ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    高级检索

    北山造山带南缘潘家井子二叠纪弧岩浆岩的识别及构造意义

    查显锋, 黄博涛, 罗克勇, 孙吉明, 关冲, 王欣

    查显锋,黄博涛,罗克勇,等. 北山造山带南缘潘家井子二叠纪弧岩浆岩的识别及构造意义[J]. 西北地质,2024,57(6):58−77. doi: 10.12401/j.nwg.2024091
    引用本文: 查显锋,黄博涛,罗克勇,等. 北山造山带南缘潘家井子二叠纪弧岩浆岩的识别及构造意义[J]. 西北地质,2024,57(6):58−77. doi: 10.12401/j.nwg.2024091
    ZHA Xianfeng,HUANG Botao,LUO Keyong,et al. Identification of the Permian Arc-Related Magmatic Rocks and Its Significance in Panjiajingzi Area, Southern Margin of Beishan Orogenic Belt[J]. Northwestern Geology,2024,57(6):58−77. doi: 10.12401/j.nwg.2024091
    Citation: ZHA Xianfeng,HUANG Botao,LUO Keyong,et al. Identification of the Permian Arc-Related Magmatic Rocks and Its Significance in Panjiajingzi Area, Southern Margin of Beishan Orogenic Belt[J]. Northwestern Geology,2024,57(6):58−77. doi: 10.12401/j.nwg.2024091

    北山造山带南缘潘家井子二叠纪弧岩浆岩的识别及构造意义

    基金项目: 中国地质调查局项目“东天山–北山成矿带区域地质调查”(DD20240029),“东天山–北山造山带区域地质调查”(DD20221636-1)和陕西省自然科学基金项目(2023-JC-YB-249)联合资助。
    详细信息
      作者简介:

      查显锋(1984−),博士,高级工程师,主要从事构造地质和区域地质调查工作。E−mail:zha_xianfeng@126.com

    • 中图分类号: P581

    Identification of the Permian Arc-Related Magmatic Rocks and Its Significance in Panjiajingzi Area, Southern Margin of Beishan Orogenic Belt

    • 摘要:

      北山造山带位于中亚造山带南缘,对该带内原先划定的“前寒武系”的准确厘定或解体对理解造山带属性和构造演化过程认识具有重要意义。笔者对瓜州潘家井子一带原划定的敦煌岩群开展区域地质调查,表明其为变粒岩、浅粒岩、变质砾岩及少量斜长角闪岩和黑云石英片岩等组成的一套具有强变形、低级变质的变火山–碎屑岩。获得灰白色变粒岩、云母石英片岩和浅粒岩的锆石U-Pb年龄为294~285 Ma,同时还获得变质砾岩中花岗质砾石中锆石的最小U-Pb年龄为(272±6)Ma,未发现古老年代学信息,表明该套变质火山–碎屑岩形成时代不早于中二叠世。变质基性火山岩具有拉斑玄武岩地球化学特征,呈略微右倾的稀土元素配分模式,显示出高TiO2、Na2O含量,明显的Nb-Ta亏损特征,类似于弧玄武岩特征。结合本次研究成果和区域地质特征认为,潘家井子一带原划定的“敦煌岩群”应厘定为二叠纪变火山碎屑岩,形成于早—中二叠世俯冲作用相关的局部伸展构造环境。

      Abstract:

      The Beishan Orogenic Belt, located at the southern margin of the Central Asian Orogenic Belt, is important for understanding the tectonic affinity and evolutionary history, in terms of the accurate determination or disintegration of the namely Precambrian basement rocks. The originally defined Dunhuang Group in Panjiajingzi area is composed mainly of leptynite, leptite, meta-conglomerate, minor amphibolite, and mica quartz schist, and is characterized by strong deformation and low-grade metamorphosed pyroclastic rocks, based on regional geological investigation. Zircon U-Pb ages of 294~285 Ma for leptynite, mica quartz schist, and leptite samples, as well as the minimum age of (272±6) Ma for gravel sample from meta-conglomerate have been obtained with no ancient geochronological information. All these dating data indicate that these mata pyroclastic rocks were deposited later than Middle Permian. In addition, the meta basic volcanic samples have high TiO2 and Na2O contents with obvious Nb-Ta trough, and display right-sloping chondrite-nomalized REE patterns, resembling that of the arc basalts. Combining our data and regional geology, it is reasonable to believe that these meta pyroclastic rocks were formed in a local extension setting during the subduction process during Early to Middle Permian, and thus these rocks should be disintegrated from the Dunhuang Group.

    • 中亚造山带位于东欧克拉通、西伯利亚克拉通和塔里木–华北克拉通之间(图1a),是世界上目前已知的发展历史最长、构造–岩浆作用最复杂的一条显生宙巨型增生造山带(Sengör et al., 1993Windley et al., 2007Xiao et al., 2010王文宝等,2024吴妍蓉等,2024),带内分布着大小不等的前寒武纪微地块(Kröner et al., 2013He et al., 2018Zhou et al., 2018)。北山造山带位于中亚造山带中段南部,是理解中亚造山带造山过程的关键地段(Xiao et al., 2010Niu et al., 2021a, 2021b俞胜等,2022戴鹏飞等,2023)。早期研究认为该造山带不同构造单元分布着大量的前寒武纪基底,即“北山杂岩”(左国朝等,1990Zuo et al., 1991何世平等,2002杨合群等,2008, 2009, 2010, 2012)。近年来,一些前人认为的前寒武纪基底被锆石U-Pb年代学研究所否定(Song et al. 2013a, 2013b, 2013c, 2015, 2016Zheng et al., 2018肖文交等,2019霍宁等,2022),但北山地区确实存在前寒武纪岩石(梅华林等,1999叶晓峰等,2013姜洪颖等,2013Yuan et al., 2015贺振宇等,2015Liu et al., 2015Ao et al., 2016Soldner et al., 2019牛文超等,2019Wang et al., 2021a, 2021b李沅柏等,2021卜涛等,2022Huang et al., 2022),主要分布在红柳河–牛圈子–洗肠井缝合带以南,即北山造山带南部(图1b)。然而,关于前寒武纪基底起源的认识仍然缺少很好的约束,特别是与塔里木克拉通或敦煌微陆块(塔里木克拉通东缘)是否具有构造亲缘性(左国朝等,1990, Zuo et al., 1991何世平等,2002, 2005贺振宇等, 2015Yuan et al., 2015He et al., 2018Wang et al., 2021bHuang et al., 2022)。笔者报道了尖山子新元古代早期似斑状花岗岩的岩相学、年代学和地球化学数据,分析了岩浆源区特征,并结合已发表的岩浆岩数据,讨论了前寒武纪基底与塔里木克拉通的亲缘性。

      图  1  中亚造山带构造位置图,显示北山造山带的位置(a)和北山造山带北山杂岩及已知的前寒武纪岩石空间分布(b)(据Xiao et al., 2010Wang et al., 2021b
      蛇绿混杂岩带或裂谷带:Ⅰ.红石山构造带;Ⅱ.星星峡-石板井构造带;Ⅲ.红柳河-洗肠井构造带;Ⅳ.柳园构造带。锆石U-Pb年龄:1. Yuan et al., 2015;2. 梅华林等,1999叶晓峰等,2013Liu et al., 2015Yuan et al., 2015He et al., 2018Soldner et al., 2019Li et al., 2023;3. 姜洪颖等,2013; 4. 贺振宇等,2015Yuan et al., 2019;5. Wang et al., 2021a;6. Wang et al., 2021b;7. Ao et al., 2016;8. 牛文超等,2019;9. 卜涛等,2022;10. 李沅柏等,2021
      Figure  1.  (a) Simplified tectonic sketch map of the Central Asian Orogenic Belt showing the location of the Beishan Orogenic Belt and (b) distribution of the Beishan complex and the known Precambrian rocks in the Beishan Orogenic Belt

      北山造山带位于中亚造山带中段南部,南为敦煌微陆块即塔里木克拉通的东缘,北为蒙古古生代拼贴带,西临东天山造山带,东被巴丹吉林沙漠掩盖(图1b)(Zuo et al., 1991Xiao et al., 2010)。北山造山带包括多个构造带及之间的构造单元,以Xiao等(2010) 的划分为代表,其构造单元从北向南包括雀儿山、黑鹰山–旱山、马鬃山、双鹰山–花牛山、石板山等构造单元(图1b)。

      早期研究认为北山造山带除了雀儿山构造单元外,其他构造单元前寒武纪基底即“北山杂岩”广泛分布,由中高级变质岩和浅变质沉积序列组成(左国朝等,1990, Zuo et al., 1991杨合群等,2008)。20世纪末至21世纪初,前人研究依据变质变形、岩石组合和少量的全岩Sm-Nd等时线年龄、Ar-Ar年龄和单颗粒锆石U-Pb上交点年龄(主要获得2.9~1.6 Ga),认为中高级变质岩形成时代为太古代—古元古代(李志琛,1994桑海清等,1997梅华林等,1997魏学平等,2000聂凤军等,2004孙新春等,2005),依据区域岩石地层对比、与中高级变质岩变质差异,认为浅变质沉积序列形成于中—新元古代(左国朝等,1990, Zuo et al., 1991梅华林等,1997杨合群等,2008)。传统上认为北山造山带南部(红柳河-洗肠井蛇绿混杂岩带以南)前寒武纪基底具有塔里木克拉通或敦煌微陆块(塔里木克拉通的东端)的亲缘性(左国朝等,1990, Zuo et al., 1991何世平等,2002, 2005杨合群等,2008, 2009, 2010, 2012)。

      近年来,地质学家对这些所谓的前寒武纪岩石进行了锆石U-Pb定年,获得了不同的年龄数据,但缺少太古代和古元古代的岩石。目前发现具有可靠年龄数据最老的岩石为出露在石板山构造单元约1400 Ma的旧井花岗质片麻岩(贺振宇等,2015Yuan et al., 2019)和出露在双鹰山单元上与古堡泉超高压变质岩空间上共生的15551359 Ma花岗质片麻岩(He et al., 2018Li et al., 2023),并且一些所谓的前寒武纪变质岩已经被否定掉,它们为古生代的俯冲增生杂岩或岩浆弧杂岩(Song et al., 2013a, 2013b, 2013c, 2015, 2016Zheng et al., 2018)。因此,北山造山带是否存在太古代—古元古代的岩石仍然不清楚(姜洪颖等,2013贺振宇等,2015He et al., 2018)。

      岩浆岩的地球化学特征,特别是同位素特征,可以指示源区的属性(贺振宇等,2015He et al., 2018)。论文报道了北山南部尖山子地区新元古代早期似斑状花岗岩,结合已经发表的同时期花岗质岩石地球化学数据,表征其源区特征,并进行了前寒武纪基底亲缘性的探讨。

      尖山子似斑状花岗岩位于北山造山带南部双鹰山–花牛山构造单元的东缘(图1b),侵入到变质的北山杂岩中,并被古生代岩浆岩侵入,后期与石炭纪地层呈断层接触(图2)。似斑状花岗岩,出露面积约10 km2,呈NWW–SEE展布。露头上,岩石呈黑灰色,发育肉红色钾长石斑晶,并且经历了韧性剪切变形(图3a图3b)。本次工作采集了3件样品(TW1003,TW8837, YQ2224)(图2),所有样品呈似斑状结构,主要由斑晶和基质组成,斑晶为钾长石(10%~25%),多自形,大小为5~10mm,基质为黑云母(5%~10%),石英(20%~25%)和长石(30%~40%,钾长石和斜长石近于相等)(图3a图3b)。岩石经历韧性变形,石英矿物拉长定向排列或细粒化(图3b)。3件样品进行了主量元素和微量元素分析,两件样品(TW1003,TW8837)进行了锆石U-Pb测年,在锆石定年基础上,对样品TW1003开展了锆石Hf同位素分析。

      图  2  北山造山带东缘尖山子地区地质简图及采样位置
      Figure  2.  Sketch geological map and sampling location in the Jianshanzi area, eastern Beishan Orogenic Belt
      图  3  尖山子似斑状花岗岩野外露头(a)和显微照片(b)
      Kfs.钾长石;Bi.黑云母;Pl.斜长石;Q.石英
      Figure  3.  (a) Field outcrop and (b) photomicrograph for the porphyritic granite in the Jianshanzi area

      样品主量元素和微量元素均在河北省区域地质矿产调查研究所实验室完成。主量元素采用X射线荧光光谱仪,分析精度优于5%。微量元素采用X-Serises 2电感耦合等离子体质谱ICP-MS分析方法,精度优于5%。

      锆石分选、制靶、阴极发光在河北省区域地质矿产调查研究所实验室完成。锆石U-Pb同位素定年在天津地质矿产研究所利用LA-ICP-MS Agilent 7500a仪器分析。本次实验室采用的激光束斑直径为50 μm,以氦气作为剥蚀物质的载气。LA-ICP-MS分析方法见李怀坤等(2010)相关描述。测试数据年龄值误差均为1σ,计算处理采用Isoplot 3.0程序。

      锆石Hf同位素分析在北京锆石领航科技有限公司激光剥蚀多接收器电感耦合等离子体质谱仪上完成。激光进样系统为NWR 213nm固体激光器,分析系统为多接收等离子体质谱仪(NEPTUNE plus)。实验中采用179Hf/177Hf = 0.7325对Hf同位素比值进行指数归一化质量歧视校正,采用173Yb/172Yb = 1.35274对Yb同位素比值进行指数归一化质量歧视校正。测试过程中采用GJ-1作为标样,测量176Hf/177Hf 平均值为0.282011

      样品TW1003锆石U-Pb年龄数据见表1图4。锆石多呈自形,长为80~120 μm,宽度为50~80 μm,长宽比接近2∶1。阴极发光图像显示锆石具有明显的振荡环带,显示岩浆成因的结构特征,此外部分锆石具有核幔结构(图4a)。锆石一共分析了32个点(图4b),9个分析点位于锆石核部,其中两个分析点谐和性差, 7个分析点落在谐和线附近,206Pb/238U年龄介于1 415~951 Ma,代表了捕获或残留锆石年龄。23个分析点无核部结构或位于幔部,其中19个分析点集中分布落在谐和线上,206Pb/238U年龄平均年龄为(901±5)Ma,代表了样品TW1003的结晶年龄;另外3个分析点谐和性差和1个分析点落在谐和曲线上, 但206Pb/238U年龄为836 Ma且与结晶年龄相比明显偏年轻,这些分析点可能与锆石重结晶或Pb同位素丢失有关(王梓桐等,2022牛腾等,2023)。

      表  1  尖山子似斑状花岗岩样品TW1003锆石LA-ICP-MS U-Pb年龄分析数据
      Table  1.  Zircon LA-ICP-MS U-Pb data for the sample TW1003 from the porphyritic granite in the Jianshanzi area
      点号 含量(10−6 同位素比值 年龄(Ma)
      TW1003 Pb Th U 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/206Pb 207Pb/235U 206Pb/238U
      TW1003-1 126 220 719 0.0713 0.0023 1.4571 0.0456 0.1474 0.0020 0.0494 0.0019 966 67 913 19 886 11
      TW1003-2 127 91 1024 0.0666 0.0018 1.2808 0.0355 0.1385 0.0018 0.0472 0.0030 833 56 837 16 836 10
      TW1003-3* 302 200 1583 0.0814 0.0025 1.9176 0.0526 0.1700 0.0021 0.1138 0.0041 1231 65 1087 18 1012 12
      TW1003-4* 1361 722 2152 0.3820 0.0091 8.0679 0.3240 0.1502 0.0042 0.3970 0.0185 3840 36 2239 36 902 23
      TW1003-5 194 263 1199 0.0696 0.0018 1.4317 0.0401 0.1481 0.0022 0.0624 0.0041 917 52 902 17 891 12
      TW1003-6 130 70 1036 0.0687 0.0016 1.4336 0.0425 0.1505 0.0030 0.0458 0.0022 889 50 903 18 904 17
      TW1003-7 129 431 643 0.0726 0.0020 1.5261 0.0511 0.1508 0.0027 0.0460 0.0014 1011 56 941 21 905 15
      TW1003-8* 104 213 452 0.0756 0.0023 1.8682 0.0597 0.1787 0.0026 0.0584 0.0019 1087 62 1070 21 1060 14
      TW1003-9 116 359 592 0.0696 0.0019 1.4392 0.0412 0.1494 0.0021 0.0456 0.0012 917 54 905 17 898 12
      TW1003-10 128 106 957 0.0693 0.0017 1.4330 0.0379 0.1488 0.0018 0.0503 0.0018 907 55 903 16 894 10
      TW1003-11* 199 591 844 0.0754 0.0019 1.6734 0.0494 0.1590 0.0023 0.0554 0.0017 1080 50 998 19 951 13
      TW1003-12 248 126 1819 0.0770 0.0016 1.6131 0.0425 0.1501 0.0024 0.0994 0.0041 1120 43 975 17 902 13
      TW1003-13 151 92 1202 0.0671 0.0014 1.4167 0.0310 0.1520 0.0021 0.0502 0.0014 840 43 896 13 912 12
      TW1003-14 101 69 794 0.0675 0.0014 1.4265 0.0318 0.1516 0.0020 0.0503 0.0016 854 44 900 13 910 11
      TW1003-15 468 827 1665 0.0899 0.0021 2.7197 0.0699 0.2163 0.0031 0.0742 0.0019 1433 39 1334 19 1262 17
      TW1003-16 98 84 711 0.0695 0.0024 1.4644 0.0617 0.1499 0.0022 0.0651 0.0076 922 72 916 25 900 13
      TW1003-17* 605 257 1807 0.1891 0.0094 4.4913 0.2548 0.1631 0.0032 0.4163 0.0262 2744 82 1729 47 974 18
      TW1003-18 140 59 1105 0.0671 0.0015 1.4159 0.0327 0.1511 0.0020 0.0522 0.0016 839 48 896 14 907 11
      TW1003-19* 301 91 1565 0.1267 0.0046 2.4865 0.1035 0.1387 0.0018 0.5338 0.0471 2054 64 1268 30 837 10
      TW1003-20 70 196 372 0.0684 0.0016 1.4270 0.0332 0.1500 0.0019 0.0464 0.0012 880 48 900 14 901 11
      TW1003-21 97 97 714 0.0655 0.0014 1.3836 0.0313 0.1512 0.0019 0.0466 0.0014 791 46 882 13 908 10
      TW1003-22 205 172 1221 0.0892 0.0028 1.8853 0.0642 0.1500 0.0019 0.1024 0.0050 1409 92 1076 23 901 10
      TW1003-23 82 258 418 0.0673 0.0016 1.4125 0.0377 0.1502 0.0024 0.0480 0.0014 856 48 894 16 902 13
      TW1003-24 158 102 1221 0.0663 0.0015 1.3876 0.0355 0.1498 0.0022 0.0471 0.0015 815 49 884 15 900 12
      TW1003-25* 544 999 1507 0.0934 0.0025 3.1789 0.0964 0.2424 0.0036 0.0757 0.0025 1496 45 1452 23 1399 18
      TW1003-26* 146 73 1033 0.0695 0.0016 1.5503 0.0365 0.1600 0.0023 0.0613 0.0023 922 47 951 15 957 13
      TW1003-27 174 203 1203 0.0701 0.0016 1.4758 0.0350 0.1507 0.0018 0.0508 0.0018 931 46 921 14 905 10
      TW1003-28 182 104 1304 0.0723 0.0016 1.5195 0.0343 0.1512 0.0020 0.0730 0.0025 994 46 938 14 908 11
      TW1003-29 143 106 1084 0.0687 0.0015 1.4335 0.0359 0.1491 0.0018 0.0561 0.0043 900 72 903 15 896 10
      TW1003-30* 290 516 902 0.0874 0.0017 2.9888 0.0637 0.2455 0.0030 0.0716 0.0016 1369 37 1405 16 1415 16
      TW1003-31 87 202 508 0.0690 0.0016 1.4469 0.0353 0.1506 0.0020 0.0450 0.0012 898 48 909 15 904 11
      TW1003-32 112 74 849 0.0689 0.0017 1.4329 0.0369 0.1492 0.0019 0.0482 0.0015 898 45 903 15 896 11
       注:*表示锆石核部点位。
      下载: 导出CSV 
      | 显示表格
      图  4  尖山子似斑状花岗岩锆石阴极发光(a、c)及锆石U-Pb谐和图(b、d)
      图a中白色小圆圈为年龄测点,黄色大圆圈为Hf同位素测点,年龄和εHft)值标注在正下方
      Figure  4.  (a, c) Cathodoluminescence images of representative zircon grains and (b, d) zircon U-Pb concordia diagrams from the porphyritic granite in the Jianshanzi area

      样品TW8837锆石U-Pb年龄数据见表2图4。锆石多呈自形,长度为80~150 μm,宽度为50~90 μm,长宽比接近1.5∶1。阴极发光图像显示锆石颜色比较深,多呈灰黑色,但振荡环带清楚,显示岩浆成因的结构特征,此外部分锆石具有核幔结构(图4c)。锆石一共分析了30个点,谐和图见图4d。3个分析点位于锆石核部,数据落在谐和线附近,206Pb/238U年龄介于1077~986 Ma,代表了捕获或残留锆石年龄。27个分析点无核部结构或位于幔部,1个分析点偏离谐和曲线,其余26个分析点落在谐和曲线上,年龄集中分布,206Pb/238U年龄平均年龄为(935±3)Ma,代表了样品TW8837的结晶年龄。

      表  2  尖山子似斑状花岗岩样品TW8837锆石LA-ICP-MS U-Pb年龄分析数据
      Table  2.  Zircon LA-ICP-MS U-Pb data for the sample TW8837 from the porphyritic granite in the Jianshanzi area
      点号 含量(10−6 同位素比值 年龄(Ma)
      TW8837 Pb Th U 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/206Pb 207Pb/235U 206Pb/238U
      TW8837-1 578 565 2424 0.0721 0.0018 1.5704 0.0401 0.1566 0.0015 0.0548 0.0016 989 19 959 16 938 8
      TW8837-2 392 565 1343 0.0708 0.0018 1.5354 0.0378 0.1564 0.0014 0.0479 0.0011 950 56 945 15 937 8
      TW8837-3 2373 4494 5527 0.0722 0.0017 1.5747 0.0349 0.1573 0.0016 0.0477 0.0011 991 48 960 14 942 9
      TW8837-4 1354 2073 4069 0.0708 0.0014 1.5397 0.0304 0.1566 0.0012 0.0502 0.0010 950 41 946 12 938 7
      TW8837-5 792 1023 3056 0.0670 0.0014 1.4566 0.0297 0.1566 0.0013 0.0469 0.0009 835 43 913 12 938 7
      TW8837-6 1623 2081 5514 0.0825 0.0018 1.6488 0.0329 0.1440 0.0010 0.0557 0.0011 1258 42 989 13 867 6
      TW8837-7 641 530 3129 0.0685 0.0014 1.4879 0.0307 0.1565 0.0013 0.0490 0.0012 883 43 925 13 937 7
      TW8837-8 409 285 1947 0.0704 0.0016 1.5303 0.0336 0.1566 0.0013 0.0607 0.0016 939 46 943 13 938 7
      TW8837-9 494 375 2598 0.0715 0.0016 1.5547 0.0349 0.1566 0.0014 0.0418 0.0011 972 47 952 14 938 8
      TW8837-10 1555 2353 4238 0.0744 0.0020 1.6301 0.0458 0.1566 0.0015 0.0563 0.0022 1054 54 982 18 938 8
      TW8837-11 986 1372 3002 0.0726 0.0018 1.5778 0.0392 0.1566 0.0016 0.0527 0.0012 1003 52 962 15 938 9
      TW8837-12 514 430 2269 0.0709 0.0017 1.5416 0.0362 0.1567 0.0015 0.0565 0.0015 955 53 947 14 938 8
      TW8837-13 607 414 2654 0.0739 0.0017 1.6226 0.0406 0.1567 0.0022 0.0681 0.0024 1039 48 979 16 938 12
      TW8837-14 927 1433 2810 0.0741 0.0017 1.6052 0.0358 0.1568 0.0019 0.0475 0.0011 1043 52 972 14 939 10
      TW8837-15 443 288 2252 0.0688 0.0015 1.4949 0.0323 0.1566 0.0016 0.0517 0.0012 892 76 928 13 938 9
      TW8837-16 818 578 4164 0.0693 0.0014 1.5057 0.0311 0.1565 0.0013 0.0466 0.0010 909 43 933 13 938 7
      TW8837-17 498 321 2396 0.0724 0.0016 1.5659 0.0340 0.1559 0.0014 0.0573 0.0014 998 43 957 13 934 8
      TW8837-18 600 552 2580 0.0704 0.0016 1.5294 0.0338 0.1566 0.0013 0.0510 0.0012 943 46 942 14 938 7
      TW8837-19 507 431 2290 0.0688 0.0016 1.4915 0.0333 0.1563 0.0013 0.0505 0.0013 894 42 927 14 936 7
      TW8837-20 588 463 2517 0.0772 0.0018 1.6772 0.0400 0.1566 0.0014 0.0571 0.0014 1125 48 1000 15 938 8
      TW8837-21* 646 468 2250 0.0800 0.0019 2.0261 0.0529 0.1819 0.0019 0.0747 0.0018 1198 46 1124 18 1077 11
      TW8837-22 477 314 2492 0.0682 0.0016 1.4735 0.0353 0.1556 0.0013 0.0513 0.0015 876 48 920 14 932 7
      TW8837-23 628 985 1916 0.0705 0.0016 1.5208 0.0342 0.1554 0.0012 0.0487 0.0010 943 45 939 14 931 7
      TW8837-24 463 644 1481 0.0695 0.0020 1.4925 0.0440 0.1548 0.0015 0.0534 0.0012 915 58 927 18 928 8
      TW8837-25 486 456 2299 0.0685 0.0015 1.4765 0.0332 0.1555 0.0015 0.0487 0.0011 883 44 921 14 932 8
      TW8837-26 491 383 2174 0.0741 0.0026 1.5846 0.0571 0.1552 0.0020 0.0674 0.0031 1044 75 964 22 930 11
      TW8837-27 568 327 2975 0.0731 0.0016 1.5723 0.0368 0.1550 0.0015 0.0631 0.0019 1017 44 959 15 929 9
      TW8837-28 369 432 1584 0.0704 0.0018 1.5108 0.0388 0.1550 0.0016 0.0472 0.0013 939 52 935 16 929 9
      TW8837-29* 481 467 1812 0.0700 0.0018 1.6017 0.0412 0.1655 0.0017 0.0622 0.0018 928 55 971 16 987 10
      TW8837-30* 419 207 2163 0.0695 0.0019 1.5900 0.0431 0.1652 0.0016 0.0673 0.0026 922 56 966 17 986 9
       注:*表示锆石核部点位。
      下载: 导出CSV 
      | 显示表格

      样品TW1003选择谐和年龄的结晶锆石进行Hf同位素分析,并用206Pb/238U年龄平均值(901±5)Ma计算εHft)值和两阶段Hf模式年龄TDM2(DM代表亏损地幔)。Hf同位素的组成见表3,结果与北山造山带南部报道的花岗质岩石Hf同位素组成类似(图5姜洪颖等,2013叶晓峰等, 2013Liu et al., 2015Yuan et al., 2015Wang et al., 2021b)。

      表  3  尖山子似斑状花岗岩样品TW1003锆石Hf同位素组成
      Table  3.  Zircon Hf-isotope compositions for the sample TW1003 from the porphyritic granite in the Jianshanzi area
      点号 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 年龄
      (Ma)
      176Hf/177Hf)i εHf0 εHft TDM
      (Ma)
      TDM2
      (Ma)
      fLu/Hf
      TW1003-5 0.054984 0.000289 0.001418 0.000007 0.282170 0.000025 901 0.282146 −21.3 −2.3 1544 1916 −0.96
      TW1003-6 0.050315 0.000471 0.001302 0.000012 0.282139 0.000023 901 0.282117 −22.4 −3.3 1582 1980 −0.96
      TW1003-7 0.037520 0.000372 0.000998 0.000010 0.282130 0.000023 901 0.282113 −22.7 −3.4 1582 1988 −0.97
      TW1003-9 0.087226 0.001205 0.002261 0.000024 0.282195 0.000021 901 0.282157 −20.4 −1.9 1543 1891 −0.93
      TW1003-10 0.091361 0.001105 0.002329 0.000026 0.282108 0.000022 901 0.282068 −23.5 −5.0 1672 2087 −0.93
      TW1003-13 0.071769 0.001814 0.001842 0.000037 0.282167 0.000026 901 0.282136 −21.4 −2.6 1566 1938 −0.94
      TW1003-14 0.080789 0.000700 0.002134 0.000025 0.282169 0.000023 901 0.282133 −21.3 −2.7 1575 1944 −0.94
      TW1003-16 0.064744 0.000391 0.001682 0.000006 0.282198 0.000025 901 0.282170 −20.3 −1.4 1514 1861 −0.95
      下载: 导出CSV 
      | 显示表格
      图  5  尖山子似斑状花岗岩样品TW1003锆石εHft) –年龄(Ma)图
      图中表示出了北山造山带南部新元古代早期花岗质岩石锆石Hf同位素;数据来自叶晓峰等(2013)姜洪颖等(2013)Liu等(2015)Yuan等(2015)Wang等(2021b)
      Figure  5.  The zircon εHf(t) versus age plot for the sample TW1003 from the porphyritic granite in the Jianshanzi area

      TW1003样品8个分析点锆石176Hf/177Hf值为0.2820680.282170,εHft)值为−5.0~−1.4,TDM2年龄值为2.08~1.86 Ga。

      尖山子3件似斑状花岗岩样品的主量和微量元素见表4,结果与李沅柏等(2021)报道的该岩体数据,以及北山造山带南部已经发表的花岗质岩石地球化学特征类似(图6图7)(姜洪颖等,2013叶晓峰等,2013Liu et al., 2015Yuan et al., 2015Wang et al., 2021b)。样品SiO2 (70.41%~76.05%),K2O (5.13%~5.33%)的含量较高,Al2O3 (12.66%~14.25%),Na2O (2.36%~2.53%)和CaO (1.25%~1.39%)含量中等,MgO含量偏低。样品Rb含量为130.66×10−6~294.88 ×10−6,Rb/Sr值(1.12~2.48)相对较高。在TAS图上,样品落在亚碱性花岗岩或接近亚碱性花岗闪长岩区(图6a),属于钙碱性或接近高钾钙碱性系列(图6b)。这些样品显示过铝质特征,A/CNK值 [Al2O3/(CaO+Na2O+K2O)摩尔数比值]为1.01~1.21(图6c)。

      表  4  尖山子似斑状花岗岩样品主量(%)和微量元素(10–6)组成
      Table  4.  Major (%) and trace element (10–6) compositions for samples from the porphyritic granite in the Jianshanzi area
      样号 TW1003 YQ2224 TW8837 样号 TW1003 YQ2224 TW8837
      SiO2 76.05 72.01 70.41 Y 32.27 38.96 45.02
      Al2O3 12.66 14.20 14.25 ΣREE 138.47 261.00 362.78
      TiO2 0.09 0.52 0.55 (La/Yb)N 7.17 8.41 10.79
      Fe2O3t 0.76 3.21 δEu 0.46 0.32 0.30
      Fe2O3 1.48 Li 8.94 12.50 23.14
      FeO 1.95 Be 1.35 2.57 2.86
      CaO 1.39 1.25 1.30 Sc 5.41 10.10 8.83
      MgO 0.47 0.85 1.11 V 9.51 40.64 53.43
      K2O 5.33 5.13 5.23 Cr 6.87 7.88 19.22
      Na2O 2.53 2.36 2.48 Co 66.15 64.20 5.97
      MnO 0.04 0.03 0.04 Ni 3.20 4.82 6.94
      P2O5 0.06 0.05 0.06 Cu 4.48 5.66 19.92
      LOI 0.83 0.36 1.01 Zn 10.75 46.32 75.92
      Total 100.21 99.97 99.89 Ga 12.29 10.35 24.39
      K2O+Na2O 7.86 7.49 7.72 Rb 130.66 200.65 294.88
      A/NK 1.27 1.51 1.46 Sr 116.65 102.45 118.67
      A/CNK 1.01 1.21 1.17 Zr 43.29 200.66 304.54
      La 25.63 52.30 65.79 Nb 3.05 10.67 21.44
      Ce 38.92 89.68 131.31 Mo 0.08 0.12 0.74
      Pr 4.14 8.77 15.37 Cd 0.09 0.14 0.16
      Nd 17.33 32.10 59.91 In 0.05 0.08 0.10
      Sm 2.87 8.67 11.52 Cs 2.12 8.67 9.96
      Eu 0.52 0.92 1.08 Ba 632.13 710.23 618.77
      Gd 4.19 8.64 10.09 Hf 1.67 8.60 10.21
      Tb 0.81 1.24 1.63 Ta 0.87 1.69 2.35
      Dy 4.76 6.86 9.04 W 363.73 320.00 1.75
      Ho 1.11 2.31 1.58 Tl 1.92
      Er 2.55 4.95 4.55 Pb 34.50 42.73 56.72
      Tm 0.38 0.68 0.82 Bi 0.08 0.06 1.32
      Yb 2.56 4.46 4.37 Th 16.63 35.60 48.94
      Lu 0.42 0.46 0.68 U 3.64 5.44 6.67
      下载: 导出CSV 
      | 显示表格
      图  6  尖山子似斑状花岗岩(a)硅-碱性图(据Middlemost, 1994),(b)SiO2-K2O图(据Frost et al., 2001)和(c)A/NK-A/CNK图(据Maniar et al., 1989
      Figure  6.  (a) Total alkali versus silica diagram, (b) SiO2 vs K2O plot and (c) A/NK vs A/CNK diagram of the porphyritic granite in the Jianshanzi area.
      图  7  尖山子似斑状花岗岩C1球粒陨石标准化稀土元素配分图(a)和原始地幔标准化多元素图(b)
      北山造山带南部已发表的新元古代花岗质岩石微量元素数据来自叶晓峰等(2013)姜洪颖等(2013)Liu等(2015)Yuan等(2015)Soldner等(2019)Wang等(2021b);C1球粒陨石和原始地幔值据Sun 等 (1989
      Figure  7.  (a) C1 chondrite-normalized REE patterns and (b) primitive mantle-normalized incompatible trace element variation diagrams of the porphyritic granite in the Jianshanzi area

      样品稀土总量为138.47×10-6~362.78×10-6,并显示相似的球粒陨石稀土元素配分曲线(图7a)。配分曲线向右倾斜,显示轻稀土与重稀土的分离特征(La/Yb)N值为7.17~10.79,以及明显的Eu负异常(δEu = 0.30~0.46)(图7a)。在原始地幔微量元素配分图解上,这些样品显示Rb、Th、U和K正异常,以及Ba、Nb、Ta、Sr、P和Ti负异常(图7b)。

      尖山子似斑状花岗岩位于北山造山带南部东缘,本次获得两件样品锆石U-Pb年龄分别为(901±5)Ma,(935±3)Ma,另外李沅柏等(2021)报道一件锆石U-Pb年龄为(892±5)Ma,表明该岩体形成时间为新元古代早期。同时期的岩浆事件在北山造山带南部发育(图1b),包括双鹰山–花牛山构造单元古堡泉片麻状花岗岩和变质基性岩(900~865 Ma; 梅华林等, 1999叶晓峰等,2013Liu et al., 2015Yuan et al., 2015Soldner et al., 2019)、东黑尖山花岗质片麻岩(895±4 Ma; Wang et al., 2021b)、石峡糜棱岩化花岗岩和二长岩(894~884 Ma;Wang et al., 2021b)、大湾城玄武岩(901±10 Ma;Wang et al., 2021a),以及石板山构造单元雅丹片麻状花岗岩(933±2 Ma; Yuan et al., 2015)、白墩子片麻状花岗岩和石板敦斜长角闪岩(~880 Ma; 姜洪颖等,2013)。这表明北山造山带南部广泛发育新元古代早期构造–岩浆事件。

      上述新元古代花岗质岩石属于高钾钙碱性系列至钾玄岩系列,显示偏铝质至过铝质的特征(图6),具有相似的稀土元素配分曲线并显示轻稀土富集、Eu负异常的特征(图7a),以及在微量元素地球化学配分图解上显示Rb、Th、U和K正异常以及Ba、Nb、Ta、Sr、P和Ti负异常(图7b),与壳源岩浆岩的地球化学特征一致(Rudnick et al., 2003)。尖山子似斑状花岗岩εHft)值为−5.19~−1.59,与已报道的同时期花岗质岩石相似(叶晓峰等,2013Liu et al., 2015Yuan et al., 2015Soldner et al., 2019Wang et al., 2021b),这些新元古代早期花岗质岩石共同显示演化的Hf同位素组成,且这些岩石结晶锆石以及捕获或残留锆石εHft)值主要落在2.2~1.3 Ga地壳物质Hf同位素演化区内(图5)。上述全岩主量微量元素和锆石Hf同位素特征反应北山造山带南部新元古代早期花岗质岩石主要起源于地壳,指示了早期地壳的再造事件。这与同时期一些过铝质花岗岩属于S-型花岗岩相一致,这些S-型花岗岩常常含有过铝质矿物,如白云母、石榴子石(姜洪颖等,2013Wang et al., 2021b)。此外,Zong 等(2017)在古堡泉和旧井地区报道了~900 Ma角闪岩相变质事件,这也与北山南部新元古代早期地壳再造事件相一致。

      北山造山带经历了古生代构造、变质和岩浆事件的强烈叠加和改造,能够标志微陆块性质的前寒武纪基底大多呈碎片分布于古生代的岩浆弧地体中(图1bXiao et al., 2010He al., 2018)。长期以来,将分布在北山不同构造单元上的中高级变质岩即“北山杂岩”看作前寒武纪基底,并依据岩石地层对比和少量的全岩Sm-Nd等时线年龄、Ar-Ar年龄和单颗粒锆石U-Pb上交点年龄(主要获得2.9~1.6 Ga),认为北山造山带南部前寒武纪基底具有塔里木克拉通或敦煌微陆块的亲缘性(左国朝等,1990, Zuo et al., 1991何世平等, 2005杨合群等, 2008, 2009, 2010, 2012)。

      然而,近年来识别出具有确切年龄的前寒武纪岩石为新元古代岩浆岩和~1400 Ma花岗质片麻岩(图1b)。~1400 Ma花岗质片麻岩显示了地壳的新生事件(图8贺振宇等,2015He et al., 2018Yuan et al., 2019),而出露的多处新元古代花岗质岩石显示了地壳的再造事件(叶晓峰等,2013姜洪颖等,2013Liu et al., 2015Yuan et al., 2015Wang et al., 2021b)。然而,这些岩石锆石εHft)值主体落在2.2~1.3 Ga地壳物质Hf同位素演化区内(图8),暗示北山造山带南部前寒武纪基底可能不存在太古代的基底。因此,它们可能不具有塔里木克拉通的构造亲缘性,因为塔里木克拉通广泛发育太古代的结晶基底(朱文斌等, 2022)。

      图  8  北山造山带南部中元古代和新元古代早期花岗质岩石锆石εHft)–年龄(Ma)图解
      Figure  8.  The zircon εHf(t) versus age (Ma) plot for the Mesoproterozoic and Neoproterozoic granitic rocks in the southern Beishan Orogenic Belt

      (1)北山造山带南部广泛发育新元古代早期岩浆事件。尖山子似斑状花岗岩锆石U-Pb年龄分别为(901±5)Ma和(935±3)Ma。尖山子似斑状花岗岩地球化学特征与北山南部花岗质岩石地球化学特征相似,反应了新元古代早期地壳再造事件。

      (2)北山造山带南部经历了中元古代地壳新生和新元古代早期地壳再造事件,锆石εHft)值主要落在2.2~1.3 Ga地壳物质Hf同位素演化区内,可能暗示不存在太古代的基底,即前寒武纪基底与具有太古代结晶基底的塔里木克拉通可能不同。

      致谢:感谢审稿专家提出的宝贵修改意见,在此致以诚挚的感谢。李树才、曹军、杨兵、黄福勇等参加了部分野外工作,在此一并致以谢意。

    • 图  1   北山造山带大地构造位置(a) (Şengör et al., 1993) 及区域构造单元划分(b) (据He et al., 2018; Huang et al.,2022修改)

      Ⅰ. 石板山单元;Ⅱ. 双鹰山单元;Ⅲ. 马鬃山单元;Ⅳ. 旱山单元;F1. 柳园蛇绿混杂岩带;F2. 红柳河–洗肠井蛇绿混杂岩带;F3. 石板井–小黄山蛇绿混杂岩带;F4. 红石山蛇绿混杂岩带;1. 新生界;2. 中生界;3. 古生界;4. 花岗岩;5. 蛇绿岩;6. 北山前寒武系;7. 敦煌地块前寒武系;8. 天山前寒武系;9. 阿拉善前寒武系;10. 榴辉岩;11. 断层

      Figure  1.   (a) Tectonic sketch map of the Central Asian Orogenic Belt and (b) simplified outline map of the Beishan Orogenic belt

      图  2   北山造山带南缘潘家井子一带地质图

      1.新近系—第四系;2.二叠纪方山口组晶屑凝灰岩、角砾凝灰岩;3.花岗闪长岩;4.辉长–闪长岩脉;5.变质砾岩;6.二云石英片岩;7.黑云斜长变粒岩;8.灰白色二长浅粒岩;9.灰白色细粒变粒岩;10.斜长角闪岩;11.断层;12.岩相界线;13.低角度构造面理(<30°);14.中角度构造面理(31~60°);15.高角度构造面理(>60°);16.构造线走向及倾向;17.矿物拉伸线理;18.褶皱枢纽;19.变质砾石拉伸线理;20.孢粉化石位置(甘肃省地质矿产局酒泉地质矿产调查队,1993);21.本次研究采样位置

      Figure  2.   Detailed geologic map of the Panjiajingzi area in the south margin of Beishan Orogeny

      图  3   潘家井子一带灰白色变粒岩(a、b)、云母石英片岩(c、d)和灰白色浅粒岩(e、f)的野外露头及显微特征

      Figure  3.   (a, b) Photographs showing the outcrops and mineral assemblages of the gray laptynite, (c, d) mica quartz schist, and (e, f) white-gray leptite

      图  4   潘家井子一带变质火山–碎屑岩变形特征

      a. 岩石成分层(S0)中常褶皱转折端,枢纽近水平;b. 岩石成分层(S0)近水平;c. S1发育不对称褶皱指示右行剪切变形;d. 变质砾岩中砾石定向排列,指示右行走滑构造

      Figure  4.   The deformation characteristics of the mata-volcaniclastic rocks in Panjiajingzi area

      图  5   北山造山带南缘潘家井子一带灰白色变粒岩(a)、云母石英片岩(b)、变火山碎屑岩(c)和花岗质砾石(d)的锆石阴极发光照片

      Figure  5.   Cathodoluminescence (CL) images of representative zircon grains from (a) gray laptynite, (b) mica quartz schist, (c) white-gray leptite, and (d) gravel samples from meta-conglomerate

      图  6   北山造山带南缘潘家井子一带灰白色变粒岩(a)、云母石英片岩(b)、变火山碎屑岩(c)和花岗质砾石(d)的锆石U-Pb年龄谐和图和加权平均年龄(或频率分布图)

      Figure  6.   Zircon U-Pb concordia diagrams and weighted mean ages (or probability density plot) for (a) gray laptynite, (b) mica quartz schist, (c) white-gray leptite, and (d) gravel samples from meta-conglomerate

      图  7   北山造山带南缘潘家井子一带斜长角闪岩和白色变粒岩岩石分类图解

      a. Nb/Y-Zr/TiO2图(Winchester et al., 1977);b. SiO2-FeOT/MgO图(Miyashiro, 1974);柳园杂岩中玄武岩数据来自Santos等(2022)

      Figure  7.   Classification diagrams for the amphibolite and gray laptynite samples from the Panjiajingzi area, Beishan orogeny

      图  8   北山造山带南缘潘家井子一带斜长角闪岩和白色变粒岩球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b)

      原始地幔数值来自Sun等(1989);Cascades弧玄武岩数据来自Schmidt等(2017)

      Figure  8.   (a) Chondrite-normalized REE patterns and (b) primitive mantle normalized trace element spider diagrams for the amphibolite and gray laptynite samples from the Panjiajingzi area, Beishan orogeny

      图  9   北山造山带南缘潘家井子一带斜长角闪岩的构造环境判别图

      a. Nb/Yb-Th/Yb图解(Smithies et al., 2018);b. Ta/Hf-Th/Hf构造环境判别图(汪云亮等,2001);c. Zr-Th-Nb图解;d. Nb-Zr-Y图解(Meschede, 1986);柳园杂岩中玄武岩数据来自Santos等(2022)

      Figure  9.   Discrimination diagrams for the amphibolite and gray laptynite samples from the Panjiajingzi area, Beishan orogeny

      表  1   灰白色变粒岩锆石U-Pb年龄数据表

      Table  1   Zircon U-Pb age of grayish-white granulite

      测试点
      同位素比值 U-Pb年龄(Ma) 含量(10−6 Th/U
      207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th Th U
      P1-7,01 0.05511 0.00349 0.34026 0.02114 0.04480 0.00108 0.01566 0.00058 416 136 297 16 283 7 314 11 2179 3674 0.59
      P1-7,02 0.05338 0.00355 0.33860 0.02208 0.04602 0.00112 0.01413 0.00065 345 143 296 17 290 7 284 13 1621 4160 0.39
      P1-7,03 0.05229 0.00409 0.33106 0.02540 0.04593 0.00120 0.01179 0.00066 298 169 290 19 290 7 237 13 1999 4023 0.50
      P1-7,04 0.05177 0.00436 0.33908 0.02800 0.04752 0.00126 0.01534 0.00071 275 182 297 21 299 8 308 14 2218 3536 0.63
      P1-7,05 0.05072 0.00371 0.32011 0.02303 0.04578 0.00113 0.01640 0.00062 228 161 282 18 289 7 329 12 2543 3869 0.66
      P1-7,06 0.05118 0.00320 0.32132 0.01972 0.04554 0.00108 0.01698 0.00058 249 138 283 15 287 7 340 11 2779 3980 0.70
      P1-7,08 0.05140 0.00296 0.31814 0.01803 0.04490 0.00104 0.01401 0.00049 259 127 281 14 283 6 281 10 2769 4442 0.62
      P1-7,09 0.05153 0.00331 0.31617 0.01993 0.04451 0.00107 0.01520 0.00064 265 141 279 15 281 7 305 13 1476 3523 0.42
      P1-7,10 0.05258 0.00297 0.32363 0.01797 0.04465 0.00103 0.01491 0.00053 311 123 285 14 282 6 299 10 2240 4164 0.54
      P1-7,11 0.05011 0.00411 0.31494 0.02537 0.04559 0.00117 0.01483 0.00064 200 180 278 20 287 7 298 13 1279 2201 0.58
      P1-7,12 0.05159 0.00189 0.32440 0.01174 0.04561 0.00096 0.01504 0.00038 267 82 285 9 288 6 302 7 12006 12518 0.96
      P1-7,13 0.05142 0.00231 0.32398 0.01433 0.04570 0.00100 0.01518 0.00047 260 100 285 11 288 6 305 9 3722 7290 0.51
      P1-7,14 0.05159 0.00239 0.32600 0.01483 0.04584 0.00101 0.01598 0.00051 267 103 287 11 289 6 320 10 2926 6472 0.45
      P1-7,15 0.05087 0.00261 0.31563 0.01594 0.04501 0.00101 0.01451 0.00050 235 114 279 12 284 6 291 10 2906 5935 0.49
      P1-7,16 0.05032 0.00403 0.31594 0.02485 0.04554 0.00118 0.01393 0.00084 210 176 279 19 287 7 280 17 740 2463 0.30
      P1-7,17 0.05153 0.00253 0.32393 0.01561 0.04560 0.00102 0.01537 0.00047 265 109 285 12 287 6 308 9 4122 5959 0.69
      P1-7,18 0.04747 0.00744 0.30427 0.04686 0.04650 0.00168 0.01513 0.00131 72 336 270 36 293 10 304 26 268 629 0.43
      P1-7,19 0.05224 0.00336 0.32335 0.02037 0.04489 0.00108 0.01418 0.00050 296 140 285 16 283 7 285 10 3717 4518 0.82
      P1-7,20 0.05202 0.00338 0.32851 0.02093 0.04581 0.00110 0.01536 0.00060 286 142 288 16 289 7 308 12 2284 4142 0.55
      P1-7,21 0.05650 0.00577 0.35412 0.03537 0.04546 0.00137 0.01717 0.00104 471 212 308 27 287 8 344 21 659 1447 0.46
      P1-7,22 0.05155 0.00350 0.31198 0.02077 0.04389 0.00107 0.01473 0.00051 266 149 276 16 277 7 296 10 3213 3576 0.90
      P1-7,24 0.05755 0.00303 0.36486 0.01884 0.04598 0.00105 0.01793 0.00056 512 112 316 14 290 6 359 11 3553 5181 0.69
      P1-7,25 0.05427 0.00275 0.33646 0.01674 0.04496 0.00101 0.01714 0.00051 382 110 295 13 284 6 344 10 4855 6345 0.77
      P1-7,26 0.05034 0.00392 0.31461 0.02403 0.04532 0.00117 0.01586 0.00078 211 171 278 19 286 7 318 16 1373 2780 0.49
      P1-7,27 0.05343 0.00232 0.33426 0.01426 0.04537 0.00098 0.01623 0.00045 347 95 293 11 286 6 325 9 7294 8820 0.83
      P1-7,28 0.05012 0.00265 0.31793 0.01654 0.04600 0.00104 0.01663 0.00050 201 119 280 13 290 6 333 10 5452 6678 0.82
      P1-7,29 0.05283 0.00318 0.33541 0.01977 0.04604 0.00108 0.01669 0.00063 322 131 294 15 290 7 335 13 2661 5312 0.50
      P1-7,30 0.05180 0.00248 0.31805 0.01497 0.04453 0.00098 0.01578 0.00049 276 106 280 12 281 6 316 10 4687 8088 0.58
      P1-7,32 0.05851 0.00463 0.37709 0.02918 0.04673 0.00124 0.01523 0.00078 549 164 325 22 294 8 306 16 1146 2326 0.49
      P1-7,33 0.05406 0.00986 0.34064 0.06106 0.04569 0.00184 0.01507 0.00117 373 366 298 46 288 11 302 23 493 518 0.95
      P1-7,34 0.05322 0.00213 0.32288 0.01269 0.04399 0.00094 0.01585 0.00042 338 88 284 10 278 6 318 8 11053 12373 0.89
      P1-7,36 0.05147 0.00235 0.31350 0.01408 0.04416 0.00096 0.01492 0.00045 262 102 277 11 279 6 299 9 5778 8519 0.68
      P1-7,37 0.05078 0.00227 0.31596 0.01388 0.04511 0.00098 0.01866 0.00058 231 100 279 11 284 6 374 12 3494 8375 0.42
      P1-7,38 0.05194 0.00244 0.32075 0.01480 0.04477 0.00098 0.01452 0.00041 283 104 283 11 282 6 291 8 7864 7327 1.07
      P1-7,39 0.05203 0.00250 0.32083 0.01511 0.04470 0.00098 0.01578 0.00043 287 106 283 12 282 6 317 9 8145 6810 1.20
      P1-7,40 0.05169 0.00236 0.31645 0.01415 0.04438 0.00096 0.01482 0.00043 272 101 279 11 280 6 297 9 7014 9028 0.78
      P1-7,41 0.06391 0.00294 0.40709 0.01829 0.04618 0.00102 0.01844 0.00061 739 94 347 13 291 6 369 12 3459 7079 0.49
      P1-7,42 0.05210 0.00332 0.32088 0.02003 0.04465 0.00106 0.01562 0.00059 290 139 283 15 282 7 313 12 2509 4130 0.61
      P1-7,43 0.05660 0.00293 0.35966 0.01822 0.04606 0.00104 0.01522 0.00042 475 111 312 14 290 6 305 8 9165 5464 1.68
      P1-7,44 0.05156 0.00307 0.32164 0.01874 0.04522 0.00105 0.01805 0.00065 266 131 283 14 285 6 362 13 2241 4229 0.53
      P1-7,45 0.05355 0.00305 0.33214 0.01853 0.04495 0.00104 0.01631 0.00064 352 123 291 14 284 6 327 13 2311 5079 0.45
      P1-7,46 0.05391 0.00272 0.34290 0.01692 0.04610 0.00103 0.01674 0.00053 367 109 299 13 291 6 336 11 3909 5859 0.67
      P1-7,47 0.05171 0.00253 0.32288 0.01550 0.04525 0.00100 0.01601 0.00044 273 108 284 12 285 6 321 9 8784 6577 1.34
      P1-7,48 0.04928 0.00322 0.30789 0.01973 0.04528 0.00107 0.01600 0.00058 161 146 273 15 286 7 321 11 2651 3793 0.70
      P1-7,49 0.05077 0.00292 0.31240 0.01759 0.04459 0.00102 0.01522 0.00051 230 127 276 14 281 6 305 10 3595 4836 0.74
      P1-7,50 0.05290 0.00617 0.32823 0.03749 0.04497 0.00142 0.01564 0.00087 324 245 288 29 284 9 314 17 997 1325 0.75
      P1-7,51 0.05239 0.00522 0.31956 0.03115 0.04420 0.00128 0.01332 0.00051 302 212 282 24 279 8 268 10 2811 1552 1.81
      P1-7,52 0.05100 0.00337 0.31367 0.02027 0.04456 0.00107 0.01391 0.00065 241 145 277 16 281 7 279 13 1376 3467 0.40
      P1-7,53 0.05037 0.00328 0.31083 0.01984 0.04471 0.00106 0.01538 0.00056 212 144 275 15 282 7 308 11 3160 4148 0.76
      P1-7,54 0.05274 0.00302 0.32534 0.01821 0.04469 0.00103 0.01612 0.00063 318 125 286 14 282 6 323 13 2122 4849 0.44
      P1-7,56 0.05199 0.00289 0.31811 0.01730 0.04433 0.00101 0.01541 0.00051 285 122 280 13 280 6 309 10 3693 4946 0.75
      P1-7,57 0.05023 0.00296 0.31358 0.01811 0.04523 0.00104 0.01504 0.00054 205 131 277 14 285 6 302 11 2923 4358 0.67
      P1-7,58 0.05337 0.00230 0.32096 0.01353 0.04357 0.00093 0.01602 0.00044 345 94 283 10 275 6 321 9 8734 8736 1.00
      P1-7,59 0.05649 0.00280 0.35957 0.01739 0.04611 0.00102 0.01666 0.00049 471 107 312 13 291 6 334 10 6026 5992 1.01
      P1-7,60 0.05168 0.00199 0.33001 0.01243 0.04626 0.00097 0.01706 0.00046 271 86 290 9 292 6 342 9 10769 13004 0.83
      下载: 导出CSV

      表  2   云母石英片岩锆石U-Pb年龄数据表

      Table  2   Zircon U-Pb ages of mica quartz schist

      测试点
      同位素比值 U-Pb年龄(Ma) 含量(10−6 Th/U
      207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th Th U
      P1-21,03 0.05796 0.00528 0.35597 0.03183 0.04453 0.00127 0.01159 0.00055 528 188 309 24 281 8 233 11 1557 1861 0.84
      P1-21,04 0.05133 0.00357 0.31829 0.02185 0.04496 0.00113 0.01184 0.00049 256 153 281 17 284 7 238 10 1528 2726 0.56
      P1-21,05 0.05728 0.00476 0.36535 0.02979 0.04625 0.00127 0.01325 0.00060 502 174 316 22 291 8 266 12 1352 1925 0.70
      P1-21,06 0.05218 0.00505 0.32843 0.03130 0.04564 0.00128 0.01351 0.00064 293 207 288 24 288 8 271 13 1152 1699 0.68
      P1-21,08 0.05353 0.00377 0.33787 0.02344 0.04577 0.00115 0.01295 0.00051 351 151 296 18 289 7 260 10 2592 3689 0.70
      P1-21,10 0.04943 0.00356 0.32441 0.02306 0.04760 0.00119 0.01422 0.00052 168 160 285 18 300 7 285 10 2313 3170 0.73
      P1-21,11 0.05866 0.00399 0.38201 0.02557 0.04723 0.00119 0.01464 0.00058 554 142 329 19 298 7 294 12 1923 3238 0.59
      P1-21,12 0.05444 0.00487 0.35054 0.03082 0.04670 0.00130 0.01336 0.00071 389 189 305 23 294 8 268 14 1054 1879 0.56
      P1-21,14 0.05380 0.00360 0.33035 0.02179 0.04454 0.00110 0.01300 0.00051 362 144 290 17 281 7 261 10 2487 4269 0.58
      P1-21,15 0.04916 0.00461 0.31076 0.02869 0.04585 0.00127 0.01460 0.00071 156 206 275 22 289 8 293 14 1152 2075 0.56
      P1-21,16 0.05221 0.00433 0.32084 0.02616 0.04457 0.00120 0.01252 0.00060 295 178 283 20 281 7 252 12 1493 2671 0.56
      P1-21,17 0.05258 0.00308 0.33040 0.01911 0.04558 0.00108 0.01284 0.00044 311 128 290 15 287 7 258 9 3524 4948 0.71
      P1-21,18 0.05405 0.00379 0.34550 0.02389 0.04636 0.00116 0.01341 0.00052 373 151 301 18 292 7 269 10 2168 3352 0.65
      P1-21,20 0.05095 0.00790 0.31830 0.04851 0.04531 0.00168 0.01480 0.00115 239 323 281 37 286 10 297 23 443 860 0.52
      P1-21,21 0.05447 0.00259 0.34030 0.01604 0.04532 0.00102 0.01432 0.00042 391 103 297 12 286 6 288 8 5966 9491 0.63
      P1-21,22 0.05632 0.00441 0.36122 0.02778 0.04653 0.00124 0.01442 0.00065 464 166 313 21 293 8 289 13 1701 2957 0.58
      P1-21,23 0.05082 0.00380 0.31441 0.02313 0.04488 0.00115 0.01462 0.00055 232 164 278 18 283 7 293 11 2390 3204 0.75
      P1-21,24 0.05572 0.00742 0.33900 0.04425 0.04413 0.00154 0.01492 0.00092 441 272 296 34 278 10 299 18 820 1146 0.72
      P1-21,25 0.05178 0.00434 0.31713 0.02611 0.04443 0.00119 0.01348 0.00063 276 181 280 20 280 7 271 12 1845 3185 0.58
      P1-21,26 0.05270 0.00461 0.33574 0.02883 0.04621 0.00127 0.01379 0.00065 316 187 294 22 291 8 277 13 1758 2461 0.71
      P1-21,27 0.05849 0.00627 0.36278 0.03814 0.04500 0.00139 0.01242 0.00073 548 219 314 28 284 9 249 15 1193 1822 0.66
      P1-21,28 0.05641 0.00412 0.35908 0.02577 0.04618 0.00118 0.01399 0.00055 468 155 312 19 291 7 281 11 2209 3089 0.72
      P1-21,29 0.05564 0.00493 0.35002 0.03044 0.04564 0.00128 0.01158 0.00061 438 186 305 23 288 8 233 12 1315 1958 0.67
      P1-21,30 0.05242 0.00409 0.32669 0.02505 0.04521 0.00117 0.01494 0.00065 304 168 287 19 285 7 300 13 1999 3687 0.54
      P1-21,32 0.05399 0.00547 0.33688 0.03348 0.04527 0.00133 0.01579 0.00080 370 213 295 25 285 8 317 16 1404 2115 0.66
      P1-21,33 0.05917 0.00481 0.36627 0.02925 0.04491 0.00120 0.01358 0.00059 573 168 317 22 283 7 273 12 1937 2852 0.68
      P1-21,35 0.04629 0.00540 0.28849 0.03306 0.04521 0.00139 0.01106 0.00101 13 259 257 26 285 9 222 20 785 2075 0.38
      P1-21,36 0.05480 0.00480 0.33728 0.02903 0.04465 0.00122 0.01319 0.00062 404 185 295 22 282 8 265 12 1904 2903 0.66
      P1-21,37 0.05584 0.00609 0.34812 0.03725 0.04523 0.00138 0.01562 0.00082 446 226 303 28 285 9 313 16 1304 1982 0.66
      P1-21,38 0.04965 0.00428 0.31379 0.02662 0.04585 0.00122 0.01543 0.00072 179 189 277 21 289 8 310 14 1594 3065 0.52
      P1-21,39 0.05838 0.00577 0.37144 0.03598 0.04616 0.00136 0.01563 0.00083 544 203 321 27 291 8 314 16 1225 2068 0.59
      P1-21,40 0.05393 0.00462 0.32533 0.02739 0.04377 0.00118 0.01258 0.00073 368 183 286 21 276 7 253 15 1523 3435 0.44
      P1-21,41 0.05782 0.00806 0.34567 0.04726 0.04338 0.00154 0.01368 0.00105 523 280 302 36 274 10 275 21 709 1376 0.52
      P1-21,42 0.04754 0.00431 0.29931 0.02676 0.04568 0.00121 0.01409 0.00062 76 203 266 21 288 7 283 12 2124 3157 0.67
      P1-21,43 0.04968 0.00368 0.30637 0.02232 0.04474 0.00112 0.01387 0.00058 180 164 271 17 282 7 279 11 2855 4907 0.58
      P1-21,44 0.05680 0.00465 0.34817 0.02794 0.04447 0.00119 0.01341 0.00072 483 172 303 21 281 7 269 14 1812 3654 0.50
      P1-21,45 0.05066 0.00366 0.31626 0.02246 0.04529 0.00113 0.01501 0.00057 226 159 279 17 286 7 301 11 2822 4149 0.68
      P1-21,46 0.05052 0.00708 0.32152 0.04427 0.04618 0.00160 0.01111 0.00086 219 295 283 34 291 10 223 17 714 1171 0.61
      P1-21,47 0.05305 0.00471 0.33459 0.02914 0.04576 0.00125 0.01828 0.00089 331 189 293 22 288 8 366 18 1773 3605 0.49
      P1-21,48 0.05584 0.00521 0.33884 0.03096 0.04402 0.00126 0.01518 0.00072 446 195 296 23 278 8 305 14 2494 3618 0.69
      P1-21,50 0.05615 0.00799 0.34317 0.04773 0.04434 0.00167 0.01802 0.00137 458 288 300 36 280 10 361 27 591 1019 0.58
      P1-21,51 0.05960 0.00507 0.37392 0.03113 0.04552 0.00126 0.01502 0.00073 589 175 323 23 287 8 301 15 2012 3184 0.63
      P1-21,52 0.05150 0.00537 0.32448 0.03320 0.04571 0.00135 0.01495 0.00086 263 223 285 25 288 8 300 17 1310 2541 0.52
      P1-21,53 0.05517 0.00516 0.34904 0.03204 0.04591 0.00130 0.01598 0.00088 419 197 304 24 289 8 320 17 1486 2926 0.51
      P1-21,54 0.04759 0.00576 0.30852 0.03680 0.04704 0.00142 0.01487 0.00091 78 266 273 29 296 9 298 18 1023 1994 0.51
      P1-21,55 0.05538 0.00491 0.34013 0.02953 0.04456 0.00124 0.01476 0.00071 427 187 297 22 281 8 296 14 2092 3366 0.62
      P1-21,56 0.05136 0.00441 0.31346 0.02641 0.04428 0.00119 0.01489 0.00067 257 186 277 20 279 7 299 13 2133 3402 0.63
      P1-21,57 0.05305 0.00711 0.31852 0.04189 0.04356 0.00146 0.01123 0.00088 331 278 281 32 275 9 226 18 713 1390 0.51
      P1-21,58 0.05453 0.00438 0.33748 0.02660 0.04490 0.00118 0.01573 0.00066 393 171 295 20 283 7 315 13 2448 3664 0.67
      P1-21,59 0.05082 0.00429 0.31373 0.02598 0.04479 0.00119 0.01401 0.00069 233 184 277 20 283 7 281 14 1468 2832 0.52
      下载: 导出CSV

      表  3   变火山碎屑岩锆石U-Pb年龄数据表

      Table  3   Zircon U-Pb ages of metamorphic pyroclastic rocks

      测试点
      同位素比值 U-Pb年龄(Ma) 含量(10−6 Th/U
      207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th Th U
      P1-96,01 0.05337 0.00394 0.33172 0.02395 0.04510 0.00109 0.01489 0.00065 344 158 291 18 284 7 299 13 1148 2581 0.45
      P1-96,02 0.05366 0.00338 0.33203 0.02043 0.04489 0.00103 0.01421 0.00044 357 136 291 16 283 6 285 9 3445 3912 0.88
      P1-96,03 0.05590 0.00354 0.34542 0.02136 0.04483 0.00103 0.01358 0.00047 448 135 301 16 283 6 273 9 2521 3520 0.72
      P1-96,04 0.05522 0.00357 0.33331 0.02103 0.04378 0.00102 0.01399 0.00049 421 138 292 16 276 6 281 10 2692 4024 0.67
      P1-96,05 0.04977 0.00775 0.30398 0.04668 0.04431 0.00146 0.01680 0.00108 184 327 270 36 280 9 337 22 529 969 0.55
      P1-96,06 0.05161 0.00744 0.31333 0.04446 0.04403 0.00142 0.01413 0.00113 268 301 277 34 278 9 284 22 537 1095 0.49
      P1-96,07 0.05873 0.00652 0.34093 0.03699 0.04210 0.00130 0.01215 0.00075 557 225 298 28 266 8 244 15 1716 2674 0.64
      P1-96,08 0.05626 0.00531 0.36568 0.03377 0.04714 0.00130 0.01387 0.00075 462 197 316 25 297 8 278 15 921 1670 0.55
      P1-96,09 0.05190 0.00281 0.32026 0.01698 0.04475 0.00098 0.01355 0.00044 281 119 282 13 282 6 272 9 3807 6637 0.57
      P1-96,10 0.05306 0.00297 0.32456 0.01776 0.04436 0.00098 0.01504 0.00050 331 122 285 14 280 6 302 10 3315 6312 0.53
      P1-96,11 0.05317 0.00375 0.32998 0.02279 0.04499 0.00108 0.01376 0.00057 336 152 290 17 284 7 276 11 2027 3554 0.57
      P1-96,12 0.05554 0.00658 0.34206 0.03971 0.04464 0.00139 0.01510 0.00089 434 245 299 30 282 9 303 18 993 1641 0.61
      P1-96,13 0.05302 0.00433 0.32419 0.02596 0.04432 0.00113 0.01222 0.00063 330 175 285 20 280 7 246 13 1389 2777 0.50
      P1-96,14 0.05249 0.00678 0.32643 0.04136 0.04508 0.00145 0.01585 0.00098 307 270 287 32 284 9 318 20 823 1403 0.59
      P1-96,16 0.05325 0.00601 0.33107 0.03664 0.04506 0.00133 0.01399 0.00080 340 237 290 28 284 8 281 16 810 1344 0.60
      P1-96,17 0.06160 0.00478 0.39526 0.02993 0.04651 0.00121 0.01508 0.00068 660 158 338 22 293 7 303 14 1584 2662 0.60
      P1-96,18 0.05318 0.00539 0.33636 0.03344 0.04583 0.00129 0.01499 0.00073 337 215 294 25 289 8 301 14 1830 2648 0.69
      P1-96,19 0.05352 0.00464 0.34021 0.02889 0.04606 0.00121 0.01545 0.00077 351 184 297 22 290 7 310 15 1593 3268 0.49
      P1-96,20 0.05377 0.00561 0.33424 0.03423 0.04504 0.00128 0.01440 0.00087 361 220 293 26 284 8 289 17 934 1886 0.50
      P1-96,21 0.04994 0.00427 0.33454 0.02809 0.04854 0.00125 0.01567 0.00074 192 187 293 21 306 8 314 15 1670 3208 0.52
      P1-96,22 0.05682 0.00550 0.38403 0.03638 0.04897 0.00140 0.01729 0.00090 484 201 330 27 308 9 347 18 1612 2640 0.61
      P1-96,23 0.05393 0.00506 0.35124 0.03227 0.04718 0.00132 0.01353 0.00082 368 199 306 24 297 8 272 16 1302 2637 0.49
      P1-96,24 0.04822 0.00941 0.30333 0.05841 0.04558 0.00176 0.01320 0.00138 110 405 269 46 287 11 265 28 407 822 0.50
      P1-96,25 0.05891 0.00964 0.39218 0.06283 0.04823 0.00191 0.01676 0.00140 564 321 336 46 304 12 336 28 514 944 0.54
      P1-96,27 0.05541 0.00518 0.36152 0.03315 0.04727 0.00130 0.01591 0.00081 429 196 313 25 298 8 319 16 1403 2546 0.55
      P1-96,28 0.05359 0.00854 0.35795 0.05619 0.04839 0.00169 0.01281 0.00125 354 325 311 42 305 10 257 25 489 1060 0.46
      P1-96,29 0.05286 0.00533 0.33930 0.03355 0.04650 0.00135 0.01328 0.00074 323 214 297 25 293 8 267 15 1588 2512 0.63
      P1-96,32 0.05478 0.00383 0.36200 0.02480 0.04787 0.00118 0.01607 0.00065 403 149 314 18 302 7 322 13 2809 4956 0.57
      P1-96,33 0.05327 0.00410 0.33202 0.02509 0.04516 0.00115 0.01452 0.00063 340 165 291 19 285 7 291 13 2260 3891 0.58
      P1-96,34 0.05384 0.00589 0.35687 0.03820 0.04802 0.00148 0.01953 0.00102 364 230 310 29 302 9 391 20 1243 1770 0.70
      P1-96,35 0.05060 0.00455 0.33832 0.02985 0.04844 0.00130 0.01821 0.00089 223 195 296 23 305 8 365 18 1800 3753 0.48
      P1-96,36 0.04932 0.00347 0.32204 0.02226 0.04731 0.00115 0.01537 0.00066 163 157 284 17 298 7 308 13 2070 4462 0.46
      P1-96,37 0.05489 0.00510 0.33466 0.03047 0.04418 0.00123 0.01936 0.00137 408 195 293 23 279 8 388 27 569 2832 0.20
      P1-96,38 0.04834 0.00643 0.34238 0.04471 0.05132 0.00172 0.02015 0.00156 116 287 299 34 323 11 403 31 1106 2689 0.41
      P1-96,39 0.04930 0.00622 0.31766 0.03928 0.04668 0.00153 0.01593 0.00113 162 271 280 30 294 9 320 22 1047 2244 0.47
      P1-96,40 0.05158 0.00408 0.34371 0.02665 0.04828 0.00125 0.01559 0.00069 267 172 300 20 304 8 313 14 2640 4314 0.61
      P1-96,41 0.05258 0.00425 0.35925 0.02851 0.04951 0.00130 0.01732 0.00069 311 174 312 21 312 8 347 14 3472 4412 0.79
      P1-96,42 0.05136 0.00396 0.35579 0.02694 0.05020 0.00129 0.01749 0.00072 257 168 309 20 316 8 351 14 3324 5181 0.64
      P1-96,43 0.05375 0.00470 0.34399 0.02948 0.04638 0.00128 0.01924 0.00095 360 186 300 22 292 8 385 19 2359 4959 0.48
      P1-96,44 0.04839 0.00550 0.33030 0.03691 0.04947 0.00147 0.01888 0.00110 118 248 290 28 311 9 378 22 1048 2229 0.47
      P1-96,45 0.05636 0.00926 0.36933 0.05942 0.04749 0.00192 0.01856 0.00172 466 328 319 44 299 12 372 34 399 938 0.43
      P1-96,47 0.05382 0.00422 0.34731 0.02671 0.04677 0.00122 0.01732 0.00082 363 167 303 20 295 8 347 16 1958 3913 0.50
      P1-96,49 0.04563 0.01092 0.31376 0.07401 0.04984 0.00235 0.01497 0.00194 0 473 277 57 314 14 300 39 352 891 0.39
      P1-96,50 0.05166 0.00410 0.34090 0.02653 0.04783 0.00125 0.01692 0.00074 270 172 298 20 301 8 339 15 2426 4129 0.59
      P1-96,51 0.05396 0.00588 0.37005 0.03952 0.04972 0.00153 0.02095 0.00126 369 229 320 29 313 9 419 25 1275 2750 0.46
      P1-96,52 0.05155 0.00428 0.35221 0.02868 0.04954 0.00133 0.01874 0.00079 266 180 306 22 312 8 375 16 3232 4829 0.67
      P1-96,53 0.05155 0.00581 0.34043 0.03763 0.04789 0.00150 0.01645 0.00094 266 239 298 29 302 9 330 19 1591 2508 0.63
      P1-96,54 0.04857 0.00805 0.33107 0.05393 0.04943 0.00192 0.01467 0.00153 127 349 290 41 311 12 294 31 660 1201 0.55
      P1-96,55 0.05281 0.00500 0.35815 0.03324 0.04919 0.00140 0.01856 0.00113 321 202 311 25 310 9 372 22 1750 4106 0.43
      P1-96,56 0.05375 0.00630 0.36397 0.04183 0.04912 0.00158 0.02083 0.00117 360 245 315 31 309 10 417 23 1294 2199 0.59
      P1-96,57 0.05379 0.00427 0.37677 0.02936 0.05081 0.00135 0.01700 0.00081 362 169 325 22 320 8 341 16 2950 5209 0.57
      P1-96,58 0.04874 0.00392 0.34924 0.02763 0.05198 0.00136 0.01809 0.00075 135 179 304 21 327 8 362 15 3513 5178 0.68
      P1-96,59 0.05532 0.00733 0.38234 0.04962 0.05014 0.00176 0.01896 0.00139 425 271 329 36 315 11 380 28 778 1594 0.49
      P1-96,60 0.05047 0.00480 0.33543 0.03137 0.04822 0.00136 0.01832 0.00102 217 206 294 24 304 8 367 20 1401 3019 0.46
      下载: 导出CSV

      表  4   花岗质砾石的锆石U-Pb年龄数据表

      Table  4   Zircon U-Pb ages of granitic gravel

      测试点 同位素比值 U-Pb年龄(Ma) 含量(10−6 Th/U
      207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th Th U
      D1052,1 0.05400 0.00234 0.32143 0.01357 0.04317 0.00090 0.01372 0.00040 371 94 283 10 272 6 275 8 4395 7940 0.55
      D1052,2 0.05811 0.00188 0.36685 0.01153 0.04579 0.00092 0.01671 0.00044 533 70 317 9 289 6 335 9 7166 21172 0.34
      D1052,3 0.05255 0.00235 0.31522 0.01374 0.04350 0.00091 0.01512 0.00049 310 99 278 11 275 6 303 10 3009 8739 0.34
      D1052,4 0.05424 0.00270 0.35151 0.01709 0.04701 0.00101 0.01602 0.00061 381 108 306 13 296 6 321 12 1893 6174 0.31
      D1052,6 0.05354 0.00252 0.32674 0.01501 0.04427 0.00094 0.01457 0.00049 352 103 287 11 279 6 292 10 3046 7791 0.39
      D1052,8 0.05594 0.00262 0.39012 0.01778 0.05058 0.00108 0.01815 0.00070 450 101 335 13 318 7 364 14 3913 17397 0.22
      D1052,9 0.05826 0.00273 0.37486 0.01712 0.04667 0.00100 0.02199 0.00073 539 100 323 13 294 6 440 15 3137 10819 0.29
      D1052,12 0.05107 0.00410 0.33786 0.02657 0.04799 0.00121 0.02222 0.00114 244 175 296 20 302 7 444 22 17334 63444 0.27
      D1052,13 0.05175 0.00361 0.36019 0.02459 0.05049 0.00120 0.02067 0.00099 274 152 312 18 318 7 413 20 2711 9584 0.28
      D1052,14 0.05282 0.00422 0.36614 0.02860 0.05028 0.00127 0.01914 0.00097 321 171 317 21 316 8 383 19 2660 7097 0.37
      D1052,16 0.05242 0.00549 0.41347 0.04236 0.05721 0.00168 0.02926 0.00198 304 222 351 30 359 10 583 39 1582 5886 0.27
      D1052,17 0.05767 0.00382 0.42986 0.02777 0.05407 0.00129 0.02924 0.00131 517 139 363 20 339 8 583 26 3030 11556 0.26
      D1052,18 0.05012 0.00626 0.34159 0.04175 0.04944 0.00160 0.02093 0.00166 201 266 298 32 311 10 419 33 1363 4545 0.30
      D1052,19 0.05087 0.00457 0.36628 0.03222 0.05223 0.00139 0.02466 0.00114 235 195 317 24 328 9 492 22 2541 5598 0.45
      D1052,20 0.04934 0.00516 0.33584 0.03442 0.04937 0.00141 0.01886 0.00127 164 228 294 26 311 9 378 25 1540 5063 0.30
      D1052,21 0.05467 0.00297 0.39698 0.02106 0.05267 0.00117 0.02549 0.00104 399 117 340 15 331 7 509 20 3824 18291 0.21
      D1052,23 0.05243 0.00341 0.37018 0.02354 0.05121 0.00119 0.01930 0.00089 304 142 320 17 322 7 386 18 2942 11049 0.27
      D1052,24 0.05313 0.00366 0.36805 0.02479 0.05025 0.00120 0.02019 0.00072 335 149 318 18 316 7 404 14 5753 9298 0.62
      D1052,25 0.06034 0.00314 0.47962 0.02429 0.05766 0.00128 0.02885 0.00104 616 109 398 17 361 8 575 20 6708 23529 0.29
      D1052,27 0.05743 0.00376 0.39242 0.02509 0.04957 0.00118 0.01910 0.00088 508 138 336 18 312 7 382 17 3441 10876 0.32
      D1052,28 0.05575 0.00428 0.38286 0.02872 0.04982 0.00125 0.02112 0.00099 442 163 329 21 313 8 422 20 24908 68272 0.36
      D1052,29 0.05540 0.00319 0.36743 0.02062 0.04811 0.00109 0.01886 0.00074 428 124 318 15 303 7 378 15 3263 9877 0.33
      D1052,30 0.05856 0.00345 0.41718 0.02393 0.05167 0.00118 0.02495 0.00100 551 124 354 17 325 7 498 20 2882 10137 0.28
      下载: 导出CSV

      表  5   斜长角闪岩和浅粒岩主量元素(%)与微量元素(10–6

      Table  5   Main (%) and trace (10–6) elements in plagioclase amphibolite and leptite

      送样号D1133-2-2hD1133-2-3hD1133-2-4hD0170-1-1HD0170-1-3HD0170-1-5H
      SiO249.2249.2149.2775.4180.8878.86
      TiO22.312.332.380.140.170.14
      Al2O316.6616.6716.8811.229.339.33
      Fe2O34.734.225.132.491.392.18
      FeO6.356.826.320.500.500.45
      MnO0.170.170.160.070.050.07
      MgO5.325.215.220.070.090.06
      CaO8.338.757.915.372.895.02
      Na2O4.094.154.691.232.301.74
      K2O0.670.370.232.811.801.23
      P2O50.350.360.350.020.020.02
      LOI0.890.800.630.500.410.73
      Total99.0999.0699.1799.8399.82899.82
      Li30.328.826.02.674.024.18
      Sc25.527.828.93.333.982.54
      V2552732707.784.809.10
      Cr10199.694.11.431.561.1
      Co39.241.740.80.5500.4500.500
      Ni76.978.471.82.104.522.16
      Cu12984.577.63.062.323.00
      Zn11711311822.330.415.8
      Ga21.921.522.133.920.925.0
      Rb25.810.36.2512374.852.4
      Sr341314398256141206
      Y38.238.841.358.055.047.2
      Zr266264283316318286
      Nb6.746.286.7313.113.611.6
      Cs2.271.940.671.120.8100.620
      Ba79.795.427.6624439384
      La16.716.817.643.741.638.0
      Ce44.343.845.994.493.381.2
      Pr6.256.416.7812.111.410.4
      Nd28.830.131.347.947.041.8
      Sm7.367.887.9310.810.79.22
      Eu2.212.332.371.631.661.44
      Gd8.118.378.8510.911.19.70
      Tb1.261.351.381.921.891.63
      Dy8.027.918.4111.110.89.67
      Ho1.541.641.712.262.272.02
      Er4.584.754.906.747.095.98
      Tm0.7900.8000.8101.221.181.06
      Yb4.334.534.676.556.575.92
      Lu0.7300.7500.7701.121.130.980
      Hf6.546.607.109.619.618.78
      Ta0.5000.4600.4801.091.050.960
      Pb9.298.1313.328.318.518.0
      Th3.933.483.7216.615.714.4
      U1.261.231.393.783.763.34
      下载: 导出CSV
    • 卜涛, 王国强, 黄博涛, 等. 北山北带新元古代A型花岗岩: Rodinia超大陆裂解早期的地质响应[J]. 岩石学报, 2022, 38(10): 2988–3002.

      BU Tao, WANG Guoqiang, HUANG Botao, et al. Neoproterozoic A type granites in northern Beishan Orogenic Belt: Early response of the Rodinia supercontinent break-up [J]. Acta Petrologica Sinica, 38(10): 2988–3002.

      陈言飞, 邵兆刚, 陈宣华, 等. 北山古堡泉地区榴辉岩变质作用P-T-t轨迹及构造意义[J]. 地球学报, 2022, 436): 895908.

      CHEN Yanfei, SHAO Zhaogang, CHEN Xuanhua, et al. P-T-t Path and Tectonic Implications of Gubaoquan Eclogite from Beishan Region[J]. Acta Geoscientica Sinica, 2022, 436): 895908.

      董云鹏, 周鼎武, 张国伟, 等. 中天山南缘乌瓦门蛇绿岩形成构造环境[J]. 岩石学报, 2005, 21(1): 37–44.

      DONG Yunpeng, ZHOU Dingwu, ZHANG Guowei, et al. Tectonic setting of the Wuwamen ophiolite at the southern margin of middle Tianshan Belt [J]. Acta Petologica Sinica, 21(1): 37–44.

      高俊, 钱青, 龙灵利, 等. 西天山的增生造山过程[J]. 地质通报, 2009, 2812): 18041816.

      GAO Jun, QIAN Qing, LONG Lingli, et al. Accretionary orogenic process of Western Tianshan, China[J]. Geological Bulletin of China, 2009, 2812): 18041816.

      何世平, 任秉琛, 姚文光, 等. 甘肃内蒙古北山地区构造单元划分[J]. 西北地质, 2002, 354): 3040.

      HE Shiping, REN Bingchen, YAO Wenguang, et al. The division of tectonic units of Beishan area, Gansu-Inner Mongolia[J]. Northwestern Geology, 2002, 354): 3040.

      贺振宇, 孙立新, 毛玲娟, 等. 北山造山带南部片麻岩和花岗闪长岩的锆石U-Pb 定年和Hf 同位素: 中元古代的岩浆作用与地壳生长[J]. 科学通报, 2015, 604): 389399. doi: 10.1360/N972014-00898

      HE Zhenyu, SUN Lixin, MAO Lingjuan, et al. Zircon U-Pb and Hf sotopic study of gneiss and granodiorite from the southern Beishan orogenic collage: Mesoproterozoic magmatism and crustal growth[J]. Chinese Science Bulletin, 2015, 604): 389399. doi: 10.1360/N972014-00898

      贺振宇, 宗克清, 姜洪颖, 等. 北山造山带南部早古生代构造演化: 来自花岗岩的约束[J]. 岩石学报, 2014, 308): 23242338.

      HE Zhen, ZONG Keqiong, JIANG Hongying, et al. Early Paleozoic tectonic evolution of the southern Beishan orogenic collage: Insights from the granitoids[J]. Acta Petrologica Sinica, 2014, 308): 23242338.

      计文化, 李荣社, 陈奋宁, 等. 中国西北地区南华纪—古生代构造重建及关键问题讨论[J]. 地质力学学报, 2020, 265): 634655.

      JI Wenhua, LI Rongshe, CHEN Fenning, et al. Tectonic reconstruction of northwest China in the Nanhua-Paleozoic and discussions on key issues[J]. Journal of Geomechanics, 2020, 265): 634655.

      姜洪颖, 贺振宇, 宗克清, 等. 北山造山带南缘北山杂岩的锆石U-Pb 定年和Hf同位素研究[J]. 岩石学报, 2013, 29(11): 3949–3467.

      JIANG Hongying, HE Zhenyu, ZONG Keqiong, et al. Zircon U-Pb dating and Hf isotopic studies on the Beishan complex in the southern Beishan orogenic belt [J]. Acta Petrologic Sinica, 2013, 29(11): 3949–3967.

      姜洪颖, 贺振宇. 北山造山带南部晚古生代花岗岩‒闪长岩的成因与构造意义[J]. 地球科学, 2022, 47(9): 3270–3284.

      JIANG Hongying, HE Zhenyu. Petrogenesis and Tectonic Implications of Late Paleozoic Granite-Diorite from the Southern Beishan Orogen [J]. Earth Science, 47(9): 3270–3284.

      李锦轶, 王克卓, 李亚萍, 等. 天山山脉地貌特征、地壳组成与地质演化[J]. 地质通报, 2006, 25(8): 896–909.

      LI Jingyi, WANG Kezhuo, LI Yaping, et al., Geomorphological features, crustal composition and geological evolution of the Tianshan Mountains [J]. Geological Bulletin of China, 2006, 25(8): 896–909.

      李炜, 陈隽璐, 董云鹏, 等. 早古生代古亚洲洋俯冲记录: 来自东天山卡拉塔格高镁安山岩的年代学、地球化学证据[J]. 岩石学报, 2016, 322): 505521.

      LI Wei, CHEN Junlu, DONG Yunpeng, et al. Early Paleozoic subduction of the Paleo-Asian Ocean: Zircon U-Pb geochronological and geochemical evidence from the Kalatag high-Mg andesites, East Tianshan[J]. Acta Petrologica Sinica, 2016, 322): 505521.

      李艳广, 靳梦琪, 汪双双, 等. LA–ICP–MS U–Pb定年技术相关问题探讨[J]. 西北地质, 2023, 564): 274282.

      LI Yanguang, JIN Mengqi, WANG Shuangshuang, et al. Exploration of Issues Related to the LA–ICP–MS U–Pb Dating Technique[J]. Northwestern Geology, 2023, 564): 274282.

      李艳广, 汪双双, 刘民武, 等. 斜锆石LA-ICP-MS U-Pb定年方法及应用[J]. 地质学报, 2015, 8912): 24002418.

      LI Yanguang, WANG Shuangshuang, LIU Mingwu, et al. U-Pb Dating Study of Baddeleyite by LA-ICP-MS: Technique and Application[J]. Acta Geologica Sinica, 2015, 8912): 24002418.

      李沅柏, 李海泉, 周文孝, 等. 北山造山带新元古代热事件及其构造意义: 来自甘肃北山南带两期花岗质岩的地球化学和年代学证据[J]. 地质通报, 2021, 407): 11171139.

      LI Yuanbo, LI Haiquan, ZHOU Wenxiao, et al. Neoproterozoic thermal events and tectonic implications in the Beishan orogenic belt: Geochemical and geochronological evidence from two sets of granitic rocks from southern Beishan orogenic belt, Gansu Province[J]. Geological Bulletin of China, 2021, 407): 11171139.

      李智佩, 吴亮, 颜玲丽. 中国西北地区蛇绿岩时空分布与构造演化[J]. 地质通报, 2020, 396): 783871.

      LI Zhipei, WU Liang, YAN Lingli. Saptial and temporal distribution of ophiolites and regional tectonic evolution in Northwest China[J]. Geological Bulletin of China, 2020, 396): 783871.

      牛文超, 辛后田, 段连峰, 等. 内蒙古北山地区百合山蛇绿混杂岩带的厘定及其洋盆俯冲极性——基于1: 5万清河沟幅地质图的新认识[J]. 中国地质, 2019, 465): 977994.

      NIU Wenchao, XIN Houtian, DUAN Lianfeng, et al. The identification and subduction polarity of the Baiheshan ophiolite mélanges belt in the Beishan area, Inner Mongolia: New understanding based on the geological map of Qinghegou Sheet (1∶50000)[J]. Geology in China , 2019, 465): 977994.

      牛亚卓. 新甘蒙北山地区晚古生代古沉积面貌及构造属性[D]. 西安: 西北大学, 2019, 1–142.

      NIU Yazhuo. Late Paleozoic paleogeographic reconstruction and tectonic implication of the Beishan region, NW China [D]. Xi’an: Northwest University, 2019, 1–142.

      甘肃省地质矿产局酒泉地质矿产调查队. 1∶50000西涧泉幅(K47E019003)区域地质图[R]. 甘肃省地质矿产局酒泉地质矿产调查队, 1993.
      甘肃省地质调查院. 1∶25万红宝石幅区域地质调查报告[R]. 甘肃省地质调查院, 2005.
      甘肃省地质调查院. 1∶25万马鬃山幅区域地质调查报告[R]. 甘肃省地质调查院, 2001.
      汪云亮, 张成江, 修淑芝. 玄武岩形成的大地构造环境的Th/Hf-Ta/Hf图解判别[J]. 岩石学报, 2001, 17(3): 413–421.

      WANG Yunliang, ZHANG Chengjiang, XIU Shuzhi. Th/Hf-Ta/Hf identification of tectonic setting of basalts [J]. Acta Petrological Sinica, 2001, 17(3): 413–421.

      王国强, 李向民, 徐学义, 等. 北山造山带古生代蛇绿混杂岩研究现状及进展[J]. 地质通报, 2021, 401): 7181.

      WANG Guoqiang, LI Xiangmin, XU Xueyi, et al. Research status and progress of Paleozoic ophiolites in Beishan orogenic belt[J]. Geological Bulletin of China, 2021, 401): 7181.

      吴妍蓉, 周海, 赵国春, 等. 中亚造山带南蒙古地区石炭纪—二叠纪岩浆活动及其构造意义[J]. 西北地质, 2024, 57(3): 11−28.

      WU Yanrong, ZHOU Hai, ZHAO Guochun, et al. Carboniferous-Permian Magmatism of Southern Mongolia, Central Asian Orogenic Belt and Its Tectonic Implications[J]. Northwestern Geology, 2024, 57(3): 11−28.

      王洪亮, 徐学义, 何世平, 等. 1∶1000000中国天山及邻区地质图[M]. 北京: 地质出版社, 2007.

      WANG Hongliang, XU Xueyi, HE Shipping, et al. 1∶1000000 Geological Map of Chinese Tianshan and Adjacent Areas [M]. Beijing: Geological Publishing House, 2007.

      王文宝, 李卫星, 雷聪聪, 等. 中亚造山带中段早—中三叠世埃达克岩和A型花岗岩成因及构造意义[J]. 西北地质, 2024, 57(3): 29−43.

      WANG Wenbao, LI Weixing, LEI Congcong, et al. Early-Middle Triassic Adakitic and A-type Granite in Middle Segment of Central Asian Orogenic Belt: Petrogenesis and Tectonic Implications[J]. Northwestern Geology, 2024, 57(3): 29−43.

      徐学义, 李荣社, 陈隽璐, 等. 新疆北部古生代构造演化的几点认识[J]. 岩石学报, 2014, 30(6): 1521–1534.

      XU Xueyi, LI Rongshe, CHEN Junlu, et al., New constrains on the Paleozoic tectonic evolution of the northern Xinjiang area [J]. Acta Petrologica Sinica, 2014, 30(6): 1521–1534.

      许伟, 徐学义, 牛亚卓, 等. 北山南部早二叠世A型流纹岩地球化学特征及其地球动力学意义[J]. 岩石学报, 2018, 3410): 30113022.

      XU Wei, XU Xueyi, NIU Yazhuo, et al. Geochronology, petrogenesis and tectonic implications of the Early Permian A-type rhyolite from southern Beishan orogen, NW China[J]. Acta Petrologica Sinica, 2018, 3410): 30113022.

      许伟. 北山南部晚古生代构造格局与演化: 来自古地磁与岩浆作用的制约[D]. 西安: 长安大学, 2019, 1–194.

      XU Wei. The Late Paleozoic tectonic framework and evolution in southern Beishan: constraints from paleomagnetism and magmatism [D]. Xi’an: Chan’an University, 2019, 1–194.

      杨高学, 刘晓宇, 朱钊, 等. 中亚造山带西准噶尔地区达尔布特蛇绿岩研究进展与展望[J]. 西北地质, 2024, 57(3): 1−10.

      YANG Gaoxue, LIU Xiaoyu, ZHU Zhao, et al. Progress and Prospect of the Darbut Ophiolite in West Junggar, Central Asian Orogenic Belt[J]. Northwestern Geology, 2024, 57(3): 1−10.

      余吉远, 李向民, 王国强, 等. 北山地区辉铜山、帐房山蛇绿岩U-Pb年龄及其意义[J]. 地质通报, 2012, 31(12): 2038–2045.

      YU Jiyuan, LI Xiangmin, WANG Guoqiang, et al. Zircon U-Pb ages of Huitongshan and Zhangfangshan ophiolite in Beishan of Gansu-Inner Mongolia border area and their significance [J]. Geological Bulletin of China, 2012, 31(12): 2038–2045.

      俞胜, 赵斌斌, 贾轩, 等. 北山造山带南缘一条山北闪长岩地球化学、年代学特征及其构造意义[J]. 西北地质, 2022, 554): 267279.

      YU Sheng, ZHAO Binbin, JIA Xuan, et al. Geochemistry, geochronology characteristics and tectonic significance of Yitiaoshan diorite in the southern margin of Beishan Orogenic Belt[J]. Northwestern Geology, 2022, 554): 267279.

      袁禹. 北山造山带大陆地壳的形成与演化[D]. 武汉: 中国地质大学, 2019, 1–144.

      YUAN Yu. The continental crust formation and evolution of the Beishan Orogenic Belt [D]. Wuhan: China University of Geosciences, 2019, 1–144.

      张海迪, 陈博, 吕鹏瑞, 等. 东天山黄山西角闪辉长岩成因及其地质意义: 来自锆石U-Pb年代学及地球化学的证据[J]. 西北地质, 2021, 54: 5165.

      ZHANG Haidi, CHEN Bo, LÜ Pengrui, et al. The Petrogenesis and Geological Significance of the Hornblende Gabbro in Western Huangshan of East Tianshan: Evidence from Zircon U-Pb Chronology and Geochemistry[J]. Northwestern Geology, 2021, 54: 5165.

      张立飞, 艾永亮, 李强, 等. 新疆西南天山超高压变质带的形成与演化[J]. 岩石学报, 2005, 214): 10291038.

      ZHANG Lifei, AI Yongliang, LI Qiang, et al. The formation and tectonic evolution of UHP metamorphic belt in southwestern Tianshan, Xinjiang[J]. Acta Petrologica Sinica, 2005, 214): 10291038.

      张招崇, 董书云. 大火成岩省是地幔柱作用引起的吗?[J]. 现代地质, 2007, 212): 247254.

      ZHANG Zhaochong, DONG Shuyun. Were large igneous provinces caused by mantle plumes?[J]. Geoscience, 2007, 212): 247254.

      赵泽辉, 郭召杰, 韩宝福, 等. 新疆东部-甘肃北山地区二叠纪玄武岩对比研究及其构造意义[J]. 岩石学报, 2006, 225): 12791293.

      ZHAO Zehui, GUO Zhaojie, HAN Baofu, et al. Comparative study on Permian basalts from eastern Xinjiang-Beishan area of Gansu province and its tectonic implications[J]. Acta Petrologica Sinica, 2006, 225): 12791293.

      左国朝, 何国琦. 北山板块构造及成矿规律[M]. 北京: 北京大学出版社, 1990, 1–226.

      ZUO Guochao, HE Guoqi. Plate Tectonics and Metallogenic Regularities in Beishan Region [M]. Beijing: Peking University Press, 1990, 1–226.

      Ao S J, Xiao W J, Windley B F, et al. Paleozoic accretionary orogenesis in the eastern Beishan orogen: Constraints from zircon U-Pb and 40Ar/39Ar geochronology [J]. Gondwana Research, 2015, 30: 224–235.

      He Z Y, Klemdb R, Yana L L, et al. The origin and crustal evolution of microcontinents in the Beishan orogen of the southern Central Asian Orogenic Belt [J]. Earth-Science Reviews, 2018. 185: 1–14.

      He Z Y, Zhang Z M, Zong K Q, et al. Metamorphic P–T–t evolution of mafic HP granulites in the northeastern segment of the Tarim Craton (Dunhuang block): Evidence for early Paleozoic continental subduction [J]. Lithos, 2014, 196–197: 1–13.

      Hong T, Santos G S, Van Staal C R, et al. Mapping uncovered a multi-phase arc-back-arc system in the southern Beishan during the Permian [J]. National Science Review, 2023, 10: nwac204.

      Huang B T, Wang G Q, Li X M, et al. Precambrian tectonic affinity of the Beishan Orogenic Belt: Constraints from Proterozoic metasedimentary rocks [J]. Precambrian Research, 2022, 376: 106686.

      Kang W B, Li W, Kang L, et al. Metamorphism and geochronology of garnet amphibolite from the Beishan Orogen, southern Central Asian Orogenic Belt: Constraints from P-T path and zircon U-Pb dating[J]. Geoscience Frontiers, 2020, 11: 11891201.

      Li J, Wu C, Chen X H, et al. Tectonic evolution of the Beishan orogen in central Asia: Subduction, accretion, and continent-continent collision during the closure of the Paleo-Asian Ocean [J]. Geological Society of America Bulletin, 2023. doi: 10.1130/B36451.1.

      Li S, Wilde S A, Wang T. Early Permian post-collisional high-K granitoids from Liuyuan area in southern Beishan orogen, NW China: Petrogenesis and tectonic implications[J]. Lithos, 2013, 179: 99119.

      Liu X C, Chen B L, Jahn B M, et al. Early Paleozoic (ca. 465 Ma) eclogites from Beishan (NW China) and their bearing on the tectonic evolution of the southern central Asian orogenic belt [J]. Journal of Asian Earth Sciences, 2011, 42, 715–731.

      Liu X M, Gao S, Diwu C R, et al. Simultaneous in-situ determination of U-Pb age and trace elements in zircon by LA-ICP-MS in 20 μm spot size [J]. Chinese Science Bulletin, 2007, 52(9), 1257–1264.

      Mao Q, Xiao W, Windley B F, et al. The Liuyuan complex in the Beishan, NW China: a Carboniferous-Permian ophioliteic fore-arc silver in the southern Altaids [J]. Geological Magazine, 2012, 149: 483–509.

      Meschede M. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram[J]. Chemical Geology, 1986, 56: 207218. doi: 10.1016/0009-2541(86)90004-5

      Miyashiro A. Volcanic rock series in island arcs and active continental margins [J]. American Journal of Science, 1974, 274: 321–355.

      Niu Y Z, Liu C Y, Shi G R, et al. Unconformity-bounded Upper Paleozoic megasequences in the Beishan Region (NW China) and implications for the timing of the Paleo-Asian Ocean closure [J]. Journal of Asian Earth Sciences, 2018, 167: 11–32.

      Niu Y Z, Shi G R, Wang J Q, et al. The closing of the southern branch of the Paleo-Asian Ocean: Constraints from sedimentary records in the southern Beishan region of the Central Asian Orogenic Belt, NW China [J]. Marine and Petroleum Geology, 2021, 124: 104791.

      Polat A, Hofmann A W. Alteration and geochemical patterns in the 3.7–3.8 Ga Isua greenstone belt, West Greenland [J] Precambrian Research, 2003, 126(3–4): 197–218.

      Qin K Z, Su B X, Sakyi P A, et al. SIMS Zircon U-Pb geochronology and Sr-Nd isotopes of Ni-Cu bearing mafic-ultramafic intrusions in Eastern Tianshan and Beishan in correlation with flood basalts in Tarim Basin (NW China): constraints on a ca. 280 Ma mantle plume[J]. American Journal of Science, 2011, 311: 237–260.

      Saktura W M, Buckman S, Nutman A P, et al. Continental origin of the Gubaoquan eclogite and implications for evolution of the Beishan Orogen, Central Asian Orogenic Belt, NW China [J]. Litos, 2017, 294–295: 20–38.

      Santos G S, Hong T, Van Staal C R, et al. Permian back-arc basin formation and arc migration in the southern Central Asian Orogenic Belt, NW China [J]. Geological Journal, 2022. doi: 10.1002/gj.4609.

      Schmidt M W, Jagoutz O. The global systematics of primitive arc melts [J]. Geochemistry Geophysics Geosystems, 2017, 18: 2817–2854.

      Şengör A M C, Natal’in B A, Burtman V S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia [J]. Nature, 1993, 364: 299–307.

      Şengör A M C, Sunal G, Natal'in B A, et al. The Altaids: A review of twenty-five years of knowledge accumulation [J]. Earth-Science Reviews, 2022. doi: org/10.1016/j.earscirev.2022.104013.

      Smithies R H, Jwanic T J, Lowrey J R, et al. Two distinct origins for Archean greenstone belts [J]. Earth and Planetary Science Letters, 2018, 487: 106–116.

      Song D F, Xiao W J, Han C M, et al. Geochronological and geochemical study of gneiss–schist complexes and associated granitoids, Beishan Orogen, southern Altaids [J]. International Geology Review, 2013, 55(14): 1705–1727.

      Su B X, Qin K Z, Sakyi P A, et al. U-Pb ages and Hf-O isotopes of zircons from Late Paleozoic mafic-ultramafic units in the southern Central Asian Orogenic Belt: Tectonic implications and evidence for an Early-Permian mantle plume[J]. Gondwana Research, 2011, 20(2–3): 516–531.

      Sun S S, Mc Donough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processed [J]. Magmatism in Ocean Basins, Geological Society of London Special Publication, 1989, 42: 313–345.

      Tian Z H, Xiao W J. An Andean-type arc transferred into a Japanese-type arc at final closure stage of the Palaeo-Asian Ocean in the southernmost of Altaids [J]. Geological Journal, 2020, 55: 1613–1619.

      Wang B, Yang X S, Li S C, et al. Geochronology, geochemistry, and tectonic implications of early Neoproterozoic granitic rocks from the eastern Beishan Orogenic Belt, southern Central Asian Orogenic Belt [J]. Precambrian Research, 2021, 352, 106016.

      Wang K, Xiao W J, Windley B F, et al. The Dashui subduction complex in the Eastern Tianshan Beishan Orogen (NW China): Long-Lasting subduction accretion terminated by unique Mid-Triassic strike-slip juxtaposition of arcs in the Southern Altaids [J]. Tectonics, 2022, 41, e2021TC007190.

      Winchester J A, and Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20: 325343. doi: 10.1016/0009-2541(77)90057-2

      Wu Y B, Zheng Y F. Genesis of zircon and its constraints on interpretation of U-Pb age [J]. Chinese Science Bulletin, 2004, 49(15): 1554–1569.

      Xia L Q, Xia Z C, Xu X Y, et al. Relative contributions of crust and mantle to the generation of the Tianshan Carboniferous rift-related basic lavas, northwestern China[J]. Journal of Asian Earth Sciences, 2008, 31(4–6): 357–378.

      Xiao W J, Han C M, Yuan C, et al. Middle Cambrian to Permian subduction-related accretionary orogenesis of northern Xinjiang, NW China: Implications for the tectonic evolution of Central Asia [J]. Journal of Asian Earth Sciences, 2008, 32(2–4): 102–117.

      Xiao W J, Mao Q G, Windley B F, et al. Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage [J]. American Journal of Science, 2010, 310(10): 1553–1594.

      Xiao W J, Windley B F, Sun S, et al. A tale of amalgamation of three Permo-Triassic collage systems in Central Asia: Oroclines, sutures, and terminal accretion [J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 477–507.

      Yuan Y, Zong K Q, He Z Y, et al. Geochemical and geochronological evidence for a former early Neoproterozoic microcontinent in the south Beishan orogenic belt, southernmost central Asian orogenic belt [J]. Precambrian Research, 2015, 266, 409–424.

      Zhang Q W L, Chen Y C, Li Z M G, et al. Identification of continental fragments in orogen: an example from Dunhuang Orogenic Belt, NW China [J]. Science Bulletin, 2022, 67, 1549–1552.

      Zhang Y Y, Dostal J, Zhao Z H, et al. Geochronology, geochemistry and petrogenesis of mafic and ultramafic rocks from Southern Beishan area, NW China: Implications for crust-mantle interaction[J]. Gondwana Research, 2011, 20(4): 816–830.

      Zhang Y Y, Yuan C, Sun M, et al. Permian doleritic dikes in the Beishan Orogenic Belt, NW China: Asthenosphere-lithosphere interaction in response to slab break-off[J]. Lithos, 2015, 233: 174–192.

      Zhao G C, Wang Y J, Huang B C, et al. Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea [J]. Earth-Science Reviews, 2018, 186: 262–286.

      Zheng R G, Wu T R, Zhang W, et al. Geochronology and geochemistry of late Paleozoic magmatic rocks in the Yinwaxia area, Beishan: Implications for rift magmatism in the southern Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 2014, 91: 39–55.

      Zong K Q, Klemd R, Yuan Y, et al. The assembly of Rodinia: the correlation of early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB) [J]. Precambrian Research, 2017, 290, 32–48.

      Zong K Q, Liu Y S, Zhang Z M, et al. The generation and evolution of Archean continental crust in the Dunhuang block, northeastern Tarim craton, northwestern China [J]. Precambrian Research, 2013, 235(34): 251–263.

    图(9)  /  表(5)
    计量
    • 文章访问数:  146
    • HTML全文浏览量:  35
    • PDF下载量:  51
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-02-27
    • 修回日期:  2024-08-26
    • 录用日期:  2024-10-07
    • 网络出版日期:  2024-10-20
    • 刊出日期:  2024-12-19

    目录

    /

    返回文章
    返回