Age, Geochemistry and Geological Significance of an Early Neoproterozoic Porphyritic Granite in the Jianshanzi Area of the Beishan Orogenic Belt
-
摘要:
笔者报道了北山造山带东缘尖山子地区新元古代早期似斑状花岗岩年代学、地球化学特征,结合已发表的同期花岗质岩石地球化学数据,讨论其源区性质及北山南部前寒武纪基底与塔里木克拉通的亲缘性。似斑状花岗岩两件样品锆石U-Pb年龄分别为(901±5)Ma,(935±3)Ma,表明其形成于新元古代早期。似斑状花岗岩样品发育钾长石斑晶,显示高的SiO2 含量(70.41%~76.05%)和过铝质特征(A/CNK = 1.01~1.21);具有相似的球粒陨石标准化稀土元素配分曲线并显示轻稀土富集、Eu负异常(δEu = 0.30~0.46)和在原始地幔标准化多元素图解上显示Rb、Th、U和K正异常,Ba、Nb、Ta、Sr、P和Ti负异常;具有富集的锆石Hf同位素组成,其εHf(t)值为−5.0~−1.4和相应的两阶段Hf模式年龄为2.08~1.86 Ga。这些地球化学特征共同反应似斑状花岗岩为壳源花岗岩,并指示早期地壳的再造事件。结合前人发表的地球化学数据,北山造山带南部前寒武纪基底经历了中元古代地壳新生事件和新元古代早期地壳再造事件,花岗质岩石锆石εHf(t)值主要落在2.2~1.3 Ga地壳物质Hf同位素演化区内,指示北山南部不存在太古代基底,因此与具有太古代结晶基底的塔里木克拉通可能不具有构造亲缘性。
Abstract:The geochronological and geochemical data of an early Neoproterozoic porphyritic granite in the Jianshanzi Area of the Beishan Orogenic Belt has been present. Combined with published geochemical data of contemporaneous granitic rocks, their magma sources and the tectonic affinity between the Precambrian basement in the southern Beishan and Tarim Cration are discussed. Two samples from the porphyritic granite have zircon U-Pb ages of (901±5) Ma and (935±3) Ma, respectively, indicating that it was formed during the early Neoproterozoic. Samples from the porphyritic granite contain K-feldspar phenocrysts with high SiO2 contents (70.41%~76.05%) and peraluminous characteristics (A/CNK=1.01~1.21), and exhibit similar chondrite-normalized REE patterns with LREE-enrichment and pronounced negative Eu anomalies (δEu = 0.30~0.46), and show positive Rb, Th, U and K anomalies, negative Ba, Nb, Ta, Sr, P and Ti anomalies in the primitive mantle-normalized trace-element diagram, and have evolved zircon εHf(t) values of −5.0 to −1.4 and two-stage Hf model ages of 2.08~1.61 Ga. All these geochemical characteristics suggest that the porphyritic granite is a typical crustal-derived granite, indicating an older crustal reworking event. Together with the reported data, the Precambrian basement of the southern Beishan experienced both Mesoproterozoic crustal growth and early Neoproterozoic crustal reworking events with the zircon εHf(t) values of granitic rocks plotting within the crustal evolution trend defined by 2.1~1.3 Ga crustal material, indicating the absence of an Archean basement in the southern Beishan, and therefore it may not have tectonic affinity with the Tarim craton with an Archean crystalline basement.
-
Keywords:
- Neoproterozoic /
- granitic rocks /
- crustal reworking /
- Beishan Orogenic Belt
-
中亚造山带位于东欧克拉通、西伯利亚克拉通和塔里木–华北克拉通之间(图1a),是世界上目前已知的发展历史最长、构造–岩浆作用最复杂的一条显生宙巨型增生造山带(Sengör et al., 1993;Windley et al., 2007;Xiao et al., 2010;王文宝等,2024;吴妍蓉等,2024),带内分布着大小不等的前寒武纪微地块(Kröner et al., 2013;He et al., 2018;Zhou et al., 2018)。北山造山带位于中亚造山带中段南部,是理解中亚造山带造山过程的关键地段(Xiao et al., 2010;Niu et al., 2021a, 2021b;俞胜等,2022;戴鹏飞等,2023)。早期研究认为该造山带不同构造单元分布着大量的前寒武纪基底,即“北山杂岩”(左国朝等,1990;Zuo et al., 1991;何世平等,2002;杨合群等,2008, 2009, 2010, 2012)。近年来,一些前人认为的前寒武纪基底被锆石U-Pb年代学研究所否定(Song et al. 2013a, 2013b, 2013c, 2015, 2016;Zheng et al., 2018;肖文交等,2019;霍宁等,2022),但北山地区确实存在前寒武纪岩石(梅华林等,1999;叶晓峰等,2013;姜洪颖等,2013;Yuan et al., 2015;贺振宇等,2015;Liu et al., 2015;Ao et al., 2016;Soldner et al., 2019;牛文超等,2019;Wang et al., 2021a, 2021b;李沅柏等,2021;卜涛等,2022;Huang et al., 2022),主要分布在红柳河–牛圈子–洗肠井缝合带以南,即北山造山带南部(图1b)。然而,关于前寒武纪基底起源的认识仍然缺少很好的约束,特别是与塔里木克拉通或敦煌微陆块(塔里木克拉通东缘)是否具有构造亲缘性(左国朝等,1990, Zuo et al., 1991;何世平等,2002, 2005;贺振宇等, 2015;Yuan et al., 2015;He et al., 2018;Wang et al., 2021b;Huang et al., 2022)。笔者报道了尖山子新元古代早期似斑状花岗岩的岩相学、年代学和地球化学数据,分析了岩浆源区特征,并结合已发表的岩浆岩数据,讨论了前寒武纪基底与塔里木克拉通的亲缘性。
蛇绿混杂岩带或裂谷带:Ⅰ.红石山构造带;Ⅱ.星星峡-石板井构造带;Ⅲ.红柳河-洗肠井构造带;Ⅳ.柳园构造带。锆石U-Pb年龄:1. Yuan et al., 2015;2. 梅华林等,1999;叶晓峰等,2013;Liu et al., 2015;Yuan et al., 2015;He et al., 2018;Soldner et al., 2019;Li et al., 2023;3. 姜洪颖等,2013; 4. 贺振宇等,2015;Yuan et al., 2019;5. Wang et al., 2021a;6. Wang et al., 2021b;7. Ao et al., 2016;8. 牛文超等,2019;9. 卜涛等,2022;10. 李沅柏等,2021Figure 1. (a) Simplified tectonic sketch map of the Central Asian Orogenic Belt showing the location of the Beishan Orogenic Belt and (b) distribution of the Beishan complex and the known Precambrian rocks in the Beishan Orogenic Belt1. 区域地质
北山造山带位于中亚造山带中段南部,南为敦煌微陆块即塔里木克拉通的东缘,北为蒙古古生代拼贴带,西临东天山造山带,东被巴丹吉林沙漠掩盖(图1b)(Zuo et al., 1991;Xiao et al., 2010)。北山造山带包括多个构造带及之间的构造单元,以Xiao等(2010) 的划分为代表,其构造单元从北向南包括雀儿山、黑鹰山–旱山、马鬃山、双鹰山–花牛山、石板山等构造单元(图1b)。
早期研究认为北山造山带除了雀儿山构造单元外,其他构造单元前寒武纪基底即“北山杂岩”广泛分布,由中高级变质岩和浅变质沉积序列组成(左国朝等,1990, Zuo et al., 1991;杨合群等,2008)。20世纪末至21世纪初,前人研究依据变质变形、岩石组合和少量的全岩Sm-Nd等时线年龄、Ar-Ar年龄和单颗粒锆石U-Pb上交点年龄(主要获得2.9~1.6 Ga),认为中高级变质岩形成时代为太古代—古元古代(李志琛,1994;桑海清等,1997;梅华林等,1997;魏学平等,2000;聂凤军等,2004;孙新春等,2005),依据区域岩石地层对比、与中高级变质岩变质差异,认为浅变质沉积序列形成于中—新元古代(左国朝等,1990, Zuo et al., 1991;梅华林等,1997;杨合群等,2008)。传统上认为北山造山带南部(红柳河-洗肠井蛇绿混杂岩带以南)前寒武纪基底具有塔里木克拉通或敦煌微陆块(塔里木克拉通的东端)的亲缘性(左国朝等,1990, Zuo et al., 1991;何世平等,2002, 2005;杨合群等,2008, 2009, 2010, 2012)。
近年来,地质学家对这些所谓的前寒武纪岩石进行了锆石U-Pb定年,获得了不同的年龄数据,但缺少太古代和古元古代的岩石。目前发现具有可靠年龄数据最老的岩石为出露在石板山构造单元约
1400 Ma的旧井花岗质片麻岩(贺振宇等,2015;Yuan et al., 2019)和出露在双鹰山单元上与古堡泉超高压变质岩空间上共生的1555 ~1359 Ma花岗质片麻岩(He et al., 2018;Li et al., 2023),并且一些所谓的前寒武纪变质岩已经被否定掉,它们为古生代的俯冲增生杂岩或岩浆弧杂岩(Song et al., 2013a, 2013b, 2013c, 2015, 2016;Zheng et al., 2018)。因此,北山造山带是否存在太古代—古元古代的岩石仍然不清楚(姜洪颖等,2013;贺振宇等,2015;He et al., 2018)。岩浆岩的地球化学特征,特别是同位素特征,可以指示源区的属性(贺振宇等,2015;He et al., 2018)。论文报道了北山南部尖山子地区新元古代早期似斑状花岗岩,结合已经发表的同时期花岗质岩石地球化学数据,表征其源区特征,并进行了前寒武纪基底亲缘性的探讨。
2. 似斑状花岗岩及其样品采集
尖山子似斑状花岗岩位于北山造山带南部双鹰山–花牛山构造单元的东缘(图1b),侵入到变质的北山杂岩中,并被古生代岩浆岩侵入,后期与石炭纪地层呈断层接触(图2)。似斑状花岗岩,出露面积约10 km2,呈NWW–SEE展布。露头上,岩石呈黑灰色,发育肉红色钾长石斑晶,并且经历了韧性剪切变形(图3a、图3b)。本次工作采集了3件样品(TW1003,TW8837, YQ2224)(图2),所有样品呈似斑状结构,主要由斑晶和基质组成,斑晶为钾长石(10%~25%),多自形,大小为5~10mm,基质为黑云母(5%~10%),石英(20%~25%)和长石(30%~40%,钾长石和斜长石近于相等)(图3a、图3b)。岩石经历韧性变形,石英矿物拉长定向排列或细粒化(图3b)。3件样品进行了主量元素和微量元素分析,两件样品(TW1003,TW8837)进行了锆石U-Pb测年,在锆石定年基础上,对样品TW1003开展了锆石Hf同位素分析。
3. 分析方法
样品主量元素和微量元素均在河北省区域地质矿产调查研究所实验室完成。主量元素采用X射线荧光光谱仪,分析精度优于5%。微量元素采用X-Serises 2电感耦合等离子体质谱ICP-MS分析方法,精度优于5%。
锆石分选、制靶、阴极发光在河北省区域地质矿产调查研究所实验室完成。锆石U-Pb同位素定年在天津地质矿产研究所利用LA-ICP-MS Agilent 7500a仪器分析。本次实验室采用的激光束斑直径为50 μm,以氦气作为剥蚀物质的载气。LA-ICP-MS分析方法见李怀坤等(2010)相关描述。测试数据年龄值误差均为1σ,计算处理采用Isoplot 3.0程序。
锆石Hf同位素分析在北京锆石领航科技有限公司激光剥蚀多接收器电感耦合等离子体质谱仪上完成。激光进样系统为NWR 213nm固体激光器,分析系统为多接收等离子体质谱仪(NEPTUNE plus)。实验中采用179Hf/177Hf =
0.7325 对Hf同位素比值进行指数归一化质量歧视校正,采用173Yb/172Yb =1.35274 对Yb同位素比值进行指数归一化质量歧视校正。测试过程中采用GJ-1作为标样,测量176Hf/177Hf 平均值为0.282011 。4. 分析结果
4.1 锆石U-Pb年龄
样品TW1003锆石U-Pb年龄数据见表1和图4。锆石多呈自形,长为80~120 μm,宽度为50~80 μm,长宽比接近2∶1。阴极发光图像显示锆石具有明显的振荡环带,显示岩浆成因的结构特征,此外部分锆石具有核幔结构(图4a)。锆石一共分析了32个点(图4b),9个分析点位于锆石核部,其中两个分析点谐和性差, 7个分析点落在谐和线附近,206Pb/238U年龄介于
1 415 ~951 Ma,代表了捕获或残留锆石年龄。23个分析点无核部结构或位于幔部,其中19个分析点集中分布落在谐和线上,206Pb/238U年龄平均年龄为(901±5)Ma,代表了样品TW1003的结晶年龄;另外3个分析点谐和性差和1个分析点落在谐和曲线上, 但206Pb/238U年龄为836 Ma且与结晶年龄相比明显偏年轻,这些分析点可能与锆石重结晶或Pb同位素丢失有关(王梓桐等,2022;牛腾等,2023)。表 1 尖山子似斑状花岗岩样品TW1003锆石LA-ICP-MS U-Pb年龄分析数据Table 1. Zircon LA-ICP-MS U-Pb data for the sample TW1003 from the porphyritic granite in the Jianshanzi area点号 含量(10−6) 同位素比值 年龄(Ma) TW1003 Pb Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ TW1003-1 126 220 719 0.0713 0.0023 1.4571 0.0456 0.1474 0.0020 0.0494 0.0019 966 67 913 19 886 11 TW1003-2 127 91 1024 0.0666 0.0018 1.2808 0.0355 0.1385 0.0018 0.0472 0.0030 833 56 837 16 836 10 TW1003-3* 302 200 1583 0.0814 0.0025 1.9176 0.0526 0.1700 0.0021 0.1138 0.0041 1231 65 1087 18 1012 12 TW1003-4* 1361 722 2152 0.3820 0.0091 8.0679 0.3240 0.1502 0.0042 0.3970 0.0185 3840 36 2239 36 902 23 TW1003-5 194 263 1199 0.0696 0.0018 1.4317 0.0401 0.1481 0.0022 0.0624 0.0041 917 52 902 17 891 12 TW1003-6 130 70 1036 0.0687 0.0016 1.4336 0.0425 0.1505 0.0030 0.0458 0.0022 889 50 903 18 904 17 TW1003-7 129 431 643 0.0726 0.0020 1.5261 0.0511 0.1508 0.0027 0.0460 0.0014 1011 56 941 21 905 15 TW1003-8* 104 213 452 0.0756 0.0023 1.8682 0.0597 0.1787 0.0026 0.0584 0.0019 1087 62 1070 21 1060 14 TW1003-9 116 359 592 0.0696 0.0019 1.4392 0.0412 0.1494 0.0021 0.0456 0.0012 917 54 905 17 898 12 TW1003-10 128 106 957 0.0693 0.0017 1.4330 0.0379 0.1488 0.0018 0.0503 0.0018 907 55 903 16 894 10 TW1003-11* 199 591 844 0.0754 0.0019 1.6734 0.0494 0.1590 0.0023 0.0554 0.0017 1080 50 998 19 951 13 TW1003-12 248 126 1819 0.0770 0.0016 1.6131 0.0425 0.1501 0.0024 0.0994 0.0041 1120 43 975 17 902 13 TW1003-13 151 92 1202 0.0671 0.0014 1.4167 0.0310 0.1520 0.0021 0.0502 0.0014 840 43 896 13 912 12 TW1003-14 101 69 794 0.0675 0.0014 1.4265 0.0318 0.1516 0.0020 0.0503 0.0016 854 44 900 13 910 11 TW1003-15 468 827 1665 0.0899 0.0021 2.7197 0.0699 0.2163 0.0031 0.0742 0.0019 1433 39 1334 19 1262 17 TW1003-16 98 84 711 0.0695 0.0024 1.4644 0.0617 0.1499 0.0022 0.0651 0.0076 922 72 916 25 900 13 TW1003-17* 605 257 1807 0.1891 0.0094 4.4913 0.2548 0.1631 0.0032 0.4163 0.0262 2744 82 1729 47 974 18 TW1003-18 140 59 1105 0.0671 0.0015 1.4159 0.0327 0.1511 0.0020 0.0522 0.0016 839 48 896 14 907 11 TW1003-19* 301 91 1565 0.1267 0.0046 2.4865 0.1035 0.1387 0.0018 0.5338 0.0471 2054 64 1268 30 837 10 TW1003-20 70 196 372 0.0684 0.0016 1.4270 0.0332 0.1500 0.0019 0.0464 0.0012 880 48 900 14 901 11 TW1003-21 97 97 714 0.0655 0.0014 1.3836 0.0313 0.1512 0.0019 0.0466 0.0014 791 46 882 13 908 10 TW1003-22 205 172 1221 0.0892 0.0028 1.8853 0.0642 0.1500 0.0019 0.1024 0.0050 1409 92 1076 23 901 10 TW1003-23 82 258 418 0.0673 0.0016 1.4125 0.0377 0.1502 0.0024 0.0480 0.0014 856 48 894 16 902 13 TW1003-24 158 102 1221 0.0663 0.0015 1.3876 0.0355 0.1498 0.0022 0.0471 0.0015 815 49 884 15 900 12 TW1003-25* 544 999 1507 0.0934 0.0025 3.1789 0.0964 0.2424 0.0036 0.0757 0.0025 1496 45 1452 23 1399 18 TW1003-26* 146 73 1033 0.0695 0.0016 1.5503 0.0365 0.1600 0.0023 0.0613 0.0023 922 47 951 15 957 13 TW1003-27 174 203 1203 0.0701 0.0016 1.4758 0.0350 0.1507 0.0018 0.0508 0.0018 931 46 921 14 905 10 TW1003-28 182 104 1304 0.0723 0.0016 1.5195 0.0343 0.1512 0.0020 0.0730 0.0025 994 46 938 14 908 11 TW1003-29 143 106 1084 0.0687 0.0015 1.4335 0.0359 0.1491 0.0018 0.0561 0.0043 900 72 903 15 896 10 TW1003-30* 290 516 902 0.0874 0.0017 2.9888 0.0637 0.2455 0.0030 0.0716 0.0016 1369 37 1405 16 1415 16 TW1003-31 87 202 508 0.0690 0.0016 1.4469 0.0353 0.1506 0.0020 0.0450 0.0012 898 48 909 15 904 11 TW1003-32 112 74 849 0.0689 0.0017 1.4329 0.0369 0.1492 0.0019 0.0482 0.0015 898 45 903 15 896 11 注:*表示锆石核部点位。 样品TW8837锆石U-Pb年龄数据见表2和图4。锆石多呈自形,长度为80~150 μm,宽度为50~90 μm,长宽比接近1.5∶1。阴极发光图像显示锆石颜色比较深,多呈灰黑色,但振荡环带清楚,显示岩浆成因的结构特征,此外部分锆石具有核幔结构(图4c)。锆石一共分析了30个点,谐和图见图4d。3个分析点位于锆石核部,数据落在谐和线附近,206Pb/238U年龄介于
1077 ~986 Ma,代表了捕获或残留锆石年龄。27个分析点无核部结构或位于幔部,1个分析点偏离谐和曲线,其余26个分析点落在谐和曲线上,年龄集中分布,206Pb/238U年龄平均年龄为(935±3)Ma,代表了样品TW8837的结晶年龄。表 2 尖山子似斑状花岗岩样品TW8837锆石LA-ICP-MS U-Pb年龄分析数据Table 2. Zircon LA-ICP-MS U-Pb data for the sample TW8837 from the porphyritic granite in the Jianshanzi area点号 含量(10−6) 同位素比值 年龄(Ma) TW8837 Pb Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ TW8837-1 578 565 2424 0.0721 0.0018 1.5704 0.0401 0.1566 0.0015 0.0548 0.0016 989 19 959 16 938 8 TW8837-2 392 565 1343 0.0708 0.0018 1.5354 0.0378 0.1564 0.0014 0.0479 0.0011 950 56 945 15 937 8 TW8837-3 2373 4494 5527 0.0722 0.0017 1.5747 0.0349 0.1573 0.0016 0.0477 0.0011 991 48 960 14 942 9 TW8837-4 1354 2073 4069 0.0708 0.0014 1.5397 0.0304 0.1566 0.0012 0.0502 0.0010 950 41 946 12 938 7 TW8837-5 792 1023 3056 0.0670 0.0014 1.4566 0.0297 0.1566 0.0013 0.0469 0.0009 835 43 913 12 938 7 TW8837-6 1623 2081 5514 0.0825 0.0018 1.6488 0.0329 0.1440 0.0010 0.0557 0.0011 1258 42 989 13 867 6 TW8837-7 641 530 3129 0.0685 0.0014 1.4879 0.0307 0.1565 0.0013 0.0490 0.0012 883 43 925 13 937 7 TW8837-8 409 285 1947 0.0704 0.0016 1.5303 0.0336 0.1566 0.0013 0.0607 0.0016 939 46 943 13 938 7 TW8837-9 494 375 2598 0.0715 0.0016 1.5547 0.0349 0.1566 0.0014 0.0418 0.0011 972 47 952 14 938 8 TW8837-10 1555 2353 4238 0.0744 0.0020 1.6301 0.0458 0.1566 0.0015 0.0563 0.0022 1054 54 982 18 938 8 TW8837-11 986 1372 3002 0.0726 0.0018 1.5778 0.0392 0.1566 0.0016 0.0527 0.0012 1003 52 962 15 938 9 TW8837-12 514 430 2269 0.0709 0.0017 1.5416 0.0362 0.1567 0.0015 0.0565 0.0015 955 53 947 14 938 8 TW8837-13 607 414 2654 0.0739 0.0017 1.6226 0.0406 0.1567 0.0022 0.0681 0.0024 1039 48 979 16 938 12 TW8837-14 927 1433 2810 0.0741 0.0017 1.6052 0.0358 0.1568 0.0019 0.0475 0.0011 1043 52 972 14 939 10 TW8837-15 443 288 2252 0.0688 0.0015 1.4949 0.0323 0.1566 0.0016 0.0517 0.0012 892 76 928 13 938 9 TW8837-16 818 578 4164 0.0693 0.0014 1.5057 0.0311 0.1565 0.0013 0.0466 0.0010 909 43 933 13 938 7 TW8837-17 498 321 2396 0.0724 0.0016 1.5659 0.0340 0.1559 0.0014 0.0573 0.0014 998 43 957 13 934 8 TW8837-18 600 552 2580 0.0704 0.0016 1.5294 0.0338 0.1566 0.0013 0.0510 0.0012 943 46 942 14 938 7 TW8837-19 507 431 2290 0.0688 0.0016 1.4915 0.0333 0.1563 0.0013 0.0505 0.0013 894 42 927 14 936 7 TW8837-20 588 463 2517 0.0772 0.0018 1.6772 0.0400 0.1566 0.0014 0.0571 0.0014 1125 48 1000 15 938 8 TW8837-21* 646 468 2250 0.0800 0.0019 2.0261 0.0529 0.1819 0.0019 0.0747 0.0018 1198 46 1124 18 1077 11 TW8837-22 477 314 2492 0.0682 0.0016 1.4735 0.0353 0.1556 0.0013 0.0513 0.0015 876 48 920 14 932 7 TW8837-23 628 985 1916 0.0705 0.0016 1.5208 0.0342 0.1554 0.0012 0.0487 0.0010 943 45 939 14 931 7 TW8837-24 463 644 1481 0.0695 0.0020 1.4925 0.0440 0.1548 0.0015 0.0534 0.0012 915 58 927 18 928 8 TW8837-25 486 456 2299 0.0685 0.0015 1.4765 0.0332 0.1555 0.0015 0.0487 0.0011 883 44 921 14 932 8 TW8837-26 491 383 2174 0.0741 0.0026 1.5846 0.0571 0.1552 0.0020 0.0674 0.0031 1044 75 964 22 930 11 TW8837-27 568 327 2975 0.0731 0.0016 1.5723 0.0368 0.1550 0.0015 0.0631 0.0019 1017 44 959 15 929 9 TW8837-28 369 432 1584 0.0704 0.0018 1.5108 0.0388 0.1550 0.0016 0.0472 0.0013 939 52 935 16 929 9 TW8837-29* 481 467 1812 0.0700 0.0018 1.6017 0.0412 0.1655 0.0017 0.0622 0.0018 928 55 971 16 987 10 TW8837-30* 419 207 2163 0.0695 0.0019 1.5900 0.0431 0.1652 0.0016 0.0673 0.0026 922 56 966 17 986 9 注:*表示锆石核部点位。 4.2 锆石Hf同位素
样品TW1003选择谐和年龄的结晶锆石进行Hf同位素分析,并用206Pb/238U年龄平均值(901±5)Ma计算εHf(t)值和两阶段Hf模式年龄TDM2(DM代表亏损地幔)。Hf同位素的组成见表3,结果与北山造山带南部报道的花岗质岩石Hf同位素组成类似(图5;姜洪颖等,2013;叶晓峰等, 2013;Liu et al., 2015;Yuan et al., 2015;Wang et al., 2021b)。
表 3 尖山子似斑状花岗岩样品TW1003锆石Hf同位素组成Table 3. Zircon Hf-isotope compositions for the sample TW1003 from the porphyritic granite in the Jianshanzi area点号 176Yb/177Hf 2σ 176Lu/177Hf 2σ 176Hf/177Hf 2σ 年龄
(Ma)(176Hf/177Hf)i εHf(0) εHf(t) TDM
(Ma)TDM2
(Ma)fLu/Hf TW1003-5 0.054984 0.000289 0.001418 0.000007 0.282170 0.000025 901 0.282146 −21.3 −2.3 1544 1916 −0.96 TW1003-6 0.050315 0.000471 0.001302 0.000012 0.282139 0.000023 901 0.282117 −22.4 −3.3 1582 1980 −0.96 TW1003-7 0.037520 0.000372 0.000998 0.000010 0.282130 0.000023 901 0.282113 −22.7 −3.4 1582 1988 −0.97 TW1003-9 0.087226 0.001205 0.002261 0.000024 0.282195 0.000021 901 0.282157 −20.4 −1.9 1543 1891 −0.93 TW1003-10 0.091361 0.001105 0.002329 0.000026 0.282108 0.000022 901 0.282068 −23.5 −5.0 1672 2087 −0.93 TW1003-13 0.071769 0.001814 0.001842 0.000037 0.282167 0.000026 901 0.282136 −21.4 −2.6 1566 1938 −0.94 TW1003-14 0.080789 0.000700 0.002134 0.000025 0.282169 0.000023 901 0.282133 −21.3 −2.7 1575 1944 −0.94 TW1003-16 0.064744 0.000391 0.001682 0.000006 0.282198 0.000025 901 0.282170 −20.3 −1.4 1514 1861 −0.95 TW1003样品8个分析点锆石176Hf/177Hf值为
0.282068 ~0.282170 ,εHf(t)值为−5.0~−1.4,TDM2年龄值为2.08~1.86 Ga。4.3 主量和微量元素
尖山子3件似斑状花岗岩样品的主量和微量元素见表4,结果与李沅柏等(2021)报道的该岩体数据,以及北山造山带南部已经发表的花岗质岩石地球化学特征类似(图6、图7)(姜洪颖等,2013;叶晓峰等,2013;Liu et al., 2015;Yuan et al., 2015;Wang et al., 2021b)。样品SiO2 (70.41%~76.05%),K2O (5.13%~5.33%)的含量较高,Al2O3 (12.66%~14.25%),Na2O (2.36%~2.53%)和CaO (1.25%~1.39%)含量中等,MgO含量偏低。样品Rb含量为130.66×10−6~294.88 ×10−6,Rb/Sr值(1.12~2.48)相对较高。在TAS图上,样品落在亚碱性花岗岩或接近亚碱性花岗闪长岩区(图6a),属于钙碱性或接近高钾钙碱性系列(图6b)。这些样品显示过铝质特征,A/CNK值 [Al2O3/(CaO+Na2O+K2O)摩尔数比值]为1.01~1.21(图6c)。
表 4 尖山子似斑状花岗岩样品主量(%)和微量元素(10–6)组成Table 4. Major (%) and trace element (10–6) compositions for samples from the porphyritic granite in the Jianshanzi area样号 TW1003 YQ2224 TW8837 样号 TW1003 YQ2224 TW8837 SiO2 76.05 72.01 70.41 Y 32.27 38.96 45.02 Al2O3 12.66 14.20 14.25 ΣREE 138.47 261.00 362.78 TiO2 0.09 0.52 0.55 (La/Yb)N 7.17 8.41 10.79 Fe2O3t 0.76 3.21 − δEu 0.46 0.32 0.30 Fe2O3 − − 1.48 Li 8.94 12.50 23.14 FeO − − 1.95 Be 1.35 2.57 2.86 CaO 1.39 1.25 1.30 Sc 5.41 10.10 8.83 MgO 0.47 0.85 1.11 V 9.51 40.64 53.43 K2O 5.33 5.13 5.23 Cr 6.87 7.88 19.22 Na2O 2.53 2.36 2.48 Co 66.15 64.20 5.97 MnO 0.04 0.03 0.04 Ni 3.20 4.82 6.94 P2O5 0.06 0.05 0.06 Cu 4.48 5.66 19.92 LOI 0.83 0.36 1.01 Zn 10.75 46.32 75.92 Total 100.21 99.97 99.89 Ga 12.29 10.35 24.39 K2O+Na2O 7.86 7.49 7.72 Rb 130.66 200.65 294.88 A/NK 1.27 1.51 1.46 Sr 116.65 102.45 118.67 A/CNK 1.01 1.21 1.17 Zr 43.29 200.66 304.54 La 25.63 52.30 65.79 Nb 3.05 10.67 21.44 Ce 38.92 89.68 131.31 Mo 0.08 0.12 0.74 Pr 4.14 8.77 15.37 Cd 0.09 0.14 0.16 Nd 17.33 32.10 59.91 In 0.05 0.08 0.10 Sm 2.87 8.67 11.52 Cs 2.12 8.67 9.96 Eu 0.52 0.92 1.08 Ba 632.13 710.23 618.77 Gd 4.19 8.64 10.09 Hf 1.67 8.60 10.21 Tb 0.81 1.24 1.63 Ta 0.87 1.69 2.35 Dy 4.76 6.86 9.04 W 363.73 320.00 1.75 Ho 1.11 2.31 1.58 Tl − − 1.92 Er 2.55 4.95 4.55 Pb 34.50 42.73 56.72 Tm 0.38 0.68 0.82 Bi 0.08 0.06 1.32 Yb 2.56 4.46 4.37 Th 16.63 35.60 48.94 Lu 0.42 0.46 0.68 U 3.64 5.44 6.67 图 6 尖山子似斑状花岗岩(a)硅-碱性图(据Middlemost, 1994),(b)SiO2-K2O图(据Frost et al., 2001)和(c)A/NK-A/CNK图(据Maniar et al., 1989)Figure 6. (a) Total alkali versus silica diagram, (b) SiO2 vs K2O plot and (c) A/NK vs A/CNK diagram of the porphyritic granite in the Jianshanzi area.图 7 尖山子似斑状花岗岩C1球粒陨石标准化稀土元素配分图(a)和原始地幔标准化多元素图(b)北山造山带南部已发表的新元古代花岗质岩石微量元素数据来自叶晓峰等(2013);姜洪颖等(2013);Liu等(2015);Yuan等(2015);Soldner等(2019);Wang等(2021b);C1球粒陨石和原始地幔值据Sun 等 (1989)Figure 7. (a) C1 chondrite-normalized REE patterns and (b) primitive mantle-normalized incompatible trace element variation diagrams of the porphyritic granite in the Jianshanzi area样品稀土总量为138.47×10-6~362.78×10-6,并显示相似的球粒陨石稀土元素配分曲线(图7a)。配分曲线向右倾斜,显示轻稀土与重稀土的分离特征(La/Yb)N值为7.17~10.79,以及明显的Eu负异常(δEu = 0.30~0.46)(图7a)。在原始地幔微量元素配分图解上,这些样品显示Rb、Th、U和K正异常,以及Ba、Nb、Ta、Sr、P和Ti负异常(图7b)。
5. 讨论
5.1 新元古代早期地壳再造事件
尖山子似斑状花岗岩位于北山造山带南部东缘,本次获得两件样品锆石U-Pb年龄分别为(901±5)Ma,(935±3)Ma,另外李沅柏等(2021)报道一件锆石U-Pb年龄为(892±5)Ma,表明该岩体形成时间为新元古代早期。同时期的岩浆事件在北山造山带南部发育(图1b),包括双鹰山–花牛山构造单元古堡泉片麻状花岗岩和变质基性岩(900~865 Ma; 梅华林等, 1999;叶晓峰等,2013;Liu et al., 2015;Yuan et al., 2015;Soldner et al., 2019)、东黑尖山花岗质片麻岩(895±4 Ma; Wang et al., 2021b)、石峡糜棱岩化花岗岩和二长岩(894~884 Ma;Wang et al., 2021b)、大湾城玄武岩(901±10 Ma;Wang et al., 2021a),以及石板山构造单元雅丹片麻状花岗岩(933±2 Ma; Yuan et al., 2015)、白墩子片麻状花岗岩和石板敦斜长角闪岩(~880 Ma; 姜洪颖等,2013)。这表明北山造山带南部广泛发育新元古代早期构造–岩浆事件。
上述新元古代花岗质岩石属于高钾钙碱性系列至钾玄岩系列,显示偏铝质至过铝质的特征(图6),具有相似的稀土元素配分曲线并显示轻稀土富集、Eu负异常的特征(图7a),以及在微量元素地球化学配分图解上显示Rb、Th、U和K正异常以及Ba、Nb、Ta、Sr、P和Ti负异常(图7b),与壳源岩浆岩的地球化学特征一致(Rudnick et al., 2003)。尖山子似斑状花岗岩εHf(t)值为−5.19~−1.59,与已报道的同时期花岗质岩石相似(叶晓峰等,2013;Liu et al., 2015;Yuan et al., 2015;Soldner et al., 2019;Wang et al., 2021b),这些新元古代早期花岗质岩石共同显示演化的Hf同位素组成,且这些岩石结晶锆石以及捕获或残留锆石εHf(t)值主要落在2.2~1.3 Ga地壳物质Hf同位素演化区内(图5)。上述全岩主量微量元素和锆石Hf同位素特征反应北山造山带南部新元古代早期花岗质岩石主要起源于地壳,指示了早期地壳的再造事件。这与同时期一些过铝质花岗岩属于S-型花岗岩相一致,这些S-型花岗岩常常含有过铝质矿物,如白云母、石榴子石(姜洪颖等,2013;Wang et al., 2021b)。此外,Zong 等(2017)在古堡泉和旧井地区报道了~900 Ma角闪岩相变质事件,这也与北山南部新元古代早期地壳再造事件相一致。
5.2 北山造山带南部前寒武纪基底的构造亲缘性
北山造山带经历了古生代构造、变质和岩浆事件的强烈叠加和改造,能够标志微陆块性质的前寒武纪基底大多呈碎片分布于古生代的岩浆弧地体中(图1b;Xiao et al., 2010;He al., 2018)。长期以来,将分布在北山不同构造单元上的中高级变质岩即“北山杂岩”看作前寒武纪基底,并依据岩石地层对比和少量的全岩Sm-Nd等时线年龄、Ar-Ar年龄和单颗粒锆石U-Pb上交点年龄(主要获得2.9~1.6 Ga),认为北山造山带南部前寒武纪基底具有塔里木克拉通或敦煌微陆块的亲缘性(左国朝等,1990, Zuo et al., 1991;何世平等, 2005; 杨合群等, 2008, 2009, 2010, 2012)。
然而,近年来识别出具有确切年龄的前寒武纪岩石为新元古代岩浆岩和~
1400 Ma花岗质片麻岩(图1b)。~1400 Ma花岗质片麻岩显示了地壳的新生事件(图8;贺振宇等,2015;He et al., 2018;Yuan et al., 2019),而出露的多处新元古代花岗质岩石显示了地壳的再造事件(叶晓峰等,2013;姜洪颖等,2013;Liu et al., 2015;Yuan et al., 2015;Wang et al., 2021b)。然而,这些岩石锆石εHf(t)值主体落在2.2~1.3 Ga地壳物质Hf同位素演化区内(图8),暗示北山造山带南部前寒武纪基底可能不存在太古代的基底。因此,它们可能不具有塔里木克拉通的构造亲缘性,因为塔里木克拉通广泛发育太古代的结晶基底(朱文斌等, 2022)。6. 结论
(1)北山造山带南部广泛发育新元古代早期岩浆事件。尖山子似斑状花岗岩锆石U-Pb年龄分别为(901±5)Ma和(935±3)Ma。尖山子似斑状花岗岩地球化学特征与北山南部花岗质岩石地球化学特征相似,反应了新元古代早期地壳再造事件。
(2)北山造山带南部经历了中元古代地壳新生和新元古代早期地壳再造事件,锆石εHf(t)值主要落在2.2~1.3 Ga地壳物质Hf同位素演化区内,可能暗示不存在太古代的基底,即前寒武纪基底与具有太古代结晶基底的塔里木克拉通可能不同。
致谢:感谢审稿专家提出的宝贵修改意见,在此致以诚挚的感谢。李树才、曹军、杨兵、黄福勇等参加了部分野外工作,在此一并致以谢意。
-
图 1 中亚造山带构造位置图,显示北山造山带的位置(a)和北山造山带北山杂岩及已知的前寒武纪岩石空间分布(b)(据Xiao et al., 2010;Wang et al., 2021b)
蛇绿混杂岩带或裂谷带:Ⅰ.红石山构造带;Ⅱ.星星峡-石板井构造带;Ⅲ.红柳河-洗肠井构造带;Ⅳ.柳园构造带。锆石U-Pb年龄:1. Yuan et al., 2015;2. 梅华林等,1999;叶晓峰等,2013;Liu et al., 2015;Yuan et al., 2015;He et al., 2018;Soldner et al., 2019;Li et al., 2023;3. 姜洪颖等,2013; 4. 贺振宇等,2015;Yuan et al., 2019;5. Wang et al., 2021a;6. Wang et al., 2021b;7. Ao et al., 2016;8. 牛文超等,2019;9. 卜涛等,2022;10. 李沅柏等,2021
Figure 1. (a) Simplified tectonic sketch map of the Central Asian Orogenic Belt showing the location of the Beishan Orogenic Belt and (b) distribution of the Beishan complex and the known Precambrian rocks in the Beishan Orogenic Belt
图 5 尖山子似斑状花岗岩样品TW1003锆石εHf(t) –年龄(Ma)图
图中表示出了北山造山带南部新元古代早期花岗质岩石锆石Hf同位素;数据来自叶晓峰等(2013)、姜洪颖等(2013)、Liu等(2015)、Yuan等(2015)和Wang等(2021b)
Figure 5. The zircon εHf(t) versus age plot for the sample TW1003 from the porphyritic granite in the Jianshanzi area
图 6 尖山子似斑状花岗岩(a)硅-碱性图(据Middlemost, 1994),(b)SiO2-K2O图(据Frost et al., 2001)和(c)A/NK-A/CNK图(据Maniar et al., 1989)
Figure 6. (a) Total alkali versus silica diagram, (b) SiO2 vs K2O plot and (c) A/NK vs A/CNK diagram of the porphyritic granite in the Jianshanzi area.
图 7 尖山子似斑状花岗岩C1球粒陨石标准化稀土元素配分图(a)和原始地幔标准化多元素图(b)
北山造山带南部已发表的新元古代花岗质岩石微量元素数据来自叶晓峰等(2013);姜洪颖等(2013);Liu等(2015);Yuan等(2015);Soldner等(2019);Wang等(2021b);C1球粒陨石和原始地幔值据Sun 等 (1989)
Figure 7. (a) C1 chondrite-normalized REE patterns and (b) primitive mantle-normalized incompatible trace element variation diagrams of the porphyritic granite in the Jianshanzi area
图 8 北山造山带南部中元古代和新元古代早期花岗质岩石锆石εHf(t)–年龄(Ma)图解
图中数据来自姜洪颖等(2013);叶晓峰等(2013);贺振宇等(2015);Liu等(2015);Yuan等(2015);Wang等(2021b);Yuan等(2019)及本文
Figure 8. The zircon εHf(t) versus age (Ma) plot for the Mesoproterozoic and Neoproterozoic granitic rocks in the southern Beishan Orogenic Belt
表 1 尖山子似斑状花岗岩样品TW1003锆石LA-ICP-MS U-Pb年龄分析数据
Table 1 Zircon LA-ICP-MS U-Pb data for the sample TW1003 from the porphyritic granite in the Jianshanzi area
点号 含量(10−6) 同位素比值 年龄(Ma) TW1003 Pb Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ TW1003-1 126 220 719 0.0713 0.0023 1.4571 0.0456 0.1474 0.0020 0.0494 0.0019 966 67 913 19 886 11 TW1003-2 127 91 1024 0.0666 0.0018 1.2808 0.0355 0.1385 0.0018 0.0472 0.0030 833 56 837 16 836 10 TW1003-3* 302 200 1583 0.0814 0.0025 1.9176 0.0526 0.1700 0.0021 0.1138 0.0041 1231 65 1087 18 1012 12 TW1003-4* 1361 722 2152 0.3820 0.0091 8.0679 0.3240 0.1502 0.0042 0.3970 0.0185 3840 36 2239 36 902 23 TW1003-5 194 263 1199 0.0696 0.0018 1.4317 0.0401 0.1481 0.0022 0.0624 0.0041 917 52 902 17 891 12 TW1003-6 130 70 1036 0.0687 0.0016 1.4336 0.0425 0.1505 0.0030 0.0458 0.0022 889 50 903 18 904 17 TW1003-7 129 431 643 0.0726 0.0020 1.5261 0.0511 0.1508 0.0027 0.0460 0.0014 1011 56 941 21 905 15 TW1003-8* 104 213 452 0.0756 0.0023 1.8682 0.0597 0.1787 0.0026 0.0584 0.0019 1087 62 1070 21 1060 14 TW1003-9 116 359 592 0.0696 0.0019 1.4392 0.0412 0.1494 0.0021 0.0456 0.0012 917 54 905 17 898 12 TW1003-10 128 106 957 0.0693 0.0017 1.4330 0.0379 0.1488 0.0018 0.0503 0.0018 907 55 903 16 894 10 TW1003-11* 199 591 844 0.0754 0.0019 1.6734 0.0494 0.1590 0.0023 0.0554 0.0017 1080 50 998 19 951 13 TW1003-12 248 126 1819 0.0770 0.0016 1.6131 0.0425 0.1501 0.0024 0.0994 0.0041 1120 43 975 17 902 13 TW1003-13 151 92 1202 0.0671 0.0014 1.4167 0.0310 0.1520 0.0021 0.0502 0.0014 840 43 896 13 912 12 TW1003-14 101 69 794 0.0675 0.0014 1.4265 0.0318 0.1516 0.0020 0.0503 0.0016 854 44 900 13 910 11 TW1003-15 468 827 1665 0.0899 0.0021 2.7197 0.0699 0.2163 0.0031 0.0742 0.0019 1433 39 1334 19 1262 17 TW1003-16 98 84 711 0.0695 0.0024 1.4644 0.0617 0.1499 0.0022 0.0651 0.0076 922 72 916 25 900 13 TW1003-17* 605 257 1807 0.1891 0.0094 4.4913 0.2548 0.1631 0.0032 0.4163 0.0262 2744 82 1729 47 974 18 TW1003-18 140 59 1105 0.0671 0.0015 1.4159 0.0327 0.1511 0.0020 0.0522 0.0016 839 48 896 14 907 11 TW1003-19* 301 91 1565 0.1267 0.0046 2.4865 0.1035 0.1387 0.0018 0.5338 0.0471 2054 64 1268 30 837 10 TW1003-20 70 196 372 0.0684 0.0016 1.4270 0.0332 0.1500 0.0019 0.0464 0.0012 880 48 900 14 901 11 TW1003-21 97 97 714 0.0655 0.0014 1.3836 0.0313 0.1512 0.0019 0.0466 0.0014 791 46 882 13 908 10 TW1003-22 205 172 1221 0.0892 0.0028 1.8853 0.0642 0.1500 0.0019 0.1024 0.0050 1409 92 1076 23 901 10 TW1003-23 82 258 418 0.0673 0.0016 1.4125 0.0377 0.1502 0.0024 0.0480 0.0014 856 48 894 16 902 13 TW1003-24 158 102 1221 0.0663 0.0015 1.3876 0.0355 0.1498 0.0022 0.0471 0.0015 815 49 884 15 900 12 TW1003-25* 544 999 1507 0.0934 0.0025 3.1789 0.0964 0.2424 0.0036 0.0757 0.0025 1496 45 1452 23 1399 18 TW1003-26* 146 73 1033 0.0695 0.0016 1.5503 0.0365 0.1600 0.0023 0.0613 0.0023 922 47 951 15 957 13 TW1003-27 174 203 1203 0.0701 0.0016 1.4758 0.0350 0.1507 0.0018 0.0508 0.0018 931 46 921 14 905 10 TW1003-28 182 104 1304 0.0723 0.0016 1.5195 0.0343 0.1512 0.0020 0.0730 0.0025 994 46 938 14 908 11 TW1003-29 143 106 1084 0.0687 0.0015 1.4335 0.0359 0.1491 0.0018 0.0561 0.0043 900 72 903 15 896 10 TW1003-30* 290 516 902 0.0874 0.0017 2.9888 0.0637 0.2455 0.0030 0.0716 0.0016 1369 37 1405 16 1415 16 TW1003-31 87 202 508 0.0690 0.0016 1.4469 0.0353 0.1506 0.0020 0.0450 0.0012 898 48 909 15 904 11 TW1003-32 112 74 849 0.0689 0.0017 1.4329 0.0369 0.1492 0.0019 0.0482 0.0015 898 45 903 15 896 11 注:*表示锆石核部点位。 表 2 尖山子似斑状花岗岩样品TW8837锆石LA-ICP-MS U-Pb年龄分析数据
Table 2 Zircon LA-ICP-MS U-Pb data for the sample TW8837 from the porphyritic granite in the Jianshanzi area
点号 含量(10−6) 同位素比值 年龄(Ma) TW8837 Pb Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ TW8837-1 578 565 2424 0.0721 0.0018 1.5704 0.0401 0.1566 0.0015 0.0548 0.0016 989 19 959 16 938 8 TW8837-2 392 565 1343 0.0708 0.0018 1.5354 0.0378 0.1564 0.0014 0.0479 0.0011 950 56 945 15 937 8 TW8837-3 2373 4494 5527 0.0722 0.0017 1.5747 0.0349 0.1573 0.0016 0.0477 0.0011 991 48 960 14 942 9 TW8837-4 1354 2073 4069 0.0708 0.0014 1.5397 0.0304 0.1566 0.0012 0.0502 0.0010 950 41 946 12 938 7 TW8837-5 792 1023 3056 0.0670 0.0014 1.4566 0.0297 0.1566 0.0013 0.0469 0.0009 835 43 913 12 938 7 TW8837-6 1623 2081 5514 0.0825 0.0018 1.6488 0.0329 0.1440 0.0010 0.0557 0.0011 1258 42 989 13 867 6 TW8837-7 641 530 3129 0.0685 0.0014 1.4879 0.0307 0.1565 0.0013 0.0490 0.0012 883 43 925 13 937 7 TW8837-8 409 285 1947 0.0704 0.0016 1.5303 0.0336 0.1566 0.0013 0.0607 0.0016 939 46 943 13 938 7 TW8837-9 494 375 2598 0.0715 0.0016 1.5547 0.0349 0.1566 0.0014 0.0418 0.0011 972 47 952 14 938 8 TW8837-10 1555 2353 4238 0.0744 0.0020 1.6301 0.0458 0.1566 0.0015 0.0563 0.0022 1054 54 982 18 938 8 TW8837-11 986 1372 3002 0.0726 0.0018 1.5778 0.0392 0.1566 0.0016 0.0527 0.0012 1003 52 962 15 938 9 TW8837-12 514 430 2269 0.0709 0.0017 1.5416 0.0362 0.1567 0.0015 0.0565 0.0015 955 53 947 14 938 8 TW8837-13 607 414 2654 0.0739 0.0017 1.6226 0.0406 0.1567 0.0022 0.0681 0.0024 1039 48 979 16 938 12 TW8837-14 927 1433 2810 0.0741 0.0017 1.6052 0.0358 0.1568 0.0019 0.0475 0.0011 1043 52 972 14 939 10 TW8837-15 443 288 2252 0.0688 0.0015 1.4949 0.0323 0.1566 0.0016 0.0517 0.0012 892 76 928 13 938 9 TW8837-16 818 578 4164 0.0693 0.0014 1.5057 0.0311 0.1565 0.0013 0.0466 0.0010 909 43 933 13 938 7 TW8837-17 498 321 2396 0.0724 0.0016 1.5659 0.0340 0.1559 0.0014 0.0573 0.0014 998 43 957 13 934 8 TW8837-18 600 552 2580 0.0704 0.0016 1.5294 0.0338 0.1566 0.0013 0.0510 0.0012 943 46 942 14 938 7 TW8837-19 507 431 2290 0.0688 0.0016 1.4915 0.0333 0.1563 0.0013 0.0505 0.0013 894 42 927 14 936 7 TW8837-20 588 463 2517 0.0772 0.0018 1.6772 0.0400 0.1566 0.0014 0.0571 0.0014 1125 48 1000 15 938 8 TW8837-21* 646 468 2250 0.0800 0.0019 2.0261 0.0529 0.1819 0.0019 0.0747 0.0018 1198 46 1124 18 1077 11 TW8837-22 477 314 2492 0.0682 0.0016 1.4735 0.0353 0.1556 0.0013 0.0513 0.0015 876 48 920 14 932 7 TW8837-23 628 985 1916 0.0705 0.0016 1.5208 0.0342 0.1554 0.0012 0.0487 0.0010 943 45 939 14 931 7 TW8837-24 463 644 1481 0.0695 0.0020 1.4925 0.0440 0.1548 0.0015 0.0534 0.0012 915 58 927 18 928 8 TW8837-25 486 456 2299 0.0685 0.0015 1.4765 0.0332 0.1555 0.0015 0.0487 0.0011 883 44 921 14 932 8 TW8837-26 491 383 2174 0.0741 0.0026 1.5846 0.0571 0.1552 0.0020 0.0674 0.0031 1044 75 964 22 930 11 TW8837-27 568 327 2975 0.0731 0.0016 1.5723 0.0368 0.1550 0.0015 0.0631 0.0019 1017 44 959 15 929 9 TW8837-28 369 432 1584 0.0704 0.0018 1.5108 0.0388 0.1550 0.0016 0.0472 0.0013 939 52 935 16 929 9 TW8837-29* 481 467 1812 0.0700 0.0018 1.6017 0.0412 0.1655 0.0017 0.0622 0.0018 928 55 971 16 987 10 TW8837-30* 419 207 2163 0.0695 0.0019 1.5900 0.0431 0.1652 0.0016 0.0673 0.0026 922 56 966 17 986 9 注:*表示锆石核部点位。 表 3 尖山子似斑状花岗岩样品TW1003锆石Hf同位素组成
Table 3 Zircon Hf-isotope compositions for the sample TW1003 from the porphyritic granite in the Jianshanzi area
点号 176Yb/177Hf 2σ 176Lu/177Hf 2σ 176Hf/177Hf 2σ 年龄
(Ma)(176Hf/177Hf)i εHf(0) εHf(t) TDM
(Ma)TDM2
(Ma)fLu/Hf TW1003-5 0.054984 0.000289 0.001418 0.000007 0.282170 0.000025 901 0.282146 −21.3 −2.3 1544 1916 −0.96 TW1003-6 0.050315 0.000471 0.001302 0.000012 0.282139 0.000023 901 0.282117 −22.4 −3.3 1582 1980 −0.96 TW1003-7 0.037520 0.000372 0.000998 0.000010 0.282130 0.000023 901 0.282113 −22.7 −3.4 1582 1988 −0.97 TW1003-9 0.087226 0.001205 0.002261 0.000024 0.282195 0.000021 901 0.282157 −20.4 −1.9 1543 1891 −0.93 TW1003-10 0.091361 0.001105 0.002329 0.000026 0.282108 0.000022 901 0.282068 −23.5 −5.0 1672 2087 −0.93 TW1003-13 0.071769 0.001814 0.001842 0.000037 0.282167 0.000026 901 0.282136 −21.4 −2.6 1566 1938 −0.94 TW1003-14 0.080789 0.000700 0.002134 0.000025 0.282169 0.000023 901 0.282133 −21.3 −2.7 1575 1944 −0.94 TW1003-16 0.064744 0.000391 0.001682 0.000006 0.282198 0.000025 901 0.282170 −20.3 −1.4 1514 1861 −0.95 表 4 尖山子似斑状花岗岩样品主量(%)和微量元素(10–6)组成
Table 4 Major (%) and trace element (10–6) compositions for samples from the porphyritic granite in the Jianshanzi area
样号 TW1003 YQ2224 TW8837 样号 TW1003 YQ2224 TW8837 SiO2 76.05 72.01 70.41 Y 32.27 38.96 45.02 Al2O3 12.66 14.20 14.25 ΣREE 138.47 261.00 362.78 TiO2 0.09 0.52 0.55 (La/Yb)N 7.17 8.41 10.79 Fe2O3t 0.76 3.21 − δEu 0.46 0.32 0.30 Fe2O3 − − 1.48 Li 8.94 12.50 23.14 FeO − − 1.95 Be 1.35 2.57 2.86 CaO 1.39 1.25 1.30 Sc 5.41 10.10 8.83 MgO 0.47 0.85 1.11 V 9.51 40.64 53.43 K2O 5.33 5.13 5.23 Cr 6.87 7.88 19.22 Na2O 2.53 2.36 2.48 Co 66.15 64.20 5.97 MnO 0.04 0.03 0.04 Ni 3.20 4.82 6.94 P2O5 0.06 0.05 0.06 Cu 4.48 5.66 19.92 LOI 0.83 0.36 1.01 Zn 10.75 46.32 75.92 Total 100.21 99.97 99.89 Ga 12.29 10.35 24.39 K2O+Na2O 7.86 7.49 7.72 Rb 130.66 200.65 294.88 A/NK 1.27 1.51 1.46 Sr 116.65 102.45 118.67 A/CNK 1.01 1.21 1.17 Zr 43.29 200.66 304.54 La 25.63 52.30 65.79 Nb 3.05 10.67 21.44 Ce 38.92 89.68 131.31 Mo 0.08 0.12 0.74 Pr 4.14 8.77 15.37 Cd 0.09 0.14 0.16 Nd 17.33 32.10 59.91 In 0.05 0.08 0.10 Sm 2.87 8.67 11.52 Cs 2.12 8.67 9.96 Eu 0.52 0.92 1.08 Ba 632.13 710.23 618.77 Gd 4.19 8.64 10.09 Hf 1.67 8.60 10.21 Tb 0.81 1.24 1.63 Ta 0.87 1.69 2.35 Dy 4.76 6.86 9.04 W 363.73 320.00 1.75 Ho 1.11 2.31 1.58 Tl − − 1.92 Er 2.55 4.95 4.55 Pb 34.50 42.73 56.72 Tm 0.38 0.68 0.82 Bi 0.08 0.06 1.32 Yb 2.56 4.46 4.37 Th 16.63 35.60 48.94 Lu 0.42 0.46 0.68 U 3.64 5.44 6.67 -
卜涛, 王国强, 黄博涛, 等. 北山北带新元古代 A 型花岗岩: Rodinia 超大陆裂解早期的地质响应[J]. 岩石学报, 2022, 38(10): 2988−3002. doi: 10.18654/1000-0569/2022.10.06 BU Tao, WANG Guoqian, HUANG Botao, et al. Neoproterozoic A-type granites in northern Beishan Orogenic Belt: Early response of the Rodinia supercontinent break-up[J]. Acta Petrologica Sinica,2022,38(10):2988−3002. doi: 10.18654/1000-0569/2022.10.06
戴鹏飞, 苟学明, 何大鹏, 等. 北山南部炭窑井地区花岗岩型铀矿地质特征及找矿模型[J]. 东华理工大学学报(自然科学版), 2023, 46(1): 10−20. DAI Pengfei, GOU Xueming, HE Dapeng, et al. Geological characteristics and prospecting model of granite-type uranium deposits in Tanyaojing area,southern Beishan[J]. Journal of East China University of Technology (Natural Science),2023,46(1):10−20.
贺振宇, 孙立新, 毛玲娟, 等. 北山造山带南部片麻岩和花岗闪长岩的锆石U-Pb 定年和Hf同位素: 中元古代的岩浆作用与地壳生长[J]. 科学通报, 2015, 60(4): 389−399. doi: 10.1360/N972014-00898 HE Zhenyu, SUN Lixin, MAO Lingjuan, et al. Zircon U-Pb and Hf isotopic study of gneiss and granodiorite from the southern Beishan orogenic collage: Mesoproterozoic magmatism and crustal growth[J]. Chinese Science Bulletin,2015,60(4):389−399. doi: 10.1360/N972014-00898
何世平, 任秉琛, 姚文光, 等. 甘肃内蒙古北山地区构造单元划分[J]. 西北地质, 2002, 35(4): 30−40. doi: 10.3969/j.issn.1009-6248.2002.04.004 HE Shiping, REN Bingchen, YAO Wenguang, et al. The division of tectonic units of Beishan area, Gansu-Inner Mongolia[J]. Northwestern Geology,2002,35(4):30−40. doi: 10.3969/j.issn.1009-6248.2002.04.004
何世平, 周会武, 任秉琛, 等. 甘肃内蒙古北山地区古生代地壳演化[J]. 西北地质, 2015, 38(3): 6−15. HE Shiping, ZHOU Huiwu, REN Bingchen, et al. Crustal evolution of Paleozoic in Beishan area, Gansu and Inner Mongolia, China[J]. Northwestern Geology,2015,38(3):6−15.
霍宁, 郭谦谦, 陈艺超, 等. 北山中部古硐井群物源区性质与构造意义[J]. 岩石学报, 2022, 38(4): 1253−1279. HUO Ning, GUO Qianqian, CHEN Yichao et al. Provenance and tectonic setting of the Gudongjing Group in Beishan Orogen[J]. Acta Petrologica Sinica,2022,38(4):1253−1279.
姜洪颖, 贺振宇, 宗克清, 等. 北山造山带南缘北山杂岩的锆石U-Pb定年和Hf同位素研究[J]. 岩石学报, 2013, 29(11): 3949−3967. JIANG Hongying, HE Zhenyu, ZONG Keqing, et al. Zircon U-Pb dating and Hf isotopic studies on the Beishan complex in the southern Beishan Orogenic Belt[J]. Acta Petrologica Sinica,2013,29(11):3949−3967.
李怀坤, 朱士兴, 相振群, 等. 北京延庆高于庄组凝灰岩的锆石U-Pb定年研究及其对华北北部中元古界划分新方案的进一步约束[J]. 岩石学报, 2010, 26(7): 2131−2140. LI Huaikun, ZHU Shixing, XIANG Zhenqun, et al. Zircon U-Pb dating on tuff bed from Gaoyuzhuang Formation in Yanqing, Beijing: Further constraints on the new subdivision of the Mesoproterozoic stratigraphy in the northern North China Craton[J]. Acta Petrologica Sinica,2010,26(7):2131−2140.
李志琛. 敦煌地块变质岩系时代新认识[J]. 中国区域地质, 1994, 13(2): 131−134. LI Zhichen. New speculation of the age of the metamorphic rocks series of the Dunhuang massif[J]. Regional Geology of China,1994,13(2):131−134.
李沅柏, 李海泉, 周文孝, 等. 北山造山带新元古代热事件及其构造意义: 来自甘肃北山南带两期花岗质岩的地球化学和年代学证据[J]. 地质通报, 2021, 40(7): 1117−1139. LI Yuanbai, LI Haiquan, ZHOU Wenxiao, et al. Neoproterozoic thermal events and tectonic implications in the Beishan orogenic belt: Geochemical and geochronological evidence from two sets of granitic rocks from the southern Beishan orogenic belt, Gansu Province[J]. Geological Bulletin of China,2021,40(7):1117−1139.
梅华林, 于海峰, 李铨, 等. 甘肃敦煌-北山早前寒武纪岩石组合-构造初步框架[J]. 前寒武纪研究进展, 1997, 20(4): 47−54. MEI Hualin,YU Haifeng,LI Quan. Preliminary litho-tectonic framework of early Precambrian rocks in Dunhuang-Beishan area,Gansu,west China[J]. Progress in Precambrian Research,1997,20(4):47−54.
梅华林, 李惠民, 陆松年, 等. 甘肃柳园地区花岗质岩石时代及成因[J]. 岩石矿物学杂志, 1999, 18(1): 14−17. MEI Hualin, LI Huimin, LU Songnian, et al. The age and origin of the Liuyuan granitoid, northwestern Gansu[J]. Acta Petrologica et Mineralogica,1999,18(1):14−17.
聂凤军, 江思宏, 刘妍, 等. 内蒙古北山交叉沟地区变质火山岩Sm-Nd 同位素研究[J]. 地质学报, 2004, 76(8): 807−812. NIE Fengjun, JIANG Sihong, LIU Yan, et al. Sm-Nd isotope study on metamorphosed volcano-sedimentary Rocks of the Jiaochagou Metamorphic Complex, Beishan Mt., Inner Mongolia[J]. Acta Geologica Sinica,2004,76(8):807−812.
牛文超, 任邦方, 任云伟, 等. 北山北带新元古代岩浆记录: 来自内蒙古哈珠地区片麻状花岗岩的证据[J]. 地球科学, 2019, 44(1): 284−297. NIU Wenchao, REN Bangfang, REN Yunwei, et al. Neoproterozoic magmatic records in the north Beishan Orogenic Belt: evidence of the gneissic granites from the Hazhu area, Inner Mongolia[J]. Earth Science,2019,44(1):284−297.
牛腾, 倪志耀, 孟宝航, 等. 冀北康保芦家营巨斑状花岗岩: 华北克拉通北缘中段1.3~1.2 Ga B. P. 伸展—裂解事件的地质记录[J]. 成都理工大学学报(自然科学版), 2023, 50(4): 486−503. NIU Teng, NI Zhiyao, MENG Baohang, et al. The Lujiaying megaporphyric granite in Kangbao area, North Hebei: A geological record of extension and breakup event at 1.3~1.2 Ga B. P. in the central segment of northern margin of North China Craton[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2023,50(4):486−503.
桑海清, 裘冀, 王松山, 等. 北山地区大口子片麻岩Ar-Ar年代学初步研究[J]. 地球学报, 1997, 18(S1): 58−61. SANG Haiqing, QIU Ji, WANG Songshan, et al. A preliminary study on Ar-Ar chronology of Dakouzi gneiss from Beishan Area[J]. Acta Geoscientia Sinica,1997,18(S1):58−61.
孙新春, 张红军, 魏志军, 等. 甘蒙北山地区小红山一带变质侵入岩体的时代厘定及其地质意义[J]. 西北地质, 2005, 38(3): 61−67. doi: 10.3969/j.issn.1009-6248.2005.03.009 SUN Xinchun, ZHANG Hongjun, WEI Zhijun, et al. Time of definition and geological meaning for metamorphic intrusive rock body in Xiaohongshan region, Beishan area of Gansu and Inner Mongolia[J]. Northwestern Geology,2005,38(3):61−67. doi: 10.3969/j.issn.1009-6248.2005.03.009
魏学平, 龚全胜, 梁明宏, 等. 马鬃山隆起区前长城系敦煌岩群变质变形和演化特征[J]. 甘肃地质学报, 2000, 9(1): 36−43. WEI Xueping, GONG Quansheng, LIANG Minghong, et al. Metamorphic deformational and evolutionary characteristics of pre-Changcheng Dunhuang terrain occurring on Mazongshan upwelling area[J]. Acta Geologica Gansu,2000,9(1):36−43.
王文宝, 李卫星, 雷聪聪, 等. 中亚造山带中段早—中三叠世埃达克岩和A型花岗岩成因及构造意义[J]. 西北地质, 2024, 57(3): 29−43. WANG Wenbao,LI Weixing,LEI Congcong,et al. Early-Middle Triassic Adakitic and A-type Granite in Middle Segment of Central Asian Orogenic Belt: Petrogenesis and Tectonic Implications[J]. Northwestern Geology,2024,57(3):29−43.
王梓桐, 王根厚, 张维杰, 等. 阿拉善地块南缘志留纪花岗闪长岩LA-ICP-MS锆石U-Pb年龄及地球化学特征[J]. 成都理工大学学报(自然科学版), 2022, 49(5): 586−600. WANG Zitong, WANG Genhou, ZHANG Weijie, et al. LA-ICP-MS zircon U-Pb dating and geochemical characteristics of the Silurian granodiorite in the southern margin of Alxa Block, China[J]. Journal of Chengdu University of Technology (Science Technology Edition),2022,49(5):586−600.
吴妍蓉, 周海, 赵国春, 等. 中亚造山带南蒙古地区石炭纪—二叠纪岩浆活动及其构造意义[J]. 西北地质, 2024, 57(3): 11−28. WU Yanrong,ZHOU Hai,ZHAO Guochun,et al. Carboniferous-Permian Magmatism of Southern Mongolia, Central Asian Orogenic Belt and Its Tectonic Implications[J]. Northwestern Geology,2024,57(3):11−28.
肖文交, 宋东方, Windley B F, 等. 中亚增生造山过程与成矿作用研究进展[J]. 中国科学: 地球科学, 2019, 49(10): 1512−1545. XIAO Wenjiao, SONG Dongfang, Windley B F, et al. Research progresses of the accretionary processes and metallogenesis of the Central Asian Orogenic Belt[J]. Science China: Earth Sciences,2019,49(10):1512−1545.
杨合群, 李英, 李文明, 等. 北山成矿构造背景概论[J]. 西北地质, 2008, 41(1): 22−28. doi: 10.3969/j.issn.1009-6248.2008.01.002 YANG Hequn, LI Ying, LI Wenming, et al. General discussion on metallogenitic tectonic setting of Beishan Mountain, Northwestern China[J]. Northwestern Geology,2008,41(1):22−28. doi: 10.3969/j.issn.1009-6248.2008.01.002
杨合群, 李英, 赵国斌, 等. 新疆-甘肃-内蒙古衔接区地层对比及其意义[J]. 西北地质, 2009, 42(4): 60−75. doi: 10.3969/j.issn.1009-6248.2009.04.008 YANG Hequn, LI Ying, ZHAO Guobin, et al. Stratigraphic Correlation and Its Significance of Xinjiang-Gansu-Inner Mongolia Join Area[J]. Northwestern Geology,2009,42(4):60−75. doi: 10.3969/j.issn.1009-6248.2009.04.008
杨合群, 李英, 赵国斌, 等. 北山蛇绿岩特征及构造属性[J]. 西北地质, 2010, 43(1): 26−35. YANG Hequn,LI Ying,ZHAO Guobin,et al. Character and structural attribute of the Beishan ophiolite[J]. Northwestern Geology,2010,43(1):26−35.
杨合群, 赵国斌, 李英, 等. 新疆-甘肃-内蒙古衔接区古生代构造背景与成矿的关系[J]. 地质通报, 2012, 31(2/3): 413−421. YANG Hequn, ZhAO Guobin, LI Ying, et al. The relationship between Paleozoic tectonic setting and mineralization in Xinjiang-Gansu-Inner Mongolia juncture area[J]. Geological Bulletin of China,2012,31(2/3):413−421.
叶晓峰, 宗克清, 张泽明, 等. 北山造山带南缘柳园地区新元古代花岗岩的地球化学特征及其地质意义[J]. 地质通报, 2013, 32(2−3): 307−317. YE Xiaofeng,ZONG Keqing,ZHANG Zeming,et al. Geochemistry of Neoproterozoic granite in Liuyuan area of southern Beishan orogenic belt and its geological significance[J]. Geological Bulletin of China,2013,32(2−3):307−317.
俞胜, 赵斌斌, 贾轩, 等. 北山造山带南缘一条山北闪长岩地球化学、年代学特征及其构造意义[J]. 西北地质, 2022, 55(4): 267−279. YU Sheng, ZHAO Binbin, JIA Xuan, et al. Geochemistry, Geochronology Characteristics and Tectonic Significance of Yitiaoshan Diorite in the Southern Margin of Beishan Orogenic Belt[J]. Northwestern Geology,2022,55(4):267−279.
朱文斌, 林和丰, 葛荣峰, 等. 塔里木克拉通北缘库鲁克塔格地块太古宙基底组成与地壳演化[J]. 地质学报, 2022, 96(9): 3084−3101. ZHU Wenbin, LIN Hefeng, GE Rongfeng, et al. Archean basement composition and crustal evolution of the Kuluketage block in the northern margin of the Tarim Craton[J]. Acta Geologica Sinica,2022,96(9):3084−3101.
左国朝, 张淑玲, 何国琦, 等. 北山地区早古生代板块构造特征[J]. 地质科学, 1990, 4: 305−314. ZUO Guochao, ZHANG Shuling, HE Guoqi, et al. Early Paleozoic plate tectonics in Beishan area[J]. Chinese Journal of Geology,1990,4:305−314.
Ao S J, Xiao W J, Windley B F, et al. Paleozoic accretionary orogenesis in the eastern Beishan orogen: constraints from zircon U–Pb and 40Ar/39Ar geochronology[J]. Gondwana Research,2016,30:224−235. doi: 10.1016/j.gr.2015.03.004
Frost B R, Barnes C G, Collins W J, et al. A geochemical classification for granitic rocks[J]. Journal of Petrology,2001,42(11):2033−2048.
He Z Y, Klemd R, Yan L L, et al. The origin and crustal evolution of microcontinents in the Beishan orogen of the southern Central Asian Orogenic Belt[J]. Earth-Science Reviews,2018,185:1−14.
Huang B T, Wang G Q, Li X M, et al. Precambrian tectonic affinity of the Beishan Orogenic Belt: Constraints from Proterozoic metasedimentary rocks[J]. Precambrian Research,2022,376:P106686.
Kröner A, Alexeiev D V, Agramonte Y, et al. Mesoproterozoic (Grenvilleage) terranes in the Kyrgyz North Tianshan: zircon ages and Nd-Hf isotopic constraints on the origin and evolution of basement blocks in the southern Central Asian Orogen[J]. Gondwana Research,2013,23:272−295. doi: 10.1016/j.gr.2012.05.004
Li J, Wu C, Chen X, et al. Tectonic setting of metamorphism and exhumation of eclogite-facies rocks in the South Beishan orogen, northwestern China[J]. Geosphere,2023,19(1):100−138. doi: 10.1130/GES02548.1
Liu Q, Zhao G C, Sun M, et al. Ages and tectonic implications of Neoproterozoic ortho- and paragneisses in the Beishan Orogenic Belt, China[J]. Precambrian Research,2015,266:551−578. doi: 10.1016/j.precamres.2015.05.022
Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin,1989,101:635−643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
Middlemost E A. Naming materials in the magma/igneous rock system[J]. Earth Science Reviews,1994,37(3−4):215−224.
Niu Y Z, Shi G R, Ji W H, et al. Paleogeographic evolution of a Carboniferous-Permian sea in the southernmost part of the Central Asian Orogenic Belt, NW China: Evidence from microfacies, provenance and paleobiogeography[J]. Earth- Science Reviews,2021a,220:103738. doi: 10.1016/j.earscirev.2021.103738
Niu Y Z, Shi G R, Wang J Q, et al. The closing of the southern branch of the Paleo-Asian Ocean: Constraints from sedimentary records in the southern Beishan region of the Central Asian Orogenic Belt, NW China[J]. Marine and Petroleum Geology,2021b,124:104791. doi: 10.1016/j.marpetgeo.2020.104791
Rudnick R L, Gao S. Composition of the continental crust. In: Rudick R L. The crust, treatise on geochemistry, Amsterdam[M].Elsevier, 2003, 3: 1−64.
Sengör A M C, Natal’in B A, Burtman V S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature,1993,364:299−307. doi: 10.1038/364299a0
Song D F, Xiao W J, Han C M, et al. Progressive accretionary tectonics of the Beishan orogenic collage Altaids: insights from zircon U–Pb and Hf isotopicdata of high-grade complexes[J]. Precambrian Research,2013a,227:368−388. doi: 10.1016/j.precamres.2012.06.011
Song D F, Xiao W J, Han C M, et al. Geochronological and geochemical study of gneiss–schist complexes and associated granitoids, Beishan Orogen, southern Altaids[J]. International Geology Review,2013b,55(14):1705−1727. doi: 10.1080/00206814.2013.792515
Song D F, Xiao W J, Han C M, et al. Provenance of meta-sedimentary rocks from the Beishan orogenic collage, southern Altaids: constraints from detrital zircon U–Pb and Hf isotopic data[J]. Gondwana Research,2013c,24:1127−1151. doi: 10.1016/j.gr.2013.02.002
Song D F, Xiao W J, Windley B F, et al. A Paleozoic Japan-type subduction-accretion system in the Beishan orogenic collage, southern Central Asian Orogenic Belt[J]. Lithos,2015,224−225:195−213. doi: 10.1016/j.lithos.2015.03.005
Song D F, Xiao W J, Windley B F, et al. Metamorphic complexes in accretionary orogens: insights from the Beishan collage, southern Central Asian Orogenic Belt[J]. Tectonophysics,2016,688:135−147. doi: 10.1016/j.tecto.2016.09.012
Soldner J, Yuan C, Schul Mann K, et al. Grenvillean evolution of the Beishan Orogen, NW China: Implications for development of an active Rodinian Margin[J]. The Geological Society of American,2019,132(7−8):1657−1680.
Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[M]. In: Saunders, A. D., Norry, M. J. (Eds.), Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 1989, 42, 313−345.
Windley B F, Alexeiev D, Xiao W J, et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society,2007,164:31−47. doi: 10.1144/0016-76492006-022
Xiao W J, Mao Q G, Windley B F, et al. Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage[J]. American Journal of Science,2010,310:1553−1594. doi: 10.2475/10.2010.12
Yuan Y, Zong K Q, He Z Y, et al. Geochemical and geochronological evidence for a former early Neoproterozoic microcontinent in the South Beishan Orogenic Belt, southernmost Central Asian Orogenic Belt[J]. Precambrian Research,2015,266:409−424. doi: 10.1016/j.precamres.2015.05.034
Yuan Y, Zong K Q, Cawood P A, et al. Implication of Mesoproterozoic (∼1.4 Ga) Magmatism within microcontinents along the southern Central Asian Orogenic Belt[J]. Precambrian Research,2019,327:314−326. doi: 10.1016/j.precamres.2019.03.014
Zheng R G, Li J Y, Xiao W J, et al. Nature and provenance of the Beishan Complex, southernmost Central Asian Orogenic Belt[J]. International Journal of Earth Sciences,2018,107:729−755. doi: 10.1007/s00531-017-1525-2
Zhou J B, Wilde S A, Zhao G C, et al. Nature and assembly of microcontinental blocks within the Paleo-Asian Ocean[J]. Earth-Science Reviews,2018,186:76−93. doi: 10.1016/j.earscirev.2017.01.012
Zong K Q, Klem R, Yuan Y, et al. The assembly of Rodinia: The correlation of early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc for Mation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB)[J]. Precambrian Research,2017,290:32−48. doi: 10.1016/j.precamres.2016.12.010
Zuo G C, Zhang S L, He G Q, et al. Plate tectonic characteristics during the early Paleozoic in Beishan near the Sino-Mongolian border region, China[J]. Tectonophysics,1991,188:385−392. doi: 10.1016/0040-1951(91)90466-6
Wang B R, Yang X S, Li S C, et al. Age, depositional environment, and tectonic significance of an Early Neoproterozoic volcano-sedimentary sequence in the eastern Beishan orogenic belt, southern Central Asian Orogenic Belt[J]. Geological Journal,2021a,156:1346−1357.
Wang B R, Yang X S, Li S C, et al. Geochronology, geochemistry, and tectonic implications of early Neoproterozoic granitic rocks from the eastern Beishan Orogenic Belt, southern Central Asian Orogenic Belt[J]. Precambrian Research,2021b,352:106016. doi: 10.1016/j.precamres.2020.106016