Zircon U-Pb-Hf-O Isotopic Characteristics and Geological Significance of Nannihu and Shibaogou Rock Mass in Luanchuan Ore Concentration Area, Western Henan Province
-
摘要:
栾川矿集区位于华北克拉通南缘,区内矿产资源丰富,产出多个大型–超大型斑岩–矽卡岩型钼钨矿床。矿集区内晚中生代岩浆活动频繁,形成多个含矿花岗岩体和斑岩岩株,其成矿差异和成矿潜力的控制因素仍不清楚。笔者以栾川矿集区南泥湖富Mo花岗岩体和石宝沟贫矿岩体为研究对象,基于锆石U-Pb定年和Hf-O同位素研究,揭示其成岩成矿年龄、岩浆源区及成矿指示意义。石宝沟花岗岩和南泥湖岩体的锆石U-Pb年龄分别为(147.5±2.2)Ma和(139.5±1.8)Ma,二者均为燕山期岩浆活动的产物。石宝沟岩体的锆石εHf(t)值为−27.4~−14.51,二阶段模式年龄TDM2值为2.15~2.93 Ga,δ18O值为5.42‰~6.77‰。南泥湖岩体的锆石εHf(t)值为−16.84~−8.04,二阶段模式年龄TDM2值为1.70~2.26 Ga,δ18O值为5.88‰~8.27‰。锆石U-Pb年龄和Hf-O同位素结果表明,在碰撞后造山的局部伸展背景下,石宝沟贫矿岩体岩浆源区源于秦岭造山带加厚下地壳部分熔融,南泥湖富Mo斑岩岩浆具有壳幔混源特征。
-
关键词:
- 花岗斑岩 /
- 锆石U-Pb-Hf-O同位素 /
- 岩浆源区 /
- 栾川矿集区
Abstract:The Luanchuan mining area is located at the southern edge of the North China Craton, which is rich in mineral resources and has produced a number of large-sized and super-large porphyry-silica type molybdenum and tungsten deposits. There are frequent magmatic activities in Late Mesozoic, forming several ore-bearing granite bodies and porphyry rock strains, and the controlling factors of their mineralization differences and potentials are still unclear. In this paper, we take the Mo-rich granite body of Nannihu and the ore-poor granite body of Shibaogou in the Luanchuan mining concentration area as the research objects, and based on zircon U-Pb dating and Hf-O isotope study, we reveal the age of their diagenesis and metallogeny, magma source area, and metallogeny indication significance. The zircon U-Pb ages of the Shibaogou rock and the Nannihu rock are (147.5±2.2) Ma and (139.5±1.8) Ma, respectively, and both are the products of Yanshan-age magmatism. The zircon εHf(t) values of the Shibaogou body range from −27.40~−14.51, and the two-stage mode age TDM2 values range from 2.15~2.93 Ga, with δ18O values of 5.42‰ to 6.77‰. The zircon εHf(t) values of the Nannihu body range from −16.84~−8.04, with second-stage mode age TDM2 values ranging from 1.70~2.26 Ga and δ18O values of 5.88‰~8.27‰. The zircon U-Pb ages and Hf-O isotope results indicate that the source area of the Shibaogou ore-poor magma originated from partial melting of the thickened lower crust of the Qinling orogenic belt in the context of localized extensional downstretching of post-collisional orogeny; and that the Mo-rich porphyry magma of the Nannihu is characterized by crust-mantle mixing.
-
钼(Mo)因具有较好的物理性质,而被广泛应用于航天、农业等领域(李欢等,2018;李诺, 2022)。中国作为世界钼资源大国,目前已探明钼资源储量占世界的1/3以上(Chen et al., 2017)。秦岭造山带是世界上最大的钼矿带之一(李诺等, 2022;陈龙龙等,2024),经过太古宙—中生代多阶段俯冲–碰撞造山及中生代陆内造山作用(Dong et al., 2016; 王汉辉等, 2023),岩浆活动频繁,成矿地质条件良好。位于东秦岭多金属成矿带核心成矿部位的豫西栾川钼钨多金属矿集区,发育大量晚侏罗世—早白垩世岩浆活动,形成了南泥湖、上房沟、石宝沟、鱼库等花岗斑岩岩株,并侵位于太华群基底花岗质片麻岩和栾川群中基性–中酸性火山岩中。区内中酸性岩体形成时代主要集中在160.0~120.0 Ma之间,其中与斑岩–矽卡岩型钼矿床成矿相关的岩体形成时间集中于148.0~141.0 Ma,包括南泥湖岩体、鱼库岩体等(唐利等, 2014; Cao et al., 2015)。
前人对区内南泥湖与石宝沟岩体的成岩成矿时代、成岩流体演化、岩石化学特征等方面开展了深入研究(杨阳等, 2012; Xue et al., 2018; Zhang et al., 2018),但是对于形成富矿体的主控因素并未查明。控制斑岩矿床成矿差异和成矿潜力的可能因素包括岩浆源区、岩浆水含量和氧逸度、岩浆S含量和挥发分、成矿深度、岩浆房的形状和大小、岩浆作用持续时间、岩浆混合作用等(侯增谦等, 2020; Tang et al., 2022)。其中岩浆源区对斑岩型矿床的形成起到关键控制作用,南泥湖成矿岩体与石宝沟不成矿岩体之间可能存在岩浆源区的差异,从而导致二者含矿差异性。笔者以南泥湖成矿岩体和石宝沟贫矿岩体为研究对象,在详细的野外地质、岩石学和矿物学研究基础上,对南泥湖岩体和石宝沟岩体进行LA-ICP-MS锆石U-Pb精确定年及锆石Hf和O同位素组成研究,确定其成岩时代及岩浆源区,深入剖析南泥湖和石宝沟岩体成矿潜力的差异,对于成矿潜力分析以及指导找矿具有重要理论和实际意义。
1. 区域地质特征
河南栾川钼钨铅锌银多金属矿集区位于秦岭造山带内的华北陆块南缘次级构造单元(牛腾等, 2023),北以马超营断裂为界,南抵栾川断裂(图1a)。矿集区基底为太古宙太华岩群变质结晶基底,盖层为中元古界官道口群、上元古界栾川群和下古生界陶湾群碎屑—碳酸盐岩建造,垂向上具有与地台结构相似的“二元结构”(田浩浩等, 2015; 付鑫宁等, 2021)。矿集区内主要出露的岩层为中元古界官道口群,新元古界栾川群和下古生界陶湾群。官道口群岩性为一套浅海相碎屑–碳酸岩建造;栾川群岩性主要为一套陆源碎屑–碳酸盐岩夹碱性火山岩沉积建造;陶湾岩群岩性主要为一套陆源碎屑–浅海相泥质碳酸盐岩建造。栾川群和官道口群是研究区最为重要的赋矿层位,蕴藏丰富的钼、钨等矿产(唐利等, 2014; Guo et al., 2020)。
图 1 秦岭造山带构造格架图(a)和栾川矿集区地质简图(b)(修改自Cao et al., 2015)1.下古生界陶湾群;2.新元古界栾川群;3.中元古界管道口群;4.中元古界宽坪群;5.白垩纪花岗岩;6.侏罗纪花岗岩;7.元古代变辉长岩;8.元古代变正长斑岩;9.断层;10.斑岩–矽卡岩型钼钨矿床;11.热液脉型铅锌银矿床;12.矽卡岩型硫铁多金属矿床Figure 1. (a) Tectonic framework of the Qinling Orogen and (b) geological map of the Luanchuan ore cluster受秦岭造山带大规模区域性碰撞造山作用的影响,断裂构造在栾川矿集区极为发育,区内主要构造线方向为NWW向,主要构造有黄背岭背斜、青和堂背斜和南泥湖向斜。两条EW向的断裂为区内主要控岩–控矿和含矿断裂构造,分别为陶湾–栾川断裂带和马家营断裂带两条断裂带(图1b)。
栾川矿集区内发育多期多阶段岩浆活动,主要集中在自太古宙、元古宙和中生代,具有多旋回、多期性特征(Li et al., 2020)。中生代燕山期岩浆活动强烈而广泛,形成以石宝沟、鱼库等岩体为代表的小型中酸性花岗斑岩岩株与花岗岩岩基,小岩体多数呈复式岩体分布(张红亮, 2014)。燕山期大规模岩浆活动为本区钼、钨等矿产的形成提供了充足的物质来源(Tang et al., 2021)。
2. 岩体地质特征
2.1 南泥湖岩体
南泥湖岩体产于东秦岭多金属成矿带栾川矿集区北部,以花岗闪长岩、花岗斑岩、细晶岩脉等组成的复式岩体为特征,呈不规则椭圆形小岩株产出,总体呈上小下大的喇叭状特征。整体向NWW向延伸,与主构造线方向基本一致。岩体产状两边不对称,西部较缓东部较陡。与成矿作用有关的主要为斑状钾长花岗岩,其矿物成分主要为石英、长石组成的斑晶,含量约为20%~50%,基质主要由斜长石(25%~30%)、钾长石(30%~40%)及少量黑云母(<5%)组成(图2b~图2d)。
2.2 石宝沟贫矿花岗岩体
石宝沟岩体出露于研究区西部,地表延NE–NNE向延伸,可见变辉长岩脉穿插在岩体当中,岩脉呈NW向展布,呈上小下大的喇叭状分布。岩体主要岩性为斑状二长花岗岩和斑状黑云母花岗闪长岩两种岩石所组成的复式岩体。
似斑状二长花岗岩颜色为肉红色,块状构造。斑晶主要由钾长石、斜长石、石英(25%~30%)组成,其中钾长石的含量为10%~20%,呈明显的卡氏双晶,少见格子双晶。斜长石含量为 10%~15%。石英含量为2%~5%,可见绿泥石化。基质的主要成分为钾长石 (10%~20%)、斜长石 (5%~15%)、石英 (5%~15%)、黑云母(<5%),副矿物含榍石、锆石、磷灰石、磁铁矿等(图2a、图2e)。
中细粒二长花岗岩颜色为灰色或肉红色,等粒结构,主要矿物由钾长石、斜长石、石英和黑云母组成。钾长石含量为 30%~40%; 斜长石含量为25%~35%,表面绢云母化。石英含量为20%~25%。黑云母含量为5%~10%。副矿物为榍石、锆石、磷灰石、磁铁矿等(图2f)。
3. 分析方法和结果
3.1 分析方法
本次研究分别对南泥湖花岗岩(NNH-G01)和石宝沟花岗岩(SBG-G02)进行锆石U-Pb-Hf-O同位素分析。锆石分选采用常规浮选和电磁选方法将样品中重矿物富集分离,随后在双目镜下人工挑选锆石。锆石U-Pb同位素测年在武汉上谱分析科技有限公司完成,分析仪器为193 nm准分子激光器Compexpro 102 ArF和Agilent 7700e型四级杆等离子体质谱仪联合构成的激光剥蚀等离子体质谱仪(LA-ICP-MS)。将标样91500作为外标,GJ-1和Plesovice在分析过程中作为二次标样定期进行分析,以监测仪器漂移。详细的分析流程见文献(Hu et al., 2022)。
锆石Hf同位素分析在澳大利亚科廷大学John de Laeter中心完成,分析仪器为全自动激光剥蚀进样系统(Resolution M-50A-LR)结合一台Compex 102准分子激光器以及英国的Nu Plasma II MC-ICP-MS构成的LA-MC-ICP-MS。标样Mudtank被用于校正Hf同位素比值,Plesovice和91500被用作二次标样。详细的分析流程见文献(Hu et al., 2022)。
锆石微区O同位素分析在北京核工业地质研究院的CAMECA IMS 1280-HR二次离子质谱进行分析。在北京核工业地质研究院,标样Penglai被用来质量分馏校正以及校正分析中产生的未知误差,而标样Qinghu(Li et al., 2013)被用作二次校正。详细的分析流程见文献(Hu et al., 2019)。
3.2 锆石U-Pb年龄
石宝沟花岗岩锆石均为自形–半自形,柱状,无色透明,玻璃光泽,颗粒较小,粒径100~150 μm,长宽比为2∶1~3∶1。CL图像显示,大部分锆石具有清晰的振荡分带特征(图3a)。样品SBG-G02共计22颗晶形较好的锆石进行U-Pb定年分析,测试结果表明锆石Th含量介于179×10−6~
3500 ×10−6;U含量介于386×10−6~1887 ×10−6,Th/U值介于0.85~3.05,个别小于0.1(表1),多数表现为典型的岩浆成因锆石特征(李平等,2023;熊万宇康等,2023;冉亚洲等,2024)。22个锆石U-Pb同位素测点结果在U-Pb年龄谐和图上沿谐和线分布或落于附近(图3b),206Pb/238U加权平均值为(147.5±2.2)Ma(MSWD=3.5,n=22),加权平方差的数值过大原因可能为锆石中放射性成因的铅丢失导致的(王梓桐等,2022)。该年龄被解释为石宝沟贫矿岩体的岩浆结晶年龄。表 1 石宝沟岩体与南泥湖岩体LA-ICP-MS锆石U-Pb年龄鉴定结果表Table 1. LA-ICP-MS Ziron U-Pb isotopic analysis of Shibaogou and Nannihu pluton样品 U(10−6) Th(10−6) Pb(10−6) Th/U 206Pb/238U 207Pb/235U 207Pb/206Pb 207Pb/235Pb(Ma) 1σ 206Pb/238Pb(Ma) 1σ 207Pb/206Pb(Ma) 1σ SBG-G02 1 1887 891 70.2 2.13 0.02383 0.1709 0.0515 160.1 4.1 151.8 1.8 255 57 2 1015 512 35.8 1.98 0.02226 0.1608 0.0521 151.4 5.1 141.9 1.9 293 89 3 765 509 31.1 1.56 0.02284 0.2000 0.0642 185.0 9.8 145.6 2.5 710 120 5 1304 723 46.1 1.82 0.02154 0.1659 0.0559 155.8 5.0 137.4 2.1 431 81 6 1239 695 49.9 1.77 0.02212 0.1535 0.0498 144.9 4.1 141.0 1.7 177 71 8 1368 705 49.2 1.94 0.02311 0.1529 0.0478 145.5 5.0 147.3 2.0 103 81 9 386 350 25.3 1.15 0.02288 0.1810 0.0582 171.0 11 145.8 2.2 520 150 10 1027 553 40.7 1.85 0.02247 0.1613 0.0517 151.7 5.3 143.2 1.7 263 73 11 1429 1061 77.0 1.35 0.02358 0.1593 0.0502 150.0 4.3 150.2 1.6 198 64 12 914 1090 84.0 0.86 0.02408 0.1771 0.0530 165.4 6.1 153.4 1.4 329 91 13 1320 765 55.7 1.71 0.02403 0.1631 0.0497 153.3 4.3 153.1 1.5 174 68 14 1196 484 36.3 2.44 0.02375 0.1612 0.0492 151.7 4.9 151.3 1.9 148 80 15 1530 3500 236 0.85 0.02300 0.1645 0.0531 154.5 5.7 146.6 2.1 318 75 16 981 543 41.7 1.79 0.02292 0.1754 0.0557 164.0 5.2 146.1 1.9 428 72 17 1526 608 49.9 2.51 0.0242 0.1774 0.0531 165.7 4.1 154.1 2.6 333 70 19 1217 875 71.2 1.42 0.02446 0.1969 0.0580 182.5 4.6 155.8 1.7 545 64 20 1171 681 51.9 1.73 0.02396 0.1681 0.0506 157.6 4.7 152.7 1.8 229 69 21 993 505 38.6 1.94 0.02265 0.1675 0.0539 157.1 6.7 144.4 1.8 360 100 22 830 399 28.0 2.13 0.02244 0.1638 0.0531 153.9 4.7 143.0 1.7 321 77 23 1006 627 45.2 1.67 0.02257 0.1663 0.0532 156.1 5.6 143.9 1.3 323 84 24 498 179 14.0 3.05 0.02243 0.1720 0.0556 161.2 9.0 143.0 2.8 430 130 25 1258 756 54.1 1.68 0.02288 0.1602 0.0509 150.8 4.9 145.8 1.8 222 83 NNH-G01 1 1410 970 57.4 1.59 0.02220 0.1750 0.0571 163.1 8.9 141.5 2.8 470 110 2 1107 1778 117.6 0.63 0.02182 0.1690 0.0563 158.4 5.7 139.1 1.8 481 75 3 1072 874 61.6 1.21 0.02150 0.1583 0.0531 149.1 5.2 137.2 1.2 372 93 4 1480 850 56.0 1.88 0.02131 0.1578 0.0537 148.7 3.6 135.9 1.9 348 61 5 1760 1220 57.4 1.34 0.02225 0.2170 0.0734 198.0 23 141.9 2.7 920 240 6 2440 1118 79.9 2.20 0.02225 0.1573 0.0511 148.2 3.6 141.8 1.7 237 62 7 1850 1319 84.9 1.42 0.02234 0.1901 0.0614 178.0 7.6 142.4 1.2 690 100 8 740 535 37.8 1.38 0.02134 0.1517 0.0511 143.2 7.5 136.1 2.0 270 130 9 2480 1410 94.0 1.81 0.02171 0.1581 0.0530 149.0 3.5 138.4 1.4 322 54 10 1264 542 41.2 2.53 0.02216 0.1830 0.0604 170.4 8.8 141.3 1.7 570 130 南泥湖花岗岩锆石均为自形–半自形,柱状,透明–半透明,玻璃光泽,粒径一般长为100~150 μm,长宽比为1∶1~3∶1。CL图像显示大部分锆石样品发育清晰的振荡环带(图3c)。样品NNH-G01共计挑选10颗晶形较好的锆石进行U-Pb定年分析,分析结果显示锆石Th含量介于535×10−6~
1778 ×10−6;U含量介于740×10−6~2480 ×10−6,Th/U值介于0.63~3.43,个别值小于0.1(表1),表明该组锆石同样具有典型的岩浆成因特征。10个锆石U-Pb同位素测点在U-Pb谐和图的投影点落于谐和线或附近(图3d),206Pb/238U加权平均值为(139.5±1.8)Ma(MSWD=2.3,n=10),该年龄被解释为南泥湖花岗岩体的岩浆结晶年龄。3.3 锆石Hf同位素
石宝沟花岗岩样品所测25颗锆石的176Yb/177Hf、176Lu/177Hf值为
0.0256 ~0.0576 和0.00112 ~0.00248 ,大部分比值均低于0.002,表明绝大多数锆石形成后的放射性成因Hf积累十分有限,176Hf/177Hf值为0.281904 ~0.282245 (图4a),单阶段模式年龄TDM1值为1.42~1.90 Ga,二阶段模式TDM2值为2.15~2.93 Ga。εHf(t)值均小于0,其中测点SBG-G02-18的εHf(t)值较低,为−27.02,对应二阶段模式年龄为2.93 Ga(图4b)。南泥湖花岗岩样品所测10颗锆石的176Yb/177Hf、176Lu/177Hf值大多低于0.002,分别为
0.03162 ~0.0559 、0.00019 ~0.002084 ;样品176Hf/177Hf值介于0.282213 ~0.282462 ,单阶段模式年龄TDM1值为1.11~1.48 Ga,二阶段模式TDM2值为1.7~2.26 Ga。εHf(t)值均小于0,分布于−16.84~−8.04(图4c、图4d)。3.4 锆石O同位素
石宝沟岩体花岗岩锆石中δ18O值为5.42‰~6.77‰,南泥湖岩体花岗岩锆石中δ18O值为5.88‰~8.27‰(表2),两者大部分锆石高于典型地幔锆石氧同位素(5.3‰±0.6‰)。石宝沟岩体花岗岩锆石δ18O值集中在5.8‰~6.2‰,南泥湖岩体花岗岩锆石的δ18O值集中在5.8‰~6.4‰,由此表明两地花岗岩体锆石有着极其相似的δ18O值(图5a、图5b)。
表 2 南泥湖、石宝沟岩体锆石Hf-O同位素分析结果Table 2. Ziron Hf-O isotopic of Nannihu rock and Shibaogou Rock样品 T(Ma) 176Hf/177Hf 176Lu/177Hf 176Yb177/Hf ɛHf(t) TDM1(Ga) TDM2(Ga) fLu/Hf δ18O(‰) SBG-G02 1 151.8 0.28220 0.002050 0.0574 −17.11 1.53 2.28 −0.94 5.42 2 141.9 0.28222 0.001486 0.0399 −16.55 1.47 2.24 −0.96 5.50 3 145.6 0.28215 0.001429 0.0391 −18.94 1.57 2.39 −0.96 5.83 4 132.4 0.28221 0.002088 0.0539 −17.05 1.51 2.26 −0.94 6.11 5 137.4 0.28222 0.001386 0.0398 −16.74 1.47 2.25 −0.96 5.93 6 141.0 0.28218 0.001413 0.0425 −17.98 1.53 2.33 −0.96 5.72 7 198.0 0.28224 0.001120 0.0307 −14.51 1.43 2.15 −0.97 6.32 8 147.3 0.28219 0.001309 0.0380 −17.41 1.51 2.30 −0.96 6.16 9 145.8 0.28214 0.001481 0.0480 −19.26 1.59 2.41 −0.96 5.91 10 143.2 0.28217 0.001505 0.0446 −18.19 1.54 2.34 −0.95 5.55 11 150.2 0.28210 0.002075 0.0576 −20.72 1.67 2.50 −0.94 6.28 12 153.4 0.28214 0.001526 0.0485 −19.14 1.59 2.41 −0.95 6.17 13 153.1 0.28222 0.001282 0.0376 −16.19 1.46 2.22 −0.96 6.39 14 151.3 0.28222 0.001263 0.0361 −16.26 1.46 2.23 −0.96 5.88 15 146.6 0.28221 0.002480 0.0800 −16.80 1.52 2.26 −0.93 6.55 16 146.1 0.28218 0.001245 0.0378 −17.82 1.52 2.32 −0.96 6.32 17 154.1 0.28216 0.001559 0.0441 −18.32 1.56 2.36 −0.95 5.89 18 155.8 0.28190 0.001095 0.0410 −27.40 1.90 2.93 −0.97 6.61 19 152.7 0.28217 0.001582 0.0483 −18.03 1.55 2.34 −0.95 8.27 20 144.4 0.28220 0.001254 0.0356 −17.29 1.50 2.29 −0.96 6.07 21 143.0 0.28218 0.001539 0.0391 −17.84 1.53 2.32 −0.95 — 22 143.9 0.28221 0.001564 0.0407 −17.05 1.50 2.27 −0.95 — 23 143.0 0.28218 0.001583 0.0473 −17.92 1.53 2.32 −0.95 — 24 145.8 0.28225 0.001101 0.0256 −15.55 1.42 2.18 −0.97 — 25 141.5 0.28219 0.001448 0.0403 −17.69 1.52 2.31 −0.96 — NNH-G01 1 139.1 0.28228 0.001318 0.0335 −14.37 1.38 2.10 −0.96 6.28 2 137.2 0.28246 0.000928 0.0361 −8.04 1.11 1.70 −0.97 6.17 3 135.9 0.28236 0.000910 0.0316 −11.71 1.26 1.93 −0.97 6.39 4 141.9 0.28232 0.001792 0.0473 −13.22 1.35 2.03 −0.95 5.88 6 142.4 0.28221 0.002084 0.0559 −16.84 1.51 2.26 −0.94 6.32 7 136.1 0.28228 0.001701 0.0497 −14.46 1.39 2.10 −0.95 5.89 8 138.4 0.28226 0.001053 0.0345 −15.31 1.41 2.16 −0.97 6.61 9 141.3 0.28223 0.001900 0.0518 −16.43 1.48 2.23 −0.94 8.27 10 153.5 0.28229 0.001399 0.0363 −13.86 1.37 2.08 −0.96 6.07 4. 讨论
4.1 成岩成矿年龄
华北板块与扬子板块在三叠纪相向挤压碰撞造山,之后开始陆内造山作用(Dong et al., 2016)。晚侏罗世—早白垩世,研究区花岗岩体的形成可能与陆内伸展过程相伴的壳幔相互作用有关(朱赖民等, 2009)。大量的锆石U-Pb测年数据显示,东秦岭地区晚中生代的岩浆岩年龄主要集中在160.0~110.0 Ma(晚侏罗世—早白垩世)(Li et al., 2018)。以I型花岗岩为主,主要发育于华北克拉通南缘和北秦岭,在南秦岭仅零星分布,花岗岩主要形成于古老地壳物质的部分熔融,并有年轻幔源组分的参与,形成于挤压向伸展转换的构造环境。在栾川矿集区内燕山期中酸性岩浆活动广泛且持续时间较长,形成了深部花岗岩基和一系列中酸性小斑岩体,形成年代在157.0~140.8 Ma之间(唐利等, 2014),可能与该区大规模成矿密切相关。
现有研究结果表明,南泥湖岩体锆石U-Pb年龄集中于157.0~145.0 Ma (包志伟等, 2009);石宝沟岩体锆石U-Pb年龄为143.7~140.3 Ma (杨阳等, 2012; 杨正良等, 2023)。文中所测得的南泥湖花岗岩锆石U-Pb加权平均年龄为(139.5±1.8)Ma;石宝沟岩体花岗岩锆石U-Pb加权平均年龄为(147.5±2.2)Ma。结合前人对南泥湖和石宝沟岩体中辉钼矿Re-Os定年所获得的成矿年龄分别为(146.1±1.1)Ma和(141.0±2.5)Ma(李永峰等, 2003; 包志伟等, 2009; 张云辉等, 2014; Xu et al., 2023),认为南泥湖花岗岩体和石宝沟贫矿岩体在形成时间上具有一致性,相近的成岩成矿时代表明二者均为燕山期岩浆侵入活动的产物。
南泥湖富Mo斑岩体和石宝沟岩体的岩浆作用发生于晚侏罗世—早白垩世(157.0~140.8 Ma),东秦岭构造带该时期剧烈的岩浆作用形成了老牛山、合峪、花山等花岗岩体以及金堆城、石家湾、黄龙铺、上房沟、雷门沟等花斑岩型矿床。由于该时期扬子板块与华北板块已经发生陆–陆碰撞,故产生南泥湖和石宝沟等侵入岩体最有可能的构造背景与后碰撞陆内造山作用有关(李永峰等, 2005; Qin et al., 2013)。在碰撞后造山的局部伸展背景下,岩石圈富集地幔发生熔融和地壳减薄进而引发壳幔混熔作用,岩浆上侵后形成花岗岩体。
4.2 成岩物质来源
岩浆源区的性质对斑岩型矿床的形成起到关键控制作用,如壳幔组分差异控制成矿元素的富集、受流体交代程度影响矿化类型、源区金属预富集可以有效提高成矿潜力(Hou et al., 2015; 杨航等, 2023)。锆石相对于其他矿物具有较好的稳定性,锆石Lu-Hf同位素具有较高的封闭温度,从而为分析岩浆源区及性质提供重要的信息。通常认为εHf(t)>0代表岩石岩浆来源于亏损地幔或从亏损地幔中新增生的年轻地壳物质的部分熔融, εHf(t)<0则表明岩浆来源于古老地壳重熔(Kemp et al., 2007)。南泥湖岩体εHf(t)值为−16.84~−8.04,TDM2值为1.70~2.26 Ga;石宝沟岩体εHf(t)值为−27.40~−14.51,TDM2值为2.15~2.93 Ga。二者TDM2值与太华群的形成年龄2.90~2.20 Ga (Tang et al., 2016)相吻合(图6),进一步表明壳源物质重熔的主要贡献,在成矿岩体中发现的大量中元古代至太古代继承锆石(
1700 ~2700 Ma)亦证明了此观点(Li et al., 2018)。图 6 南泥湖岩体和石宝沟岩体锆石年龄–εHf(t)图解华北克拉通太华群锆石Hf同位素数据引自罗铮娴等(2018)Figure 6. εHf(t)-age diagrams of Shibaogou and Nannihu rocks区别于石宝沟贫矿岩浆主要来源于古老地壳物质的重熔,南泥湖富Mo花岗岩岩浆表现出古老地壳和地幔物质混合来源特征。罗铭玖等(1993)对南泥湖岩体体进行Sr同位素测试,获得该区中酸性斑岩体87Sr/86Sr初始比值为
0.7034 ~0.7080 ;杨荣勇等(1997)所测得石宝沟花岗岩体87Sr/86Sr初始比值为0.7093 ,位于太华群87Sr/86Sr值(0.7060 ~0.7130 )变化范围之内。由于地幔的87Sr/86Sr初始比值较低,为0.7033 ,而壳源的酸性岩初始比值较高,多大于0.7060 (Rollinson, 1993)。因此认为,南泥湖富Mo斑岩体岩浆来源为壳幔混源。南泥湖岩体锆石δ18O值(5.88‰~8.27‰)略高于与幔源的锆石δ18O值(平均5.3‰±0.6‰)(Valley et al., 2003)。太华群具有较富集Hf同位素与较低O同位素的特征((Liu et al., 2009),石宝沟贫矿岩体的δ18O值与南泥湖岩体相近,被解释为岩浆源区来自太华群的部分熔融,因而具有与太华群类似的特征。对于斑岩型Mo矿床而言,其岩浆源区通常被认为与高Mo丰度的古老大陆地壳和富Mo的陆缘沉积物俯冲有关(孙卫东等, 2015)。华北克拉通南缘集中秦岭成矿带内95%以上的Mo资源,且太华群基底较秦岭造山带其他上覆盖层具有更高的Mo元素含量(2.62×10–6)(陈衍景等, 2020)。综上所述,可以认为以太华群基底为主的古老长英质地壳为南泥湖岩体与石宝沟岩体提供了主要的物质来源,并且南泥湖富Mo岩体具有壳幔混源特征。
5. 结论
(1)南泥湖和石宝沟岩体锆石均为典型的岩浆成因锆石,石宝沟岩体锆石U-Pb年龄为(147.5±2.2)Ma,南泥湖岩体锆石U-Pb年龄为(139.5±1.8)Ma,两个岩体的形成年代均为晚侏罗世。秦岭造山带晚中生代陆内造山过程中,岩石圈富集地幔发生熔融和地壳减薄进而引发壳幔混熔作用,岩浆上侵后形成花岗岩体。
(2)石宝沟岩体的锆石εHf(t)值为−27.4~−14.51,二阶段模式年龄TDM2值为2.15~2.93 Ga,δ18O值为5.42‰~6.77‰。南泥湖岩体的锆石εHf(t)值为−16.84~−8.04,二阶段模式年龄TDM2值为1.70~2.26 Ga,δ18O值为5.88‰~8.27‰。上述锆石Hf-O同位素结果表明以太华群基底为主的古老长英质地壳为南泥湖岩体与石宝沟岩体提供了主要的物质来源,并且南泥湖富Mo岩体具有壳幔混源特征。
-
图 1 秦岭造山带构造格架图(a)和栾川矿集区地质简图(b)(修改自Cao et al., 2015)
1.下古生界陶湾群;2.新元古界栾川群;3.中元古界管道口群;4.中元古界宽坪群;5.白垩纪花岗岩;6.侏罗纪花岗岩;7.元古代变辉长岩;8.元古代变正长斑岩;9.断层;10.斑岩–矽卡岩型钼钨矿床;11.热液脉型铅锌银矿床;12.矽卡岩型硫铁多金属矿床
Figure 1. (a) Tectonic framework of the Qinling Orogen and (b) geological map of the Luanchuan ore cluster
图 6 南泥湖岩体和石宝沟岩体锆石年龄–εHf(t)图解
华北克拉通太华群锆石Hf同位素数据引自罗铮娴等(2018)
Figure 6. εHf(t)-age diagrams of Shibaogou and Nannihu rocks
表 1 石宝沟岩体与南泥湖岩体LA-ICP-MS锆石U-Pb年龄鉴定结果表
Table 1 LA-ICP-MS Ziron U-Pb isotopic analysis of Shibaogou and Nannihu pluton
样品 U(10−6) Th(10−6) Pb(10−6) Th/U 206Pb/238U 207Pb/235U 207Pb/206Pb 207Pb/235Pb(Ma) 1σ 206Pb/238Pb(Ma) 1σ 207Pb/206Pb(Ma) 1σ SBG-G02 1 1887 891 70.2 2.13 0.02383 0.1709 0.0515 160.1 4.1 151.8 1.8 255 57 2 1015 512 35.8 1.98 0.02226 0.1608 0.0521 151.4 5.1 141.9 1.9 293 89 3 765 509 31.1 1.56 0.02284 0.2000 0.0642 185.0 9.8 145.6 2.5 710 120 5 1304 723 46.1 1.82 0.02154 0.1659 0.0559 155.8 5.0 137.4 2.1 431 81 6 1239 695 49.9 1.77 0.02212 0.1535 0.0498 144.9 4.1 141.0 1.7 177 71 8 1368 705 49.2 1.94 0.02311 0.1529 0.0478 145.5 5.0 147.3 2.0 103 81 9 386 350 25.3 1.15 0.02288 0.1810 0.0582 171.0 11 145.8 2.2 520 150 10 1027 553 40.7 1.85 0.02247 0.1613 0.0517 151.7 5.3 143.2 1.7 263 73 11 1429 1061 77.0 1.35 0.02358 0.1593 0.0502 150.0 4.3 150.2 1.6 198 64 12 914 1090 84.0 0.86 0.02408 0.1771 0.0530 165.4 6.1 153.4 1.4 329 91 13 1320 765 55.7 1.71 0.02403 0.1631 0.0497 153.3 4.3 153.1 1.5 174 68 14 1196 484 36.3 2.44 0.02375 0.1612 0.0492 151.7 4.9 151.3 1.9 148 80 15 1530 3500 236 0.85 0.02300 0.1645 0.0531 154.5 5.7 146.6 2.1 318 75 16 981 543 41.7 1.79 0.02292 0.1754 0.0557 164.0 5.2 146.1 1.9 428 72 17 1526 608 49.9 2.51 0.0242 0.1774 0.0531 165.7 4.1 154.1 2.6 333 70 19 1217 875 71.2 1.42 0.02446 0.1969 0.0580 182.5 4.6 155.8 1.7 545 64 20 1171 681 51.9 1.73 0.02396 0.1681 0.0506 157.6 4.7 152.7 1.8 229 69 21 993 505 38.6 1.94 0.02265 0.1675 0.0539 157.1 6.7 144.4 1.8 360 100 22 830 399 28.0 2.13 0.02244 0.1638 0.0531 153.9 4.7 143.0 1.7 321 77 23 1006 627 45.2 1.67 0.02257 0.1663 0.0532 156.1 5.6 143.9 1.3 323 84 24 498 179 14.0 3.05 0.02243 0.1720 0.0556 161.2 9.0 143.0 2.8 430 130 25 1258 756 54.1 1.68 0.02288 0.1602 0.0509 150.8 4.9 145.8 1.8 222 83 NNH-G01 1 1410 970 57.4 1.59 0.02220 0.1750 0.0571 163.1 8.9 141.5 2.8 470 110 2 1107 1778 117.6 0.63 0.02182 0.1690 0.0563 158.4 5.7 139.1 1.8 481 75 3 1072 874 61.6 1.21 0.02150 0.1583 0.0531 149.1 5.2 137.2 1.2 372 93 4 1480 850 56.0 1.88 0.02131 0.1578 0.0537 148.7 3.6 135.9 1.9 348 61 5 1760 1220 57.4 1.34 0.02225 0.2170 0.0734 198.0 23 141.9 2.7 920 240 6 2440 1118 79.9 2.20 0.02225 0.1573 0.0511 148.2 3.6 141.8 1.7 237 62 7 1850 1319 84.9 1.42 0.02234 0.1901 0.0614 178.0 7.6 142.4 1.2 690 100 8 740 535 37.8 1.38 0.02134 0.1517 0.0511 143.2 7.5 136.1 2.0 270 130 9 2480 1410 94.0 1.81 0.02171 0.1581 0.0530 149.0 3.5 138.4 1.4 322 54 10 1264 542 41.2 2.53 0.02216 0.1830 0.0604 170.4 8.8 141.3 1.7 570 130 表 2 南泥湖、石宝沟岩体锆石Hf-O同位素分析结果
Table 2 Ziron Hf-O isotopic of Nannihu rock and Shibaogou Rock
样品 T(Ma) 176Hf/177Hf 176Lu/177Hf 176Yb177/Hf ɛHf(t) TDM1(Ga) TDM2(Ga) fLu/Hf δ18O(‰) SBG-G02 1 151.8 0.28220 0.002050 0.0574 −17.11 1.53 2.28 −0.94 5.42 2 141.9 0.28222 0.001486 0.0399 −16.55 1.47 2.24 −0.96 5.50 3 145.6 0.28215 0.001429 0.0391 −18.94 1.57 2.39 −0.96 5.83 4 132.4 0.28221 0.002088 0.0539 −17.05 1.51 2.26 −0.94 6.11 5 137.4 0.28222 0.001386 0.0398 −16.74 1.47 2.25 −0.96 5.93 6 141.0 0.28218 0.001413 0.0425 −17.98 1.53 2.33 −0.96 5.72 7 198.0 0.28224 0.001120 0.0307 −14.51 1.43 2.15 −0.97 6.32 8 147.3 0.28219 0.001309 0.0380 −17.41 1.51 2.30 −0.96 6.16 9 145.8 0.28214 0.001481 0.0480 −19.26 1.59 2.41 −0.96 5.91 10 143.2 0.28217 0.001505 0.0446 −18.19 1.54 2.34 −0.95 5.55 11 150.2 0.28210 0.002075 0.0576 −20.72 1.67 2.50 −0.94 6.28 12 153.4 0.28214 0.001526 0.0485 −19.14 1.59 2.41 −0.95 6.17 13 153.1 0.28222 0.001282 0.0376 −16.19 1.46 2.22 −0.96 6.39 14 151.3 0.28222 0.001263 0.0361 −16.26 1.46 2.23 −0.96 5.88 15 146.6 0.28221 0.002480 0.0800 −16.80 1.52 2.26 −0.93 6.55 16 146.1 0.28218 0.001245 0.0378 −17.82 1.52 2.32 −0.96 6.32 17 154.1 0.28216 0.001559 0.0441 −18.32 1.56 2.36 −0.95 5.89 18 155.8 0.28190 0.001095 0.0410 −27.40 1.90 2.93 −0.97 6.61 19 152.7 0.28217 0.001582 0.0483 −18.03 1.55 2.34 −0.95 8.27 20 144.4 0.28220 0.001254 0.0356 −17.29 1.50 2.29 −0.96 6.07 21 143.0 0.28218 0.001539 0.0391 −17.84 1.53 2.32 −0.95 — 22 143.9 0.28221 0.001564 0.0407 −17.05 1.50 2.27 −0.95 — 23 143.0 0.28218 0.001583 0.0473 −17.92 1.53 2.32 −0.95 — 24 145.8 0.28225 0.001101 0.0256 −15.55 1.42 2.18 −0.97 — 25 141.5 0.28219 0.001448 0.0403 −17.69 1.52 2.31 −0.96 — NNH-G01 1 139.1 0.28228 0.001318 0.0335 −14.37 1.38 2.10 −0.96 6.28 2 137.2 0.28246 0.000928 0.0361 −8.04 1.11 1.70 −0.97 6.17 3 135.9 0.28236 0.000910 0.0316 −11.71 1.26 1.93 −0.97 6.39 4 141.9 0.28232 0.001792 0.0473 −13.22 1.35 2.03 −0.95 5.88 6 142.4 0.28221 0.002084 0.0559 −16.84 1.51 2.26 −0.94 6.32 7 136.1 0.28228 0.001701 0.0497 −14.46 1.39 2.10 −0.95 5.89 8 138.4 0.28226 0.001053 0.0345 −15.31 1.41 2.16 −0.97 6.61 9 141.3 0.28223 0.001900 0.0518 −16.43 1.48 2.23 −0.94 8.27 10 153.5 0.28229 0.001399 0.0363 −13.86 1.37 2.08 −0.96 6.07 -
包志伟, 李创举, 祁进平, 等. 东秦岭栾川铅锌银矿田辉长岩锆石SHRIMP U-Pb年龄及成矿时代[J]. 岩石学报, 2009, 25(11): 2951−2956. BAO Zhiwei, LI Chuangju, QI Jinping, et al. SHRIMP zircon U-Pb age of the gabbro dyke in the Luanchuan Pb-Zn-Ag orefield, east Qinling orogen and its constraint on mineralization time[J]. Acta Petrologica Sinica,2009,25(11):2951−2956.
陈衍景, 李诺, 邓小华, 等. 秦岭造山带钼矿床成矿规律[M]. 北京: 科学出版社, 2020. CHEN Yanjing, LI Nuo, DENG Xiaohua, et al. Molybdenum Mineralization in Qinling Orogen[M]. BeiJing: Science Press, 2020.
陈龙龙, 唐利, 沈彦谋, 等. 秦岭造山带栾川Mo-W矿集区和柞水–山阳Cu-Mo矿集区斑岩型矿床成矿差异性对比[J]. 西北地质, 2024, 57(2): 67−89. CHEN Longlong,TANG Li,SHEN Yanmou,et al. Comparison on Metallogenic Differences of Porphyry Deposits between Luanchuan Mo-W and Zhashui-Shanyang Cu-Mo Ore-clusters in Qinling Orogenic Belt: Constraints of Magmatic Source and Metallogenic Conditions[J]. Northwestern Geology,2024,57(2):67−89.
付鑫宁, 唐利, 姚梅青, 等. 东秦岭黄水庵钼矿床的碳酸岩成因与地质意义: 来自痕量元素和Sr-Nd-Pb同位素的约束[J]. 成都理工大学学报(自然科学版), 2021, 48(5): 525−538. FU Xinning, TANG Li, YAO Meiqing et al. Genesis and geological significance of the Huangshui’an Mo deposit in Eastern Qinling area of China: Constraints From trace elements and Sr-Nd-Pb isotopes[J]. Journal of Chengdu University of Technology,2021,48(5):525−538.
侯增谦, 杨志明, 王瑞, 等. 再论中国大陆斑岩Cu-Mo-Au矿床成矿作用[J]. 地学前缘, 2020, 27(2): 20−44. HOU Zengqian, YANG Zhiming, WANG Rui, et al. Further discussion on porphyry Cu-Mo-Au deposit formation in Chinese mainland[J]. Earth Science Frontiers,2020,27(2):20−44.
李欢, 邹灏, 陈恒强, 等. 云南腾冲箐口钼多金属矿床成矿地质特征及找矿标志[J]. 成都理工大学学报(自然科学版), 2018, 45(3): 313−324. LI Huan, ZOU Hao, CHEN Hengqiang, et al. Geological characteristics of mineralization and prospecting indicators of Jingkou Mo deposit in Tengchong, Yunnan, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2018,45(3):313−324.
李诺. 斑岩型钼矿: 新类型的识别及成矿控制因素[J]. 矿物岩石地球化学通报, 2022, 41(1): 113−126+7. LI Nuo. Porphyry Mo Deposits: New Sub-Types and Ore-Controlling Factors[J]. Bulletin of Mineralogy, Petrology and Geochemistry,2022,41(1):113−126+7.
李永峰, 毛景文, 白凤军, 等. 东秦岭南泥湖钼(钨)矿田Re-Os同位素年龄及其地质意义[J]. 地质论评, 2003, 49(6): 652−659. LI Yongfeng, MAO Jingwen, BAI Fengjun, et al. Re–Os isotopic dating of molybdenites in the Nannihu molybdenum (tungsten) ore field in the eastern Qinling and its geological significance[J]. Geological Review,2003,49(6):652−659.
李平, 陈隽璐, 张越, 等. 商丹俯冲增生带南缘土地沟–池沟地区侵入岩形成时代及地质意义[J]. 西北地质, 2023, 56(2): 10−27. LI Ping, CHEN Junlu, ZHANG Yue, et al. The Formation Age of Intrusions from Tudigou–Chigou Region in Southern Margin of Shangdan Subduction–Accretion Belt and Its Geological Significance[J]. Northwestern Geology,2023,56(2):10−27.
李永峰, 毛景文, 胡华斌, 等. 东秦岭钼矿类型、特征、成矿时代及其地球动力学背景[J]. 矿床地质, 2005, 51(3): 292−304. LI Yongfeng, MAO Jingwen, HU Huabin, et al. Geology distribution types and tectonic settings of Mesozoic molybdenum deposits in East Qinling area[J]. Mineral Deposits,2005,51(3):292−304.
罗铭玖, 林潜龙, 卢欣祥, 等. 东秦岭含钼花岗岩的地质特征[J]. 河南地质, 1993, 11(1): 2−8. LUO Mingjiu, LIN Qianlong, LU Xinxiang, et al. Geological characteristics of molybdenum-bearing granites in the East Qinling Mountains[J]. Henan Geology,1993,11(1):2−8.
罗铮娴, 黄小龙, 王雪, 等. 华北克拉通崤山太华群TTG质片麻岩年代学与地球化学特征: 岩石成因机制探讨[J]. 大地构造与成矿学, 2018, 42(2): 332−347. LUO Zhengxian, HUANG Xiaolong, WANG Xue, et al. Geochronology and Geochemistry of the TTG Gneisses from the Taihua Group in the Xiaoshan Area, North China Craton: Constraints on Petrogenesis[J]. Geotectonica et Metallogenia,2018,42(2):332−347.
牛腾, 倪志耀, 孟宝航, 等. 冀北康保芦家营巨斑状花岗岩: 华北克拉通北缘中段1.3~1.2 Ga B. P. 伸展—裂解事件的地质记录[J]. 成都理工大学学报(自然科学版), 2023, 50(4): 486−503. NIU Teng, NI Zhiyao, MENG Baohang, et al. The Lujiaying megaporphyric granite in Kangbao area, North Hebei: A geological record of extension and breakup event at 1.3~1.2 Ga B. P. in the central segment of northern margin of North China Craton[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2023,50(4):486−503.
孙卫东, 李聪颖, 凌明星, 等. 钼的地球化学性质与成矿[J]. 岩石学报, 2015, 31(7): 1807−1817. SUN Weidong, LI Congying, LING Mingxing, et al. The geochemical behavior of molybdnum and mineralization[J]. Acta Petrologica Sinica,2015,31(7):1807−1817.
冉亚洲, 陈涛, 梁文天, 等. 西秦岭郎木寺组火山岩锆石U–Pb年龄及其构造意义[J]. 西北地质, 2024, 57(1): 110−121. RAN Yazhou,CHEN Tao,LIANG Wentian,et al. Zircon U–Pb Age of Volcanic Rocks from the Langmusi Formation in the Western Qinling Mountains and Its Tectonic Significance[J]. Northwestern Geology,2024,57(1):110−121.
唐利, 张寿庭, 曹华文, 等. 河南栾川矿集区钼钨铅锌银多金属矿成矿系统及演化特征[J]. 成都理工大学学报(自然科学版), 2014, 41(3): 356−368. TANG Li, ZHANG Shouting, CAO Huawen, et al. Metallogenic system and evolutionary characteristics of Mo-W-Pb-Zn-Ag polymetallic metallogenic concentration area in Luanchuan, Henan[J]. [J]. Journal of Chengdu University of Technology (Science & Technology Edition),2014,41(3):356−368.
田浩浩, 张寿庭, 曹华文, 等. 豫西赤土店铅锌矿床闪锌矿微量元素地球化学特征[J]. 矿物岩石地球化学通报, 2015, 34(2): 334−342. TIAN Haohao, ZHANG Shouting, CAO Huawen, et al. Geochemical Characteristics of Trace Elements of Sphalerite in the Chitudian Pb-Zn Deposit, West Henan Province[J]. Bulletin of Mineralogy, Petrology and Geochemistry,2015,34(2):334−342.
王汉辉, 唐利, 杨勃畅, 等. 东秦岭黄水庵碳酸岩型Mo-REE矿床方解石地球化学特征和氟碳铈矿U-Th-Pb年龄及其意义[J]. 西北地质, 2023, 56(1): 48−62. WANG Hanhui, TANG Li, YANG Bochang, et al. Geochemical Characteristics of Calcite and Bastnäsite U-Th-Pb Age of the Huangshui’an Carbonatite-hosted Mo-REE Deposit, Eastern Qinling[J]. Northwestern Geology,2023,56(1):48−62.
王梓桐, 王根厚, 张维杰, 等. 阿拉善地块南缘志留纪花岗闪长岩LA-ICP-MS锆石U-Pb年龄及地球化学特征[J]. 成都理工大学学报(自然科学版), 2022, 49(5): 586−600. WANG Zitong, WANG Genhou, ZHANG Weijie, et al. LA-ICP-MS zircon U-Pb dating and geochemical characteristics of the Silurian granodiorite in the southern margin of Alxa Block, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2022,49(5):586−600.
熊万宇康, 赵梦琪, 于淼, 等. 造山带洋陆转换过程与岩浆作用: 以东昆仑都兰地区古生代花岗岩为例[J]. 西北地质, 2023, 56(6): 113−139. XIONG Wanyukang, ZHAO Mengqi, YU Miao, et al. Ocean−Continent Transition Process and Magmatism in Orogenic Belts: A Case Study of Paleozoic Granites in the Dulan Area of East Kunlun[J]. Northwestern Geology, 2023, 56(6): 113−139.
杨航, 秦克章, 吴鹏, 等. 斑岩铜-钼-金矿床: 构造环境、成矿作用与控制因素[J]. 矿床地质, 2023, 42(1): 128−156. YANG Hang, QIN Kezhang, WU Peng, et al. Tectonic setting, mineralization and ore-controlling factors of porphyry Cu-Mo-Au deposits[J]. Mineral Deposits,2023,42(1):128−156.
杨荣勇, 徐兆文, 任启江. 东秦岭地区石宝沟和火神庙岩体的时代及岩浆物质来源[J]. 矿物岩石地球化学通报, 1997, 16(1): 17−20. YANG Rongyong, XU Zhaowen, REN Qijiang. Ages and Magma Sources of Shibaogou and Huoshenmiao Complexes in East Qinling[J]. Bulletin of Mineralogy, Petrology and Geochemistry,1997,16(1):17−20.
杨阳, 王晓霞, 柯昌辉, 等. 豫西南泥湖矿集区石宝沟花岗岩体的锆石U-Pb年龄、岩石地球化学及Hf同位素组成[J]. 中国地质, 2012, 39(6): 1525−1542. YANG Yang, WANG Xiaoxia, KE Changhui, et al. Zircon U-Pb age, geochemistry and Hf isotopic compositions of Shibaogou granitoid pluton in the Nannihu ore district, western Henan Province[J]. Geology in China,2012,39(6):1525−1542.
杨正良, 任龙, 邓明国, 等. 河南栾川石宝沟Mo矿床岩体年龄及氧逸度的成矿意义[J]. 有色金属, 2023, 75(5): 134−145. YANG Zhengliang, REN Long, DENG Mingguo, et al. Pluton age and minerallogenic significance of oxygen fugacity of Shibaogou Mo deposit in Luanchuan, Henan[J]. Nonferrous Metal,2023,75(5):134−145.
张红亮. 栾川矿集区东鱼库钼钨多金属矿床成矿地质特征与成矿模式[D]. 北京: 中国地质大学(北京), 2014. ZHANG Hongliang. Ore-Forming Geological Characteristics and Metallogenic Model of the Dongyuku Mo-W Polymetallic Deposit, Luanchuan Ore Area[D]. Beijing: China University of Geosciences (Beijing), 2014.
张云辉, 张寿庭, 王世炎, 等. 东秦岭南泥湖钼(钨)矿床和秋树湾铜(钼)矿床成岩成矿特征对比研究[J]. 地质与勘探, 2014, 50(4): 700−711. ZHANG Yunhui, ZHANG Shouting, WANG Shiyan, et al. Comparison of petrologic and metallogenic characteristics between the Nannihu Mo(W)deposit and Qiushuwan Cu(Mo)deposit, east Qinling[J]. Geology and Exploration,2014,50(4):700−711.
朱赖民, 张国伟, 李犇, 等. 与秦岭造山有关的几个关键成矿事件及其矿床实例[J]. 西北大学学报(自然科学版), 2008, 82(3): 204−220. ZHU Laimin,ZHANG Guowei,LI Ben,et al. Some key metall ogenetic events of Qinling orgenic belt and their deposit examples[J]. [J]. Journal of Northwest University (Nature Science Edition),2008,82(3):204−220.
Cao Huawen, Zhang Shouting, Santosh M, et al. The Luanchuan Mo-W-Pb-Zn-Ag magmatic-hydrothermal system in the East Qinling metallogenic belt, China: Constrains on metallogenesis from C-H-O-S-Pb isotope compositions and Rb–Sr isochron ages[J]. Journal of Asian Earth Sciences,2015,111:751−780.
Chen Yanjing, Pirajno Franco, Li Nuo, et al. Molybdenum deposits in China[J]. Ore Geology Reviews,2017,81:401−404.
Dong Yunpeng, Santosh M. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China[J]. Gondwana Research,2016,29(1):1−40.
Guo Bo, Yan Changhai, Zhang Shouting, et al. Geochemical and geological characteristics of the granitic batholith and Yuku concealed Mo–W deposit at the southern margin of the North China Craton[J]. Geological Journal,2020,55:95−116. doi: 10.1002/gj.3372
Hu Xinkai, Tang Li, Zhang Shoutingting, et al. In situ trace element and sulfur isotope of pyrite constrain ore genesis in the Shapoling Molybdenum Deposit, East Qinling Orogen, China[J]. Ore Geology Reviews,2019,105:123−136. doi: 10.1016/j.oregeorev.2018.12.019
Hu Xinkai, Tang Li, Zhang Shouting, et al. Formation of the Qiyugou porphyry gold system in East Qinling, China: insights from timing and source characteristics of Late Mesozoic magmatism[J]. Journal of the Geological Society, 179(4), jgs2020-253.
Hou Zengqian, Duan Lianfeng, Lu Yongjun, et al. Lithospheric architecture of the Lhasa terrane and its control on ore deposits in the Himalayan-Tibetan orogen[J]. Economic Geology,2015,110:1541−1575. doi: 10.2113/econgeo.110.6.1541
Kemp A I S, Hawkesworth C J, Foster G L, et al. Magmatic and Crustal Different History of Granitic Rocks from Hf-O Isotopes in Zircon[J]. Science,2007,315:980−983. doi: 10.1126/science.1136154
Li Nuo, Chen YanJing, Santosh M, et al. Late Mesozoic granitoids in the Qinling Orogen, Central China, and tectonic significance[J]. Earth-Science Reviews,2018,182:141−173. doi: 10.1016/j.earscirev.2018.05.004
Li Weiran. Costa Fidel A thermodynamic model for F-Cl-OH partitioning between silicate melts and apatite including non-ideal mixing with application to constraining melt volatile budgets[J]. Geochimica et Cosmochimica Acta,2020,269:203−222. doi: 10.1016/j.gca.2019.10.035
Li Xianhua, Tang Guoqiang, Gong Bing, et al. Qinghu zircon: A working reference for microbeam analysis of U-Pb age and Hf and O isotopes[J]. Chinese Science Bulletin,2013,58:4647−4654. doi: 10.1007/s11434-013-5932-x
Liu Dunyi, Wilde Simon A, Wan Yusheng, et al. Combined U-Pb, hafnium and oxygen isotope analysis of zircons from meta-igneous rocks in the southern North China Craton reveal multiple events in the Late Mesoarchean-Early Neoarchean[J]. Chemical Geology,2009,261(1−2):140−154.
Qin Jiangfeng, Lai Shaocong, Li Yongfei. Multi-stage granitic magmatism during exhumation of subducted continental lithosphere: evidence from the Wulong pluton, South Qinling[J]. Gondwana Research,2013,24:1108−1126. doi: 10.1016/j.gr.2013.02.005
Rollinson Hugh R. Using Geochemical Data: Evaluation, Presentation, and Interpretation[M]. Longman Scientific & Technical, 1993.
Tang Li, Santosh M, Dong Yunpeng, et al. Early Paleozoic tectonic evolution of the North Qinling orogenic belt: Evidence from geochemistry, phase equilibrium modeling and geochronology of metamorphosed mafic rocks from the Songshugou ophiolite[J]. Gondwana Research,2016,30:48−64. doi: 10.1016/j.gr.2014.10.006
Tang Li, Zhao Yu, Zhang Shouting, et al. Origin and evolution of a porphyry-breccia system: Evidence from zircon U-Pb, molybdenite Re-Os geochronology, in situ sulfur isotope and trace elements of the Qiyugou deposit, China[J]. Gondwana Research,2021,89:88−104.
Tang Li, Wagner Thomas, Fusswinkel Tobias, et al. Fluid inclusion evidence for the magmatic-hydrothermal evolution of closely linked porphyry Au, porphyry Mo, and barren systems, East Qinling, China[J]. GSA Bulletin,2022,134:1529−1548. doi: 10.1130/B36170.1
Valley John W. Oxygen Isotopes in Zircon[J]. Reviews in Mineralogy & Geochemistry,2003,53(1):343−385.
Xu Yunchou, Wang Gongwen, Gao Meng, et al. Genesis of the Shibaogou Mo-Pb-Zn deposit in the Luanchuan ore district, China: Constraints from geochronology, fluid inclusion, and H-O-S-Pb isotopes[J]. Geoscience Frontiers,2023,10:1032183. doi: 10.3389/feart.2022.1032183
Xue Fei, Wang Gongwen, Santosh M, et al. Geochemistry and geochronology of ore-bearing and barren intrusions in the Luanchuan ore fields of East Qinling metallogenic belt, China: Diverse tectonic evolution and implications for mineral exploration[J]. Journal of Asian Earth Sciences, 2018, 157.
Zhang Yunhui, Cao Huawen, Xu Mo, et al. Petrogenesis of the late Mesozoic highly fractionated I-type granites in the Luanchuan district: implications for the tectono-magmatic evolution of eastern Qinling[J]. Geosciences Journal,2018,22(2):253−272. doi: 10.1007/s12303-017-0036-2