选取分析点位。
锆石U-Pb定年和Hf同位素组成分析在中国地质调查局西安地质调查中心岩浆作用成矿与找矿重点实验室完成。锆石U-Pb定年在LA-ICP-MS仪器上用标准测定程序进行,样品采用激光剥蚀等离子体质谱仪原位分析锆石微区的铀铅比值(206Pb/238U、207Pb/235U和207Pb/206Pb)(李艳广等,2015)并通过Glitter计算程序计算锆石的年龄及标准偏差;应用Isoplot(Ludwig, 2003)计算程序对锆石样品的206Pb/238U年龄和207Pb/235U年龄在谐和图上进行投图,并计算谐和年龄测点的加权平均值。
锆石Hf同位素组成运用Neptune型多接收电感耦合等离子体质谱仪和GeolasPro型激光剥蚀系统联用的方法完成(袁洪林等,2007),所选测试位置均与锆石U-Pb测点位置相近,测试束斑直径为32 μm,采用国际标准锆石91500进行监控和样品外部校正。
主量元素和微量元素分析测试在中国地质调查局西安矿产资源调查中心完成,主量元素采用X荧光光谱仪进行分析,稀土和微量元素采用等离子质谱仪进行分析,测试结果见表1。
表 1 罗城黑云母花岗闪长岩主量元素(%)、微量元素(10−6)、稀土元素(10−6)分析结果表Table 1. Analysis results of major elements (%), trace elements (10−6) and rare earth elements (10−6) in Luocheng biotite granodiorite样品编号 LCYT03 LCYT04 LCYT05 LCYT06 SiO2 59.84 58.75 58.52 59.09 Al2O3 16.91 17.25 17.28 17.28 Fe2O3 7.13 7.82 7.55 7.61 CaO 6.33 6.70 6.93 6.68 MgO 3.13 3.38 3.53 3.34 K2O 1.87 1.49 1.49 1.54 Na2O 2.52 2.60 2.55 2.60 P2O5 0.13 0.15 0.15 0.15 TiO2 0.68 0.74 0.77 0.75 MnO 0.13 0.14 0.14 0.14 LOI 1.03 0.74 0.85 0.60 总和 99.70 99.76 99.75 99.79 K2O+Na2O 4.40 4.09 4.04 4.15 K2O/Na2O 0.74 0.57 0.59 0.59 δ 1.15 1.06 1.05 1.07 A/NK 2.74 2.93 2.98 2.9 A/CNK 0.97 0.97 0.96 0.97 Rb 61.1 49.2 40.6 46.9 Th 3.37 4.58 5.70 8.46 U 0.79 0.72 0.74 0.75 Nb 4.48 4.76 4.64 4.64 Sr 376 429 413 403 Zr 84.3 112 88.6 118 Hf 2.34 2.79 2.23 2.97 F 454 320 663 360 Sn <1.80 <1.80 <1.80 <1.80 Cr 12.9 17.6 14.1 14.1 Li 16.8 18.3 17.3 17.4 Be 0.76 0.87 0.86 0.79 V 166 186 180 174 Co 15.3 16.2 15.6 15.3 Ni 8.36 10.9 11.2 10.4 Ga 16.6 17.7 16.3 16.4 Cs 2.52 2.92 2.69 3.15 Ta 0.33 0.35 0.34 0.35 W 2.30 1.91 1.81 1.80 Bi 0.073 0.070 <0.050 0.057 La 12.0 14.3 12.5 12.5 Ce 27.1 28.9 25.5 25.7 Pr 3.60 3.59 3.32 3.21 Nd 16.4 15.3 14.6 14.1 Sm 3.91 3.37 3.28 3.14 Eu 1.05 1.07 1.05 1.03 Gd 4.14 3.54 3.49 3.41 Tb 0.66 0.55 0.54 0.52 Dy 4.04 3.28 3.24 3.15 Ho 0.83 0.68 0.67 0.65 Er 2.54 2.03 2.02 1.95 Tm 0.36 0.29 0.29 0.28 Yb 2.33 1.88 1.87 1.84 Lu 0.36 0.30 0.30 0.29 Y 21.3 17.2 16.9 16.4 ΣREE 79.32 79.08 72.67 71.77 LREE 64.06 66.53 60.25 59.68 HREE 15.26 12.55 12.42 12.09 LREE/HREE 4.20 5.30 4.85 4.94 (La/Yb)N 3.69 5.46 4.79 4.87 δEu 0.80 0.95 0.95 0.96 δCe 1.01 0.99 0.97 0.99 4. 分析结果
4.1 锆石U-Pb定年分析
样品的锆石颗粒的CL图像(图3)显示所选的锆石为透明的自形晶体,为无色透明或浅黄色,大部分锆石结晶较好,短柱状晶形,阴极发光电子图像特征均显示出典型的岩浆结晶韵律环带结构。
本次所选锆石样品25颗,均为有效样品,黑云母花岗闪长岩锆石U-Pb分析测试结果见表2,锆石Th含量为34.81×10−6~129.66×10−6,U含量为52.88×10−6~147.36×10−6,Th/U值为0.55~0.97,均大于0.4,说明锆石为岩浆成因(吴元保等,2004)。锆石微量元素测试结果见表3,其显示出重稀土富集,相对亏损轻稀土元素的特征,显示典型的岩浆锆石成因特征(Hoskin,2000)。锆石谐和图反映出锆石U-Pb年龄数据分布比较集中且谐和程度较好(图4a),所有数据协和度均符合要求,证明数据均有效。通过数据分析得到206Pb/238U加权平均年龄为(289±3)Ma,(MSWD=0.57),代表岩浆结晶年龄(图4b)。
表 2 罗城花岗闪长岩(LCYT01)锆石LA-ICP-MS测年结果Table 2. Zircon LA-ICP-MS dating results of Luocheng granodiorite (LCYT01)测点号 含量(10−6) Th/U 同位素比值 同位素年龄 Pb Th U 207Pb/206Pb ±1δ 207Pb/235U ±1δ 206Pb/238U ±1δ 208Pb/232Th ±1δ 207Pb/206Pb ±1δ 207Pb/235U ±1δ 206Pb/238U ±1δ 208Pb/232Th ±1δ LCYT001 15.96 79.28 81.67 0.97 0.05153 0.00423 0.32079 0.02551 0.04511 0.00102 0.01452 0.00048 264.4 177.81 282.5 19.61 284.5 6.28 291.3 9.56 LCYT002 14.25 47.28 72.22 0.65 0.05202 0.0046 0.32939 0.02827 0.04589 0.00108 0.01269 0.00063 286.1 189.7 289.1 21.59 289.2 6.68 255 12.64 LCYT003 12.04 34.81 63.55 0.55 0.0524 0.00697 0.32463 0.04227 0.0449 0.00134 0.01375 0.00088 302.7 277.82 285.5 32.4 283.2 8.26 276.1 17.48 LCYT004 19.92 93.99 98.06 0.96 0.04923 0.00498 0.31772 0.03138 0.04678 0.00114 0.01432 0.00059 158.7 220.85 280.1 24.18 294.7 7.05 287.5 11.7 LCYT005 11.37 41.91 57.97 0.72 0.0517 0.00762 0.33365 0.04817 0.04678 0.00152 0.01611 0.00095 272.2 306.78 292.4 36.67 294.7 9.39 323 18.95 LCYT006 16.79 80.92 85.36 0.95 0.05021 0.00438 0.31261 0.02651 0.04513 0.00103 0.01345 0.00049 204.9 190.68 276.2 20.51 284.6 6.35 270 9.73 LCYT007 27.09 129.66 147.36 0.88 0.05412 0.00356 0.342 0.0216 0.04582 0.00096 0.01384 0.00042 375.8 141.54 298.7 16.34 288.8 5.93 277.8 8.4 LCYT008 12.51 45.55 65.96 0.69 0.05029 0.0043 0.32015 0.0266 0.04616 0.00106 0.01535 0.00062 208.3 187.16 282 20.46 290.9 6.51 307.8 12.31 LCYT009 13.69 45.68 72.34 0.63 0.05153 0.00444 0.33081 0.02763 0.04656 0.00109 0.01519 0.00068 264.4 186.14 290.2 21.08 293.3 6.73 304.7 13.59 LCYT010 12.68 46.02 66.65 0.69 0.05115 0.00472 0.33038 0.0297 0.04685 0.00111 0.01457 0.00063 247.4 199.46 289.9 22.67 295.1 6.83 292.5 12.53 LCYT011 13.09 49.92 68.97 0.72 0.04792 0.00563 0.30937 0.03563 0.04682 0.00122 0.01473 0.00087 94.2 257.92 273.7 27.63 295 7.49 295.6 17.3 LCYT012 12.53 47.8 65.53 0.73 0.0521 0.00482 0.33683 0.03033 0.04689 0.00112 0.01606 0.00063 289.7 198 294.8 23.04 295.4 6.87 322 12.57 LCYT013 18.31 92.71 98.11 0.94 0.05178 0.0039 0.32956 0.02399 0.04618 0.001 0.01362 0.00044 275.6 163.56 289.2 18.32 291 6.19 273.3 8.78 LCYT014 19 93.38 105.35 0.89 0.05329 0.00398 0.3273 0.02358 0.04457 0.00099 0.01433 0.00046 340.9 160.32 287.5 18.04 281.1 6.09 287.6 9.21 LCYT015 15.16 51.53 80.72 0.64 0.04948 0.00412 0.30521 0.02472 0.04476 0.00098 0.01424 0.00055 170.8 183.56 270.5 19.23 282.3 6.06 285.7 11.06 LCYT016 14.01 55.43 76.33 0.73 0.0503 0.00537 0.30848 0.03208 0.04451 0.00118 0.01286 0.00065 209 229.96 273 24.9 280.7 7.27 258.2 12.91 LCYT017 11.3 45.88 60.72 0.76 0.05239 0.00499 0.33231 0.03079 0.04604 0.00115 0.01288 0.0006 302.4 203.45 291.3 23.47 290.1 7.1 258.6 11.9 LCYT018 16.38 73.42 88.24 0.83 0.05321 0.0037 0.3292 0.02201 0.0449 0.00096 0.01409 0.00044 337.7 149.52 289 16.81 283.2 5.92 282.7 8.81 LCYT019 15.81 76.58 80.92 0.95 0.05166 0.00378 0.32813 0.02317 0.0461 0.00099 0.01466 0.00044 270.4 159.18 288.1 17.72 290.6 6.07 294.2 8.75 LCYT020 13.2 53.42 68.41 0.78 0.05023 0.00423 0.31534 0.02582 0.04557 0.00103 0.0151 0.00054 205.7 184.61 278.3 19.93 287.3 6.36 302.9 10.68 LCYT021 10.77 36.85 52.88 0.70 0.05095 0.0044 0.32225 0.02702 0.04592 0.00105 0.01367 0.00064 238.6 187.4 283.6 20.75 289.4 6.46 274.3 12.67 LCYT022 13.95 47.61 68.78 0.69 0.05283 0.00388 0.34372 0.02436 0.04724 0.00102 0.01389 0.00055 321.3 157.94 300 18.41 297.6 6.25 278.8 10.94 LCYT023 23.03 103.73 117.27 0.88 0.05235 0.00313 0.33694 0.01926 0.04673 0.00094 0.01421 0.00041 300.6 130.55 294.9 14.63 294.4 5.77 285.2 8.1 LCYT024 16.81 56.88 85.69 0.66 0.05387 0.00347 0.34195 0.02113 0.04609 0.00095 0.01337 0.00048 365.6 138.52 298.6 15.99 290.5 5.83 268.4 9.65 LCYT025 14.8 67.05 76.38 0.88 0.05203 0.00384 0.33011 0.02359 0.04608 0.00099 0.01419 0.00047 286.8 160.34 289.7 18 290.4 6.11 284.8 9.33 表 3 罗城花岗闪长岩锆石分析点位微量元素(10−6)测试结果Table 3. Test results of trace elements (10−6) at zircon analysis points of Luocheng granodiorite测点号 Nb La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Ta LCYT001 1.10 0.06 8.23 0.05 0.23 0.49 1.28 27.74 0.78 107.27 40.27 181.12 35.88 339.17 66.63 0.28 LCYT002 0.49 0.04 6.69 0.03 2.07 3.33 0.40 11.13 8.82 67.14 26.56 126.02 27.32 290.78 57.98 0.24 LCYT003 0.61 0.00 6.26 0.02 0.49 2.64 0.29 7.43 4.65 45.16 17.35 87.13 19.02 192.36 38.24 0.27 LCYT004 0.63 0.06 9.25 0.08 0.44 0.69 1.15 25.90 3.00 112.88 44.64 196.44 39.56 377.09 71.61 0.26 LCYT005 0.55 0.00 6.42 0.03 1.79 4.98 0.36 8.45 9.99 40.51 19.27 87.53 19.76 189.52 37.30 0.23 LCYT006 0.52 0.01 9.03 0.05 0.63 1.34 0.91 24.92 3.67 102.58 38.80 175.98 35.30 323.64 65.73 0.28 LCYT007 0.46 0.02 17.04 0.11 1.55 2.65 0.85 24.04 6.96 113.49 45.17 206.58 43.34 418.84 82.25 0.41 LCYT008 1.37 0.00 7.31 0.03 1.49 3.08 0.46 10.50 8.69 50.85 20.86 97.32 21.63 218.50 42.57 0.30 LCYT009 0.53 0.04 7.76 0.02 0.67 1.58 0.24 7.99 4.06 43.08 18.56 85.81 19.58 193.52 36.74 0.31 LCYT010 0.65 0.00 7.39 0.03 0.40 1.28 0.24 11.38 3.43 52.67 20.97 98.21 22.28 213.94 42.28 0.26 LCYT011 0.67 0.01 7.65 0.05 0.44 2.14 0.43 11.65 4.08 54.24 22.14 101.02 21.59 221.82 41.65 0.21 LCYT012 0.58 0.24 7.21 0.07 0.73 1.88 0.48 9.62 4.43 51.70 20.95 100.70 22.19 222.33 43.83 0.39 LCYT013 3.01 0.01 9.21 0.08 1.56 2.82 0.95 24.93 3.94 113.56 45.37 198.15 41.36 399.32 71.97 0.38 LCYT014 0.66 0.01 9.65 0.07 1.79 3.63 1.15 28.87 9.60 117.65 44.48 198.85 41.00 392.05 76.11 0.34 LCYT015 0.58 0.00 8.44 0.02 2.16 4.68 0.33 10.50 9.83 52.88 20.95 100.98 22.47 230.32 44.42 0.31 LCYT016 0.74 0.00 7.73 0.04 0.49 1.29 0.40 12.46 4.08 61.43 26.20 120.97 26.57 261.96 52.64 0.38 LCYT017 0.73 0.00 6.93 0.02 0.87 2.13 0.43 12.06 5.04 54.07 23.41 106.05 23.33 232.88 44.25 0.33 LCYT018 0.84 0.01 8.09 0.06 0.57 1.82 0.83 20.89 4.58 92.58 36.57 172.39 35.31 347.52 67.40 0.29 LCYT019 0.61 0.00 8.04 0.06 1.53 3.32 0.97 26.28 7.25 103.33 41.09 175.93 36.48 349.56 66.29 0.23 LCYT020 0.47 0.00 7.31 0.02 1.72 5.06 0.39 14.22 8.78 63.23 24.83 115.49 25.21 238.91 45.30 0.22 LCYT021 0.57 0.01 5.70 0.02 0.69 1.87 0.53 10.94 5.15 53.16 21.38 104.62 22.91 221.56 45.69 0.30 LCYT022 0.53 0.04 6.60 0.03 0.27 1.73 0.46 12.33 3.89 67.24 25.79 122.86 27.12 273.00 52.93 0.28 LCYT023 0.70 0.04 9.56 0.09 0.57 1.92 1.18 27.41 5.00 122.96 49.00 227.37 46.39 456.07 89.13 0.38 LCYT024 1.14 0.04 8.63 0.02 1.85 4.19 0.28 9.30 10.49 48.68 20.06 95.23 20.74 214.10 41.88 0.34 LCYT025 1.12 0.02 7.63 0.07 1.41 2.91 1.04 22.23 4.01 93.47 36.23 160.65 34.00 327.88 65.05 0.25 4.2 锆石Hf同位素特征
在LA-ICP-MS锆石U-Pb测年的基础上,对黑云母花岗闪长岩样品25颗锆石测点进行了锆石微区Hf同位素测定。测点的数据分析结果(表4)。176Yb/177Hf值介于
0.012222351 ~0.042050552 ,176Lu/177Hf值介于0.00042471 ~0.001378472 ,均小于0.002,说明锆石在形成后具有很少的放射成因Hf的积累。因此,锆石 176Hf/177Hf值可能代表该锆石形成时的176Hf/177Hf值(吴福元等,2007),176Hf/177Hf值介于0.282726048 ~0.282787588 ,εHf(t)值均为正值,介于+4.37~+6.88,平均为+5.6,通过锆石Hf同位素εHf(t)-U-Pb年龄t(Ma)图解(图5a),测点均落在球粒陨石–亏损地幔之间,反映其源区为年轻的幔源组分或新生地壳,Hf同位素一阶段模式年龄T(DM1)分布范围为615.4~703.0 Ma,平均值为660.5 Ma,地壳模式年龄T(DMC)分布范围为808.6~952.5 Ma,平均值为882.8 Ma,地壳模式年龄T(DMC)较集中(图5b)。表 4 黑云母花岗闪长岩锆石Hf同位素分析结果Table 4. Zircon Hf isotope analysis results of biotite granodiorite分析点 t(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf ±2σ Hfi εHf (0) εHf (t) ±1σ T(DM1) T(DMC) ±1σ fLu/Hf LCYT01-01 284.5 0.018558653 0.000625497 0.282772262 0.0000194150 0.282769 0.079994272 6.14162 0.679525 634.4 846.8 0.06673 - 0.9583 LCYT01-02 289.2 0.021350813 0.00072988 0.282742229 0.0000173343 0.282738 - 0.982120012 5.16050 0.606701 676.8 910.5 0.065471 - 0.95134 LCYT01-03 283.2 0.018541903 0.0006332 0.282761526 0.0000162177 0.282758 - 0.299686693 5.73214 0.56762 649.0 871.0 0.062774 - 0.95779 LCYT01-04 294.7 0.022088228 0.000738473 0.282787588 0.0000174089 0.282784 0.621999168 6.88254 0.609311 615.4 808.6 0.063449 - 0.95077 LCYT01-05 294.7 0.016473205 0.000610408 0.282734375 0.0000178101 0.282731 - 1.259864349 5.02445 0.623354 685.4 922.9 0.066228 - 0.95931 LCYT01-06 284.6 0.03087808 0.00103004 0.282748701 0.0000169380 0.282743 - 0.753226632 5.23386 0.59283 673.2 902.5 0.065308 - 0.93133 LCYT01-07 288.8 0.019725731 0.000669661 0.282759209 0.0000166409 0.282756 - 0.381620593 5.76427 0.582432 652.8 873.1 0.063558 - 0.95536 LCYT01-08 290.9 0.025750031 0.000867335 0.282742988 0.0000180678 0.282738 - 0.955258813 5.19757 0.632374 678.1 909.3 0.066791 - 0.94218 LCYT01-09 293.3 0.021818077 0.00074069 0.282752659 0.0000170188 0.282749 - 0.61326993 5.61588 0.595659 662.8 885.4 0.06456 - 0.95062 LCYT01-10 295.1 0.031810315 0.001072333 0.282760072 0.0000185273 0.282754 - 0.35109486 5.85224 0.648455 658.3 872.0 0.067113 - 0.92851 LCYT01-11 295 0.032320695 0.00106083 0.282770029 0.0000187588 0.282764 0.001027859 6.20471 0.656558 644.5 850.3 0.066935 - 0.92928 LCYT01-12 295.4 0.025753941 0.00084072 0.282744619 0.0000195056 0.28274 - 0.897570925 5.35710 0.682698 675.5 902.8 0.068675 - 0.94395 LCYT01-13 291 0.042050552 0.001378472 0.282744602 0.0000188351 0.282737 - 0.898174811 5.15840 0.659227 684.9 911.5 0.069048 - 0.9081 LCYT01-14 281.1 0.025917388 0.000895112 0.282777258 0.0000173229 0.282773 0.256671065 6.19473 0.606302 631.9 840.9 0.064172 - 0.94033 LCYT01-15 282.3 0.012222351 0.00042471 0.282730661 0.0000185893 0.282728 - 1.391186427 4.65946 0.650625 687.1 936.4 0.06705 - 0.97169 LCYT01-16 280.7 0.026071795 0.00089378 0.282726048 0.0000187777 0.282721 - 1.5543273 4.37430 0.65722 701.7 952.5 0.068661 - 0.94041 LCYT01-17 290.1 0.026377494 0.000892334 0.282753361 0.0000177671 0.282749 - 0.588435111 5.54265 0.621848 664.4 887.5 0.065933 - 0.94051 LCYT01-18 283.2 0.024916918 0.000880457 0.282778938 0.0000203212 0.282774 0.316093287 6.30197 0.711244 629.4 835.9 0.068288 - 0.9413 LCYT01-19 290.6 0.018210323 0.000633771 0.282781801 0.0000175364 0.282778 0.417339793 6.60951 0.613775 621.6 822.4 0.063668 - 0.95775 LCYT01-20 287.3 0.01802085 0.000615423 0.282772775 0.0000170572 0.282769 0.098119936 6.22222 0.597003 633.5 843.9 0.06338 - 0.95897 LCYT01-21 289.4 0.020384277 0.000718113 0.282742372 0.0000184710 0.282738 - 0.9770409 5.17215 0.646485 676.4 909.9 0.067032 - 0.95213 LCYT01-22 297.6 0.02594746 0.000881354 0.282760012 0.0000161587 0.282755 - 0.353235735 5.94105 0.565556 655.2 868.5 0.063322 - 0.94124 LCYT01-23 294.4 0.029427132 0.001014853 0.282726672 0.0000206482 0.282721 - 1.532286504 4.66656 0.722688 703.0 944.4 0.071574 - 0.93234 LCYT01-24 290.5 0.018539508 0.000641115 0.282769911 0.0000162977 0.282766 - 0.003162189 6.18517 0.570421 637.8 848.5 0.062508 - 0.95726 LCYT01-25 290.4 0.021881036 0.000749457 0.282741158 0.0000155788 0.282737 - 1.019970646 5.14473 0.545259 678.6 912.3 0.063102 - 0.95004 图 5 罗城黑云母花岗闪长岩锆石εHf(t)-t(Ma)图解(a)(据李良等,2018)和地壳模式年龄T(DMC)统计直方图(b)Figure 5. (a)Zircon εHf(t)-t (Ma) diagram (According to LI Liang et al., 2018) and (b) crustal model age T (DMC) statistical histogram (b) of Luocheng biotite granodiorite4.3 主量元素特征
合黎山地区罗城黑云母花岗闪长岩的主量元素分析结果见表1,其SiO2含量介于58.52%~59.84%,Al2O3含量介于16.91%~17.28%。全碱含量Na2O+K2O介于4.04%~4.40%,相对富碱,Na2O含量介于2.52%~2.60%,K2O含量介于1.49%~1.87%,富钠贫钾。里特曼指数δ介于1.05~1.15。根据CIPW标准矿物计算(Le Maitre,1979),石英(Qtz)含量介于18.97%~20.69%,碱性长石(A)含量介于11.6%~14.66%,斜长石(Pl)含量介于47.86%~50.76%,在Q-A-P图解中(图6a),处在花岗闪长岩区域中。SiO2-(Na2O+K2O-CaO)图解(图6b)反应岩石属于钙性系列。SiO2-K2O图解(图6c)反映岩石主体属于钙碱性系列。铝饱和指数A/CNK比较集中,介于0.96~0.97,A/NK介于2.74~2.98,在A/CNK-A/NK图解中(图6d),处在准铝质范围内。
图 6 罗城黑云母花岗闪长岩Q-A-P图解(a)(据Streckeisen, 1976)、SiO2-(Na2O+K2O-CaO)图解(b)(据Peccerillo et al., 1976)、SiO2-K2O图解(c)(据Peccerillo et al., 1976)及A/NK-A/CNK图解(d)(据Maniar et al.,1989)Figure 6. (a) Q-A-P diagram of Luocheng biotite granodiorite, (b) SiO2- (Na2O+K2O-CaO) diagram, (c) SiO2-K2O diagram and (d) A/NK-A/CNK diagrams4.4 微量元素特征
合黎山地区罗城黑云母花岗闪长岩的稀土元素分析结果见表1,其稀土元素总量ΣREE在71.77×10−6~79.32×10−6之间,平均为75.71×10−6。LREE/HREE值在4.20~5.30之间,平均为4.82,相对富集轻稀土,亏损重稀土。(La/Yb)N在3.69~5.46之间,平均为4.70,稀土元素球粒陨石标准化配分曲线图(图4a)中显示稀土元素为右倾型配分模式。δEu值在0.80~0.96之间,平均值为0.91,Eu具轻度负异常,说明在岩浆演化过程中有少量的斜长石分离结晶作用。
合黎山地区罗城黑云母花岗闪长岩的微量元素分析结果见表1,在微量元素原始地幔标准化蛛网图(图7b)上可见,岩石均相对富集Rb、Th、K等大离子亲石元素,亏损Nb、Ta、P、Ti等高场强元素。
5. 讨论
5.1 岩体成岩时代及岩石成因
合黎山地区罗城岩体锆石自形程度好,具有典型的岩浆结晶韵律环带结构(图5),且Th/U值均大于0.4,为典型的岩浆锆石(王新雨等,2023;李平等,2024),其锆石数据谐和度较高,206Pb/238U加权平均年龄为(289±3) Ma ,可代表岩浆结晶年龄,因此,合黎山地区罗城岩体形成于早二叠世。
合黎山地区罗城花岗闪长岩Ga含量为16.3×10−6~17.7×10−6,Al2O3含量为16.91%~17.28%,10000Ga/Al值为1.78~1.93,平均为1.84,小于A型花岗岩下限2.6(Whalen et al., 1987),在Zr-10000Ga/Al、Ce-10000Ga/Al、Y-10000Ga/Al图解(图8b、 图8c、图8d)中,罗城岩体均投影在I&S花岗岩区域,在K2O-Na2O图解(图8a)中,罗城岩体均处于I型花岗岩区域。根据岩石主量元素特征可知,罗城花岗闪长岩具有钙碱性、准铝质特征,其A/CNK比较集中,介于0.96~0.97,均小于1.1,与I型花岗岩一致(Chappell et al., 1992;李宏卫等,2021),且P2O5含量与SiO2含量存在负线性关系,与I型花岗岩演化趋势一致(Wolf et al., 1994)。综合判断分析,罗城花岗闪长岩属于结晶分异I型花岗岩。
图 8 罗城黑云母花岗闪长岩K2O-Na2O图解(a)及Zr、Ce、Y-10000Ga图解(b、c、d)(据Whalen et al.,1987)Figure 8. (a) K2O-Na2O and (b, c, d) Zr, Ce, Y-10000 Ga diagram of Luocheng biotite granodiorite5.2 岩浆起源及演化特征
I型花岗岩主要来源于板块边缘陆壳下部,可能与地壳岩石的部分熔融(徐克勤等,1982)、交代岩石圈地幔部分熔融(Jiang et al., 2006)等有关,罗城黑云母花岗闪长岩属于钙碱性系列,富集Rb、Th、K等大离子亲石元素和轻稀土元素,亏损Nb、Ta、P、Ti等高场强元素,指示岩体具有大陆地壳物质的参与,岩石Nb/Ta=13.25~13.65,平均值为13.52,接近大陆地壳Nb/Ta值(=10~14)。在判断源岩的C/MF-A/MF图解(图9a)中,显示岩体源岩可能为基性岩的部分熔融,岩石δEu值具轻度负异常,在0.80~0.96之间,平均值为0.91,说明在岩浆演化过程中有少量的斜长石分离结晶作用,在δEu-(La/Yb)N图解中(图9b),样品投点均落在了壳源与壳幔混合源花岗岩区域,La/Ta值为35.71~40.86,大于起源于岩石圈地幔或受其混染岩浆La/Ta值的下限25,指示其为幔源或者壳幔混合源(Lassiter et al., 1997)。
罗城黑云母花岗闪长岩锆石Hf二阶段模式年龄T(DMC)分布范围为808.6~952.5 Ma,εHf(t)值介于+4.37~+6.88,通过锆石εHf(t)-U-Pb年龄t(Ma)图解(图7a),测点均落在球粒陨石–亏损地幔之间,反映其源区为年轻的幔源组分或具有新生地壳演化趋势(李金超等,2021)。
在野外工作中,在黑云母花岗闪长岩中发现暗色微细粒包体发育(图10),包体形态可见椭圆状、圆状、透镜状以及不规则状,大小差异较大,包体常具淬冷边,证明岩浆发生混合作用(王德滋等,2008;张建军等,2012);Mg#值可以指示壳源岩浆作用是否有幔源物质的参与,在地幔组分参与时,才能导致熔体的Mg#值大于40(Rapp et al., 1995),岩石MgO含量介于3.13%~3.53%,Mg#值介于0.64~0.66,明显高于40,表明岩体源岩明显具幔源岩浆加入。
基于上述讨论,罗城花岗闪长岩为壳源岩浆与幔源岩浆发生混合作用的产物,这种作用是由于地壳深部存在强烈的地幔岩浆底侵作用,导致新生地壳部分熔融并混入底侵的幔源物质。幔源的高温基性岩浆底侵,为其提供了少量物质来源,使岩石地球化学特征上既表现出壳源特征,也表现出幔源物质的信息。
5.3 构造背景
罗城黑云母花岗闪长岩富集Rb、Th、K等大离子亲石元素和轻稀土元素,亏损Nb、Ta、P、Ti等高场强元素,具有典型的岛弧岩浆岩特征(王秉璋等,2021),其形成与大洋板片俯冲消减作用有关。通过对黑云母花岗闪长岩构造背景判别,在Rb-(Y+Nb)(图11a)、Nb-Y(图11b)及Hf-Rb/30-3Ta(图11c)图解中,样品均落在火山弧花岗岩区域;在R1-R2(图11d)图解中,样品落在地幔分异花岗岩与碰撞前花岗岩交界区域。
图 11 花岗闪长岩构造背景判别Rb-(Y+Nb)(a)、Nb-Y(b)(据Pearce et al., 1984)、Hf-Rb/30-3Ta(c)(据Harris et al., 1986)图解及R1-R2(d)(据Batchelor et al., 1985)图解① 地幔分异花岗岩;② 破坏性活动板块边缘 (板块碰撞前) 花岗岩;③ 板块碰撞后隆起期花岗岩;④ 晚造期花岗岩;⑤ 非造山区花岗岩;⑥ 同碰撞花岗岩;⑦造山期花岗岩Figure 11. Identification of granodiorite structural background (a) Rb-(Y+Nb), (b) Nb-Y, (c) Hf-Rb/30-3Ta and (d) R1-R2 diagram罗城岩体位于龙首山造山带的西南缘大陆边缘活动带和祁连裂谷的发育构成了龙首山成矿带特定的构造环境(王承花,2010)。龙首山地区地壳演化自早古生代至中新生代经历了活动-稳定-再活动-再稳定-又活动的发展阶段,其在晚古生代处于稳定的拉张环境(强利刚等,2019),早古生代祁连造山带经历了北祁连洋向南俯冲,俯冲受阻,转为向北俯冲,引起北祁连岛弧与阿拉善陆块的碰撞,从而形成了一系列火山弧I型花岗岩(夏林圻等,2003;刘文恒等,2019;王增振等,2020)。罗城二叠纪黑云母花岗闪长岩指示其形成环境为岩浆弧,且R1-R2判别图解指示其形成环境为碰撞前消减花岗岩环境,说明在晚古生代该区还存在一期俯冲碰撞活动,与前人对龙首山晚石炭世—早二叠世西山头窑地区岩体处于弧后洋盆闭合过程,是古亚洲洋向南俯冲的结果(董国强等,2022)相吻合,同时与前人认为的北山地区二叠纪时期仍发生的俯冲–增生造山过程延续可至三叠纪(宋东方等,2018)存在相关性,而并非处于拉张稳定发展期(强利刚等,2019)。
6. 结论
(1)通过对罗城黑云母花岗闪长岩LA-ICP-MS锆石U-Pb测年得出,岩石锆石结晶年龄为(289±3) Ma ,属于早二叠世,指示了区域上华力西期的强烈构造岩浆事件。
(2)通过罗城黑云母花岗闪长岩岩相学、岩石地球化学及Hf同位素特征,岩体富集Rb、Th、K等大离子亲石元素和轻稀土元素,亏损Ba、Nb、Ta、P等高场强元素,属于准铝质钙碱性I型花岗岩,是由新生地壳部分熔融并混入底侵幔源物质的产物,指示了地壳深部强烈的地幔岩浆底侵作用。
(3)罗城黑云母花岗闪长岩地球化学特征指示其形成于碰撞前的消减花岗岩环境,结合龙首山地区构造演化历史,表明该区在晚古生代还存在一期俯冲碰撞,而并非一直处于拉张稳定发展期。
-
图 1 中亚造山带及相邻克拉通位置略图(a)(据Şengör et al.,2018;Xiao et al., 2015修改)、中国西天山主要构造单元岩浆岩图(b)
岩浆岩年龄数据主要来源自Huang等(2020),含部分新测和新搜集样品数据
Figure 1. (a) Map showing the location of the Central Asian Orogenic Belt, (b) Map showing major tectonic domains and the distribution of magmatic rocks
图 2 西天山各期岩浆岩的K2O+Na2O-SiO2图解(底图据Middlemost,1994)、K2O+Na2O-CaO-SiO2图解(底图据Frost et al.,2001)和K2O-SiO2图解(底图据Peccerillo et al.,1976)
岩浆岩地球化学数据主要来源自Huang等(2020),含部分新测和新搜集样品数据
Figure 2. Total alkaline K2O+Na2O-SiO2 versus SiO2, K2O+Na2O-CaO versus SiO2 diagram, and K2O versus SiO2, diagrams for Paleozoic magmatic rocks in the West Tianshan
图 3 西天山古生代花岗岩等岩浆岩微量元素图解
Zr-10000Ga/Al和 (K2O+Na2O)/CaO vs.-Zr+Nb+Ce+Y图解底图据Whalen等(1987);岩浆岩地球化学数据主要来源自Huang等(2020),含部分新测和新搜集样品数据
Figure 3. Trace elemental plots for Paleozoic magmatic rocks in the West Tianshan. Plots of Zr versus 10000Ga/Al and (K2O+Na2O)/CaO versus Zr+Nb+Ce+Y
图 4 西天山古生代岩浆–构造演化综合示意图
各时代侵入岩面积直方图引自项目组未发表编图成果;样品年龄分布直方图原始数据引自Huang等(2020)
Figure 4. Sketchatic diagram describing the Paleozoic tectonomagmatic evolution of West Tianshan
图 5 西天山古生代长英质岩石Hf模式年龄等值线图
基于长英质岩石岩浆锆石Hf同位素模式年龄均值(剔除异常值后)以反距离权重法进行空间插值生成;数据主要来源自Huang 等(2020),含部分新测和新搜集样品数据;数据处理和空间插值流程可见Huang等(2024)
Figure 5. Contour map of two-stage Hf model age of Paleozoic felsic magmatic rocks in West Tianshan
图 6 西天山整体及各个构造单元花岗岩和长英质火山岩的锆石年龄-εHf(t)图解
岩浆岩锆石Hf同位素数据引自Huang等(2020);北天山造山带浊积岩样品的碎屑锆石数据见Wang等(2018a)
Figure 6. Plot of εHf(t) values vs. U-Pb ages of zircons from Paleozoic granitoid intrusions and felsic volcanic suites in the West Tianshan
-
陈新跃, 王岳军, 孙林华, 等. 天山冰达坂和拉尔敦达坂花岗片麻岩SHRIMP锆石年代学特征及其地质意义[J]. 地球化学, 2009, 38(5): 424−431. doi: 10.3321/j.issn:0379-1726.2009.05.002 CHEN Xinyue, WANG Yuejun, SUN Linhua, et al. Zircon SHRIMP U-Pb dating of the granitic gneisses from Bingdaban and Laerdundaban (Tianshan Orogen) and their geological significances[J]. Geochimica,2009,38(5):424−431. doi: 10.3321/j.issn:0379-1726.2009.05.002
陈建, 王欣, 孟元库, 等. 北天山巴音沟石炭纪安山岩岩石成因及构造意义[J]. 西北地质, 2024, 57(3): 91−112. CHEN Jian,WANG Xin,MENG Yuanku,et al. Petrogenesis and Tectonic Implications of the Carboniferous Andesites from Bayingou in the North Tianshan Belt, Xinjiang[J]. Northwestern Geology,2024,57(3):91−112.
李锦轶, 何国琦, 徐新, 等. 新疆北部及邻区地壳构造格架及其形成过程的初步探讨[J]. 地质学报, 2006, 80(1): 148−168. doi: 10.3321/j.issn:0001-5717.2006.01.017 LI Jinyi, HE Guoqi, XU Xin, et al. Crustal tectonic framework of northern Xinjiang and adjacent regions and its formation[J]. Acta Geologica Sinica,2006,80(1):148−168. doi: 10.3321/j.issn:0001-5717.2006.01.017
李锦轶, 曲军峰, 张进, 等. 中国北方造山区显生宙地质历史重建与成矿地质背景研究进展[J]. 地质通报, 2013, 32(2−3): 207−219. LI Jinyi, HE Guofeng, ZHANG Jin, et al. Reconstruction of Phanerozoic Geological History and Research of Metallogenic Geological Settings of the Northern China Orogenic Region[J]. Geological Bulletin of China,2013,32(2−3):207−219.
李平, 朱涛, 吕鹏瑞, 等. 西天山早寒武世夏特辉长岩: 南天山洋早期俯冲的岩浆记录[J]. 西北地质, 2024, 57(3): 44−58. doi: 10.12401/j.nwg.2023146 LI Ping, ZHU Tao, LÜ Pengrui, et al. Early Cambrian Xiate Gabbro in Western Tianshan: Magmatic Records of Initial Subduction of the South Tianshan Ocean[J]. Northwestern Geology,2024,57(3):44−58. doi: 10.12401/j.nwg.2023146
孙吉明, 马中平, 贠杰, 等. 西天山乌孙山花岗岩和闪长岩年代学、地球化学及岩石成因[J]. 西北地质, 2024, 57(3): 59−72. doi: 10.12401/j.nwg.2024010 SUN Jiming, MA Zhongping, YUN Jie, et al. Geochronology Geochemistry and Petrogenesis of the Granite and Diorite in Wusun Mountain Western Tianshan[J]. Northwestern Geology,2024,57(3):59−72. doi: 10.12401/j.nwg.2024010
徐学义, 夏林圻, 马中平, 等. 北天山巴音沟蛇绿岩斜长花岗岩SHRIMP锆石U-Pb年龄及蛇绿岩成因研究[J]. 岩石学报, 2006, 22(1): 83−94. doi: 10.3969/j.issn.1000-0569.2006.01.009 XU Xueyi, XIA Linqi, MA Zhongping. SHRIMP zircon U-Pb geochronology of the plagiogranites from Bayingou ophiolite in North Tianshan Mountains and the petrogenesis of the ophiolite[J]. Acta Petrologica Sinica,2006,22(1):83−94. doi: 10.3969/j.issn.1000-0569.2006.01.009
杨天南, 李锦轶, 孙桂华, 等. 中天山早泥盆世陆弧: 来自花岗质糜棱岩地球化学及 SHRIMP-U/Pb 定年的证据[J]. 岩石学报, 2006, 22(1): 41−48. doi: 10.3969/j.issn.1000-0569.2006.01.004 YANG Tiannan, LI Jinyi, SUN Guihua, et al. Earlier Devonian active continental arc in Central Tianshan: evidence of geochemical analyses and Zircon SHRIMP dating on mylonitized granitic rock[J]. Acta Petrologica Sinica,2006,22(1):41−48. doi: 10.3969/j.issn.1000-0569.2006.01.004
张作衡, 王志良, 王彦斌, 等. 新疆西天山菁布拉克基性杂岩体闪长岩锆石SHRIMP定年及其地质意义[J]. 矿床地质, 2007, 26(4): 353−360. doi: 10.3969/j.issn.0258-7106.2007.04.001 ZHANG Zuoheng, WANG Zhiliang, WANG Yanbin, et al. Shrimp zircon U-Pb dating of diorite from Qingbulake basic complex in western Tianshan Mountains of Xinjiang and its geological significance[J]. Mineral Deposits,2007,26(4):353−360. doi: 10.3969/j.issn.0258-7106.2007.04.001
Aitchison J C, Buckman S. Accordion vs. quantum tectonics: Insights into continental growth processes from the Paleozoic of eastern Gondwana[J]. Gondwana Research,2012,22(4):674−680.
Antonijevic S K, Wagner L S, Kumar A, et al. The role of ridges in the formation and longevity of flat slabs[J]. Nature,2015,524(7564):212−215.
Axen G J, Van Wijk J W, Currie C A. Basal continental mantle lithosphere displaced by flat-slab subduction[J]. Nature Geoscience,2018,11:961−964. doi: 10.1038/s41561-018-0263-9
Cao Y C, Wang B, Jahn B M, et al. Late Paleozoic arc magmatism in the southern Yili Block (NW China): Insights to the geodynamic evolution of the Balkhash–Yili continental margin, Central Asian Orogenic Belt[J]. Lithos,2017,278−281:111−125. doi: 10.1016/j.lithos.2017.01.023
Carroll A, Graham S, Hendrix M, et al. Late Paleozoic tectonic amalgamation of northwestern China: sedimentary record of the northern Tarim, northwestern Turpan, and southern Junggar basins[J]. Bulletin of the Geological Society of America,1995,107:571−594. doi: 10.1130/0016-7606(1995)107<0571:LPTAON>2.3.CO;2
Cheng Z G, Zhang Z C, Santosh M, et al. Late Carboniferous to early Permian partial melting of the metasedimentary rocks and crustal reworking in the Central Asian Orogenic Belt: Evidence from garnet-bearing rhyolites in the Chinese South Tianshan[J]. Lithos,2017,282−283:373−387. doi: 10.1016/j.lithos.2017.03.017
Collins W J. Hot orogens, tectonic switching, and creation of continental crust[J]. Geology,2002,30(6):535−538. doi: 10.1130/0091-7613(2002)030<0535:HOTSAC>2.0.CO;2
Collins W J, Huang H Q, Bowden P, et al. Repeated S-I-A-type granite trilogy in the Lachlan Orogen, and geochemical contrasts with A-type granites in Nigeria: Implications for petrogenesis and tectonic discrimination[J]. Geological Society, London, Special Publications,2019,491:SP491−2018-2159.
Collins W J, Belousova E A, Kemp A I, et al. Two contrasting Phanerozoic orogenic systems revealed by hafnium isotope data[J]. Nature Geoscience,2011,4:333−337.
Feng W, Zhu Y. Petrology and geochemistry of mafic and ultramafic rocks in the north Tianshan ophiolite: Implications for petrogenesis and tectonic setting[J]. Lithos,2018,318−319:124−142. doi: 10.1016/j.lithos.2018.08.012
Frost B R. A Geochemical Classification for Granitic Rocks[J]. Journal of Petrology,2001,42:2033−2048. doi: 10.1093/petrology/42.11.2033
Gao J, Klemd R, Zhu M, et al. Large-scale porphyry-type mineralization in the Central Asian metallogenic domain: A review[J]. [J]. Journal of Asian Earth Sciences,2018,165:7−36. doi: 10.1016/j.jseaes.2017.10.002
Gao J, Long L, Klemd R, et al. Tectonic evolution of the South Tianshan orogen and adjacent regions, NW China: geochemical and age constraints of granitoid rocks[J]. International Journal of Earth Sciences,2009,98:1221−1238.
Gazel E, Hayes J L, Hoernle K, et al. Continental crust generated in oceanic arcs[J]. Nature Geoscience,2015,8:321−327. doi: 10.1038/ngeo2392
Gao J, Klemd R, Qian Q, et al. The collision between the Yili and Tarim blocks of the Southwestern Altaids: Geochemical and age constraints of a leucogranite dike crosscutting the HP–LT metamorphic belt in the Chinese Tianshan Orogen[J]. Tectonophysics,2011,499:118−131.
Ge R, Zhu W, Wilde S A, et al. Neoproterozoic to Paleozoic long‐lived accretionary orogeny in the northern Tarim Craton[J]. Tectonics,2014,33:302−329. doi: 10.1002/2013TC003501
Ge R, Zhu W, We H, et al. The Paleozoic northern margin of the Tarim Craton: Passive or active?[J]. Lithos,2012,142-143:1−15. doi: 10.1016/j.lithos.2012.02.010
Gutscher M A, Eissler J, Bourdon E. Can slab melting be caused by flat subduction?[J]. Geology,2000,28:535−538.
Guy A, Schulmann K, Janousek V, et al. Geophysical and geochemical nature of relaminated arc-derived lower crust underneath oceanic domain in southern Mongolia[J]. Tectonics,2015,34(5):1030−1053. doi: 10.1002/2015TC003845
Han B F, He G Q, Wang X C, et al. Late Carboniferous collision between the Tarim and Kazakhstan–Yili terranes in the western segment of the South Tian Shan Orogen, Central Asia, and implications for the Northern Xinjiang, western China[J]. Earth-Science Reviews,2011,109:74−93. doi: 10.1016/j.earscirev.2011.09.001
Han Y, Zhao G. Final amalgamation of the Tianshan and Junggar orogenic collage in the southwestern Central Asian Orogenic Belt: Constraints on the closure of the Paleo-Asian Ocean[J]. Earth-Science Reviews,2018,186:129−152. doi: 10.1016/j.earscirev.2017.09.012
Han Y, Zhao G, Cawood P A, et al. Plume-modified collision orogeny: The Tarim–western Tianshan example in Central Asia[J]. Geology,2019,47(11):1001−1005.
Hao L L, Wang Q, Zhang C, et al. Oceanic plateau subduction during closure of the Bangong-Nujiang Tethyan Ocean: insights from central Tibetan volcanic rocks[J]. GSA Bulletin,2018,131:864−880.
He P L, Huang X L, Xu Y G, et al. Plume-orogenic lithosphere interaction recorded in the Haladala layered intrusion in the Southwest Tianshan Orogen, NW China[J]. Journal of Geophysical Research: Solid Earth,2016,121:1525−1545. doi: 10.1002/2015JB012652
Hegner E, Alexeiev D V, Willbold M, et al. Early Silurian tholeiitic-boninitic Mailisu ophiolite, South Tianshan, Kyrgyzstan: a geochemical record of subduction initiation[J]. International Geology Review,2019,61(1):1−18. doi: 10.1080/00206814.2018.1440646
He Z Y, Klemd R, Yan L L, et al. The origin and crustal evolution of microcontinents in the Beishan orogen of the southern Central Asian Orogenic Belt[J]. Earth-Science Reviews,2018,185:1−14.
Hou Z, Duan L, Lu Y, et al. Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen[J]. Economic Geology,2015,110:1541−1575. doi: 10.2113/econgeo.110.6.1541
Hu A Q, Jahn B M, Zhang G X, et al. Crustal evolution and Phanerozoic crustal growth in northern Xinjiang: Nd isotopic evidence. Part. I. Isotopic characterization of basement rocks[J]. [J]. Tectonophysics,2000,328:15−51. doi: 10.1016/S0040-1951(00)00176-1
Huang H, Wang T, Guo L, et al. Crustal modification influenced by multiple convergent systems: Insights from Mesozoic magmatism in northeastern China[J]. Earth-Science Reviews,2024,252:104737. doi: 10.1016/j.earscirev.2024.104737
Huang H, Wang T, Tong Y, et al. Rejuvenation of ancient micro-continents during accretionary orogenesis: Insights from the Yili Block and adjacent regions of the SW Central Asian Orogenic Belt[J]. Earth-Science Reviews,2020,208:103255. doi: 10.1016/j.earscirev.2020.103255
Huang H, Zhang Z, Kusky T, et al. Geochronology and geochemistry of the Chuanwulu complex in the South Tianshan, western Xinjiang, NW China: Implications for petrogenesis and Phanerozoic continental growth[J]. Lithos,2012,140-141:65−84.
Huang H, Zhang Z, Santosh M, et al. Crustal evolution in the South Tianshan Terrane: Constraints from detrital zircon geochronology and implications for continental growth in the Central Asian Orogenic Belt[J]. Geological Journal,2019,54:1379−1400. doi: 10.1002/gj.3235
Jahn B M, Wu F, Chen B. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh,2000a,91:181−193. doi: 10.1017/S0263593300007367
Jahn B M, Wu F, Chen B. Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic[J]. Episodes Journal of International Geoscience,2000b,23:82−92.
Jiang T, Gao J, Klemd R, et al. Paleozoic ophiolitic mélanges from the South Tianshan Orogen, NW China: Geological, geochemical and geochronological implications for the geodynamic setting[J]. Tectonophysics,2014,612-613:106−127. doi: 10.1016/j.tecto.2013.11.038
Kemp A I S, Hawkesworth C J, Collins W J, et al. Isotopic evidence for rapid continental growth in an extensional accretionary orogen: the Tasmanides, eastern Australia[J]. Earth and Planetary Science Letters,2009,284(3-4):455−466. doi: 10.1016/j.jpgl.2009.05.011
Kröner A, Kovach V, Belousova E, et al. Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt[J]. Gondwana Research,2014,25(1):103−125.
Kröner A, Windley B F, Badarch G, et al. Accretionary growth and crust formation in the Central Asian Orogenic Belt and comparison with the Arabian-Nubian shield[J]. Geological Society of America Memoirs,2007,200:181−209. doi: 10.1130/2007.1200(11)
Kröner A, Kovach V, Alexeiev D, et al. No excessive crustal growth in the Central Asian Orogenic Belt: Further evidence from field relationships and isotopic data[J]. Gondwana Research,2017,50:135−166.
Li C, Xiao W J, Han C M, et al. Late Devonian-early Permian accretionary orogenesis along the North Tianshan in the southern Central Asian Orogenic Belt[J]. International Geology Review,2015b,57:1023−1050. doi: 10.1080/00206814.2014.913268
Li P, Sun M, Rosenbaum G, et al. Geometry, kinematics and tectonic models of the Kazakhstan Orocline, Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences,2018,153:42−56. doi: 10.1016/j.jseaes.2017.07.029
Li Y J, Wen L, Yang H J, et al. New discovery and geological significance of Late Silurian–Carboniferous extensional structures in Tarim Basin[J]. Journal of Asian Earth Sciences,2015,98:304−319. doi: 10.1016/j.jseaes.2014.11.020
Liu Y J, Li W M, Ma Y F, et al. An orocline in the eastern Central Asian Orogenic Belt[J]. Earth-Science Reviews,2021,221:103808. doi: 10.1016/j.earscirev.2021.103808
Long L, Gao J, Klemd R, et al. Geochemical and geochronological studies of granitoid rocks from the Western Tianshan Orogen: Implications for continental growth in the southwestern Central Asian Orogenic Belt[J]. Lithos,2011,126:321−340. doi: 10.1016/j.lithos.2011.07.015
Ma X, Shu L, Meert J G, et al. The Paleozoic evolution of Central Tianshan: Geochemical and geochronological evidence[J]. Gondwana Research,2014,25:797−819. doi: 10.1016/j.gr.2013.05.015
Ma X, Shu L, Meert J G. Early Permian slab breakoff in the Chinese Tianshan belt inferred from the post-collisional granitoids[J]. Gondwana Research,2015,27:228−243. doi: 10.1016/j.gr.2013.09.018
Mao Q, Wang J, Xiao W, et al. Mineralization of an intra-oceanic arc in an accretionary orogen: Insights from the Early Silurian Honghai volcanogenic massive sulfide Cu-Zn deposit and associated adakites of the Eastern Tianshan (NW China)[J]. GSA Bulletin,2019,131(3-4):803−830.
Middlemost E A. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews,1994,37:215−224. doi: 10.1016/0012-8252(94)90029-9
Mišković A, Schaltegger U. Crustal growth along a non-collisional cratonic margin: A Lu-Hf isotopic survey of the Eastern Cordilleran granitoids of Peru[J]. Earth and Planetary Science Letters,2009,279(1-2):303−315.
Niu Y L. Geological understanding of plate tectonics: basic concepts, illustrations, examples and new perspectives[J]. Global Tectonics and Metallogeny,2018,10:23−46. doi: 10.1127/gtm/2014/0009
Peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology,1976,58:63−81. doi: 10.1007/BF00384745
Qin Q, Wang T, Huang H, et al. Late Carboniferous and Early Permian garnet-bearing granites in the South Tianshan Belt, NW China: Two Late Paleozoic magmatic events and implications for crustal reworking[J]. Journal of Asian Earth Sciences,2021,220:104923. doi: 10.1016/j.jseaes.2021.104923
Safonova I. Juvenile versus recycled crust in the Central Asian Orogenic Belt: Implications from ocean plate stratigraphy, blueschist belts and intra-oceanic arcs[J]. Gondwana Research,2017,47:6−27. doi: 10.1016/j.gr.2016.09.003
Safonova I, Krutikova A, Perfilova A, et al. Early Paleozoic juvenile crustal growth in the Paleo-Asian Ocean: A contribution from the Zasur'ya accretionary complex of NW Altai[J]. Earth-Science Reviews,2024,249:104648. doi: 10.1016/j.earscirev.2023.104648
Song D F, Xiao W J, Windley B F, et al. A Paleozoic Japan-type subduction-accretion system in the Beishan orogenic collage, southern Central Asian Orogenic Belt[J]. Lithos,2015,224-225:195−213. doi: 10.1016/j.lithos.2015.03.005
Şengör A, Natal'in B, Sunal G, et al. The tectonics of the Altaids: crustal growth during the construction of the continental lithosphere of Central Asia between∼ 750 and∼ 130 Ma ago[J]. Annual Review of Earth and Planetary Sciences, 2018, 46: 439-494.
Tan Z, Agard P, Monié P, et al. Architecture and P-T-deformation-time evolution of the Chinese SW-Tianshan HP/UHP complex: Implications for subduction dynamics[J]. Earth-Science Reviews,2019,197:102894. doi: 10.1016/j.earscirev.2019.102894
Tan Z, Xiao W, Mao Q, et al. Final closure of the Paleo Asian Ocean basin in the early Triassic[J]. Communications Earth & Environment,2022,3:259.
Tang G J, Wang Q, Wyman D A, et al. Genesis of pristine adakitic magmas by lower crustal melting: A perspective from amphibole composition[J]. Journal of Geophysical Research: Solid Earth,2017,122:1934−1948. doi: 10.1002/2016JB013678
Wang B, Chen Y, Zhan S, et al. Primary Carboniferous and Permian paleomagnetic results from the Yili Block (NW China) and their implications on the geodynamic evolution of Chinese Tianshan Belt[J]. Earth and Planetary Science Letters,2007,263(1−2):288−308.
Wang B, Liu H, Shu L, et al. Early Neoproterozoic crustal evolution in northern Yili Block: Insights from migmatite, orthogneiss and leucogranite of the Wenquan metamorphic complex in the NW Chinese Tianshan[J]. Precambrian Research,2014a,242:58−81. doi: 10.1016/j.precamres.2013.12.006
Wang B, Shu L, Faure M, et al. Paleozoic tectonics of the southern Chinese Tianshan: Insights from structural, chronological and geochemical studies of the Heiyingshan ophiolitic mélange (NW China)[J]. Tectonophysics,2011,497:85−104. doi: 10.1016/j.tecto.2010.11.004
Wang B, Shu L, Liu H, et al. First evidence for ca. 780Ma intra-plate magmatism and its implications for Neoproterozoic rifting of the North Yili Block and tectonic origin of the continental blocks in SW of Central Asia[J]. Precambrian Research,2014b,254:258−272. doi: 10.1016/j.precamres.2014.09.005
Wang M, Zhang J, Pei X, et al. Detrital zircon U-Pb-Hf isotopes study of the Lower Carboniferous Anjihai Formation from the northern margin of the Yili Block, NW China[J]. Geological Journal,2018a,53:223−236. doi: 10.1002/gj.3210
Wang Q, Wyman D, Zhao Z, et al. Petrogenesis of Carboniferous adakites and Nb-enriched arc basalts in the Alataw area, northern Tianshan Range (western China): Implications for Phanerozoic crustal growth in the Central Asia orogenic belt[J]. Chemical Geology,2007,236:42−64. doi: 10.1016/j.chemgeo.2006.08.013
Wang T, Huang H, Zhang J, et al. Voluminous continental growth of the Altaids and its control on metallogeny[J]. National Science Review,2023a,10:nwac283. doi: 10.1093/nsr/nwac283
Wang T, Xiao W, Collins W J, et al. Quantitative characterization of orogens through isotopic mapping[J]. Communications Earth & Environment,2023b,4:110.
Wang X S, Cai K D, Sun M, et al. Two contrasting late Paleozoic magmatic episodes in the northwestern Chinese Tianshan Belt, NW China: Implication for tectonic transition from plate convergence to intra-plate adjustment during accretionary orogenesis[J]. Journal of Asian Earth Sciences,2018b,153:118−138. doi: 10.1016/j.jseaes.2017.03.013
Wang Z P, Li Y J, Yang G X, et al. Petrogenesis and geochemical characteristics of Early Carboniferous sanukitic high‐Mg andesite from Atengtao Mountain, Yili Block: Implications for the tectonic setting during Late Palaeozoic in Chinese West Tianshan[J]. Geological Journal,2020,55:517−532. doi: 10.1002/gj.3427
Whalen J B, Currie K L, Chappell B W. A-type granites: Geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology,1987,95:407−419. doi: 10.1007/BF00402202
Wilhem C, Windley B F, Stampfli G M. The Altaids of Central Asia: A tectonic and evolutionary innovative review[J]. Earth-Science Reviews,2012,113:303−341. doi: 10.1016/j.earscirev.2012.04.001
Windley B F, Alexeiev D, Xiao W, et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society,2007,164:31−47. doi: 10.1144/0016-76492006-022
Xiao W J, Song D F, Windley B F, et al. Accretionary processes and metallogenesis of the Central Asian Orogenic Belt: Advances and perspectives[J]. Science China Earth Sciences,2020,63:1−33. doi: 10.1007/s11430-019-9474-4
Xiao W, Santosh M. The western Central Asian Orogenic Belt: A window to accretionary orogenesis and continental growth[J]. Gondwana Research,2014,25:1429−1444. doi: 10.1016/j.gr.2014.01.008
Xiao W J, Windley B F, Sun S, et al. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion[J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 477-507.
Xiao W, Windley B F, Allen M B, et al. Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage[J]. Gondwana Research,2013,23:1316−1341. doi: 10.1016/j.gr.2012.01.012
Xu Q, Ji J, Zhao L, et al. Tectonic evolution and continental crust growth of Northern Xinjiang in northwestern China: Remnant ocean model[J]. Earth-Science Reviews,2013,126:178−205. doi: 10.1016/j.earscirev.2013.08.005
Xu X Y, Wang H L, Li P, et al. Geochemistry and geochronology of Paleozoic intrusions in the Nalati (Narati) area in western Tianshan, Xinjiang, China: Implications for Paleozoic tectonic evolution[J]. Journal of Asian Earth Sciences,2013,72:33−62. doi: 10.1016/j.jseaes.2012.11.023
Xu Y X, Yang B, Zhang S, et al. Magnetotelluric imaging of a fossil paleozoic intraoceanic subduction zone in western Junggar, NW China[J]. Journal of Geophysical Research: Solid Earth,2016,121:4103−4117. doi: 10.1002/2015JB012394
Yang G X, Li Y J, Tong L L, et al. An overview of oceanic island basalts in accretionary complexes and seamounts accretion in the western Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences,2019,179:385−398. doi: 10.1016/j.jseaes.2019.04.011
Yang S H, Zhou M F. Geochemistry of the 430-Ma Jingbulake mafic–ultramafic intrusion in Western Xinjiang, NW China: implications for subduction related magmatism in the South Tianshan orogenic belt[J]. Lithos,2009,113:259−273. doi: 10.1016/j.lithos.2009.07.005
Zhang C L, Zou H B. Comparison between the Permian mafic dykes in Tarim and the western part of Central Asian Orogenic Belt (CAOB), NW China: Implications for two mantle domains of the Permian Tarim Large Igneous Province[J]. Lithos,2013,174:15−27. doi: 10.1016/j.lithos.2012.11.010
Zhang X R, Zhao G C, Han Y G, et al. Differentiating advancing and retreating subduction zones through regional zircon Hf isotope mapping: A case study from the Eastern Tianshan, NW China[J]. Gondwana Research,2019,66:246−254. doi: 10.1016/j.gr.2018.10.009
Zhang X R, Zhao G C, Sun M, et al. Tectonic evolution from subduction to arc-continent collision of the Junggar ocean: Constraints from U-Pb dating and Hf isotopes of detrital zircons from the North Tianshan belt, NW China[J]. Geological Society of America Bulletin,2016,128:644−660. doi: 10.1130/B31230.1
Zhao Z Y, Zhang Z C, Santosh M, et al. Early Paleozoic magmatic record from the northern margin of the Tarim Craton: Further insights on the evolution of the Central Asian Orogenic Belt[J]. Gondwana Research,2015,28:328−347. doi: 10.1016/j.gr.2014.04.007
Zhao Z, Xiong X, Wang Q, et al. Late Paleozoic underplating in North Xinjiang: Evidence from shoshonites and adakites[J]. Gondwana Research,2009,16:216−226. doi: 10.1016/j.gr.2009.03.001
Zhong L L, Wang B, Alexeiev D V, et al. Paleozoic multi-stage accretionary evolution of the SW Chinese Tianshan: New constraints from plutonic complex in the Nalati Range[J]. Gondwana Research,2017,45:254−274. doi: 10.1016/j.gr.2016.12.012
Zhou J B, Wilde S A. The crustal accretion history and tectonic evolution of the NE China segment of the Central Asian Orogenic Belt[J]. Gondwana Research,2013,23:1365−1377. doi: 10.1016/j.gr.2012.05.012
Zhu D, Wang Q, Zhao Z, et al. Magmatic record of India-Asia collision[J]. Scientific Reports,2015,5:14289. doi: 10.1038/srep14289
Zhu D, Wang Q, Zhao Z. Constraining quantitatively the timing and process of continent-continent collision using magmatic record: Method and examples[J]. Science China Earth Sciences,2017,60(6):1040−1056. doi: 10.1007/s11430-016-9041-x
Zhu X, Wang B, Chen Y, et al. First Early Permian Paleomagnetic Pole for the Yili Block and its Implications for Late Paleozoic Postorogenic Kinematic Evolution of the SW Central Asian Orogenic Belt[J]. Tectonics,2018,37(6):1709−1732. doi: 10.1029/2017TC004642
Zhu Y, Guo X, Song B, et al. Petrology, Sr-Nd-Hf isotopic geochemistry and zircon chronology of the Late Palaeozoic volcanic rocks in the southwestern Tianshan Mountains, Xinjiang, NW China[J]. Journal of the Geological Society,2009,166:1085−1099. doi: 10.1144/0016-76492008-130