ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

北山造山带南缘潘家井子二叠纪弧岩浆岩的识别及构造意义

查显锋, 黄博涛, 罗克勇, 孙吉明, 关冲, 王欣

查显锋,黄博涛,罗克勇,等. 北山造山带南缘潘家井子二叠纪弧岩浆岩的识别及构造意义[J]. 西北地质,2024,57(6):58−77. doi: 10.12401/j.nwg.2024091
引用本文: 查显锋,黄博涛,罗克勇,等. 北山造山带南缘潘家井子二叠纪弧岩浆岩的识别及构造意义[J]. 西北地质,2024,57(6):58−77. doi: 10.12401/j.nwg.2024091
ZHA Xianfeng,HUANG Botao,LUO Keyong,et al. Identification of the Permian Arc-Related Magmatic Rocks and Its Significance in Panjiajingzi Area, Southern Margin of Beishan Orogenic Belt[J]. Northwestern Geology,2024,57(6):58−77. doi: 10.12401/j.nwg.2024091
Citation: ZHA Xianfeng,HUANG Botao,LUO Keyong,et al. Identification of the Permian Arc-Related Magmatic Rocks and Its Significance in Panjiajingzi Area, Southern Margin of Beishan Orogenic Belt[J]. Northwestern Geology,2024,57(6):58−77. doi: 10.12401/j.nwg.2024091

北山造山带南缘潘家井子二叠纪弧岩浆岩的识别及构造意义

基金项目: 中国地质调查局项目“东天山–北山成矿带区域地质调查”(DD20240029),“东天山–北山造山带区域地质调查”(DD20221636-1)和陕西省自然科学基金项目(2023-JC-YB-249)联合资助。
详细信息
    作者简介:

    查显锋(1984−),博士,高级工程师,主要从事构造地质和区域地质调查工作。E−mail:zha_xianfeng@126.com

  • 中图分类号: P581

Identification of the Permian Arc-Related Magmatic Rocks and Its Significance in Panjiajingzi Area, Southern Margin of Beishan Orogenic Belt

  • 摘要:

    北山造山带位于中亚造山带南缘,对该带内原先划定的“前寒武系”的准确厘定或解体对理解造山带属性和构造演化过程认识具有重要意义。笔者对瓜州潘家井子一带原划定的敦煌岩群开展区域地质调查,表明其为变粒岩、浅粒岩、变质砾岩及少量斜长角闪岩和黑云石英片岩等组成的一套具有强变形、低级变质的变火山–碎屑岩。获得灰白色变粒岩、云母石英片岩和浅粒岩的锆石U-Pb年龄为294~285 Ma,同时还获得变质砾岩中花岗质砾石中锆石的最小U-Pb年龄为(272±6)Ma,未发现古老年代学信息,表明该套变质火山–碎屑岩形成时代不早于中二叠世。变质基性火山岩具有拉斑玄武岩地球化学特征,呈略微右倾的稀土元素配分模式,显示出高TiO2、Na2O含量,明显的Nb-Ta亏损特征,类似于弧玄武岩特征。结合本次研究成果和区域地质特征认为,潘家井子一带原划定的“敦煌岩群”应厘定为二叠纪变火山碎屑岩,形成于早—中二叠世俯冲作用相关的局部伸展构造环境。

    Abstract:

    The Beishan Orogenic Belt, located at the southern margin of the Central Asian Orogenic Belt, is important for understanding the tectonic affinity and evolutionary history, in terms of the accurate determination or disintegration of the namely Precambrian basement rocks. The originally defined Dunhuang Group in Panjiajingzi area is composed mainly of leptynite, leptite, meta-conglomerate, minor amphibolite, and mica quartz schist, and is characterized by strong deformation and low-grade metamorphosed pyroclastic rocks, based on regional geological investigation. Zircon U-Pb ages of 294~285 Ma for leptynite, mica quartz schist, and leptite samples, as well as the minimum age of (272±6) Ma for gravel sample from meta-conglomerate have been obtained with no ancient geochronological information. All these dating data indicate that these mata pyroclastic rocks were deposited later than Middle Permian. In addition, the meta basic volcanic samples have high TiO2 and Na2O contents with obvious Nb-Ta trough, and display right-sloping chondrite-nomalized REE patterns, resembling that of the arc basalts. Combining our data and regional geology, it is reasonable to believe that these meta pyroclastic rocks were formed in a local extension setting during the subduction process during Early to Middle Permian, and thus these rocks should be disintegrated from the Dunhuang Group.

  • 铀矿作为战略性矿产资源,广泛应用于工业、国防、核电及医学等领域(Cuney et al.,2008蔡煜琦等,2015吴涛涛等,2018耿涛等,2023)。全球铀矿资源分布不均,供需失衡较为严重,特别是中国铀矿资源禀赋较差。尽管中国铀矿的找矿潜力巨大,但短期内难以满足快速增长的工业需求,也使得中国铀矿对外依存度不断攀升(张金带等,2012蔡煜琦等,2015唐超等,2017陈军强等,2021)。

    非洲铀矿资源丰富,储量约占世界铀矿总储量的20%,其中纳米比亚是非洲最大的铀资源生产国,约占全球天然铀产量的10%(宋继叶等,2022张晓等,2023朱清等,2023)。与此同时,纳米比亚也是中国最大的海外铀资源来源地之一。近年来,国内外众多学者从矿床类型(Nex et al.,2001Kinnaird et al.,2007高阳等,2012陈金勇等,20132017顾大钊等,2016)、成矿时代(Nex,1997Longridge et al.,2008Freemantle, 2010王生云,2013陈金勇等, 2014)、铀矿物质来源(Nex et al.,2002陈金勇等,2014范洪海等,2015黄冉笑等,20212022)等不同角度对纳米比亚铀矿进行研究,提出地层、构造及岩体控矿等多种成矿模式及找矿模型,在成矿规律和矿产分布方面取得诸多进展。然而,达马拉(Damara Belt)造山带演化过程与铀成矿作用尚未被系统分析,其区域铀成矿作用研究仍显不足。笔者通过对达马拉造山带的物质组成、岩浆作用、变质–变形、区域构造演化及典型矿床等方面内容进行梳理总结,进一步总结归纳达马拉造山带构造演化与铀成矿作用的关系,以期为中国地勘单位开展铀矿勘查提供基础地质资料与技术支持,服务于国际矿业产能合作及“一带一路”倡议。

    泛非造山作用(820~500 Ma)是地球演化史中的重要构造事件,大量板块和地体经聚合及增生作用形成了一系列大陆造山带(Coward,1983Unrug,1992Chakraborty et al.,2023),是冈瓦纳(Gondwana)大陆重要的组成部分之一。泛非(Pan–African)造山带横贯非洲大陆,自东向西主要包括莫桑比克带(Mozambique Belt)、赞比西带(Zambezi Belt)、卢弗里安弧形构造带(Lufilian Belt)和达马拉带等(Grantham et al.,20032019Oriolo et al.,2017孙宏伟等,20192021Sun et al.,2021许康康等,2021)。达马拉造山带位于非洲西南端,形成于新元古代—早古生代(650~460 Ma),是北部刚果(Congo)克拉通与南部喀拉哈里(Kalahari)克拉通碰撞的产物(图1a)( Coward,1983宁福俊等,2018Goscombe et al.,2018)。达马拉造山带主要是由陆内分支、Gariep带和Kaoko带3部分组成,其中Kaoko带向北延伸至安哥拉境内(Prave,1996Poli et al.,2001)。在纳米比亚境内,达马拉造山带主要有2个分支,正北方向的海岸线分支和北东向的陆内分支(Kinnaird et al.,2007Fan et al.,2017),文中主要介绍其陆内分支部分。

    图  1  纳米比亚达马拉造山带地质特征图(据Miller,1983bOsterhus et al.,2014修改)
    Figure  1.  Geological map of the Damara orogeny in Namibia

    达马拉造山带(陆内分支)南北宽约为400 km。依据地层、断裂及主要线性构造、变质程度、岩浆活动、地质年代和航磁异常等特征的不同,该造山带自北向南划分为北部地体、北带边缘、北部带、中央带、南部带、南带边缘及南部前陆7个部分(图1b)( Martin et al.,1977Corner,1983Goscombe et al.,2005)。中央带以Omaruru断裂为界又分为北中央带和南中央带2部分,位于Omaruru断裂和Okahandja断裂之间的南中央带是纳米比亚铀矿床的主要分布区,包括Husab铀矿、Rössing铀矿及Valencia铀矿等大型铀矿床均处于该构造区块(宁福俊等,2018Shanyengana et al.,2020黄冉笑等,2022)。

    北部地体主要以厚层碳酸盐岩和磨拉石建造构成;北带边缘和北部带被一逆断层分开,北带边缘岩性与北部地体相似,以碎屑沉积岩建造为主;北部带内发育较多的花岗质碱性岩浆岩(Henry et al.,1990)。中央带是整个构造带内岩浆活动最为发育的区域,以大量发育花岗质侵入岩和穹盆构造为显著特征(Stanistreet et al.,1991)。其中,北中央带主要以碎屑沉积岩、片岩、石英岩、片麻岩及花岗侵入岩为主,而南中央带则由高温–低压变质沉积岩类、广泛发育的花岗岩及伟晶岩侵入体、基底杂岩和北东向–北北东向穹窿组成(Downing et al.,1981Miller,1983a)。南部带是指Okahandja断裂与Gomab断裂之间的区域,主要由新元古代的Nosib群和Swakop群碎屑岩及变质岩组成,局部发育少量火山岩、蒸发岩,并伴有少量铁镁质火山活动(Kukla et al.,1991)。南部边缘带是由航磁测量解译出的断裂或由线性构造带推测而来,主要发育一套硅质岩及碳酸盐岩(Corner,1983)。南部前陆由Naukluft推覆杂岩体以及上覆于喀拉哈里克拉通基底杂岩之上的碎屑沉积岩组成(Corner,1983)。

    区域内地层主要由早期的Nosib群和晚期Swakop群组成,Nosib群不整合于Abbabis基底杂岩体之上(Nash et al.,1971Coward,1983Longridge et al.,2008高阳等,2012)。Nosib群为裂谷–填充序列,由下部的Etusis组和上部的Khan组构成,Etusis组主要岩性为石英岩、长石砂岩及少量砾岩;Khan组主要由泥岩、钙质泥岩及碳酸盐岩组成。Swakop群主要为一套深水沉积序列,底部为Rössing组,岩性变化较大,包括大理岩、砂砾岩、石英岩、泥质片岩和董青片麻岩等均有出现(Coward,1983Longridge et al.,2008);其上为Chuos组,由Sturtian期冰碛岩和条带状铁质建造共同组成(Hoffmann et al.,1996);Chuos组之上为Karibib组,由大理岩、钙质泥岩及少量泥质片岩组成;顶部为Kuiseb组,岩性以泥岩、泥质片岩为主(Hoffmann et al.,2004)。

    达马拉造山带内岩浆活动十分发育,整体出露面积约为75000 km2,主要以发育大量中酸性侵入岩及少量基性岩脉为特征,其中90%以上为花岗岩,其余为花岗闪长岩类、钙碱性辉长岩及少量基性岩脉(Haack et al.,1982Miller,1983aKisters et al.,2004)。

    根据成岩时代及岩体特征,前人将达马拉造山带内岩体划分为5个侵入序列(赵希刚等,2015刘晨阳,2016)。①Trakkopje序列(601±79 Ma),由花岗闪长岩、花岗岩、石英二长岩等组成的岩套,花岗岩体常以岩基形式产出,岩石多呈斑状结构,片麻理十分发育。②Hakskeen序列(516±23 Ma),主要由红色花岗岩组成,多分布在Rössing穹隆北部,以小岩体、岩脉和层状侵入体产出,岩石以等粒结构和红色为特征。③Gawib序列(500~490 Ma),主要由花岗岩、浅色花岗岩和伟晶岩组成,分布在Rössing穹隆以东地区,岩石多具斑状结构且黑云母含量较多,叶理构造较为发育。④Donkerhuk序列(458±25 Ma),主要分布在Rössing穹隆以东地区,岩性包括灰白色中粒黑云二长花岗岩和棕褐色含斑钾长花岗岩,常以大型岩基形式出现。⑤Rössing序列(542~468 Ma),主要以花岗岩、淡色花岗岩及花岗伟晶岩为主,岩石多具中粗粒结构或伟晶状花岗结构,地球化学特征显示其碱含量高,淡色花岗岩主要产出于背斜及穹隆构造附近,脉状侵入体则主要分布于Rössing穹隆区。

    由于区内淡色花岗岩(又称白岗岩)中赋存大量铀矿资源,前人对其开展了大量研究,根据成岩时代、结构构造、矿物成分和矿化特征划分为至少6类(Nex,1997; Longridge et al.,2008Freemantle,2010王生云,2013陈金勇,2014)。

    A型:浅灰白色、淡粉色,细–中粒结构,以白色长石为主,副矿物很少,主要侵入于Khan组,LA–ICP–MS锆石U–Pb数据显示其成岩年龄为(547.4±3.6)Ma(王生云,2013)。

    B型:白色,中粗粒结构或伟晶结构,含有石榴子石、电气石,以石榴子石为标志矿物,主要产出于Chuos组和Karibib组,LA–ICP–MS锆石U–Pb数据显示其成岩年龄为(537.8±4.3)Ma(王生云,2013)。

    C型:白色、浅红色,中粗粒结构或伟晶结构,以含电气石和磁铁矿为标志,主要产出于Khan组和Etusis组,LA–ICP–MS锆石U–Pb数据显示其成岩年龄为(525.4±2.6)Ma(王生云,2013)。

    D型:白色,中粗粒结构或伟晶结构,烟灰色石英十分发育,富铀矿物大量出现,分布最为广泛,主要侵入于Rössing组、Khan组、Karibib组和Kuiseb组,成岩年龄为(508±2)Ma(SHRIMP锆石U–Pb)(Briqueu et al.,1980Longridge et al.,2008)~(497±5.5)Ma(LA–ICP–MS锆石U–Pb)(王生云,2013)。

    E型:淡红色,细粒至伟晶状结构,可见烟灰色石英,以发育氧化晕圈为标志,圈外为粉红色,圈内为灰白色,主要产出于Khan组和Rössing组,其成岩年龄为(500±10)~(494±8)Ma(SHRIMP锆石U–Pb)(Jacobet al.,2000)。

    F型:红色,粗粒至伟晶状结构,以发育红色巨晶钾长石、乳白色石英为主要特征,副矿物为磁铁矿,主要侵入于Etusis组和Khan组。对于其成岩时代存在不同认识,Jacob等(2000)认为其与E型花岗岩成岩时代基本一致,但陈金勇等(2014)获得的LA–ICP–MS锆石U–Pb数据显示其成岩年龄为(511.4±4.3)Ma,早于D型花岗岩。

    达马拉期后岩浆侵入活动较弱,仅见一些粗玄岩和细晶岩沿断裂分布。此外,中生代冈瓦纳大陆的裂解和地幔柱活动期间达马拉带内发育少量基性岩脉,多切穿早期形成的白岗岩体,成岩时代与D型白岗岩受到后期热液改造作用的时间相近(陈金勇等,2014),加之基性岩浆在部分伟晶质岩浆演化过程中对铀矿化的富集作用(黄冉笑等,2022)。因此,认为基性岩浆的活动与D型白岗岩铀矿化富集有着密切的关系(范洪海等,2015陈金勇等,2017黄冉笑等,2022)。

    达马拉造山带内岩石经历的变质作用程度不同,主要以高温–低压变质活动为主,变质作用从西向东呈逐渐变低的趋势,一般为角闪岩相,在靠近大西洋沿岸的地区可以达到麻粒岩相(Hartmann et al.,1983; Masberg et al.,1992Goscombe et al.,2004Miller et al.,2008)。

    达马拉造山带内发育多期次的褶皱、断裂、韧性剪切带以及穹窿构造,并且这些构造作用相互叠加,共同组成了现今较为复杂的构造面貌。对于区内的构造期次,目前争论较多,包括2期、3期和4期等不同划分(Jacob et al.,1974Coward,1983Miller,1983bOliver et al.,1994Anderson et al.,1997Poli et al.,2001Kisters et al.,2004Johnson et al.,2005Ward,2009)。综合前人研究,笔者认为主要包括3期(D1、D2、D3)变形过程,并伴随大量的岩浆侵入活动(D2和 D3构造变形事件对白岗岩的侵位机制具有重要的影响)。D1期主要集中于580~560 Ma,以发育平行于层理的叶理和断裂构造、层内南东向的平卧褶皱及低角度逆断层为主要特征,部分黑云母和石英呈定向排列,石榴石和堇青石等矿物出现(Kasch,1983a1983bMiller,1983b2008Steven, 1993Poli et al.,2001Kisters et al.,2004);D2期主要集中于550~540 Ma,以发育北北东向的直立紧闭褶皱、平卧褶皱及低角度逆断层为主要特征,矽线石和堇青石出现,花岗质岩浆活动十分发育(Steven,1993Poli et al.,2001Miller,2008);D3期主要集中于535~500 Ma,以发育大规模开阔褶皱和大型南东向直立褶皱、北东走向穹隆、高角度逆断层和逆冲断层为主要特征,尖晶石和堇青石出现,并伴随大量花岗质伟晶岩的形成(Kasch,1983a1983bKisters et al.,2004)。

    由于区内覆盖严重且构造叠加活动强烈,很难在地表观测到线性构造断裂现象(主要依靠航空物探资料解译识别),但穹窿构造十分发育,也是达马拉造山带内的典型构造特征。关于穹窿构造的形成机制,存在多种解释,包括褶皱作用(Smith et al.,1961Smith,1965Coward,1983)、花岗质基底的底劈作用(Ramsberg,1972)及塑性地层的滑脱作用(Oliver,1994)等多种说法。尽管对于穹隆构造的形成机制认识不同,但均认为穹窿构造在富铀岩浆的运移和就位过程中发挥了重要作用( Jacob,1974Coward,1983Kasch,1983a1983bMiller, 1983aOliver,1994Anderson et al.,1997Poli et al.,2001Kisters et al.,2004Johnson,2005Ward,2009)。

    达马拉造山带整个过程形成时代约为 750~460 Ma(Miller,2008),经历前造山期(以陆内裂谷和扩张作用为主)、造山期(以俯冲和陆陆碰撞作用为主)及造山后期,以喀拉哈里克拉通和刚果克拉通的碰撞而告终。前人对其演化过程进行研究(Martin et al.,1977Martin,1983Miller,2008Anthonissen,2009),认为其主要经历了以下5个阶段(图2)。①早期(840~750 Ma)由于地幔柱活动导致板块处于伸展环境,逐渐形成多个裂谷系统(图2a),同期形成早期的裂谷火山–沉积岩系,包括碎屑沉积岩、双峰式火山岩及碱性侵入岩等。②随着拉张作用的进行(730~600 Ma),软流圈物质上涌,地壳底部发生部分熔融作用,上地壳大规模拗陷,接受巨厚的碎屑沉积,并伴有拉斑玄武岩的形成(图2b)。③580~560 Ma,岩石圈破裂后由于重力影响,洋壳下沉,开始发生由南向北的A型俯冲作用(图2c),下地壳发生部分熔融,并伴随早期的花岗质岩浆侵入活动(D1)。④随着俯冲作用的不断进行(550~540 Ma),喀拉哈里克拉通与刚果克拉通发生陆陆碰撞(图2d),在地表形成大量褶皱、断裂及逆冲推覆构造,导致早期岩石发生变质作用,同时有新的花岗质岩浆侵入(D2)。⑤530~460 Ma(图2e),进一步的挤压作用导致地壳加厚,达马拉构造带开始隆升,热效应增强,变质变形活动再次覆盖早期岩石并发育大量花岗质岩浆活动(D3)。与此同时,在结晶分异和同化混染作用的共同影响下,淡色花岗岩及花岗伟晶岩中发育大量富U矿物,并在有利部位形成了多处铀矿床。

    图  2  达马拉造山带形成过程示意图(据Miller,2008Anthonissen,2009修改)
    Figure  2.  The formation process of Damara orogenic belt

    达马拉造山带内主要有白岗岩型和钙结岩型2种类型的铀矿床,前者是达马拉造山期后的富U岩浆和热液在有利的部位叠加富集成矿,以Rössing铀矿、Husab铀矿等为代表(高阳等,2012左立波等,2017Shanyengana et al.,2020);后者是富铀岩石在长期的干旱气候条件下,经过风化剥蚀所形成,其分布也与白岗岩型铀矿密切相关,以Langer Heinrich铀矿、Trekkopje铀矿为代表(顾大钊等,2016陈秀法等,2021)。区内铀矿床以规模大、品位低、露天开采闻名于世。达马拉造山带内白岗岩型铀矿的控矿因素较多且特征十分明显,其中构造、岩浆岩和地层为主要的控矿要素,后期热液活动导致的热液叠加作用,对其成矿作用影响也十分显著(高阳等,2012王生云,2013陈金勇等,2014范洪海等,2015左立波等,2017Shanyengana et al.,2020黄冉笑等,2021)。

    达马拉造山带内的铀矿床主要分布于穹窿构造边缘及北东–南西断裂的两侧,构造活动与铀矿化分布密切相关。构造运动中形成的断裂破碎带、构造转向处、剪切拖曳带、地层薄弱处、脆性–韧性剪切带及穹窿构造等区域为岩浆迁移和花岗岩侵位提供了重要通道,尤其是晚期构造运动中,对早期构造变质变形进行叠加,是最为有利的控矿构造(Miller,1983aOliver,1994Anderson et al.,1997Poli et al.,2001Kisters et al.,2004Ward,2009)。

    达马拉造山带内的铀矿化与白岗岩密切相关,成矿期主要集中在造山运动晚期及后期。因此,碰撞造山期后(D3)产生的D、E型白岗岩对铀矿化具有直接指示意义,而其他白岗岩,尤其是俯冲碰撞期以前的花岗岩则未发生铀矿化,可见铀矿化岩体具有一定专属性(表1)(陈金勇,2014)。

    表  1  达马拉造山带内主要铀矿产出层位特征表
    Table  1.  Characteristics of main uranium mineralization horizons in Damara orogenic belt
    铀矿床矿化白岗岩产出层位白岗岩类型矿化白岗岩类型
    RössingKhan组与Rössing组接触带及其组内C~ED
    HusabKhan组与Rössing组接触带及Rössing组内部,少量分布于Chuos组内部A~FD、E
    EtangoEtusis组与Khan组及Khan组与Rössing组接触带A~FD、E
    HildenhofKhan组与Chuos组及Khan组与Rössing组接触带;Khan组及Rössing组内部C~FD、E
    Ida DomeKhan组与Rössing组接触带及其各自组内A~ED、E
    Holland’s DomeKhan组与Rössing组接触带,Khan组内部C~ED、E
    ValenciaKhan组与Rössing组及Karibib组与Kuiseb组接触带A~FD、E
    GoanikontesEtusis组与Khan组,Khan组与Rössing组接触带,Khan组内部B~FD、E
    下载: 导出CSV 
    | 显示表格

    达马拉造山带内的铀矿床中赋矿白岗岩主要侵入于Khan组与Rössing组或Khan组与Chuos组的接触带(表1)(Nex,1997Freemantle,2010陈金勇等,20142017黄冉笑等,2021),铀矿化受到地层控制特征明显。这主要是由于地层接触部位为构造薄弱处,利于岩体侵位及就位,同时富碳酸盐岩及大理岩地层可能在岩浆烘烤下发生脱碳效应,促进U元素的富集沉淀(陈金勇等,2017)并最终成矿。

    流体包裹体研究显示,达马拉造山带内白岗岩中主要存在2期成矿流体,早期为高温低盐度热液,温度大多为470~530 ℃,盐度ω为3.55~9.60 wt%NaCl(均值为6.14 wt%NaCl),属岩浆晚期(主成矿期)热液。晚期为中–低温低盐度热液,温度集中于150~220 ℃,盐度ω为4.65~19.05 wt%NaCl(均值为11.5 wt%NaCl),为后期(叠加改造期)的热液(陈金勇,2014范洪海等,2015)。

    对于达马拉造山带内铀矿化的成矿物质来源存在较大争议,早期认为其成矿源岩为变沉积岩,即富U沉积岩在变质改造过程中导致U富集沉淀成矿(Smith,1965Barnes et al.,1978)。后期随着研究的深入,对白岗岩为成矿源岩逐步达成共识(Marlow,1981Brynard et al.,1988Nex et al.,2001),但对于白岗岩的成因仍存在一定争议。Brynard等(1988)认为矿化白岗岩是红色花岗岩熔融的产物,是早期未发生熔体抽离的富U基底在深部重熔而形成的。Nex 等(2001)陈金勇等(2014)则认为富U的前达马拉基底是白岗岩型铀矿主成矿期的成矿物质来源。黄冉笑等(2021)通过对E型伟晶岩矿物组成和化学性质演化规律的研究认为成矿花岗伟晶岩是同化混染与分离结晶共同作用的结果,并推测岩浆演化过程中基性组分(FeO、MgO、TiO2)的混入直接影响到相关U元素的沉淀富集。陈金勇等(2017)初步判断后期热液中U主要来源于原生铀矿物的再分配。

    基于对Rössing铀矿、Husab铀矿及Valencia铀矿等典型铀矿床的研究,前人依据控矿因素的不同提出多种达马拉造山带铀矿的成矿模式,早期主要包括3种。①地层成因说,依据铀矿化主要分布在Rössing组与Khan组或Khan组与Chuos组接触界线附近(Jacob,1974Marlow,1981)。②构造成因说,依据铀矿化主要产于断裂构造两侧、穹隆构造边缘或穹隆的转折部位等(Kinnaird et al.,2007高阳等,2012陈金勇等,2013)。③岩浆成因说,依据铀矿主要产出于白岗岩体附近或白岗岩体即为矿体(Berning et al.,1976Nex et al.,2001陈金勇,2013)。由于不同矿床所体现出的主要控矿特征不尽相同,其成因模式亦存在较大差异,但综合来看达马拉造山带内铀矿的形成更可能是岩浆–构造–地层等多重因素共同耦合的结果(高阳等,2012陈金勇等,2013Corvino et al.,2013黄冉笑等,2022),前达马拉变质基底提供铀物质来源;地层与构造多因素控矿,多期次构造事件形成的断裂和穹窿分别为含U岩浆的运移和结晶沉淀创造了通道和空间,变沉积层内不同地层间氧化/还原属性的转变为岩浆内U元素的结晶沉淀和富集提供有利条件;后期热液作用导致早期铀矿体发生活化运移,在断裂破碎带重新富集成矿(图3)。

    图  3  达马拉造山带铀矿成因模式图(据Corvino et al.,2013修改)
    Figure  3.  Genetic model of uranium deposits in the Damara orogenic belt

    基于以上认识,前人进一步细化其成因模式(Corvino et al.,2013陈金勇等,2014范洪海等,2015孙宏伟等,2020黄冉笑等,2022),即在达马拉碰撞造山过程中由前达马拉基底和达马拉变沉积岩发生部分熔融首先形成斑状花岗岩、黑云母花岗岩和A、B、C、F型白岗岩(550~540 Ma)。随着软流圈的上涌(510~500 Ma),由前达马拉富U基底重熔形成的岩浆(也受分离结晶作用影响),沿断裂向上运移,侵入并就位于Rössing组与Khan组或Khan组与Chuos组接触部位(D、E型富U白岗岩),这些富含还原物质和大理岩的地层形成有效的氧化/还原障,导致U元素的富集沉淀,也是区内铀矿化的主要时期。约150 Ma,由于热液活动导致部分U发生活化运移,在断裂破碎带等有利部位富集形成沥青铀矿、脉状铀石等铀矿物。对于钙结岩型铀矿,则主要是由于新生代以来地壳抬升,富U地层和白岗岩体遭受风化剥蚀,并受地表水淋滤,沉淀固结形成硅钙铀矿、钒钾铀矿等次生铀矿物。

    Husab铀矿位于纳米比亚共和国中西部Erongo行政区Swakopmund市东约50 km处,为中广核集团控股的海外大型铀矿床,铀资源量可达30万t(以U3O8计)(荣建锋等,2016张怀峰等,2018)。

    矿区内地层主要为Nosib群Khan组,Swakop群Rössing组、Chuos组、Karibib组和Kuiseb组(图4)。矿区内侵入岩主要以白岗岩为主,主要发育B、C、D、E和F型白岗岩(Nex,1997)。矿化岩体主要侵入Khan组与Rössing组不整合接触带及其上部的Rössing组内,少量侵入Chuos组内。矿体主要产出于D和E型白岗岩内部,锆石U–Pb数据显示其成岩成矿时代为(496±4.1)Ma(Cross et al.,2009)。

    图  4  Husab铀矿Ⅰ号矿体剖面示意图(据荣建锋等,2016修改)
    Figure  4.  Geological section of Zone 1 in Huseb uranium deposit

    矿体主要赋存于背斜转折端,呈似层状、脉状或透镜状,延伸方向大致与地层的走向或层理平行,没有明显的变形特征(荣建锋等,2016张怀峰等,2018)。矿化蚀变主要包括高岭土化、蛇纹石化、绢云母化和绿泥石化等(刘晨阳,2016)。

    Husab铀矿中铀主要呈独立铀矿物形式存在,铀矿物形式为铀的氧化物、铀钛氧化物及铀硅酸盐等,少量以类质同象的形式存在于钍矿物内。矿区内主要原生矿石矿物为晶质铀矿,其次为少量的钍铀矿、钛铀矿和铌钛铀矿,后期热液作用形成的矿石矿物主要为铀石,其次为硅钙铀矿和黄硅钾铀矿(Freemantle,2010黄冉笑等,20212022)。

    Husab铀矿为典型的白岗岩型铀矿床,后期遭受不同程度的热液叠加成矿和热液蚀变,是达马拉造山期内花岗质岩浆同化混染与分离结晶作用的产物(Freemantle,2010黄冉笑等,20212022)。

    Rössing铀矿是世界上规模最大、开采时间最长(自1975年至今)的露天铀矿床之一,矿床位于纳米布沙漠中,在Swakopmund市北东约60 km处(韩军等,2021)。Rössing铀矿床具有储量大(2.81万t)、品位低(平均品位为0.03%)、可露采等特征(Berning et al.,1976张晓康等,2015)。

    Rössing铀矿床位于Rössing穹窿南部,矿区出露地层主要为Rössing组、Khan组、Etusis组(图5)。矿区内侵入岩主要以白岗岩为主,主要发育A~F型白岗岩。原生铀矿化和大部分次生矿化都集中产于D型白岗岩中,其成岩成矿年龄为(510±3)Ma(Basson et al.,2004)。白岗岩脉(矿体)宽度由几厘米到90 m不等,呈脉状或不规则的透镜状。矿化蚀变主要包括硅化、绢云母化、黄铁矿化、绿泥石化、伊利石化和高岭土化等(韩军等,2021

    图  5  Rössing铀矿地质图(据Berning et al.,1976修改)
    Figure  5.  The geological map of Rössing mine

    矿区内铀的赋存形式以独立铀矿物为主,其中晶质铀矿、钍铀矿和钛铀矿等原生铀矿物约占69%,多为全自形或半自行晶粒状结构,浸染状构造;反应边状铀石、铀钍石、沥青铀矿、钒钾铀矿和硅钙铀矿等次生铀矿物约占31%,多呈隐晶结构、交代残余结构,脉状构造(Abrahams,2009)。

    Rössing铀矿为白岗岩型铀矿床的典型代表,是在达马拉造山期岩浆形成演化阶段,由结晶分异作用形成铀预富集,而后在造山期后韧性变形作用下白岗岩再次重熔富集成矿(Corvino et al.,2013韩军等,2021)。

    (1)达马拉造山带形成于750~460 Ma,主要经历板内裂谷期(750 Ma)、持续扩张期(730~600 Ma)、洋陆俯冲期(580~560 Ma)、俯冲碰撞期(550~540 Ma)及碰撞晚期(530~460 Ma)5个阶段。

    (2)达马拉造山带内的铀矿化与白岗岩密切相关,且成矿专属性特征明显。俯冲碰撞期以前的白岗岩则未发生铀矿化,而碰撞造山期后(D3)产生的D、E型白岗岩对铀矿化具有直接指示意义。

    (3)达马拉造山带内原生铀矿化主要形成于510~490 Ma,富U的前达马拉基底是白岗岩型铀矿主成矿期的成矿物质来源,成矿母岩浆是同化混染与分离结晶共同作用的结果,并适当混入中基性组分,在构造薄弱处富集沉淀成矿。

  • 图  1   北山造山带大地构造位置(a) (Şengör et al., 1993) 及区域构造单元划分(b) (据He et al., 2018; Huang et al.,2022修改)

    Ⅰ. 石板山单元;Ⅱ. 双鹰山单元;Ⅲ. 马鬃山单元;Ⅳ. 旱山单元;F1. 柳园蛇绿混杂岩带;F2. 红柳河–洗肠井蛇绿混杂岩带;F3. 石板井–小黄山蛇绿混杂岩带;F4. 红石山蛇绿混杂岩带;1. 新生界;2. 中生界;3. 古生界;4. 花岗岩;5. 蛇绿岩;6. 北山前寒武系;7. 敦煌地块前寒武系;8. 天山前寒武系;9. 阿拉善前寒武系;10. 榴辉岩;11. 断层

    Figure  1.   (a) Tectonic sketch map of the Central Asian Orogenic Belt and (b) simplified outline map of the Beishan Orogenic belt

    图  2   北山造山带南缘潘家井子一带地质图

    1.新近系—第四系;2.二叠纪方山口组晶屑凝灰岩、角砾凝灰岩;3.花岗闪长岩;4.辉长–闪长岩脉;5.变质砾岩;6.二云石英片岩;7.黑云斜长变粒岩;8.灰白色二长浅粒岩;9.灰白色细粒变粒岩;10.斜长角闪岩;11.断层;12.岩相界线;13.低角度构造面理(<30°);14.中角度构造面理(31~60°);15.高角度构造面理(>60°);16.构造线走向及倾向;17.矿物拉伸线理;18.褶皱枢纽;19.变质砾石拉伸线理;20.孢粉化石位置(甘肃省地质矿产局酒泉地质矿产调查队,1993);21.本次研究采样位置

    Figure  2.   Detailed geologic map of the Panjiajingzi area in the south margin of Beishan Orogeny

    图  3   潘家井子一带灰白色变粒岩(a、b)、云母石英片岩(c、d)和灰白色浅粒岩(e、f)的野外露头及显微特征

    Figure  3.   (a, b) Photographs showing the outcrops and mineral assemblages of the gray laptynite, (c, d) mica quartz schist, and (e, f) white-gray leptite

    图  4   潘家井子一带变质火山–碎屑岩变形特征

    a. 岩石成分层(S0)中常褶皱转折端,枢纽近水平;b. 岩石成分层(S0)近水平;c. S1发育不对称褶皱指示右行剪切变形;d. 变质砾岩中砾石定向排列,指示右行走滑构造

    Figure  4.   The deformation characteristics of the mata-volcaniclastic rocks in Panjiajingzi area

    图  5   北山造山带南缘潘家井子一带灰白色变粒岩(a)、云母石英片岩(b)、变火山碎屑岩(c)和花岗质砾石(d)的锆石阴极发光照片

    Figure  5.   Cathodoluminescence (CL) images of representative zircon grains from (a) gray laptynite, (b) mica quartz schist, (c) white-gray leptite, and (d) gravel samples from meta-conglomerate

    图  6   北山造山带南缘潘家井子一带灰白色变粒岩(a)、云母石英片岩(b)、变火山碎屑岩(c)和花岗质砾石(d)的锆石U-Pb年龄谐和图和加权平均年龄(或频率分布图)

    Figure  6.   Zircon U-Pb concordia diagrams and weighted mean ages (or probability density plot) for (a) gray laptynite, (b) mica quartz schist, (c) white-gray leptite, and (d) gravel samples from meta-conglomerate

    图  7   北山造山带南缘潘家井子一带斜长角闪岩和白色变粒岩岩石分类图解

    a. Nb/Y-Zr/TiO2图(Winchester et al., 1977);b. SiO2-FeOT/MgO图(Miyashiro, 1974);柳园杂岩中玄武岩数据来自Santos等(2022)

    Figure  7.   Classification diagrams for the amphibolite and gray laptynite samples from the Panjiajingzi area, Beishan orogeny

    图  8   北山造山带南缘潘家井子一带斜长角闪岩和白色变粒岩球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b)

    原始地幔数值来自Sun等(1989);Cascades弧玄武岩数据来自Schmidt等(2017)

    Figure  8.   (a) Chondrite-normalized REE patterns and (b) primitive mantle normalized trace element spider diagrams for the amphibolite and gray laptynite samples from the Panjiajingzi area, Beishan orogeny

    图  9   北山造山带南缘潘家井子一带斜长角闪岩的构造环境判别图

    a. Nb/Yb-Th/Yb图解(Smithies et al., 2018);b. Ta/Hf-Th/Hf构造环境判别图(汪云亮等,2001);c. Zr-Th-Nb图解;d. Nb-Zr-Y图解(Meschede, 1986);柳园杂岩中玄武岩数据来自Santos等(2022)

    Figure  9.   Discrimination diagrams for the amphibolite and gray laptynite samples from the Panjiajingzi area, Beishan orogeny

    表  1   灰白色变粒岩锆石U-Pb年龄数据表

    Table  1   Zircon U-Pb age of grayish-white granulite

    测试点
    同位素比值 U-Pb年龄(Ma) 含量(10−6 Th/U
    207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th Th U
    P1-7,01 0.05511 0.00349 0.34026 0.02114 0.04480 0.00108 0.01566 0.00058 416 136 297 16 283 7 314 11 2179 3674 0.59
    P1-7,02 0.05338 0.00355 0.33860 0.02208 0.04602 0.00112 0.01413 0.00065 345 143 296 17 290 7 284 13 1621 4160 0.39
    P1-7,03 0.05229 0.00409 0.33106 0.02540 0.04593 0.00120 0.01179 0.00066 298 169 290 19 290 7 237 13 1999 4023 0.50
    P1-7,04 0.05177 0.00436 0.33908 0.02800 0.04752 0.00126 0.01534 0.00071 275 182 297 21 299 8 308 14 2218 3536 0.63
    P1-7,05 0.05072 0.00371 0.32011 0.02303 0.04578 0.00113 0.01640 0.00062 228 161 282 18 289 7 329 12 2543 3869 0.66
    P1-7,06 0.05118 0.00320 0.32132 0.01972 0.04554 0.00108 0.01698 0.00058 249 138 283 15 287 7 340 11 2779 3980 0.70
    P1-7,08 0.05140 0.00296 0.31814 0.01803 0.04490 0.00104 0.01401 0.00049 259 127 281 14 283 6 281 10 2769 4442 0.62
    P1-7,09 0.05153 0.00331 0.31617 0.01993 0.04451 0.00107 0.01520 0.00064 265 141 279 15 281 7 305 13 1476 3523 0.42
    P1-7,10 0.05258 0.00297 0.32363 0.01797 0.04465 0.00103 0.01491 0.00053 311 123 285 14 282 6 299 10 2240 4164 0.54
    P1-7,11 0.05011 0.00411 0.31494 0.02537 0.04559 0.00117 0.01483 0.00064 200 180 278 20 287 7 298 13 1279 2201 0.58
    P1-7,12 0.05159 0.00189 0.32440 0.01174 0.04561 0.00096 0.01504 0.00038 267 82 285 9 288 6 302 7 12006 12518 0.96
    P1-7,13 0.05142 0.00231 0.32398 0.01433 0.04570 0.00100 0.01518 0.00047 260 100 285 11 288 6 305 9 3722 7290 0.51
    P1-7,14 0.05159 0.00239 0.32600 0.01483 0.04584 0.00101 0.01598 0.00051 267 103 287 11 289 6 320 10 2926 6472 0.45
    P1-7,15 0.05087 0.00261 0.31563 0.01594 0.04501 0.00101 0.01451 0.00050 235 114 279 12 284 6 291 10 2906 5935 0.49
    P1-7,16 0.05032 0.00403 0.31594 0.02485 0.04554 0.00118 0.01393 0.00084 210 176 279 19 287 7 280 17 740 2463 0.30
    P1-7,17 0.05153 0.00253 0.32393 0.01561 0.04560 0.00102 0.01537 0.00047 265 109 285 12 287 6 308 9 4122 5959 0.69
    P1-7,18 0.04747 0.00744 0.30427 0.04686 0.04650 0.00168 0.01513 0.00131 72 336 270 36 293 10 304 26 268 629 0.43
    P1-7,19 0.05224 0.00336 0.32335 0.02037 0.04489 0.00108 0.01418 0.00050 296 140 285 16 283 7 285 10 3717 4518 0.82
    P1-7,20 0.05202 0.00338 0.32851 0.02093 0.04581 0.00110 0.01536 0.00060 286 142 288 16 289 7 308 12 2284 4142 0.55
    P1-7,21 0.05650 0.00577 0.35412 0.03537 0.04546 0.00137 0.01717 0.00104 471 212 308 27 287 8 344 21 659 1447 0.46
    P1-7,22 0.05155 0.00350 0.31198 0.02077 0.04389 0.00107 0.01473 0.00051 266 149 276 16 277 7 296 10 3213 3576 0.90
    P1-7,24 0.05755 0.00303 0.36486 0.01884 0.04598 0.00105 0.01793 0.00056 512 112 316 14 290 6 359 11 3553 5181 0.69
    P1-7,25 0.05427 0.00275 0.33646 0.01674 0.04496 0.00101 0.01714 0.00051 382 110 295 13 284 6 344 10 4855 6345 0.77
    P1-7,26 0.05034 0.00392 0.31461 0.02403 0.04532 0.00117 0.01586 0.00078 211 171 278 19 286 7 318 16 1373 2780 0.49
    P1-7,27 0.05343 0.00232 0.33426 0.01426 0.04537 0.00098 0.01623 0.00045 347 95 293 11 286 6 325 9 7294 8820 0.83
    P1-7,28 0.05012 0.00265 0.31793 0.01654 0.04600 0.00104 0.01663 0.00050 201 119 280 13 290 6 333 10 5452 6678 0.82
    P1-7,29 0.05283 0.00318 0.33541 0.01977 0.04604 0.00108 0.01669 0.00063 322 131 294 15 290 7 335 13 2661 5312 0.50
    P1-7,30 0.05180 0.00248 0.31805 0.01497 0.04453 0.00098 0.01578 0.00049 276 106 280 12 281 6 316 10 4687 8088 0.58
    P1-7,32 0.05851 0.00463 0.37709 0.02918 0.04673 0.00124 0.01523 0.00078 549 164 325 22 294 8 306 16 1146 2326 0.49
    P1-7,33 0.05406 0.00986 0.34064 0.06106 0.04569 0.00184 0.01507 0.00117 373 366 298 46 288 11 302 23 493 518 0.95
    P1-7,34 0.05322 0.00213 0.32288 0.01269 0.04399 0.00094 0.01585 0.00042 338 88 284 10 278 6 318 8 11053 12373 0.89
    P1-7,36 0.05147 0.00235 0.31350 0.01408 0.04416 0.00096 0.01492 0.00045 262 102 277 11 279 6 299 9 5778 8519 0.68
    P1-7,37 0.05078 0.00227 0.31596 0.01388 0.04511 0.00098 0.01866 0.00058 231 100 279 11 284 6 374 12 3494 8375 0.42
    P1-7,38 0.05194 0.00244 0.32075 0.01480 0.04477 0.00098 0.01452 0.00041 283 104 283 11 282 6 291 8 7864 7327 1.07
    P1-7,39 0.05203 0.00250 0.32083 0.01511 0.04470 0.00098 0.01578 0.00043 287 106 283 12 282 6 317 9 8145 6810 1.20
    P1-7,40 0.05169 0.00236 0.31645 0.01415 0.04438 0.00096 0.01482 0.00043 272 101 279 11 280 6 297 9 7014 9028 0.78
    P1-7,41 0.06391 0.00294 0.40709 0.01829 0.04618 0.00102 0.01844 0.00061 739 94 347 13 291 6 369 12 3459 7079 0.49
    P1-7,42 0.05210 0.00332 0.32088 0.02003 0.04465 0.00106 0.01562 0.00059 290 139 283 15 282 7 313 12 2509 4130 0.61
    P1-7,43 0.05660 0.00293 0.35966 0.01822 0.04606 0.00104 0.01522 0.00042 475 111 312 14 290 6 305 8 9165 5464 1.68
    P1-7,44 0.05156 0.00307 0.32164 0.01874 0.04522 0.00105 0.01805 0.00065 266 131 283 14 285 6 362 13 2241 4229 0.53
    P1-7,45 0.05355 0.00305 0.33214 0.01853 0.04495 0.00104 0.01631 0.00064 352 123 291 14 284 6 327 13 2311 5079 0.45
    P1-7,46 0.05391 0.00272 0.34290 0.01692 0.04610 0.00103 0.01674 0.00053 367 109 299 13 291 6 336 11 3909 5859 0.67
    P1-7,47 0.05171 0.00253 0.32288 0.01550 0.04525 0.00100 0.01601 0.00044 273 108 284 12 285 6 321 9 8784 6577 1.34
    P1-7,48 0.04928 0.00322 0.30789 0.01973 0.04528 0.00107 0.01600 0.00058 161 146 273 15 286 7 321 11 2651 3793 0.70
    P1-7,49 0.05077 0.00292 0.31240 0.01759 0.04459 0.00102 0.01522 0.00051 230 127 276 14 281 6 305 10 3595 4836 0.74
    P1-7,50 0.05290 0.00617 0.32823 0.03749 0.04497 0.00142 0.01564 0.00087 324 245 288 29 284 9 314 17 997 1325 0.75
    P1-7,51 0.05239 0.00522 0.31956 0.03115 0.04420 0.00128 0.01332 0.00051 302 212 282 24 279 8 268 10 2811 1552 1.81
    P1-7,52 0.05100 0.00337 0.31367 0.02027 0.04456 0.00107 0.01391 0.00065 241 145 277 16 281 7 279 13 1376 3467 0.40
    P1-7,53 0.05037 0.00328 0.31083 0.01984 0.04471 0.00106 0.01538 0.00056 212 144 275 15 282 7 308 11 3160 4148 0.76
    P1-7,54 0.05274 0.00302 0.32534 0.01821 0.04469 0.00103 0.01612 0.00063 318 125 286 14 282 6 323 13 2122 4849 0.44
    P1-7,56 0.05199 0.00289 0.31811 0.01730 0.04433 0.00101 0.01541 0.00051 285 122 280 13 280 6 309 10 3693 4946 0.75
    P1-7,57 0.05023 0.00296 0.31358 0.01811 0.04523 0.00104 0.01504 0.00054 205 131 277 14 285 6 302 11 2923 4358 0.67
    P1-7,58 0.05337 0.00230 0.32096 0.01353 0.04357 0.00093 0.01602 0.00044 345 94 283 10 275 6 321 9 8734 8736 1.00
    P1-7,59 0.05649 0.00280 0.35957 0.01739 0.04611 0.00102 0.01666 0.00049 471 107 312 13 291 6 334 10 6026 5992 1.01
    P1-7,60 0.05168 0.00199 0.33001 0.01243 0.04626 0.00097 0.01706 0.00046 271 86 290 9 292 6 342 9 10769 13004 0.83
    下载: 导出CSV

    表  2   云母石英片岩锆石U-Pb年龄数据表

    Table  2   Zircon U-Pb ages of mica quartz schist

    测试点
    同位素比值 U-Pb年龄(Ma) 含量(10−6 Th/U
    207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th Th U
    P1-21,03 0.05796 0.00528 0.35597 0.03183 0.04453 0.00127 0.01159 0.00055 528 188 309 24 281 8 233 11 1557 1861 0.84
    P1-21,04 0.05133 0.00357 0.31829 0.02185 0.04496 0.00113 0.01184 0.00049 256 153 281 17 284 7 238 10 1528 2726 0.56
    P1-21,05 0.05728 0.00476 0.36535 0.02979 0.04625 0.00127 0.01325 0.00060 502 174 316 22 291 8 266 12 1352 1925 0.70
    P1-21,06 0.05218 0.00505 0.32843 0.03130 0.04564 0.00128 0.01351 0.00064 293 207 288 24 288 8 271 13 1152 1699 0.68
    P1-21,08 0.05353 0.00377 0.33787 0.02344 0.04577 0.00115 0.01295 0.00051 351 151 296 18 289 7 260 10 2592 3689 0.70
    P1-21,10 0.04943 0.00356 0.32441 0.02306 0.04760 0.00119 0.01422 0.00052 168 160 285 18 300 7 285 10 2313 3170 0.73
    P1-21,11 0.05866 0.00399 0.38201 0.02557 0.04723 0.00119 0.01464 0.00058 554 142 329 19 298 7 294 12 1923 3238 0.59
    P1-21,12 0.05444 0.00487 0.35054 0.03082 0.04670 0.00130 0.01336 0.00071 389 189 305 23 294 8 268 14 1054 1879 0.56
    P1-21,14 0.05380 0.00360 0.33035 0.02179 0.04454 0.00110 0.01300 0.00051 362 144 290 17 281 7 261 10 2487 4269 0.58
    P1-21,15 0.04916 0.00461 0.31076 0.02869 0.04585 0.00127 0.01460 0.00071 156 206 275 22 289 8 293 14 1152 2075 0.56
    P1-21,16 0.05221 0.00433 0.32084 0.02616 0.04457 0.00120 0.01252 0.00060 295 178 283 20 281 7 252 12 1493 2671 0.56
    P1-21,17 0.05258 0.00308 0.33040 0.01911 0.04558 0.00108 0.01284 0.00044 311 128 290 15 287 7 258 9 3524 4948 0.71
    P1-21,18 0.05405 0.00379 0.34550 0.02389 0.04636 0.00116 0.01341 0.00052 373 151 301 18 292 7 269 10 2168 3352 0.65
    P1-21,20 0.05095 0.00790 0.31830 0.04851 0.04531 0.00168 0.01480 0.00115 239 323 281 37 286 10 297 23 443 860 0.52
    P1-21,21 0.05447 0.00259 0.34030 0.01604 0.04532 0.00102 0.01432 0.00042 391 103 297 12 286 6 288 8 5966 9491 0.63
    P1-21,22 0.05632 0.00441 0.36122 0.02778 0.04653 0.00124 0.01442 0.00065 464 166 313 21 293 8 289 13 1701 2957 0.58
    P1-21,23 0.05082 0.00380 0.31441 0.02313 0.04488 0.00115 0.01462 0.00055 232 164 278 18 283 7 293 11 2390 3204 0.75
    P1-21,24 0.05572 0.00742 0.33900 0.04425 0.04413 0.00154 0.01492 0.00092 441 272 296 34 278 10 299 18 820 1146 0.72
    P1-21,25 0.05178 0.00434 0.31713 0.02611 0.04443 0.00119 0.01348 0.00063 276 181 280 20 280 7 271 12 1845 3185 0.58
    P1-21,26 0.05270 0.00461 0.33574 0.02883 0.04621 0.00127 0.01379 0.00065 316 187 294 22 291 8 277 13 1758 2461 0.71
    P1-21,27 0.05849 0.00627 0.36278 0.03814 0.04500 0.00139 0.01242 0.00073 548 219 314 28 284 9 249 15 1193 1822 0.66
    P1-21,28 0.05641 0.00412 0.35908 0.02577 0.04618 0.00118 0.01399 0.00055 468 155 312 19 291 7 281 11 2209 3089 0.72
    P1-21,29 0.05564 0.00493 0.35002 0.03044 0.04564 0.00128 0.01158 0.00061 438 186 305 23 288 8 233 12 1315 1958 0.67
    P1-21,30 0.05242 0.00409 0.32669 0.02505 0.04521 0.00117 0.01494 0.00065 304 168 287 19 285 7 300 13 1999 3687 0.54
    P1-21,32 0.05399 0.00547 0.33688 0.03348 0.04527 0.00133 0.01579 0.00080 370 213 295 25 285 8 317 16 1404 2115 0.66
    P1-21,33 0.05917 0.00481 0.36627 0.02925 0.04491 0.00120 0.01358 0.00059 573 168 317 22 283 7 273 12 1937 2852 0.68
    P1-21,35 0.04629 0.00540 0.28849 0.03306 0.04521 0.00139 0.01106 0.00101 13 259 257 26 285 9 222 20 785 2075 0.38
    P1-21,36 0.05480 0.00480 0.33728 0.02903 0.04465 0.00122 0.01319 0.00062 404 185 295 22 282 8 265 12 1904 2903 0.66
    P1-21,37 0.05584 0.00609 0.34812 0.03725 0.04523 0.00138 0.01562 0.00082 446 226 303 28 285 9 313 16 1304 1982 0.66
    P1-21,38 0.04965 0.00428 0.31379 0.02662 0.04585 0.00122 0.01543 0.00072 179 189 277 21 289 8 310 14 1594 3065 0.52
    P1-21,39 0.05838 0.00577 0.37144 0.03598 0.04616 0.00136 0.01563 0.00083 544 203 321 27 291 8 314 16 1225 2068 0.59
    P1-21,40 0.05393 0.00462 0.32533 0.02739 0.04377 0.00118 0.01258 0.00073 368 183 286 21 276 7 253 15 1523 3435 0.44
    P1-21,41 0.05782 0.00806 0.34567 0.04726 0.04338 0.00154 0.01368 0.00105 523 280 302 36 274 10 275 21 709 1376 0.52
    P1-21,42 0.04754 0.00431 0.29931 0.02676 0.04568 0.00121 0.01409 0.00062 76 203 266 21 288 7 283 12 2124 3157 0.67
    P1-21,43 0.04968 0.00368 0.30637 0.02232 0.04474 0.00112 0.01387 0.00058 180 164 271 17 282 7 279 11 2855 4907 0.58
    P1-21,44 0.05680 0.00465 0.34817 0.02794 0.04447 0.00119 0.01341 0.00072 483 172 303 21 281 7 269 14 1812 3654 0.50
    P1-21,45 0.05066 0.00366 0.31626 0.02246 0.04529 0.00113 0.01501 0.00057 226 159 279 17 286 7 301 11 2822 4149 0.68
    P1-21,46 0.05052 0.00708 0.32152 0.04427 0.04618 0.00160 0.01111 0.00086 219 295 283 34 291 10 223 17 714 1171 0.61
    P1-21,47 0.05305 0.00471 0.33459 0.02914 0.04576 0.00125 0.01828 0.00089 331 189 293 22 288 8 366 18 1773 3605 0.49
    P1-21,48 0.05584 0.00521 0.33884 0.03096 0.04402 0.00126 0.01518 0.00072 446 195 296 23 278 8 305 14 2494 3618 0.69
    P1-21,50 0.05615 0.00799 0.34317 0.04773 0.04434 0.00167 0.01802 0.00137 458 288 300 36 280 10 361 27 591 1019 0.58
    P1-21,51 0.05960 0.00507 0.37392 0.03113 0.04552 0.00126 0.01502 0.00073 589 175 323 23 287 8 301 15 2012 3184 0.63
    P1-21,52 0.05150 0.00537 0.32448 0.03320 0.04571 0.00135 0.01495 0.00086 263 223 285 25 288 8 300 17 1310 2541 0.52
    P1-21,53 0.05517 0.00516 0.34904 0.03204 0.04591 0.00130 0.01598 0.00088 419 197 304 24 289 8 320 17 1486 2926 0.51
    P1-21,54 0.04759 0.00576 0.30852 0.03680 0.04704 0.00142 0.01487 0.00091 78 266 273 29 296 9 298 18 1023 1994 0.51
    P1-21,55 0.05538 0.00491 0.34013 0.02953 0.04456 0.00124 0.01476 0.00071 427 187 297 22 281 8 296 14 2092 3366 0.62
    P1-21,56 0.05136 0.00441 0.31346 0.02641 0.04428 0.00119 0.01489 0.00067 257 186 277 20 279 7 299 13 2133 3402 0.63
    P1-21,57 0.05305 0.00711 0.31852 0.04189 0.04356 0.00146 0.01123 0.00088 331 278 281 32 275 9 226 18 713 1390 0.51
    P1-21,58 0.05453 0.00438 0.33748 0.02660 0.04490 0.00118 0.01573 0.00066 393 171 295 20 283 7 315 13 2448 3664 0.67
    P1-21,59 0.05082 0.00429 0.31373 0.02598 0.04479 0.00119 0.01401 0.00069 233 184 277 20 283 7 281 14 1468 2832 0.52
    下载: 导出CSV

    表  3   变火山碎屑岩锆石U-Pb年龄数据表

    Table  3   Zircon U-Pb ages of metamorphic pyroclastic rocks

    测试点
    同位素比值 U-Pb年龄(Ma) 含量(10−6 Th/U
    207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th Th U
    P1-96,01 0.05337 0.00394 0.33172 0.02395 0.04510 0.00109 0.01489 0.00065 344 158 291 18 284 7 299 13 1148 2581 0.45
    P1-96,02 0.05366 0.00338 0.33203 0.02043 0.04489 0.00103 0.01421 0.00044 357 136 291 16 283 6 285 9 3445 3912 0.88
    P1-96,03 0.05590 0.00354 0.34542 0.02136 0.04483 0.00103 0.01358 0.00047 448 135 301 16 283 6 273 9 2521 3520 0.72
    P1-96,04 0.05522 0.00357 0.33331 0.02103 0.04378 0.00102 0.01399 0.00049 421 138 292 16 276 6 281 10 2692 4024 0.67
    P1-96,05 0.04977 0.00775 0.30398 0.04668 0.04431 0.00146 0.01680 0.00108 184 327 270 36 280 9 337 22 529 969 0.55
    P1-96,06 0.05161 0.00744 0.31333 0.04446 0.04403 0.00142 0.01413 0.00113 268 301 277 34 278 9 284 22 537 1095 0.49
    P1-96,07 0.05873 0.00652 0.34093 0.03699 0.04210 0.00130 0.01215 0.00075 557 225 298 28 266 8 244 15 1716 2674 0.64
    P1-96,08 0.05626 0.00531 0.36568 0.03377 0.04714 0.00130 0.01387 0.00075 462 197 316 25 297 8 278 15 921 1670 0.55
    P1-96,09 0.05190 0.00281 0.32026 0.01698 0.04475 0.00098 0.01355 0.00044 281 119 282 13 282 6 272 9 3807 6637 0.57
    P1-96,10 0.05306 0.00297 0.32456 0.01776 0.04436 0.00098 0.01504 0.00050 331 122 285 14 280 6 302 10 3315 6312 0.53
    P1-96,11 0.05317 0.00375 0.32998 0.02279 0.04499 0.00108 0.01376 0.00057 336 152 290 17 284 7 276 11 2027 3554 0.57
    P1-96,12 0.05554 0.00658 0.34206 0.03971 0.04464 0.00139 0.01510 0.00089 434 245 299 30 282 9 303 18 993 1641 0.61
    P1-96,13 0.05302 0.00433 0.32419 0.02596 0.04432 0.00113 0.01222 0.00063 330 175 285 20 280 7 246 13 1389 2777 0.50
    P1-96,14 0.05249 0.00678 0.32643 0.04136 0.04508 0.00145 0.01585 0.00098 307 270 287 32 284 9 318 20 823 1403 0.59
    P1-96,16 0.05325 0.00601 0.33107 0.03664 0.04506 0.00133 0.01399 0.00080 340 237 290 28 284 8 281 16 810 1344 0.60
    P1-96,17 0.06160 0.00478 0.39526 0.02993 0.04651 0.00121 0.01508 0.00068 660 158 338 22 293 7 303 14 1584 2662 0.60
    P1-96,18 0.05318 0.00539 0.33636 0.03344 0.04583 0.00129 0.01499 0.00073 337 215 294 25 289 8 301 14 1830 2648 0.69
    P1-96,19 0.05352 0.00464 0.34021 0.02889 0.04606 0.00121 0.01545 0.00077 351 184 297 22 290 7 310 15 1593 3268 0.49
    P1-96,20 0.05377 0.00561 0.33424 0.03423 0.04504 0.00128 0.01440 0.00087 361 220 293 26 284 8 289 17 934 1886 0.50
    P1-96,21 0.04994 0.00427 0.33454 0.02809 0.04854 0.00125 0.01567 0.00074 192 187 293 21 306 8 314 15 1670 3208 0.52
    P1-96,22 0.05682 0.00550 0.38403 0.03638 0.04897 0.00140 0.01729 0.00090 484 201 330 27 308 9 347 18 1612 2640 0.61
    P1-96,23 0.05393 0.00506 0.35124 0.03227 0.04718 0.00132 0.01353 0.00082 368 199 306 24 297 8 272 16 1302 2637 0.49
    P1-96,24 0.04822 0.00941 0.30333 0.05841 0.04558 0.00176 0.01320 0.00138 110 405 269 46 287 11 265 28 407 822 0.50
    P1-96,25 0.05891 0.00964 0.39218 0.06283 0.04823 0.00191 0.01676 0.00140 564 321 336 46 304 12 336 28 514 944 0.54
    P1-96,27 0.05541 0.00518 0.36152 0.03315 0.04727 0.00130 0.01591 0.00081 429 196 313 25 298 8 319 16 1403 2546 0.55
    P1-96,28 0.05359 0.00854 0.35795 0.05619 0.04839 0.00169 0.01281 0.00125 354 325 311 42 305 10 257 25 489 1060 0.46
    P1-96,29 0.05286 0.00533 0.33930 0.03355 0.04650 0.00135 0.01328 0.00074 323 214 297 25 293 8 267 15 1588 2512 0.63
    P1-96,32 0.05478 0.00383 0.36200 0.02480 0.04787 0.00118 0.01607 0.00065 403 149 314 18 302 7 322 13 2809 4956 0.57
    P1-96,33 0.05327 0.00410 0.33202 0.02509 0.04516 0.00115 0.01452 0.00063 340 165 291 19 285 7 291 13 2260 3891 0.58
    P1-96,34 0.05384 0.00589 0.35687 0.03820 0.04802 0.00148 0.01953 0.00102 364 230 310 29 302 9 391 20 1243 1770 0.70
    P1-96,35 0.05060 0.00455 0.33832 0.02985 0.04844 0.00130 0.01821 0.00089 223 195 296 23 305 8 365 18 1800 3753 0.48
    P1-96,36 0.04932 0.00347 0.32204 0.02226 0.04731 0.00115 0.01537 0.00066 163 157 284 17 298 7 308 13 2070 4462 0.46
    P1-96,37 0.05489 0.00510 0.33466 0.03047 0.04418 0.00123 0.01936 0.00137 408 195 293 23 279 8 388 27 569 2832 0.20
    P1-96,38 0.04834 0.00643 0.34238 0.04471 0.05132 0.00172 0.02015 0.00156 116 287 299 34 323 11 403 31 1106 2689 0.41
    P1-96,39 0.04930 0.00622 0.31766 0.03928 0.04668 0.00153 0.01593 0.00113 162 271 280 30 294 9 320 22 1047 2244 0.47
    P1-96,40 0.05158 0.00408 0.34371 0.02665 0.04828 0.00125 0.01559 0.00069 267 172 300 20 304 8 313 14 2640 4314 0.61
    P1-96,41 0.05258 0.00425 0.35925 0.02851 0.04951 0.00130 0.01732 0.00069 311 174 312 21 312 8 347 14 3472 4412 0.79
    P1-96,42 0.05136 0.00396 0.35579 0.02694 0.05020 0.00129 0.01749 0.00072 257 168 309 20 316 8 351 14 3324 5181 0.64
    P1-96,43 0.05375 0.00470 0.34399 0.02948 0.04638 0.00128 0.01924 0.00095 360 186 300 22 292 8 385 19 2359 4959 0.48
    P1-96,44 0.04839 0.00550 0.33030 0.03691 0.04947 0.00147 0.01888 0.00110 118 248 290 28 311 9 378 22 1048 2229 0.47
    P1-96,45 0.05636 0.00926 0.36933 0.05942 0.04749 0.00192 0.01856 0.00172 466 328 319 44 299 12 372 34 399 938 0.43
    P1-96,47 0.05382 0.00422 0.34731 0.02671 0.04677 0.00122 0.01732 0.00082 363 167 303 20 295 8 347 16 1958 3913 0.50
    P1-96,49 0.04563 0.01092 0.31376 0.07401 0.04984 0.00235 0.01497 0.00194 0 473 277 57 314 14 300 39 352 891 0.39
    P1-96,50 0.05166 0.00410 0.34090 0.02653 0.04783 0.00125 0.01692 0.00074 270 172 298 20 301 8 339 15 2426 4129 0.59
    P1-96,51 0.05396 0.00588 0.37005 0.03952 0.04972 0.00153 0.02095 0.00126 369 229 320 29 313 9 419 25 1275 2750 0.46
    P1-96,52 0.05155 0.00428 0.35221 0.02868 0.04954 0.00133 0.01874 0.00079 266 180 306 22 312 8 375 16 3232 4829 0.67
    P1-96,53 0.05155 0.00581 0.34043 0.03763 0.04789 0.00150 0.01645 0.00094 266 239 298 29 302 9 330 19 1591 2508 0.63
    P1-96,54 0.04857 0.00805 0.33107 0.05393 0.04943 0.00192 0.01467 0.00153 127 349 290 41 311 12 294 31 660 1201 0.55
    P1-96,55 0.05281 0.00500 0.35815 0.03324 0.04919 0.00140 0.01856 0.00113 321 202 311 25 310 9 372 22 1750 4106 0.43
    P1-96,56 0.05375 0.00630 0.36397 0.04183 0.04912 0.00158 0.02083 0.00117 360 245 315 31 309 10 417 23 1294 2199 0.59
    P1-96,57 0.05379 0.00427 0.37677 0.02936 0.05081 0.00135 0.01700 0.00081 362 169 325 22 320 8 341 16 2950 5209 0.57
    P1-96,58 0.04874 0.00392 0.34924 0.02763 0.05198 0.00136 0.01809 0.00075 135 179 304 21 327 8 362 15 3513 5178 0.68
    P1-96,59 0.05532 0.00733 0.38234 0.04962 0.05014 0.00176 0.01896 0.00139 425 271 329 36 315 11 380 28 778 1594 0.49
    P1-96,60 0.05047 0.00480 0.33543 0.03137 0.04822 0.00136 0.01832 0.00102 217 206 294 24 304 8 367 20 1401 3019 0.46
    下载: 导出CSV

    表  4   花岗质砾石的锆石U-Pb年龄数据表

    Table  4   Zircon U-Pb ages of granitic gravel

    测试点 同位素比值 U-Pb年龄(Ma) 含量(10−6 Th/U
    207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th Th U
    D1052,1 0.05400 0.00234 0.32143 0.01357 0.04317 0.00090 0.01372 0.00040 371 94 283 10 272 6 275 8 4395 7940 0.55
    D1052,2 0.05811 0.00188 0.36685 0.01153 0.04579 0.00092 0.01671 0.00044 533 70 317 9 289 6 335 9 7166 21172 0.34
    D1052,3 0.05255 0.00235 0.31522 0.01374 0.04350 0.00091 0.01512 0.00049 310 99 278 11 275 6 303 10 3009 8739 0.34
    D1052,4 0.05424 0.00270 0.35151 0.01709 0.04701 0.00101 0.01602 0.00061 381 108 306 13 296 6 321 12 1893 6174 0.31
    D1052,6 0.05354 0.00252 0.32674 0.01501 0.04427 0.00094 0.01457 0.00049 352 103 287 11 279 6 292 10 3046 7791 0.39
    D1052,8 0.05594 0.00262 0.39012 0.01778 0.05058 0.00108 0.01815 0.00070 450 101 335 13 318 7 364 14 3913 17397 0.22
    D1052,9 0.05826 0.00273 0.37486 0.01712 0.04667 0.00100 0.02199 0.00073 539 100 323 13 294 6 440 15 3137 10819 0.29
    D1052,12 0.05107 0.00410 0.33786 0.02657 0.04799 0.00121 0.02222 0.00114 244 175 296 20 302 7 444 22 17334 63444 0.27
    D1052,13 0.05175 0.00361 0.36019 0.02459 0.05049 0.00120 0.02067 0.00099 274 152 312 18 318 7 413 20 2711 9584 0.28
    D1052,14 0.05282 0.00422 0.36614 0.02860 0.05028 0.00127 0.01914 0.00097 321 171 317 21 316 8 383 19 2660 7097 0.37
    D1052,16 0.05242 0.00549 0.41347 0.04236 0.05721 0.00168 0.02926 0.00198 304 222 351 30 359 10 583 39 1582 5886 0.27
    D1052,17 0.05767 0.00382 0.42986 0.02777 0.05407 0.00129 0.02924 0.00131 517 139 363 20 339 8 583 26 3030 11556 0.26
    D1052,18 0.05012 0.00626 0.34159 0.04175 0.04944 0.00160 0.02093 0.00166 201 266 298 32 311 10 419 33 1363 4545 0.30
    D1052,19 0.05087 0.00457 0.36628 0.03222 0.05223 0.00139 0.02466 0.00114 235 195 317 24 328 9 492 22 2541 5598 0.45
    D1052,20 0.04934 0.00516 0.33584 0.03442 0.04937 0.00141 0.01886 0.00127 164 228 294 26 311 9 378 25 1540 5063 0.30
    D1052,21 0.05467 0.00297 0.39698 0.02106 0.05267 0.00117 0.02549 0.00104 399 117 340 15 331 7 509 20 3824 18291 0.21
    D1052,23 0.05243 0.00341 0.37018 0.02354 0.05121 0.00119 0.01930 0.00089 304 142 320 17 322 7 386 18 2942 11049 0.27
    D1052,24 0.05313 0.00366 0.36805 0.02479 0.05025 0.00120 0.02019 0.00072 335 149 318 18 316 7 404 14 5753 9298 0.62
    D1052,25 0.06034 0.00314 0.47962 0.02429 0.05766 0.00128 0.02885 0.00104 616 109 398 17 361 8 575 20 6708 23529 0.29
    D1052,27 0.05743 0.00376 0.39242 0.02509 0.04957 0.00118 0.01910 0.00088 508 138 336 18 312 7 382 17 3441 10876 0.32
    D1052,28 0.05575 0.00428 0.38286 0.02872 0.04982 0.00125 0.02112 0.00099 442 163 329 21 313 8 422 20 24908 68272 0.36
    D1052,29 0.05540 0.00319 0.36743 0.02062 0.04811 0.00109 0.01886 0.00074 428 124 318 15 303 7 378 15 3263 9877 0.33
    D1052,30 0.05856 0.00345 0.41718 0.02393 0.05167 0.00118 0.02495 0.00100 551 124 354 17 325 7 498 20 2882 10137 0.28
    下载: 导出CSV

    表  5   斜长角闪岩和浅粒岩主量元素(%)与微量元素(10–6

    Table  5   Main (%) and trace (10–6) elements in plagioclase amphibolite and leptite

    送样号D1133-2-2hD1133-2-3hD1133-2-4hD0170-1-1HD0170-1-3HD0170-1-5H
    SiO249.2249.2149.2775.4180.8878.86
    TiO22.312.332.380.140.170.14
    Al2O316.6616.6716.8811.229.339.33
    Fe2O34.734.225.132.491.392.18
    FeO6.356.826.320.500.500.45
    MnO0.170.170.160.070.050.07
    MgO5.325.215.220.070.090.06
    CaO8.338.757.915.372.895.02
    Na2O4.094.154.691.232.301.74
    K2O0.670.370.232.811.801.23
    P2O50.350.360.350.020.020.02
    LOI0.890.800.630.500.410.73
    Total99.0999.0699.1799.8399.82899.82
    Li30.328.826.02.674.024.18
    Sc25.527.828.93.333.982.54
    V2552732707.784.809.10
    Cr10199.694.11.431.561.1
    Co39.241.740.80.5500.4500.500
    Ni76.978.471.82.104.522.16
    Cu12984.577.63.062.323.00
    Zn11711311822.330.415.8
    Ga21.921.522.133.920.925.0
    Rb25.810.36.2512374.852.4
    Sr341314398256141206
    Y38.238.841.358.055.047.2
    Zr266264283316318286
    Nb6.746.286.7313.113.611.6
    Cs2.271.940.671.120.8100.620
    Ba79.795.427.6624439384
    La16.716.817.643.741.638.0
    Ce44.343.845.994.493.381.2
    Pr6.256.416.7812.111.410.4
    Nd28.830.131.347.947.041.8
    Sm7.367.887.9310.810.79.22
    Eu2.212.332.371.631.661.44
    Gd8.118.378.8510.911.19.70
    Tb1.261.351.381.921.891.63
    Dy8.027.918.4111.110.89.67
    Ho1.541.641.712.262.272.02
    Er4.584.754.906.747.095.98
    Tm0.7900.8000.8101.221.181.06
    Yb4.334.534.676.556.575.92
    Lu0.7300.7500.7701.121.130.980
    Hf6.546.607.109.619.618.78
    Ta0.5000.4600.4801.091.050.960
    Pb9.298.1313.328.318.518.0
    Th3.933.483.7216.615.714.4
    U1.261.231.393.783.763.34
    下载: 导出CSV
  • 卜涛, 王国强, 黄博涛, 等. 北山北带新元古代A型花岗岩: Rodinia超大陆裂解早期的地质响应[J]. 岩石学报, 2022, 38(10): 2988–3002.

    BU Tao, WANG Guoqiang, HUANG Botao, et al. Neoproterozoic A type granites in northern Beishan Orogenic Belt: Early response of the Rodinia supercontinent break-up [J]. Acta Petrologica Sinica, 38(10): 2988–3002.

    陈言飞, 邵兆刚, 陈宣华, 等. 北山古堡泉地区榴辉岩变质作用P-T-t轨迹及构造意义[J]. 地球学报, 2022, 436): 895908.

    CHEN Yanfei, SHAO Zhaogang, CHEN Xuanhua, et al. P-T-t Path and Tectonic Implications of Gubaoquan Eclogite from Beishan Region[J]. Acta Geoscientica Sinica, 2022, 436): 895908.

    董云鹏, 周鼎武, 张国伟, 等. 中天山南缘乌瓦门蛇绿岩形成构造环境[J]. 岩石学报, 2005, 21(1): 37–44.

    DONG Yunpeng, ZHOU Dingwu, ZHANG Guowei, et al. Tectonic setting of the Wuwamen ophiolite at the southern margin of middle Tianshan Belt [J]. Acta Petologica Sinica, 21(1): 37–44.

    高俊, 钱青, 龙灵利, 等. 西天山的增生造山过程[J]. 地质通报, 2009, 2812): 18041816.

    GAO Jun, QIAN Qing, LONG Lingli, et al. Accretionary orogenic process of Western Tianshan, China[J]. Geological Bulletin of China, 2009, 2812): 18041816.

    何世平, 任秉琛, 姚文光, 等. 甘肃内蒙古北山地区构造单元划分[J]. 西北地质, 2002, 354): 3040.

    HE Shiping, REN Bingchen, YAO Wenguang, et al. The division of tectonic units of Beishan area, Gansu-Inner Mongolia[J]. Northwestern Geology, 2002, 354): 3040.

    贺振宇, 孙立新, 毛玲娟, 等. 北山造山带南部片麻岩和花岗闪长岩的锆石U-Pb 定年和Hf 同位素: 中元古代的岩浆作用与地壳生长[J]. 科学通报, 2015, 604): 389399. doi: 10.1360/N972014-00898

    HE Zhenyu, SUN Lixin, MAO Lingjuan, et al. Zircon U-Pb and Hf sotopic study of gneiss and granodiorite from the southern Beishan orogenic collage: Mesoproterozoic magmatism and crustal growth[J]. Chinese Science Bulletin, 2015, 604): 389399. doi: 10.1360/N972014-00898

    贺振宇, 宗克清, 姜洪颖, 等. 北山造山带南部早古生代构造演化: 来自花岗岩的约束[J]. 岩石学报, 2014, 308): 23242338.

    HE Zhen, ZONG Keqiong, JIANG Hongying, et al. Early Paleozoic tectonic evolution of the southern Beishan orogenic collage: Insights from the granitoids[J]. Acta Petrologica Sinica, 2014, 308): 23242338.

    计文化, 李荣社, 陈奋宁, 等. 中国西北地区南华纪—古生代构造重建及关键问题讨论[J]. 地质力学学报, 2020, 265): 634655.

    JI Wenhua, LI Rongshe, CHEN Fenning, et al. Tectonic reconstruction of northwest China in the Nanhua-Paleozoic and discussions on key issues[J]. Journal of Geomechanics, 2020, 265): 634655.

    姜洪颖, 贺振宇, 宗克清, 等. 北山造山带南缘北山杂岩的锆石U-Pb 定年和Hf同位素研究[J]. 岩石学报, 2013, 29(11): 3949–3467.

    JIANG Hongying, HE Zhenyu, ZONG Keqiong, et al. Zircon U-Pb dating and Hf isotopic studies on the Beishan complex in the southern Beishan orogenic belt [J]. Acta Petrologic Sinica, 2013, 29(11): 3949–3967.

    姜洪颖, 贺振宇. 北山造山带南部晚古生代花岗岩‒闪长岩的成因与构造意义[J]. 地球科学, 2022, 47(9): 3270–3284.

    JIANG Hongying, HE Zhenyu. Petrogenesis and Tectonic Implications of Late Paleozoic Granite-Diorite from the Southern Beishan Orogen [J]. Earth Science, 47(9): 3270–3284.

    李锦轶, 王克卓, 李亚萍, 等. 天山山脉地貌特征、地壳组成与地质演化[J]. 地质通报, 2006, 25(8): 896–909.

    LI Jingyi, WANG Kezhuo, LI Yaping, et al., Geomorphological features, crustal composition and geological evolution of the Tianshan Mountains [J]. Geological Bulletin of China, 2006, 25(8): 896–909.

    李炜, 陈隽璐, 董云鹏, 等. 早古生代古亚洲洋俯冲记录: 来自东天山卡拉塔格高镁安山岩的年代学、地球化学证据[J]. 岩石学报, 2016, 322): 505521.

    LI Wei, CHEN Junlu, DONG Yunpeng, et al. Early Paleozoic subduction of the Paleo-Asian Ocean: Zircon U-Pb geochronological and geochemical evidence from the Kalatag high-Mg andesites, East Tianshan[J]. Acta Petrologica Sinica, 2016, 322): 505521.

    李艳广, 靳梦琪, 汪双双, 等. LA–ICP–MS U–Pb定年技术相关问题探讨[J]. 西北地质, 2023, 564): 274282.

    LI Yanguang, JIN Mengqi, WANG Shuangshuang, et al. Exploration of Issues Related to the LA–ICP–MS U–Pb Dating Technique[J]. Northwestern Geology, 2023, 564): 274282.

    李艳广, 汪双双, 刘民武, 等. 斜锆石LA-ICP-MS U-Pb定年方法及应用[J]. 地质学报, 2015, 8912): 24002418.

    LI Yanguang, WANG Shuangshuang, LIU Mingwu, et al. U-Pb Dating Study of Baddeleyite by LA-ICP-MS: Technique and Application[J]. Acta Geologica Sinica, 2015, 8912): 24002418.

    李沅柏, 李海泉, 周文孝, 等. 北山造山带新元古代热事件及其构造意义: 来自甘肃北山南带两期花岗质岩的地球化学和年代学证据[J]. 地质通报, 2021, 407): 11171139.

    LI Yuanbo, LI Haiquan, ZHOU Wenxiao, et al. Neoproterozoic thermal events and tectonic implications in the Beishan orogenic belt: Geochemical and geochronological evidence from two sets of granitic rocks from southern Beishan orogenic belt, Gansu Province[J]. Geological Bulletin of China, 2021, 407): 11171139.

    李智佩, 吴亮, 颜玲丽. 中国西北地区蛇绿岩时空分布与构造演化[J]. 地质通报, 2020, 396): 783871.

    LI Zhipei, WU Liang, YAN Lingli. Saptial and temporal distribution of ophiolites and regional tectonic evolution in Northwest China[J]. Geological Bulletin of China, 2020, 396): 783871.

    牛文超, 辛后田, 段连峰, 等. 内蒙古北山地区百合山蛇绿混杂岩带的厘定及其洋盆俯冲极性——基于1: 5万清河沟幅地质图的新认识[J]. 中国地质, 2019, 465): 977994.

    NIU Wenchao, XIN Houtian, DUAN Lianfeng, et al. The identification and subduction polarity of the Baiheshan ophiolite mélanges belt in the Beishan area, Inner Mongolia: New understanding based on the geological map of Qinghegou Sheet (1∶50000)[J]. Geology in China , 2019, 465): 977994.

    牛亚卓. 新甘蒙北山地区晚古生代古沉积面貌及构造属性[D]. 西安: 西北大学, 2019, 1–142.

    NIU Yazhuo. Late Paleozoic paleogeographic reconstruction and tectonic implication of the Beishan region, NW China [D]. Xi’an: Northwest University, 2019, 1–142.

    甘肃省地质矿产局酒泉地质矿产调查队. 1∶50000西涧泉幅(K47E019003)区域地质图[R]. 甘肃省地质矿产局酒泉地质矿产调查队, 1993.
    甘肃省地质调查院. 1∶25万红宝石幅区域地质调查报告[R]. 甘肃省地质调查院, 2005.
    甘肃省地质调查院. 1∶25万马鬃山幅区域地质调查报告[R]. 甘肃省地质调查院, 2001.
    汪云亮, 张成江, 修淑芝. 玄武岩形成的大地构造环境的Th/Hf-Ta/Hf图解判别[J]. 岩石学报, 2001, 17(3): 413–421.

    WANG Yunliang, ZHANG Chengjiang, XIU Shuzhi. Th/Hf-Ta/Hf identification of tectonic setting of basalts [J]. Acta Petrological Sinica, 2001, 17(3): 413–421.

    王国强, 李向民, 徐学义, 等. 北山造山带古生代蛇绿混杂岩研究现状及进展[J]. 地质通报, 2021, 401): 7181.

    WANG Guoqiang, LI Xiangmin, XU Xueyi, et al. Research status and progress of Paleozoic ophiolites in Beishan orogenic belt[J]. Geological Bulletin of China, 2021, 401): 7181.

    吴妍蓉, 周海, 赵国春, 等. 中亚造山带南蒙古地区石炭纪—二叠纪岩浆活动及其构造意义[J]. 西北地质, 2024, 57(3): 11−28.

    WU Yanrong, ZHOU Hai, ZHAO Guochun, et al. Carboniferous-Permian Magmatism of Southern Mongolia, Central Asian Orogenic Belt and Its Tectonic Implications[J]. Northwestern Geology, 2024, 57(3): 11−28.

    王洪亮, 徐学义, 何世平, 等. 1∶1000000中国天山及邻区地质图[M]. 北京: 地质出版社, 2007.

    WANG Hongliang, XU Xueyi, HE Shipping, et al. 1∶1000000 Geological Map of Chinese Tianshan and Adjacent Areas [M]. Beijing: Geological Publishing House, 2007.

    王文宝, 李卫星, 雷聪聪, 等. 中亚造山带中段早—中三叠世埃达克岩和A型花岗岩成因及构造意义[J]. 西北地质, 2024, 57(3): 29−43.

    WANG Wenbao, LI Weixing, LEI Congcong, et al. Early-Middle Triassic Adakitic and A-type Granite in Middle Segment of Central Asian Orogenic Belt: Petrogenesis and Tectonic Implications[J]. Northwestern Geology, 2024, 57(3): 29−43.

    徐学义, 李荣社, 陈隽璐, 等. 新疆北部古生代构造演化的几点认识[J]. 岩石学报, 2014, 30(6): 1521–1534.

    XU Xueyi, LI Rongshe, CHEN Junlu, et al., New constrains on the Paleozoic tectonic evolution of the northern Xinjiang area [J]. Acta Petrologica Sinica, 2014, 30(6): 1521–1534.

    许伟, 徐学义, 牛亚卓, 等. 北山南部早二叠世A型流纹岩地球化学特征及其地球动力学意义[J]. 岩石学报, 2018, 3410): 30113022.

    XU Wei, XU Xueyi, NIU Yazhuo, et al. Geochronology, petrogenesis and tectonic implications of the Early Permian A-type rhyolite from southern Beishan orogen, NW China[J]. Acta Petrologica Sinica, 2018, 3410): 30113022.

    许伟. 北山南部晚古生代构造格局与演化: 来自古地磁与岩浆作用的制约[D]. 西安: 长安大学, 2019, 1–194.

    XU Wei. The Late Paleozoic tectonic framework and evolution in southern Beishan: constraints from paleomagnetism and magmatism [D]. Xi’an: Chan’an University, 2019, 1–194.

    杨高学, 刘晓宇, 朱钊, 等. 中亚造山带西准噶尔地区达尔布特蛇绿岩研究进展与展望[J]. 西北地质, 2024, 57(3): 1−10.

    YANG Gaoxue, LIU Xiaoyu, ZHU Zhao, et al. Progress and Prospect of the Darbut Ophiolite in West Junggar, Central Asian Orogenic Belt[J]. Northwestern Geology, 2024, 57(3): 1−10.

    余吉远, 李向民, 王国强, 等. 北山地区辉铜山、帐房山蛇绿岩U-Pb年龄及其意义[J]. 地质通报, 2012, 31(12): 2038–2045.

    YU Jiyuan, LI Xiangmin, WANG Guoqiang, et al. Zircon U-Pb ages of Huitongshan and Zhangfangshan ophiolite in Beishan of Gansu-Inner Mongolia border area and their significance [J]. Geological Bulletin of China, 2012, 31(12): 2038–2045.

    俞胜, 赵斌斌, 贾轩, 等. 北山造山带南缘一条山北闪长岩地球化学、年代学特征及其构造意义[J]. 西北地质, 2022, 554): 267279.

    YU Sheng, ZHAO Binbin, JIA Xuan, et al. Geochemistry, geochronology characteristics and tectonic significance of Yitiaoshan diorite in the southern margin of Beishan Orogenic Belt[J]. Northwestern Geology, 2022, 554): 267279.

    袁禹. 北山造山带大陆地壳的形成与演化[D]. 武汉: 中国地质大学, 2019, 1–144.

    YUAN Yu. The continental crust formation and evolution of the Beishan Orogenic Belt [D]. Wuhan: China University of Geosciences, 2019, 1–144.

    张海迪, 陈博, 吕鹏瑞, 等. 东天山黄山西角闪辉长岩成因及其地质意义: 来自锆石U-Pb年代学及地球化学的证据[J]. 西北地质, 2021, 54: 5165.

    ZHANG Haidi, CHEN Bo, LÜ Pengrui, et al. The Petrogenesis and Geological Significance of the Hornblende Gabbro in Western Huangshan of East Tianshan: Evidence from Zircon U-Pb Chronology and Geochemistry[J]. Northwestern Geology, 2021, 54: 5165.

    张立飞, 艾永亮, 李强, 等. 新疆西南天山超高压变质带的形成与演化[J]. 岩石学报, 2005, 214): 10291038.

    ZHANG Lifei, AI Yongliang, LI Qiang, et al. The formation and tectonic evolution of UHP metamorphic belt in southwestern Tianshan, Xinjiang[J]. Acta Petrologica Sinica, 2005, 214): 10291038.

    张招崇, 董书云. 大火成岩省是地幔柱作用引起的吗?[J]. 现代地质, 2007, 212): 247254.

    ZHANG Zhaochong, DONG Shuyun. Were large igneous provinces caused by mantle plumes?[J]. Geoscience, 2007, 212): 247254.

    赵泽辉, 郭召杰, 韩宝福, 等. 新疆东部-甘肃北山地区二叠纪玄武岩对比研究及其构造意义[J]. 岩石学报, 2006, 225): 12791293.

    ZHAO Zehui, GUO Zhaojie, HAN Baofu, et al. Comparative study on Permian basalts from eastern Xinjiang-Beishan area of Gansu province and its tectonic implications[J]. Acta Petrologica Sinica, 2006, 225): 12791293.

    左国朝, 何国琦. 北山板块构造及成矿规律[M]. 北京: 北京大学出版社, 1990, 1–226.

    ZUO Guochao, HE Guoqi. Plate Tectonics and Metallogenic Regularities in Beishan Region [M]. Beijing: Peking University Press, 1990, 1–226.

    Ao S J, Xiao W J, Windley B F, et al. Paleozoic accretionary orogenesis in the eastern Beishan orogen: Constraints from zircon U-Pb and 40Ar/39Ar geochronology [J]. Gondwana Research, 2015, 30: 224–235.

    He Z Y, Klemdb R, Yana L L, et al. The origin and crustal evolution of microcontinents in the Beishan orogen of the southern Central Asian Orogenic Belt [J]. Earth-Science Reviews, 2018. 185: 1–14.

    He Z Y, Zhang Z M, Zong K Q, et al. Metamorphic P–T–t evolution of mafic HP granulites in the northeastern segment of the Tarim Craton (Dunhuang block): Evidence for early Paleozoic continental subduction [J]. Lithos, 2014, 196–197: 1–13.

    Hong T, Santos G S, Van Staal C R, et al. Mapping uncovered a multi-phase arc-back-arc system in the southern Beishan during the Permian [J]. National Science Review, 2023, 10: nwac204.

    Huang B T, Wang G Q, Li X M, et al. Precambrian tectonic affinity of the Beishan Orogenic Belt: Constraints from Proterozoic metasedimentary rocks [J]. Precambrian Research, 2022, 376: 106686.

    Kang W B, Li W, Kang L, et al. Metamorphism and geochronology of garnet amphibolite from the Beishan Orogen, southern Central Asian Orogenic Belt: Constraints from P-T path and zircon U-Pb dating[J]. Geoscience Frontiers, 2020, 11: 11891201.

    Li J, Wu C, Chen X H, et al. Tectonic evolution of the Beishan orogen in central Asia: Subduction, accretion, and continent-continent collision during the closure of the Paleo-Asian Ocean [J]. Geological Society of America Bulletin, 2023. doi: 10.1130/B36451.1.

    Li S, Wilde S A, Wang T. Early Permian post-collisional high-K granitoids from Liuyuan area in southern Beishan orogen, NW China: Petrogenesis and tectonic implications[J]. Lithos, 2013, 179: 99119.

    Liu X C, Chen B L, Jahn B M, et al. Early Paleozoic (ca. 465 Ma) eclogites from Beishan (NW China) and their bearing on the tectonic evolution of the southern central Asian orogenic belt [J]. Journal of Asian Earth Sciences, 2011, 42, 715–731.

    Liu X M, Gao S, Diwu C R, et al. Simultaneous in-situ determination of U-Pb age and trace elements in zircon by LA-ICP-MS in 20 μm spot size [J]. Chinese Science Bulletin, 2007, 52(9), 1257–1264.

    Mao Q, Xiao W, Windley B F, et al. The Liuyuan complex in the Beishan, NW China: a Carboniferous-Permian ophioliteic fore-arc silver in the southern Altaids [J]. Geological Magazine, 2012, 149: 483–509.

    Meschede M. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram[J]. Chemical Geology, 1986, 56: 207218. doi: 10.1016/0009-2541(86)90004-5

    Miyashiro A. Volcanic rock series in island arcs and active continental margins [J]. American Journal of Science, 1974, 274: 321–355.

    Niu Y Z, Liu C Y, Shi G R, et al. Unconformity-bounded Upper Paleozoic megasequences in the Beishan Region (NW China) and implications for the timing of the Paleo-Asian Ocean closure [J]. Journal of Asian Earth Sciences, 2018, 167: 11–32.

    Niu Y Z, Shi G R, Wang J Q, et al. The closing of the southern branch of the Paleo-Asian Ocean: Constraints from sedimentary records in the southern Beishan region of the Central Asian Orogenic Belt, NW China [J]. Marine and Petroleum Geology, 2021, 124: 104791.

    Polat A, Hofmann A W. Alteration and geochemical patterns in the 3.7–3.8 Ga Isua greenstone belt, West Greenland [J] Precambrian Research, 2003, 126(3–4): 197–218.

    Qin K Z, Su B X, Sakyi P A, et al. SIMS Zircon U-Pb geochronology and Sr-Nd isotopes of Ni-Cu bearing mafic-ultramafic intrusions in Eastern Tianshan and Beishan in correlation with flood basalts in Tarim Basin (NW China): constraints on a ca. 280 Ma mantle plume[J]. American Journal of Science, 2011, 311: 237–260.

    Saktura W M, Buckman S, Nutman A P, et al. Continental origin of the Gubaoquan eclogite and implications for evolution of the Beishan Orogen, Central Asian Orogenic Belt, NW China [J]. Litos, 2017, 294–295: 20–38.

    Santos G S, Hong T, Van Staal C R, et al. Permian back-arc basin formation and arc migration in the southern Central Asian Orogenic Belt, NW China [J]. Geological Journal, 2022. doi: 10.1002/gj.4609.

    Schmidt M W, Jagoutz O. The global systematics of primitive arc melts [J]. Geochemistry Geophysics Geosystems, 2017, 18: 2817–2854.

    Şengör A M C, Natal’in B A, Burtman V S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia [J]. Nature, 1993, 364: 299–307.

    Şengör A M C, Sunal G, Natal'in B A, et al. The Altaids: A review of twenty-five years of knowledge accumulation [J]. Earth-Science Reviews, 2022. doi: org/10.1016/j.earscirev.2022.104013.

    Smithies R H, Jwanic T J, Lowrey J R, et al. Two distinct origins for Archean greenstone belts [J]. Earth and Planetary Science Letters, 2018, 487: 106–116.

    Song D F, Xiao W J, Han C M, et al. Geochronological and geochemical study of gneiss–schist complexes and associated granitoids, Beishan Orogen, southern Altaids [J]. International Geology Review, 2013, 55(14): 1705–1727.

    Su B X, Qin K Z, Sakyi P A, et al. U-Pb ages and Hf-O isotopes of zircons from Late Paleozoic mafic-ultramafic units in the southern Central Asian Orogenic Belt: Tectonic implications and evidence for an Early-Permian mantle plume[J]. Gondwana Research, 2011, 20(2–3): 516–531.

    Sun S S, Mc Donough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processed [J]. Magmatism in Ocean Basins, Geological Society of London Special Publication, 1989, 42: 313–345.

    Tian Z H, Xiao W J. An Andean-type arc transferred into a Japanese-type arc at final closure stage of the Palaeo-Asian Ocean in the southernmost of Altaids [J]. Geological Journal, 2020, 55: 1613–1619.

    Wang B, Yang X S, Li S C, et al. Geochronology, geochemistry, and tectonic implications of early Neoproterozoic granitic rocks from the eastern Beishan Orogenic Belt, southern Central Asian Orogenic Belt [J]. Precambrian Research, 2021, 352, 106016.

    Wang K, Xiao W J, Windley B F, et al. The Dashui subduction complex in the Eastern Tianshan Beishan Orogen (NW China): Long-Lasting subduction accretion terminated by unique Mid-Triassic strike-slip juxtaposition of arcs in the Southern Altaids [J]. Tectonics, 2022, 41, e2021TC007190.

    Winchester J A, and Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20: 325343. doi: 10.1016/0009-2541(77)90057-2

    Wu Y B, Zheng Y F. Genesis of zircon and its constraints on interpretation of U-Pb age [J]. Chinese Science Bulletin, 2004, 49(15): 1554–1569.

    Xia L Q, Xia Z C, Xu X Y, et al. Relative contributions of crust and mantle to the generation of the Tianshan Carboniferous rift-related basic lavas, northwestern China[J]. Journal of Asian Earth Sciences, 2008, 31(4–6): 357–378.

    Xiao W J, Han C M, Yuan C, et al. Middle Cambrian to Permian subduction-related accretionary orogenesis of northern Xinjiang, NW China: Implications for the tectonic evolution of Central Asia [J]. Journal of Asian Earth Sciences, 2008, 32(2–4): 102–117.

    Xiao W J, Mao Q G, Windley B F, et al. Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage [J]. American Journal of Science, 2010, 310(10): 1553–1594.

    Xiao W J, Windley B F, Sun S, et al. A tale of amalgamation of three Permo-Triassic collage systems in Central Asia: Oroclines, sutures, and terminal accretion [J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 477–507.

    Yuan Y, Zong K Q, He Z Y, et al. Geochemical and geochronological evidence for a former early Neoproterozoic microcontinent in the south Beishan orogenic belt, southernmost central Asian orogenic belt [J]. Precambrian Research, 2015, 266, 409–424.

    Zhang Q W L, Chen Y C, Li Z M G, et al. Identification of continental fragments in orogen: an example from Dunhuang Orogenic Belt, NW China [J]. Science Bulletin, 2022, 67, 1549–1552.

    Zhang Y Y, Dostal J, Zhao Z H, et al. Geochronology, geochemistry and petrogenesis of mafic and ultramafic rocks from Southern Beishan area, NW China: Implications for crust-mantle interaction[J]. Gondwana Research, 2011, 20(4): 816–830.

    Zhang Y Y, Yuan C, Sun M, et al. Permian doleritic dikes in the Beishan Orogenic Belt, NW China: Asthenosphere-lithosphere interaction in response to slab break-off[J]. Lithos, 2015, 233: 174–192.

    Zhao G C, Wang Y J, Huang B C, et al. Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea [J]. Earth-Science Reviews, 2018, 186: 262–286.

    Zheng R G, Wu T R, Zhang W, et al. Geochronology and geochemistry of late Paleozoic magmatic rocks in the Yinwaxia area, Beishan: Implications for rift magmatism in the southern Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 2014, 91: 39–55.

    Zong K Q, Klemd R, Yuan Y, et al. The assembly of Rodinia: the correlation of early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB) [J]. Precambrian Research, 2017, 290, 32–48.

    Zong K Q, Liu Y S, Zhang Z M, et al. The generation and evolution of Archean continental crust in the Dunhuang block, northeastern Tarim craton, northwestern China [J]. Precambrian Research, 2013, 235(34): 251–263.

  • 期刊类型引用(2)

    1. 鹿腾,焦浩,杨勇,李宵霄. 鄂尔多斯盆地构造演化下地应力场特征及其对冲击地压的影响. 内蒙古煤炭经济. 2024(12): 187-189 . 百度学术
    2. 宋继叶,秦明宽,蔡煜琦,王健菲,张煜晖,张晓,林双幸. 纳米比亚铀资源勘查开发现状、投资环境与建议. 地质论评. 2024(06): 2370-2380 . 百度学术

    其他类型引用(0)

图(9)  /  表(5)
计量
  • 文章访问数:  151
  • HTML全文浏览量:  36
  • PDF下载量:  56
  • 被引次数: 2
出版历程
  • 收稿日期:  2024-02-27
  • 修回日期:  2024-08-26
  • 录用日期:  2024-10-07
  • 网络出版日期:  2024-10-20
  • 刊出日期:  2024-12-19

目录

/

返回文章
返回