ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    高级检索

    江西省中新生代沉积盆地CO2地质储存潜力及适宜性评价

    肖富强, 章双龙, 夏为平, 陈富贵, 祁星, 肖卫东, 邹勇军

    肖富强,章双龙,夏为平,等. 江西省中新生代沉积盆地CO2地质储存潜力及适宜性评价[J]. 西北地质,2024,57(6):326−337. doi: 10.12401/j.nwg.2024034
    引用本文: 肖富强,章双龙,夏为平,等. 江西省中新生代沉积盆地CO2地质储存潜力及适宜性评价[J]. 西北地质,2024,57(6):326−337. doi: 10.12401/j.nwg.2024034
    XIAO Fuqiang,ZHANG Shuanglong,XIA Weiping,et al. Carbon Dioxide Geological Storage Potential and Suitability Evaluation of Mesozoic-Cenozoic Sedimentary Basin in Jiangxi Province[J]. Northwestern Geology,2024,57(6):326−337. doi: 10.12401/j.nwg.2024034
    Citation: XIAO Fuqiang,ZHANG Shuanglong,XIA Weiping,et al. Carbon Dioxide Geological Storage Potential and Suitability Evaluation of Mesozoic-Cenozoic Sedimentary Basin in Jiangxi Province[J]. Northwestern Geology,2024,57(6):326−337. doi: 10.12401/j.nwg.2024034

    江西省中新生代沉积盆地CO2地质储存潜力及适宜性评价

    基金项目: 江西省地质局科技研究项目“清江盆地二氧化碳封存地质条件及关键评价技术研究”(2023JXDZKJKY05),江西省地质局青年科学技术带头人培养计划项目“江西省会昌盆地氦气资源调查研究”(2022JXDZKJRC05),江西省地质调查勘查院地质环境监测所科研项目“典型含煤构造单元与中新生代盆地二氧化碳地质封存适宜性评价”(2022SDDYDHS01)联合资助。
    详细信息
      作者简介:

      肖富强(1989−),男,高级工程师,从事油气地质、矿产地质勘查研究工作。E−mail:910284784@qq.com

      通讯作者:

      邹勇军(1984−),男,正高级工程师,从事矿产地质研究与管理工作。E−mail:158276952@qq.com

    • 中图分类号: P66

    Carbon Dioxide Geological Storage Potential and Suitability Evaluation of Mesozoic-Cenozoic Sedimentary Basin in Jiangxi Province

    • 摘要:

      在当前碳达峰、碳中和背景下,CO2地质储存被认为是降碳减排、减缓温室效应最直接、最有效的办法。笔者聚焦江西省CO2减排需求,以江西省内发育的9个重点中新生代沉积盆地为研究对象。采用碳封存领导人论坛(CSLF)提出的方法,计算得出江西省中新生代沉积盆地CO2有效储存量为18226.3×106 t,束缚气储存机理有效储存量为16869×106 t,溶解气储存机理有效储存量为1357.3×106 t。构建了以地质安全性、储存规模、社会经济性为核心,涵盖19项评价指标的CO2地质储存潜力适宜性综合评价指标体系,并引入变异系数法–综合评价模型,客观地评价江西省中新生代CO2地质储存潜力及其适宜性。评价结果显示,江西省CO2地质储存适宜性优先顺序分别为:鄱阳盆地、清江盆地、信江盆地、抚州盆地、赣州盆地、锦江盆地、吉泰盆地、版石盆地和会昌盆地。其中,鄱阳盆地、清江盆地储存潜力分别达到适宜、较适宜等级。

      Abstract:

      Under the current background of carbon peaking and carbon neutrality, carbon dioxide geological storage is considered to be the most direct and effective way to reduce carbon emissions and mitigate the greenhouse effect. This paper focuses on the carbon dioxide emission reduction demand of Jiangxi Province, and takes 9 key Mesozoic and Cenozoic sedimentary basin developed in Jiangxi Province as the research object. Adopting the approach proposed by the Carbon Storage Leadership Forum (CSLF), it is calculated that the effective storage of carbon dioxide in the Mesozoic Cenozoic sedimentary basin in Jiangxi Province is18226.3×106 t; the effective storage capacity of the bound gas storage mechanism is 16869×106 t; the effective storage capacity of dissolved gas storage mechanism is 1357.3×106 t. It has established a comprehensive evaluation index system for the suitability of carbon dioxide geological storage potential, with geological safety, storage scale, and socio-economic benefits as the core, covering 19 evaluation indicators, And introduce the coefficient of variation method-comprehensive evaluation model to objectively evaluate the geological storage potential and suitability of CO2 in the Mesozoic and Cenozoic in Jiangxi Province. The evaluation results show that the priority order of CO2 geological storage suitability in Jiangxi Province is as follows: Poyang basin, Qingjiang basin, Xinjiang basin, Fuzhou basin, Ganzhou basin, Jinjiang basin, Jitai basin, Banshi basin, and Huichang basin. Among them, the storage potential of Poyang basin and Qingjiang basin has reached suitable and relatively suitable levels, respectively.

    • 图  1   江西省中新生代沉积盆地分布图

      Figure  1.   Distribution of Mesozoic and Cenozoic sedimentary basins in Jiangxi Province

      图  2   江西省中新生代盆地地层综合柱状图

      1. 复成分砾岩;2. 砾岩;3. 砂砾岩;4. 泥岩;5. 粉砂质泥岩;6. 钙质砂岩;7. 泥岩;8. 砂岩;9. 膏岩;10. 储层;11. 盖层

      Figure  2.   Comprehensive stratigraphy histogram of Mesozoic and Cenozoic basins in Jiangxi Province

      图  3   CO2有效储存量分布柱状图

      Figure  3.   Distribution histogram of effective carbon dioxide storage capacity

      图  4   评价指标体系

      Figure  4.   Evaluation index system

      图  5   评价流程图

      Figure  5.   Evaluation flowchart

      图  6   江西省中新生代沉积盆地二氧化碳地质储存适宜性评价图

      Figure  6.   Evaluation map of geological storage suitability of carbon dioxide in Mesozoic and Cenozoic sedimentary basins in Jiangxi Province

      表  1   江西省中新生代沉积盆地束缚气有效储存量计算参数及结果

      Table  1   Calculation parameters and results of effective bound gas storage in Mesozoic–Cenozoic sedimentary basins of Jiangxi Province

      盆地 液流逆流后被
      圈闭的CO2的被
      饱和度(%)
      沉积盆地内整被
      个储层的体积被
      (106 m3
      储层平均被
      孔隙度(%)
      储层条件下CO2
      的密度(kg/m3
      束缚气有效被
      储存量(106 t)
      鄱阳盆地 42.54 9825600 16.83 720.54 12166
      清江盆地 47.03 2362780 14.59 596.54 2357
      吉泰盆地 55.20 802186 11.24 610.16 719
      锦江盆地 59.89 392700 9.68 360.54 197
      信江盆地 62.28 734040 8.98 595.48 584
      抚州盆地 53.20 648000 11.98 617.60 612
      赣州盆地 68.48 266900 7.36 536.80 173
      版石盆地 62.24 11000 8.14 287.99 4
      会昌盆地 55.06 60040 11.29 640.84 57
      合计 16869
      下载: 导出CSV

      表  2   江西省中新生代沉积盆地溶解气有效储存量计算参数及结果

      Table  2   Calculation parameters and results of effective storage of dissolved gas in Mesozoic and Cenozoic sedimentary basins of Jiangxi Province

      盆地 盆地面积( km2 储层厚度(m) CO2在地层
      水溶解度(mol/kg)
      初始的地层
      水的平均密度
      (kg/m3
      溶解气有效
      储存量(106 t)
      鄱阳盆地 10680 920 1.0196 1035 1059
      清江盆地 2780 850 0.8702 1030 177
      吉泰盆地 2570 312 0.9695 1030 41
      锦江盆地 1870 210 0.8609 1015 14
      信江盆地 2166 340 0.7860 1017.5 21
      抚州盆地 2880 225 0.9214 1030 36
      赣州盆地 1570 170 0.8734 1030 6
      版石盆地 110 100 0.7327 1010 0.3
      会昌盆地 240 250 0.8816 1025 3
      合计 1357.3
      下载: 导出CSV

      表  3   评价指标权重表

      Table  3   Evaluation index weight table

      指标层 指标亚层 评价指标
      地质安全性0.340区域地壳稳定性0.135地震动峰值加速度(g)0.025
      历史地震(M)0.034
      活动性断裂发育情况0.076
      盖层条件0.204盖层岩性0.015
      盖层层数0.033
      盖层厚度(m)0.026
      主力盖层埋深(m)0.098
      盖层连续性0.034
      储存规模0.558盆地规模0.093盆地面积( km20.055
      地层厚度(m)0.038
      储层条件0.147储层厚度(m)0.050
      孔隙度(%)0.047
      渗透率(mD)0.050
      储存潜力0.285推定潜力(108 t)0.114
      单位面积潜力(104 t/ km20.171
      地热地质条件0.032大地热流值(mW/m20.022
      地温梯度(℃/100 m)0.011
      社会经济性0.102碳源条件0.059
      社会认可程度0.043
      下载: 导出CSV

      表  4   CO2地质储存潜力适宜性评价结果

      Table  4   Evaluation results of suitability for geological storage potential of carbon dioxide

      盆地综合得分排名适宜性等级
      鄱阳盆地8.5321适宜
      清江盆地7.5112较适宜
      吉泰盆地4.4277一般
      锦江盆地4.4366一般
      信江盆地5.1153一般
      抚州盆地5.0764一般
      赣州盆地4.5435一般
      版石盆地3.7888较不适宜
      会昌盆地3.4219较不适宜
       注:8~9为适宜,6~8为较适宜,4~6为一般适宜,2~4为较不适宜,<2为不适宜。
      下载: 导出CSV
    • 储莎, 陈来. 基于变异系数法的安徽省节能减排评价研究[J]. 中国人口·资源与环境, 2011, 213): 512516.

      CHU Sha, CHEN Lai. Evaluation of Energy Saving and Emission Reduction of Anhui Based on Variance Coefficient Approach[J]. China Population, Resources and Environment, 2011, 213): 512516.

      刁玉杰, 张森琦, 郭建强, 等. 深部咸水层CO2地质储存地质安全性评价方法研究[J]. 中国地质, 2011, 383): 786792.

      DIAO Yujie, ZHANG Senqi, GUO Jianqiang, et al. Geological safety evaluation method for CO2 geological storage in deep saline aquifer[J]. Geology in China, 2011, 383): 786792.

      范基姣, 贾小丰, 张森琦, 等. CO2地质储存潜力与适宜性评价方法及初步评价[J]. 水文地质工程地质, 2011, 386): 108112.

      FAN Jijiao, JIA Xiaofeng, ZHANG Senqi, et al. A study of CO2 geological storage potential and suitability assessment[J]. Hydrogeology & Engineering Geology, 2011, 386): 108112.

      郭建强, 文冬光, 张森琦, 等. 中国二氧化碳地质储存适宜性评价与示范工程[M]. 北京, 地质出版社, 2014a.

      GUO Jianqiang, WEN Dongguang, ZHANG Senqi, et al. Suitability evaluation and demonstration project of carbon dioxide geological storage in China[M]. Beijing: Geological Publishing House, 2014a.

      郭建强, 文冬光, 张森琦, 等. 中国主要沉积盆地二氧化碳地质储存潜力与适宜性评价图集[M]. 北京, 地质出版社, 2014b.

      GUO Jianqiang, WEN Dongguang, ZHANG Senqi, et al. The Atlas of Carbon Dioxide Geological Storage Potential and Suitability Evaluation of China Major Sedimentary Basins[M]. Beijing: Geological Publishing House, 2014b.

      黄孝波, 汪恩满, 郑在邦, 等. 江西省南鄱阳盆地深部油气资源勘探及其意义[A]. 江西省地质学会论文汇编集[C].2016: 286−293.

      HUANG Xiaobo, WANG Enman, ZHENG Zaibang, et al. On exploration for deep hydrocarbon resources at south Poyang basin in Jiangxi and its significance[A]. Compilation of Papers by Jiangxi Geological Society[C]. 2016: 286−293.

      江西省地质局. 中国区域地质志·江西志[M]. 北京: 地质出版社, 2017.

      Jiangxi Bureau of Geology. Regional Geology of China·Jiangxi Province[M]. Beijing: Geological Publishing House, 2017.

      江西省统计局. 江西统计年鉴(2022)[M]. 北京: 中国统计出版社, 2023.

      Jiangxi Provincial Bureau of Statistics. Jiangxi Statistical Yearbook (2022)[M]. Beijing: China Statistics Press, 2023.

      李海燕, 彭仕宓, 许明阳, 等. CO2在深部咸水层中的埋存机制研究进展[J]. 科技导报, 2013, 312): 7279.

      LI Haiyan, PENG Shimi, XU Mingyang, et al. CO2 Storage Mechanism in Deep Saline Aquifers[J]. Science & Technology Review, 2013, 312): 7279.

      李甫成, 张杨, 张晓娟, 等. 深部咸水层CO2地质储存适宜性评价方法研究[J]. 冰川冻土, 2014, 363): 649660.

      LI Fucheng, ZHANG Yang, ZHANG Xiaojuan, et al. Suitability evaluation method of CO2 geological sequestration in deep saline aquifers[J]. Journal of Glaciology and Geocryology, 2014, 363): 649660.

      李尚儒, 陈青云, 何攀, 等. 南鄱阳盆地页岩油气、致密油气资源调查评价[R]. 南昌, 江西省地质局工程地质大队, 2016.
      梁兴, 叶舟, 吴根耀, 等. 鄱阳盆地构造—沉积特征及其演化史[J]. 地质科学, 2006, 413): 404429.

      LIANG Xing, YE Zhou, WU Genyao, et al. Sedimento-Tectonic Features and Geological Evolution of the Poyang Basin[J]. Chinese Journal of Geology, 2006, 413): 404429.

      刘宁. 陆相沉积盆地砂岩储层CO2地质封存流体运移和水岩相互作用研究[D]. 武汉: 中国地质大学, 2018.

      LIU Ning. Study on Fluids Transportation and Water-rock Interactions of CO2 Geological Storage in Sandstone Reservoirs in Continental Sedimentary Basins[D]. Wuhan: China University of Geosciences, 2018.

      刘廷, 马鑫, 刁玉杰, 等. 国内外CO2地质封存潜力评价方法研究现状[J]. 中国地质调查, 2021, 84): 101108.

      LIU Ting, MA Xin, DIAO Yujie, et al. Research status of CO2 geological storage potential evaluation methods at home and abroad[J]. Geological Survey of China, 2021, 84): 101108.

      罗文煌, 姚淇. 江西省清江岩盐矿床地质特征与成盐机理[J]. 东华理工学院学报, 2006, (S): 121126.

      LUO Wenhuang, YAO Qi. The geological characteristics Qingjiang halite deposit and its forming mechanism in Jiangxi Province[J]. Journal of East China Institute of Technology, 2006, (S): 121126.

      米剑锋, 马晓芳. 中国CCUS技术发展趋势分析[J]. 中国电机工程学报, 2019, 399): 25372544.

      MI Jianfeng, MA Xiaofang. Development Trend Analysis of Carbon Capture, Utilization and Storage Technology in China[J]. Proceedings of the CSEE, 2019, 399): 25372544.

      桑树勋, 袁亮, 刘世奇, 等. 碳中和地质技术及其煤炭低碳化应用前瞻[J]. 煤炭学报, 2022a, 474): 14301451.

      SANG Shuxun, YUAN Liang, LIU Shiqi, et al. Geological technology for carbon neutrality and its application prospect for low carbon coal exploitation and utilization[J]. Journal of China Coal Society, 2022a, 474): 14301451.

      桑树勋, 刘世奇, 陆诗建, 等. 工程化CCUS全流程技术及其进展[J]. 气藏评价与开发, 2022b, 125): 711725.

      SANG Shuxun, LIU Shiqi, LU Shijian, et al. Engineered full flowsheet technology of CCUS and its research progress[J]. Petroleum Reservoir Evaluation and Development, 2022b, 125): 711725.

      沈平平, 廖新维. 二氧化碳地质埋存与提高石油采收率技术[M]. 北京: 石油工业出版社, 2009.

      SHEN Pingping, LIAO Xinwei. Technique of CO2 EOR and geological sequestration[M] Beijing: Petroleum Industry Press, 2009.

      孙腾民, 刘世奇, 汪涛. 中国二氧化碳地质封存潜力评价研究进展[J]. 煤炭科学技术, 2021, 4911): 1020.

      SUN Tengmin, LIU Shiqi, WANG Tao. Research advances on evaluation of CO2 geological storage potential in China[J]. Coal Science and Technology, 2021, 4911): 1020.

      王国强, 李婷, 陈隽璐, 等. 中国西北地区超基性岩封存CO2潜力研究[J]. 西北地质, 2023, 561): 186193.

      WANG Guoqiang, LI Ting, CHEN Junlu, et al. Assessment of Carbon Dioxide Sequestration Potential of Ultramafic Rocks in Northwest China[J]. Northwestern Geology, 2023, 561): 186193.

      王齐鑫, 马传明, 花勐健, 等. 安徽省沉积盆地CO2地质储存适宜性评价[J]. 水文地质工程地质, 2017, 445): 121130.

      WANG Qixin, MA Chuanming, HUA Mengjian, et al. Suitability evaluation of geological storage of CO2 in sedimentary basin of Anhui Province[J]. Hydrogeology & Engineering Geology, 2017, 445): 121130.

      肖富强, 章双龙, 祁星. 萍乐坳陷地区吴家坪期沉积环境的元素地球化学指示[J]. 东华理工大学学报(自然科学版), 2020, 433): 231239.

      XIAO Fuqiang, ZHANG Shuanglong, QI Xing. Elemental geochemical indication of sedimentary environment in Wujiaping period of Pingle depression area[J]. Journal of East China University of Technology (Natural Science), 2020, 433): 231239.

      杨红, 赵习森, 康宇龙, 等. 鄂尔多斯盆地CO2 地质封存适宜性与潜力评价[J]. 气候变化研究进展, 2019, 151): 95102.

      YANG Hong, ZHAO Xisen, KANG Yulong, et al. Evaluation on geological sequestration suitability and potential of CO2 in Ordos Basin[J]. Climate Change Research, 2019, 151): 95102.

      杨吉根. 清江盆地沉积构造分类及其特征分析[J]. 华东地质学院学报, 1988, 113): 201207.

      YANG Jigen. Classification and Characteristic Analysis of Sedimentary Structures in the Qingjiang Basin[J]. Journal of East China College of Geology, 1988, 113): 201207.

      袁志刚. 碳达峰碳中和国家战略行动路线图[M]. 北京: 中国经济出版社, 2021.

      YUAN Zhigang. Carbon Peak and Carbon Neutralization National Strategic Action Roadmap [M]. Beijing: China Economic Publishing House, 2021.

      张冰, 梁凯强, 王维波, 等. 鄂尔多斯盆地深部咸水层CO2有效地质封存潜力评价[J]. 非常规油气, 2019, 63): 1520.

      ZHANG Bing, LIANG Kaiqiang, WANG Weibo, et al. Evaluation of Effective CO2 Geological Sequestration Potential of Deep Saline Aquifer in Ordos Basin[J]. Unconventonal Oil & Gas, 2019, 63): 1520.

      张洪涛, 文冬光, 李义连, 等. 中国CO2地质埋存条件分析及有关建议[J]. 地质通报, 2005, 2412): 11071110.

      ZHANG Hongtao, WEN Dongguang, LI Yilian, et al. Conditions for CO2 geological sequestration in China and some suggestions[J]. Geological Bulletin of China, 2005, 2412): 11071110.

      张森琦, 郭建强, 李旭峰, 等. 中国二氧化碳地质储存地质基础及场地地质评价[M]. 北京: 地质出版社, 2011.

      ZHANG Senqi, GUO Jianqiang, LI Xufeng, et al. Geological Basis and Site Evaluation for Carbon Dioxide Geological Storage in China[M]. Beijing: Geological Publishing House, 2011.

      邹勇军, 肖富强, 章双龙, 等. 江西省温泉伴生气氦含量特征及其成因分析[J]. 西北地质, 2022, 554): 8594.

      ZOU Yongjun, XIAO Fuqiang, ZHANG Shuanglong, et al. Characteristics and causes of helium content in hot spring associated gas in Jiangxi Province[J]. Northwestern Geology, 2022, 554): 8594.

      Bachu S, Adams J J. Sequestration of CO2 in geological media in response to climate change: capacity of deep saline aquifers to sequester CO2 in solution[J]. Energy Conversion and Management, 2003, 4420): 31513175. doi: 10.1016/S0196-8904(03)00101-8

      IEA. Global Energy Review: CO2 Emissions in 2021[M]. International Energy Agency, 2022.

      Shuklar R, Ranjith P, Haque A, et al. A review of studies on CO2 sequestration and caprock integrity[J]. Fuel, 2010, 8910): 26512664. doi: 10.1016/j.fuel.2010.05.012

      Sun Lili, Dou Hongen, Li Zhiping, et al. Assessment of CO2 storage potential and carbon capture, utilization and storage prospect in China[J]. Journal of the Energy Institute, 2018, 916): 970977. doi: 10.1016/j.joei.2017.08.002

    图(6)  /  表(4)
    计量
    • 文章访问数:  111
    • HTML全文浏览量:  10
    • PDF下载量:  43
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-04-09
    • 修回日期:  2023-08-28
    • 录用日期:  2024-03-20
    • 网络出版日期:  2024-10-13
    • 刊出日期:  2024-12-19

    目录

      /

      返回文章
      返回