Metamorphic P–T Conditions and In–situ Rb–Sr Geochronology of the Kuanping Group in the Laoyu Area of the Qinling Orogenic Belt
-
摘要:
秦岭造山带涝峪地区发育宽坪岩群的典型剖面,是研究宽坪岩群变质变形、构造热历史的重要区域。然而,由于缺乏对该地区宽坪岩群变质温压条件和年代学的约束,导致区域变质与多期变形事件的关系及地质意义认识仍不清楚。笔者以该地区宽坪岩群SN向剖面中的二云母石英片岩、含石榴子石二云母石英片岩、绿片岩和大理岩为研究对象,开展了详细的岩相学研究。在此基础上,重点对二云母石英片岩和含石榴子石二云母石英片岩进行了黑云母Ti温度计、多硅白云母地质压力计、变质相平衡模拟和原位LA–ICP–MS黑云母和白云母Rb–Sr年代学研究,进而探讨了涝峪地区宽坪岩群经历多期构造热事件的意义。野外和岩相学观察发现二云母石英片岩和绿片岩发生了强烈的变形,金云母大理岩经历了强烈的糜棱岩化作用。黑云母Ti温度计和多硅白云母压力计限定得到二云母石英片岩样品KP-3和KP-4的变质温压条件为300~500 ℃、2.0~8.0 kbar,对应的平均值为440 ℃、4.0 kbar。黑云母Ti温度计限定得到含石榴子石二云母石英片岩样品KP2202的变质温度为652~683 ℃。变质相平衡模拟P–T视剖面图计算得到二云母石英片岩样品KP-3和KP-4的变质温压条件为400~480 ℃和2.0~10 kbar;而含石榴子石二云母石英片岩样品KP2202的变质温压条件为645~680 ℃、8.0~9.0 kbar。综合地质温压计和相平衡模拟的结果,可以确定二云母石英片岩为绿片岩相变质作用的产物,而含石榴子石二云母石英片岩经历了低角闪岩相变质作用。原位LA–ICP–MS黑云母和白云母Rb–Sr分析显示二云母石英片岩记录两期等时线年龄,分别为~290 Ma和~155 Ma,而含石榴子石二云母石英片岩记录的等时线年龄为~110 Ma。因此涝峪地区宽坪岩群中的二云母石英片岩记录了3期等时线年龄,分别为~290 Ma、~155 Ma和~110 Ma。结合前人的研究结果,3期等时线年龄均代表了后期构造热事件的时代,其中~290 Ma的等时线年龄与古特提斯洋向北俯冲作用相对应,而~155 Ma和~110 Ma的等时线年龄可能与中生代时期北秦岭构造带发生强烈的变形和花岗岩岩浆活动导致的热重置有关。
Abstract:The laoyu area of the Qinling orogenic belt has a typical section of the Kuanping group, which is important for studying the metamorphism, deformation, and tectonothermal history of the Kuanping group. However, the metamorphic P–T conditions and chronology of the Kuanping group in this region are still lacking, which hinders our understanding of the relationship between its regional metamorphism and later deformation events, as well as their geological significances. In this study, detailed petrographic studies were carried out on two–mica quartz schist, garnet–bearing two–mica quartz schist, greenschist, and marble in the north–south section of the Kuanping group in this area. Based on this, the geological significances of multiple tectonothermal events that the Kuanping group in the Laoyu region underwent were examined with a focus on two-mica quartz schist and garnet–bearing two–mica quartz schist using Ti–in–biotite thermometry, phengite geobarometry, phase equilibrium modelling, and in situ LA–ICP–MS biotite and muscovite Rb–Sr dating. According to field and petrographic observations, two–mica quartz schist and greenschist were both significantly deformed, and phlogopite marble suffered strong mylonitization. The Ti–in–biotite thermometer and phengite geobarometer yielded the metamorphic PT conditions of 300~500 ℃ and 2.0~8.0 kbar (average values are 440 ℃ and 4.0 kbar) for the two–mica quartz schist samples KP-3 and KP-4. The Ti–in–biotite thermometry constrained the metamorphic temperature of the garnet–bearing two–mica quartz schist sample KP2202 to be 652~683 ℃. According to the PT pseudosection modeling, the metamorphic PT conditions of the two–mica quartz schists and and the garnet–bearing two–mica quartz schists are 400~480 ℃ and 2.0~10 kbar, and 645~680 ℃ and 8.0~9.0 kbar, respectively. On the basis of the results from the geothermobarometry and phase equilibrium modelling, the two–mica quartz schist is the consequence of greenschist–facies metamorphism, whereas the garnet–bearing two–mica quartz schist formed by low–amphibolite facies metamorphism. In–situ LA–ICP–MS biotite and muscovite Rb–Sr dating shows that the two–mica quartz schist records two isochron ages of ~290 Ma and ~155 Ma, while the garnet–bearing two–mica quartz schist records an isochron age of ~110 Ma. Consequently, the two–mica quartz schists in the Kuanping group of the Laoyu region record three isochron ages, which are ~290 Ma, ~155 Ma, and ~110 Ma. Combined with the results of previous studies, all three isochron ages represent the timings of late tectonothermal events, where the isochron age of ~290 Ma corresponds to the northward subduction of the paleo–Tethys Oceanic crust, while the isochron ages of ~155 Ma and ~110 Ma may be related to the intense deformation and thermal resetting caused by granitic magmatism in the North Qinling tectonic belt during the Mesozoic.
-
-
图 1 秦岭造山带地质简图(据Dong et al.,2011a修改)
LLWF.灵宝–鲁山–舞阳断裂;LLF.洛南–栾川断裂;N–SCB.华南板块北缘;1.华北板块南缘;2.宽坪岩群;3.秦岭杂岩;4.商丹缝合带;5.二郎坪群;6.南秦岭南部带;7.南秦岭北部带;8.MLSZ.勉略缝合带;9.大别地体
Figure 1. Simplified tectonic division of the Qinling orogenic belt
图 2 涝峪地区地质图及采样位置(据陕西省地质局区测队,1966;陕西地质局13队,1972修改)
Figure 2. Simplified geological map of Laoyu area, showing the with sample location
图 4 二云母石英片岩和含石榴子石二云母石英片岩显微照片
a.二云母石英片岩样品KP-3片理发生褶皱弯曲(单偏光);b.二云母石英片岩样品KP-3部分区域TIMA扫描图显示褶皱变形;c.二云母石英片岩样品KP-3中的黑云母、白云母、石英和钠长石等矿物(正交偏光);d.二云母石英片岩样品KP-4中黑云母、白云母和石英等矿物(单偏光);e.二云母石英片岩样品KP-4中黑云母、白云母和石英等矿物以及明显的片理构造(正交偏光);f.二云母石英片岩样品KP-4部分区域TIMA扫描图;g、h.含石榴子石二云母石英片岩样品KP2202石榴子石变斑晶和基质矿物黑云母,白云母,斜长石,和石英(单偏光);i.含石榴子石二云母石英片岩样品KP2202中黑云母、白云母、石英、斜长石和钛铁矿等矿物(背散射照片)
Figure 4. Photomicrographs of the two-mica quartz schist and the garnet-berting two-mica quartz schist
图 14 宽坪岩群变质温压条件及P–T轨迹
轨迹1和2分别为桐柏地区宽坪岩群北部和南部构造单元变质P–T轨迹(Liu et al., 2011);轨迹3为红土岭地区含石榴子石石英片岩变质P–T轨迹(王海杰等,2021);区域4和5分别为涝峪地区宽坪岩群中二云母石英片岩和含石榴子石二云母石英片岩变质温压条件(本研究)
Figure 14. Summary of metamorphic P–T conditions and paths for the Kuanping Group
表 1 二云母石英片岩样品KP-3和KP-4中黑云母和白云母成分
Table 1 Mineral composition of biotite and muscovite in the two-mica quartz schist of sample KP-3 and KP-4
样品
矿物KP-3 Bt Ms SiO2 36.86 38.09 37.80 37.83 37.22 37.78 37.82 37.52 52.08 49.36 51.96 50.57 48.34 47.86 48.25 47.59 TiO2 1.02 0.96 1.11 0.89 0.83 1.11 0.97 1.13 0.12 0.11 0.19 0.19 0.12 0.11 0.12 0.20 Al2O3 18.09 18.02 17.74 16.90 17.33 17.52 17.45 17.36 27.74 29.36 28.04 29.78 33.02 33.08 32.75 32.79 FeO 20.10 19.12 19.74 19.25 20.17 19.42 20.42 20.14 2.39 2.13 2.56 2.29 2.16 1.98 2.12 2.22 MnO 0.18 0.14 0.16 0.04 0.00 0.09 0.12 0.09 0.00 0.04 0.01 0.04 0.00 0.01 0.02 0.05 MgO 8.79 9.19 9.24 9.53 9.49 9.62 9.22 9.74 2.84 2.40 2.74 2.36 1.31 1.29 1.36 1.23 CaO 0.01 0.00 0.11 0.03 0.02 0.04 0.00 0.04 0.00 0.02 0.01 0.01 0.00 0.00 0.00 0.00 Na2O 0.06 0.07 0.03 0.05 0.08 0.05 0.04 0.09 0.16 0.20 0.18 0.22 0.33 0.41 0.48 0.35 K2O 8.85 9.03 8.21 8.81 8.96 8.80 9.23 8.52 10.33 10.20 10.34 10.52 10.52 10.75 10.53 10.72 Totals 93.96 94.61 94.15 93.34 94.09 94.42 95.27 94.63 95.66 94.94 96.03 95.98 95.80 95.49 95.63 95.14 Oxygens 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 Si 2.84 2.89 2.88 2.91 2.86 2.88 2.87 2.86 3.44 3.31 3.43 3.34 3.20 3.19 3.21 3.19 Ti 0.06 0.06 0.06 0.05 0.05 0.06 0.06 0.07 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Al 1.64 1.61 1.59 1.53 1.57 1.57 1.56 1.56 2.16 2.32 2.18 2.32 2.58 2.60 2.57 2.59 Fe3+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 Fe2+ 1.29 1.21 1.26 1.24 1.30 1.24 1.30 1.28 0.13 0.12 0.14 0.13 0.12 0.11 0.12 0.12 Mn 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 1.01 1.04 1.05 1.09 1.09 1.09 1.04 1.11 0.28 0.24 0.27 0.23 0.13 0.13 0.14 0.12 Ca 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.03 0.02 0.03 0.04 0.05 0.06 0.05 K 0.87 0.87 0.80 0.87 0.88 0.85 0.89 0.83 0.87 0.87 0.87 0.89 0.89 0.91 0.89 0.92 Sum 7.73 7.70 7.66 7.71 7.75 7.71 7.74 7.72 6.92 6.95 6.92 6.95 6.97 6.99 6.98 6.99 Mg# 0.44 0.46 0.45 0.47 0.46 0.47 0.45 0.46 0.68 0.67 0.66 0.65 0.52 0.54 0.53 0.50 AlⅥ 0.47 0.50 0.47 0.44 0.43 0.45 0.44 0.42 1.67 1.61 1.66 1.78 1.78 1.77 1.77 1.55 XTi 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 XFe 0.46 0.43 0.44 0.44 0.45 0.44 0.46 0.45 0.07 0.06 0.07 0.06 0.06 0.05 0.06 0.06 XMg 0.36 0.37 0.37 0.39 0.38 0.38 0.37 0.39 0.14 0.12 0.13 0.11 0.06 0.06 0.07 0.06 T(℃)① 428 405 461 385 333 463 405 468 - - - - - - - - T(℃)② 491 482 495 464 455 488 476 485 - - - - - - - - 续表1 样品
矿物KP-4 Bt Ms SiO2 39.47 39.17 38.65 38.87 37.79 37.96 37.32 37.30 49.08 49.20 51.91 50.22 48.64 49.35 48.80 48.45 TiO2 0.83 0.83 0.93 0.76 0.84 0.79 0.98 0.96 0.23 0.09 0.20 0.09 0.05 0.23 0.11 0.05 Al2O3 17.77 18.12 17.97 18.22 18.05 17.53 17.42 17.19 34.04 35.13 30.48 33.82 33.17 32.12 32.23 32.49 FeO 16.53 16.74 16.65 16.10 17.53 17.59 18.11 17.90 0.64 0.57 1.09 0.57 1.92 2.37 1.89 2.01 MnO 0.04 0.12 0.11 0.11 0.13 0.07 0.07 0.14 0.00 0.01 0.00 0.15 0.00 0.03 0.00 0.00 MgO 10.91 11.11 10.94 10.96 10.53 10.48 10.70 10.86 1.57 1.46 2.53 1.81 1.51 1.77 1.71 1.43 CaO 0.14 0.12 0.11 0.12 0.03 0.05 0.09 0.05 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 Na2O 0.04 0.05 0.01 0.09 0.09 0.09 0.03 0.01 0.35 0.37 0.10 0.26 0.31 0.32 0.32 0.28 K2O 7.97 8.14 8.00 8.20 8.99 8.92 8.49 8.61 9.68 9.82 9.31 9.71 10.59 10.74 10.61 10.76 Totals 93.71 94.38 93.35 93.41 93.97 93.49 93.21 93.02 97.03 98.12 96.68 98.09 96.18 96.92 95.67 95.47 Oxygens 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 Si 2.95 2.92 2.91 2.92 2.87 2.89 2.86 2.86 3.18 3.15 3.36 3.22 3.21 3.24 3.24 3.22 Ti 0.05 0.05 0.05 0.04 0.05 0.05 0.06 0.06 0.01 0.00 0.01 0.00 0.00 0.01 0.01 0.00 Al 1.57 1.59 1.60 1.61 1.61 1.58 1.57 1.56 2.60 2.66 2.33 2.55 2.58 2.49 2.52 2.55 Fe3+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.07 0.05 0.07 0.00 0.00 0.00 0.00 Fe2+ 1.04 1.04 1.05 1.01 1.11 1.12 1.16 1.15 0.04 0.03 0.06 0.03 0.11 0.13 0.10 0.11 Mn 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 Mg 1.22 1.23 1.23 1.23 1.19 1.19 1.22 1.24 0.15 0.14 0.24 0.17 0.15 0.17 0.17 0.14 Ca 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.00 0.04 0.05 0.01 0.03 0.04 0.04 0.04 0.04 K 0.76 0.77 0.77 0.79 0.87 0.87 0.83 0.84 0.80 0.80 0.77 0.79 0.89 0.90 0.90 0.91 Sum 7.60 7.63 7.62 7.63 7.72 7.72 7.72 7.73 6.89 6.90 6.83 6.88 6.97 6.98 6.97 6.98 Mg# 0.54 0.54 0.54 0.55 0.52 0.51 0.51 0.52 0.81 0.82 0.81 0.85 0.58 0.57 0.62 0.56 AlⅥ 0.52 0.51 0.51 0.53 0.48 0.47 0.43 0.42 1.84 1.87 1.73 1.82 1.78 1.72 1.75 1.77 X(Ti) 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 X(Fe) 0.37 0.37 0.37 0.36 0.39 0.40 0.40 0.40 0.02 0.02 0.03 0.02 0.05 0.06 0.05 0.06 X(Mg) 0.43 0.44 0.43 0.44 0.42 0.42 0.43 0.43 0.08 0.07 0.12 0.09 0.07 0.09 0.08 0.07 T(℃)① 381 382 433 341 378 346 442 440 - - - - - - - - T(℃)② 455 452 465 447 454 446 463 458 - - - - - - - - 注:Mg#=Mg/(Mg+Fe2+),XTi=Ti/(Ti+Fe2++Mg+AlVI),XFe=Fe/(Ti+Fe2++Mg+AlVI),XMg=Mg/(Ti+Fe2++Mg+AlVI);①为Henry等(2005)计算的黑云母Ti温度计结果;②为Wu等(2015)计算的黑云母Ti温度计结果。 表 2 含石榴子石二云母石英片岩样品KP2202中黑云母、白云母、斜长石和石榴子石成分
Table 2 Mineral compositions of biotite, muscovite, plagioclase and garnet in the garnet-bearing two-mica quartz schist sample KP2202
样品 KP2202 位置 接触 基质 矿物 Bt Bt SiO2 34.34 33.63 34.90 34.56 34.02 34.09 34.27 35.23 34.54 34.79 33.95 34.59 34.34 34.55 34.55 34.41 TiO2 2.82 2.87 3.08 3.23 3.13 3.08 3.21 2.95 3.06 3.30 3.15 3.37 3.42 3.39 3.08 3.30 Al2O3 17.78 18.10 18.31 18.33 17.94 18.11 17.61 18.47 18.73 17.94 17.86 18.26 18.42 18.32 18.68 18.09 Cr2O3 0.08 0.08 0.03 0.05 0.03 0.07 0.12 0.05 0.03 0.01 0.01 0.02 0.02 0.10 0.02 0.00 FeO 23.43 22.76 23.32 23.57 23.76 23.44 22.97 22.73 22.26 21.81 21.73 22.11 22.36 22.02 21.00 22.34 MnO 0.43 0.32 0.53 0.54 0.48 0.52 0.39 0.31 0.29 0.29 0.27 0.24 0.25 0.24 0.19 0.30 MgO 5.51 6.19 5.30 5.15 4.95 5.73 5.78 6.22 5.99 6.17 6.17 6.23 6.08 6.34 6.58 6.36 CaO 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na2O 0.14 0.13 0.14 0.12 0.10 0.09 0.06 0.13 0.17 0.12 0.08 0.05 0.10 0.17 0.10 0.08 K2O 10.01 9.41 10.12 9.99 9.90 9.99 9.91 10.22 10.27 9.99 10.35 9.75 10.21 9.91 10.01 10.00 SrO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NiO 0.01 0.00 0.01 0.02 0.00 0.05 0.04 0.00 0.01 0.00 0.01 0.04 0.03 0.07 0.00 0.03 Totals 94.56 93.49 95.75 95.56 94.31 95.16 94.34 96.30 95.36 94.42 93.59 94.66 95.23 95.11 94.22 94.91 Oxygens 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 Si 2.71 2.67 2.72 2.70 2.70 2.68 2.71 2.71 2.69 2.73 2.70 2.70 2.68 2.69 2.70 2.69 Ti 0.17 0.17 0.18 0.19 0.19 0.18 0.19 0.17 0.18 0.19 0.19 0.20 0.20 0.20 0.18 0.19 Al 1.66 1.70 1.68 1.69 1.68 1.68 1.64 1.68 1.72 1.66 1.67 1.68 1.69 1.68 1.72 1.67 Cr 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 Fe3+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe2+ 1.55 1.51 1.52 1.54 1.58 1.54 1.52 1.46 1.45 1.43 1.44 1.45 1.46 1.43 1.37 1.46 Mn 0.03 0.02 0.04 0.04 0.03 0.04 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 Mg 0.65 0.73 0.62 0.60 0.59 0.67 0.68 0.71 0.70 0.72 0.73 0.73 0.71 0.74 0.77 0.74 Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.02 0.03 0.02 0.01 0.01 0.02 0.03 0.02 0.01 K 1.01 0.96 1.01 1.00 1.00 1.00 1.00 1.00 1.02 1.00 1.05 0.97 1.02 0.98 1.00 1.00 Sum 7.80 7.79 7.78 7.77 7.78 7.81 7.78 7.79 7.80 7.76 7.81 7.75 7.79 7.77 7.77 7.79 Mg# 0.30 0.33 0.29 0.28 0.27 0.30 0.31 0.33 0.32 0.34 0.34 0.33 0.33 0.34 0.36 0.34 T(℃) 651.93 658.34 662.65 670.67 667.59 665.50 673.55 657.52 664.55 678.05 673.30 681.07 682.69 682.28 669.56 678.18 XAn - - - - - - - - - - - - - - - - XAb - - - - - - - - - - - - - - - - XOr - - - - - - - - - - - - - - - - XAlm - - - - - - - - - - - - - - - - XSps - - - - - - - - - - - - - - - - Xpy - - - - - - - - - - - - - - - - XGrs - - - - - - - - - - - - - - - - 续表2 样品 KP2202 位置 - 边部 核部 矿物 Ms Pl Grt Grt SiO2 45.44 45.36 45.60 45.33 45.76 45.74 61.80 62.30 61.47 36.66 36.54 37.05 36.37 36.23 36.94 36.56 TiO2 1.09 1.14 0.62 0.71 0.62 0.65 0.00 0.05 0.02 0.06 0.08 0.10 0.06 0.03 0.00 0.08 Al2O3 35.01 34.91 35.29 35.11 35.43 34.84 24.06 23.28 24.25 20.64 21.19 21.14 21.02 20.84 20.98 20.83 Cr2O3 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.03 0.00 0.02 0.00 0.04 0.00 0.00 0.00 0.00 FeO 1.50 1.52 1.68 1.67 1.54 1.65 0.15 0.18 0.08 29.03 28.37 30.50 33.61 33.81 33.93 33.70 MnO 0.00 0.01 0.09 0.02 0.06 0.01 0.00 0.00 0.04 8.10 6.34 5.91 5.62 5.64 5.58 5.37 MgO 0.54 0.60 0.57 0.54 0.52 0.62 0.00 0.01 0.01 1.36 1.25 1.36 1.51 1.55 1.61 1.63 CaO 0.02 0.00 0.06 0.00 0.08 0.00 5.94 5.71 6.28 3.45 5.26 3.41 1.27 1.05 1.02 0.97 Na2O 0.36 0.40 0.50 0.34 0.40 0.33 8.33 8.48 8.36 0.00 0.00 0.00 0.01 0.03 0.02 0.02 K2O 11.28 11.44 11.12 10.89 11.26 11.03 0.19 0.18 0.22 0.00 0.02 0.00 0.00 0.00 0.00 0.03 SrO 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.16 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NiO 0.00 0.02 0.04 0.01 0.00 0.02 0.00 0.03 0.01 0.01 0.00 0.00 0.01 0.00 0.02 0.02 Totals 95.24 95.39 95.57 94.63 95.68 94.90 100.53 100.41 100.82 99.34 99.04 99.51 99.48 99.19 100.09 99.22 Oxygens 11.00 11.00 11.00 11.00 11.00 11.00 8.00 8.00 8.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 Si 3.05 3.04 3.05 3.05 3.05 3.07 2.73 2.76 2.72 3.00 2.98 3.01 2.98 2.98 3.00 3.00 Ti 0.06 0.06 0.03 0.04 0.03 0.03 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.01 Al 2.77 2.76 2.78 2.79 2.79 2.76 1.25 1.22 1.26 1.99 2.04 2.02 2.03 2.02 2.01 2.01 Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe3+ 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.01 0.03 0.00 0.00 Fe2+ 0.08 0.09 0.09 0.09 0.09 0.09 0.00 0.00 0.00 1.97 1.93 2.07 2.29 2.29 2.31 2.31 Mn 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.56 0.44 0.41 0.39 0.39 0.38 0.37 Mg 0.05 0.06 0.06 0.05 0.05 0.06 0.00 0.00 0.00 0.17 0.15 0.16 0.18 0.19 0.20 0.20 Ca 0.00 0.00 0.00 0.00 0.01 0.00 0.28 0.27 0.30 0.30 0.46 0.30 0.11 0.09 0.09 0.09 Na 0.05 0.05 0.07 0.04 0.05 0.04 0.71 0.73 0.72 0.00 0.00 0.00 0.00 0.01 0.00 0.00 K 0.97 0.98 0.95 0.94 0.96 0.95 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Sum 7.02 7.04 7.04 7.01 7.03 7.01 5.00 5.00 5.01 8.00 8.00 7.98 8.00 8.00 7.99 7.99 Mg# 0.39 0.41 0.38 0.36 0.38 0.40 - - - - - - - - - - T(°C) - - - - - - - - - - - - - - - - XAn - - - - - - 0.28 0.27 0.29 - - - - - - - XAb - - - - - - 0.71 0.72 0.70 - - - - - - - XOr - - - - - - 0.01 0.01 0.01 - - - - - - - XAlm - - - - - - - - - 0.66 0.65 0.70 0.77 0.77 0.78 0.78 XSps - - - - - - - - - 0.19 0.15 0.14 0.13 0.13 0.13 0.13 Xpy - - - - - - - - - 0.06 0.05 0.06 0.06 0.06 0.07 0.07 XGrs - - - - - - - - - 0.10 0.15 0.10 0.04 0.03 0.03 0.03 注:Mg#=Mg/(Mg+Fe2+), XAn = Ca/(Ca+Na+K), XAb = Na/(Ca+Na+K), XOr = K/(Ca+Na+K); XAlm = Fe2+/(Fe2++ Mn + Mg + Ca), XSps = Mn/
(Fe2+ + Mn + Mg + Ca), XPy = Mg/(Fe2+ + Mn + Mg + Ca), XGrs = Ca/(Fe2+ + Mn + Mg + Ca)。表 3 糜棱岩化含金云母大理岩样品KP-1中金云母成分
Table 3 Mineral compositions of phlogopite in the mylonitizd phlogopite-bearing marble sample KP-1
样品 KP-1 矿物 Phl SiO2 42.92 43.62 43.77 43.51 42.62 43.51 42.03 43.87 43.86 44.71 43.33 41.89 42.29 43.08 TiO2 0.60 0.82 0.55 0.39 0.55 0.73 0.78 0.46 0.41 0.39 0.49 0.53 0.57 0.62 Al2O3 16.35 15.69 15.68 16.11 16.33 16.48 16.59 15.23 15.02 15.02 15.95 17.42 17.57 17.54 FeO 1.45 1.62 1.23 1.91 1.35 1.48 1.70 1.57 1.48 1.55 2.02 1.71 1.87 1.82 MnO 0.02 0.00 0.03 0.00 0.01 0.03 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 MgO 22.49 22.69 22.96 22.92 22.37 22.06 22.36 23.16 22.77 23.38 22.63 22.06 21.88 21.84 CaO 0.02 0.02 0.05 0.02 0.06 0.04 0.00 0.11 0.05 0.02 0.02 0.08 0.07 0.09 Na2O 0.09 0.00 0.08 0.05 0.03 0.05 0.08 0.03 0.03 0.02 0.00 0.11 0.09 0.04 K2O 10.34 10.31 10.22 9.94 10.51 10.45 10.61 10.29 10.39 10.40 10.41 10.60 10.69 10.78 Totals 94.27 94.75 94.56 94.86 93.83 94.82 94.15 94.78 94.01 95.49 94.85 94.41 95.03 95.79 Oxygens 11 11 11 11 11 11 11 11 11 11 11 11 11 11 Si 3.01 3.04 3.05 3.02 3.00 3.03 2.96 3.06 3.08 3.09 3.02 2.94 2.95 2.98 Ti 0.03 0.04 0.03 0.02 0.03 0.04 0.04 0.02 0.02 0.02 0.03 0.03 0.03 0.03 Al 1.35 1.29 1.29 1.32 1.36 1.35 1.38 1.25 1.24 1.22 1.31 1.44 1.45 1.43 Fe3+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe2+ 0.09 0.09 0.07 0.11 0.08 0.09 0.10 0.09 0.09 0.09 0.12 0.10 0.11 0.11 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 2.35 2.36 2.38 2.37 2.35 2.29 2.35 2.40 2.38 2.41 2.35 2.31 2.28 2.25 Ca 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.01 Na 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.02 0.01 0.01 K 0.92 0.92 0.91 0.88 0.94 0.93 0.95 0.91 0.93 0.92 0.93 0.95 0.95 0.95 Sum 7.76 7.74 7.74 7.74 7.77 7.73 7.79 7.76 7.75 7.74 7.76 7.79 7.78 7.76 Mg# 0.97 0.96 0.97 0.96 0.97 0.96 0.96 0.96 0.96 0.96 0.95 0.96 0.95 0.96 注:Mg#=Mg/(Mg+Fe2+)。 表 4 用于变质相平衡模拟计算的全岩主量元素成分
Table 4 Whole-rock compositions used for phase equilibrium modelling
样品号 全岩成分 (%) SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O P2O5 LOI Total KP-3 71.24 0.65 12.38 2.27 3.22 0.04 2.28 0.15 1.41 3.33 0.07 2.37 99.41 KP-4 79.14 0.52 9.34 1.78 1.88 0.03 1.84 0.11 0.11 2.76 0.05 2.22 99.78 KP2202 67.62 0.83 15.35 1.14 4.56 0.12 1.54 0.94 1.14 4.30 0.06 1.67 99.27 样品号 相平衡模拟中的各组分含量(mol%) SiO2 Al2O3 CaO MgO FeO K2O Na2O TiO2 O* KP-3 71.790 7.351 0.162 3.425 4.436 2.140 1.377 0.493 0.861 图9a、图9b KP-4 78.552 5.463 0.117 2.723 2.890 1.747 0.106 0.388 0.665 图10a、图10b KP2202 71.096 9.510 1.059 2.414 4.913 2.883 1.162 0.656 0.452 图11a、图11b 表 5 二云母石英片岩样品KP-3的原位LA–ICP–MS黑云母和白云母Rb–Sr同位素数据
Table 5 In-situ LA–ICP–MS biotite and muscovite Rb–Sr isotopic data for two-mica quartz schist sample KP-3
点位 87Rb/86Sr ±1σ 87Sr/86Sr ±1σ KP-3-1 18.0166 0.5389 0.7905 0.0054 KP-3-2 29.3416 0.7385 0.8532 0.006 KP-3-3 16.2009 0.2907 0.8181 0.0062 KP-3-4 11.5061 0.3663 0.7899 0.0087 KP-3-5 18.3369 0.634 0.7584 0.0045 KP-3-6 12.2389 0.2162 0.8048 0.0076 KP-3-7 9.3939 0.2595 0.7795 0.0064 KP-3-8 7.7139 0.1553 0.7546 0.0055 KP-3-9 21.9059 1.0708 0.792 0.0062 KP-3-10 25.4976 1.1164 0.8426 0.0173 KP-3-11 14.0422 0.6728 0.7924 0.0106 KP-3-12 5.4361 0.1816 0.7467 0.0082 KP-3-13 25.5866 1.2185 0.8107 0.0158 KP-3-14 13.3642 0.3398 0.7751 0.0106 KP-3-15 23.5856 0.3439 0.8086 0.0043 KP-3-16 22.733 0.6971 0.7778 0.0089 KP-3-17 9.3486 0.2784 0.7632 0.0067 KP-3-18 13.6249 0.4057 0.7588 0.0059 KP-3-19 14.5342 0.3112 0.804 0.0065 KP-3-20 8.2599 0.2115 0.7797 0.006 KP-3-21 12.2192 0.2215 0.8111 0.0043 KP-3-22 7.9982 0.1289 0.7937 0.0036 KP-3-23 12.193 0.2094 0.7927 0.0043 KP-3-24 19.7496 0.2937 0.795 0.005 KP-3-25 15.4003 0.207 0.7731 0.0056 KP-3-26 9.3778 0.2017 0.7779 0.0034 KP-3-27 24.297 1.0354 0.8161 0.0112 KP-3-28 12.085 0.3581 0.7911 0.0082 KP-3-29 33.6078 0.9551 0.8365 0.0091 KP-3-30 7.9611 0.246 0.7531 0.0046 KP-3-31 49.9564 4.4104 0.8407 0.0177 KP-3-32 4.1449 0.1021 0.7694 0.0053 KP-3-33 7.4286 0.1467 0.7646 0.0044 KP-3-34 20.7555 0.8895 0.8076 0.0073 KP-3-35 27.518 0.5935 0.8106 0.0049 KP-3-36 1.5058 0.1521 0.8035 0.0167 KP-3-37 1.2356 0.2309 0.8377 0.051 KP-3-38 0.2741 0.0215 0.7836 0.0107 KP-3-39 0.1349 0.0185 0.6885 0.0255 KP-3-40 0.3264 0.0426 0.7562 0.0312 表 6 二云母石英片岩样品KP-4原位LA–ICP–MS黑云母和白云母Rb–Sr同位素数据
Table 6 In-situ LA–ICP–MS biotite and muscovite Rb–Sr isotopic data for two-mica quartz schist sample KP-4
点位 87Rb/86Sr ±1σ 87Sr/86Sr ±1σ KP-4-1 25.4466 0.454 0.8146 0.01 KP-4-2 41.2259 0.8178 0.8114 0.0079 KP-4-3 50.6532 1.1725 0.7922 0.0087 KP-4-4 26.9311 0.438 0.8014 0.0064 KP-4-5 29.0531 0.6666 0.8158 0.0067 KP-4-8 33.0924 1.6649 0.7448 0.0052 KP-4-9 16.6476 0.937 0.7454 0.0037 KP-4-10 41.2109 0.9943 0.8229 0.0076 KP-4-11 52.4346 0.8291 0.8285 0.0066 KP-4-12 2.8604 0.0843 0.7251 0.0041 KP-4-15 26.8263 1.3235 0.8287 0.0105 KP-4-16 34.8779 2.2549 0.8122 0.0077 KP-4-17 17.2552 0.4462 0.7808 0.0089 KP-4-18 23.5465 0.563 0.8049 0.007 KP-4-19 50.8047 1.5759 0.8137 0.0101 KP-4-20 97.7716 2.5025 0.936 0.0087 KP-4-21 18.9715 0.5902 0.7807 0.0095 KP-4-22 41.6778 2.2637 0.8275 0.0074 KP-4-23 20.7999 1.0744 0.8215 0.0108 KP-4-25 41.9771 0.9381 0.7939 0.0067 KP-4-26 22.8923 0.7196 0.829 0.0054 KP-4-27 31.4178 1.6919 0.7813 0.0101 KP-4-28 75.0006 1.6558 0.9076 0.0148 KP-4-29 39.9303 0.4539 0.8809 0.0064 KP-4-30 32.9889 0.4273 0.8558 0.0057 KP-4-31 23.0713 0.4501 0.8065 0.007 KP-4-32 25.7233 0.2788 0.8232 0.0048 KP-4-33 22.6323 0.6414 0.7783 0.0051 KP-4-34 28.391 0.3844 0.8181 0.0062 KP-4-35 22.4479 0.319 0.814 0.0049 KP-4-36 2.8775 0.0568 0.7304 0.0022 KP-4-37 3.76 0.1344 0.7325 0.0032 KP-4-38 2.9363 0.067 0.7258 0.0018 KP-4-39 1.4073 0.0335 0.7136 0.0018 KP-4-40 1.6294 0.0683 0.7213 0.0016 表 7 含石榴子石二云母石英片岩样品KP2202原位LA–ICP–MS黑云母和白云母Rb–Sr同位素数据
Table 7 In-situ LA–ICP–MS biotite and muscovite Rb–Sr isotopic data for garnet-bearing two-mica quartz schist sample KP2202
点位 87Rb/86Sr ±1σ 87Sr/86Sr ±1σ 备注 KP2202-1 21.3446 0.3768 0.9061 0.0048 Ms type-1 KP2202-2 19.0802 0.3769 0.8668 0.0042 Ms type-1 KP2202-3 16.1607 0.2511 0.8231 0.0034 Ms type-1 KP2202-4 16.9611 0.2304 0.8289 0.0036 Ms type-1 KP2202-5 18.6972 0.2885 0.8846 0.0048 Ms type-1 KP2202-6 17.0929 0.2986 0.8348 0.0044 Ms type-1 KP2202-7 18.5684 0.3145 0.8665 0.0049 Ms type-1 KP2202-30 16.5679 0.2640 0.8370 0.0051 Ms type-1 KP2202-31 17.7241 0.3035 0.8377 0.0039 Ms type-1 KP2202-32 18.4186 0.3005 0.8608 0.0037 Ms type-1 KP2202-40 17.4755 0.2839 0.8292 0.0035 Ms type-1 KP2202-41 17.9974 0.4653 0.8317 0.0037 Ms type-1 KP2202-42 17.6600 0.2556 0.8307 0.0043 Ms type-1 KP2202-43 16.9642 0.2634 0.7930 0.0043 Ms type-1 KP2202-44 16.5281 0.2798 0.7920 0.0034 Ms type-1 KP2202-45 16.7014 0.3672 0.8173 0.0042 Ms type-1 KP2202-46 16.5453 0.3081 0.8112 0.0036 Ms type-1 KP2202-11 16.9159 0.2898 0.7945 0.0044 Ms type-2 KP2202-12 18.1469 0.3106 0.8010 0.0036 Ms type-2 KP2202-13 17.9112 0.3321 0.7941 0.0043 Ms type-2 KP2202-14 19.9469 0.3315 0.7963 0.0041 Ms type-2 KP2202-22 18.9035 0.3015 0.8021 0.0043 Ms type-2 KP2202-23 19.8987 0.3443 0.8003 0.0038 Ms type-2 KP2202-24 16.6555 0.3950 0.7835 0.0034 Ms type-2 KP2202-25 19.9471 0.3723 0.7958 0.0044 Ms type-2 KP2202-26 18.9892 0.3332 0.7960 0.0048 Ms type-2 KP2202-27 13.2982 0.4708 0.7900 0.0042 Ms type-2 KP2202-28 21.1990 0.5195 0.7927 0.0044 Ms type-2 KP2202-29 18.4951 0.4068 0.7961 0.0044 Ms type-2 KP2202-33 12.7696 1.1655 0.7887 0.0030 Ms type-2 KP2202-34 20.1844 0.5434 0.8058 0.0044 Ms type-2 KP2202-35 20.0061 0.3414 0.7961 0.0042 Ms type-2 KP2202-36 20.5787 0.3102 0.7904 0.0041 Ms type-2 KP2202-8 160.8024 8.5605 1.0268 0.0116 Bt KP2202-9 144.9303 10.2530 1.0157 0.0092 Bt KP2202-10 213.5181 8.7199 1.0947 0.0099 Bt KP2202-15 94.4528 9.3357 0.9103 0.0055 Bt KP2202-16 159.5003 4.9954 1.0145 0.0085 Bt KP2202-17 13.2294 1.5834 0.7817 0.0039 Bt KP2202-18 167.0161 7.1487 1.0332 0.0092 Bt KP2202-19 356.2216 22.0736 1.3801 0.0217 Bt KP2202-20 298.3693 22.7725 1.1905 0.0173 Bt KP2202-21 88.7981 7.0720 0.9202 0.0058 Bt KP2202-37 105.1556 9.6343 0.8970 0.0079 Bt KP2202-38 65.7936 2.7566 0.8580 0.0062 Bt KP2202-39 125.3506 3.5819 0.9300 0.0086 Bt KP2202-47 219.2769 13.2706 1.0912 0.0131 Bt KP2202-48 19.1462 1.1634 0.7931 0.0047 Bt KP2202-49 174.1023 10.2901 1.0229 0.0126 Bt KP2202-50 27.7117 1.1152 0.7805 0.0040 Bt -
陈龙龙, 唐利, 沈彦谋, 等. 秦岭造山带栾川Mo-W矿集区和柞水–山阳Cu-Mo矿集区斑岩型矿床成矿差异性对比[J]. 西北地质, 2024, 57(2): 67−89. CHEN Longlong, TANG Li, SHEN Yanmou, et al. Comparison on Metallogenic Differences of Porphyry Deposits between Luanchuan Mo-W and Zhashui-Shanyang Cu-Mo Ore-clusters in Qinling Orogenic Belt: Constraints of Magmatic Source and Metallogenic Conditions[J]. Northwestern Geology, 2024, 57(2): 67−89.
陈能松, 韩郁菁, 游振东, 等. 豫西东秦岭造山带核部杂岩全岩Sm-Nd、Rb-Sr和单晶锆石~(207)Pb-~(206)Pb计时及其地壳演化[J]. 地球化学, 1991(03): 219–228 doi: 10.3321/j.issn:0379-1726.1991.03.003 CHEN Nengsong, HAN Yuqing, YOU Zhendong, et al. Whole-rock Sm–Nd, Rb–Sr, and single grain zircon Pb–Pb dating of complex rocks from the interior of the Qinling orogenic belt, Western Henan and its crustal evolution[J]. Geochemica, 1991, 20(3): 219–228. doi: 10.3321/j.issn:0379-1726.1991.03.003
丁丽雪, 马昌前, 李建威, 等. 华北克拉通南缘蓝田和牧护关花岗岩体: LA-ICPMS 锆石 U–Pb 年龄及其构造意义[J]. 地球化学, 2010, 39(5): 401–413 DING Lixue, MA Changqian, LI Jianwei, et al. LA-ICPMS zircon U–Pb ages of the Lantian and Muhuguan granitoid plutons, southern margin of the North China craton: Implications for tectonic setting[J]. Geochimica, 2010, 39(5): 401–413.
第五春荣, 孙勇, 刘良, 等. 北秦岭宽坪杂岩的解体及新元古代 N-MORB[J]. 岩石学报, 2010 (7): 2025–2038 DIWU Chunrong, SUN Yong, LIU Liang, et al. The disintegration of Kuanping Group in North Qinling orogenic belts and Neo-proterozoic N-MORB[J]. Acta Petrologica Sinica, 2010, 26(7): 2025–2038.
胡娟. 桐柏北部宽坪群变质作用研究[D]. 北京: 中国地质科学院, 2010 HU Juan. Study on metamorphism of the KuanPing Group, northern Tongba[D]. Beijing: Chinese Academy of Geological Sciences, 2010.
李康宁, 汤庆艳, 栾晓刚, 等. 西秦岭三叠纪大河坝组砂岩构造背景与物质来源[J]. 西北地质, 2024, 57(3): 113−127. LI Kangning, TANG Qingyan, LUAN Xiaogang, et al. Tectonic Setting and Provenance of Sandstones from Triassic Daheba Formation in the West Qinling Orogenic Belt[J]. Northwestern Geology, 2024, 57(3): 113−127.
李靠社. 陕西宽坪杂岩变基性熔岩锆石 U–Pb 年龄[J]. 陕西地质, 2002, 20(1): 72–78 doi: 10.3969/j.issn.1001-6996.2002.01.010 LI Kaoshe. Zircon U–Pb age of meta-basic lava from the Kuanping Rock Group, Shaanxi Province[J]. Geology of Shaanxi, 2002, 20(1): 72–78. doi: 10.3969/j.issn.1001-6996.2002.01.010
李三忠, 张国伟, 李亚林, 等. 勉县地区勉略带内麻粒岩的发现及构造意义[J]. 岩石学报, 2000, 16(2): 220–226 doi: 10.3321/j.issn:1000-0569.2000.02.011 LI Sanzhong, ZHANG Guowei, LI Yalin, et al. Discovery of granulite in the Mianxian-Lueyang suture zone, Mianxian area and its tectonic significance[J]. Acta Petrologica Sinica, 2000, 16(2): 220–226. doi: 10.3321/j.issn:1000-0569.2000.02.011
刘良, 陈丹玲, 王超, 等. 阿尔金, 柴北缘与北秦岭高压-超高压岩石年代学研究进展及其构造地质意义[J]. 西北大学学报: 自然科学版, 2009 (3): 472–479. LIU Liang, CHEN Danling, WANG Chao, et al. New progress on geochronology of high-pressure/ultrahigh-pressure metamorphic rocks from the South Altyn Tagh, the North Qaidam and the North Qinling orogenic, NW China and their geological significance[J]. Journal of Northwest University (Natural Science Edition), 2009, 39(3): 472–479.
刘良, 廖小莹, 张成立, 等. 北秦岭高压-超高压岩石的多期变质时代及其地质意义[J]. 岩石学报, 2013, 29(5): 1634–1656 LIU Liang, LIAO Xiaoying, ZHANG Chengli, et al. , Multi-metamorphic timings of HP-UHP rocks in the North Qingling and their geological implications[J], Acta Petrologica Sinica, 2013, 29(5): 1634–1656.
马大铨, 李志昌, 肖志发. 鄂西崆岭杂岩的组成, 时代及地质演化[J]. 地球学报: 中国地质科学院院报, 1997, 18(3): 233–241 MA Daquan, LI Zhichang, XIAO Zhifa. The constitute, geochronology and geologic evolution of the Kongling complex, western Hubei[J]. Acta Geoscientia Sinica, 1997, 18(3): 233–241.
秦海鹏, 吴才来, 武秀萍, 等. 秦岭造山带蟒岭花岗岩锆石 LA-ICP-MSU-Pb 年龄及其地质意义[J]. 地质论评, 2012, 58(4): 783–793 doi: 10.3969/j.issn.0371-5736.2012.04.019 QIN Haipeng, WU Cailai, WU Xiuping, et al. LA-ICP-MS Zircon U-Pb ages and implications for tectonic setting of the Mangling granitoid plutons in Qinling Orogen Belt[J]. Geological Review, 2012, 58(4): 783–793. doi: 10.3969/j.issn.0371-5736.2012.04.019
冉亚洲, 陈涛, 梁文天, 等. 西秦岭郎木寺组火山岩锆石U–Pb年龄及其构造意义[J]. 西北地质, 2024, 57(1): 110−121. RAN Yazhou, CHEN Tao, LIANG Wentian, et al. Zircon U–Pb Age of Volcanic Rocks from the Langmusi Formation in the Western Qinling Mountains and Its Tectonic Significance[J]. Northwestern Geology, 2024, 57(1): 110−121.
陕西省地质局区测队. 东江口幅I-49-19 1/20万地质图矿产图说明书[DS]. 全国地质资料馆, 1966 陕西地质局13队. 西安幅I-49-13 1/20万地质矿产图及其说明书[DS]. 全国地质资料馆, 1972 魏春景, 朱文萍. 多硅白云母地质压力计的研究进展[J]. 地质通报, 2007, 26(9): 1123–1130 doi: 10.3969/j.issn.1671-2552.2007.09.014 WEI Chunjing, ZHU Wenping. Progress in the study of phengite geobarometry[J]. Geological Bulletin of China, 2007, 26(9): 1123–1130. doi: 10.3969/j.issn.1671-2552.2007.09.014
王汉辉, 唐利, 杨勃畅, 等. 东秦岭黄水庵碳酸岩型Mo–REE矿床方解石地球化学特征和氟碳铈矿U–Th–Pb年龄及其意义. 西北地质, 2023, 56(1): 48−62. WANG Hanhui, TANG Li, YANG Bochang, et al. Geochemical Characteristics of Calcite and Bastnäsite U–Th–Pb Age of the Huangshui’an Carbonatite–hosted Mo–REE Deposit, Eastern Qinling. Northwestern Geology, 2023, 56(1): 48−62.
王宗起, 闫臻, 王涛, 等. 秦岭造山带主要疑难地层时代研究的新进展[J]. 地球学报, 2009, 30(5): 561–570 doi: 10.3321/j.issn:1006-3021.2009.05.001 WANG Zongqi, YAN Zhen, WANG Tao, et al. New advances in the study on ages of metamorphic strata in the Qinling orogenic belt[J]. Acta Geoscientica Sinica, 2009, 30(5): 561–570. doi: 10.3321/j.issn:1006-3021.2009.05.001
王晓霞, 王涛, 齐秋菊, 等. 秦岭晚中生代花岗岩时空分布, 成因演变及构造意义[J]. 岩石学报, 2011, 27(6): 1573–1593 WANG Xiaoxia, WANG Tao, QI Qiuju, et al. Temporal-spatial variations, origin and their tectonic significance of the Late Mesozoic granites in the Qinling, Central China[J]. Acta Petrologica Sinica, 2011, 27(6): 1573–1593.
王海杰, 陈丹玲, 任云飞, 等. 北秦岭构造带与华北板块关系探讨: 来自宽坪杂岩变碎屑岩锆石 U-Pb 年代学与变质作用证据[J]. 岩石学报, 2021, 37(5): 1489–1507 doi: 10.18654/1000-0569/2021.05.10 WANG HaiJie, CHEN DanLing, REN YunFei, et al. The relationship between the North Qinling Belt and the North China Craton: Constrains from zircon U-Pb geochronology and metamorphism of metaclastic rocks from the Kuanping Complex[J]. Acta Petrologica Sinica, 2021, 37(5): 1489–1507. doi: 10.18654/1000-0569/2021.05.10
肖思云, 张维吉, 宋子季, 等. 北秦岭变质地层[M]. 西安: 西安交通大学出版社, 1988 向华, 钟增球, 李晔, 等. 北秦岭造山带早古生代多期变质与深熔作用: 锆石 U–Pb 年代学证据[J]. 岩石学报, 2014 (8): 2421–2434 XIANG Hua, ZHONG ZengQiu, LI Ye, et al. Early Paleozoic polymetamorphism and anatexis in the North Qinling orogen: Evidence from U-Pb zircon geochronology[J]. Acta Petrologica Sinica, 2014, 30(8): 2421-2434.
杨阳, 王晓霞, 柯昌辉, 等. 北秦岭蟒岭岩体的锆石 U-Pb 年龄, 地球化学及其演化[J]. 矿床地质, 2014, 33(1): 14-36 doi: 10.3969/j.issn.0258-7106.2014.01.002 YANG Yang, WANG Xiaoxia, KE Changhui, et al. Zircon U-Pb ages, geochemistry and evolution of Mangling pluton in North Qinling Mountains[J]. Mineral Deposits, 2014, 33(1): 14–36. doi: 10.3969/j.issn.0258-7106.2014.01.002
闫全人, 王宗起, 闫臻, 等. 秦岭造山带宽坪群中的变铁镁质岩的成因, 时代及其构造意义[J]. 地质通报, 2008, 27(9): 1475–1492 doi: 10.3969/j.issn.1671-2552.2008.09.010 YAN Quanren, WANG Zongqi, YAN Zhen, et al. Origin, age and tectonic implications of metamafic rocks in the Kuanping Group of the Qinling orogenic belt, China[J]. Geological Bulletin of China, 2008, 27(9): 1475-1492. doi: 10.3969/j.issn.1671-2552.2008.09.010
张维吉. 宽坪群的层序划分及时代归属[J]. 长安大学学报 (地球科学版), 1987, 1(9): 15–29 ZHANG Weiji. The subdivision of the Kuanping Group and its geological date[J]. Journal of Xi'an College of Geology, 1987, 1(9): 15–29.
张维吉, 马志和. 陕西蟒岭马河地区宽坪群多期褶皱变形[J]. 西安地质学院学报, 1988, (04), 33–42 ZHANG Weiji, MA Zhihe. The polydeformation of Kuanping Group at Mahe of Mangling, Shaanxi Province[J]. Journal of Xi’an College of Geology, 1988, (04), 33–42
张维吉, 李育敬. 陶湾群层序及时代研究[J]. 西安地质学院学报, 1989, 11(2): 1–10. ZHANG Weiji, LI Yujing. The sequences and the age of the Taowan Group[J]. Journal of Xi’an College of Geology, 1989, 11(2), 1–10
张宗清, 刘敦一, 付国民. 北秦岭变质地层同位素年代硏究[M]. 北京:地质出版社, 1994 张成立, 韩松. 陕西商州地区丹凤变质火山岩的地球化学特征[J]. 地质科学, 1994, 29(4): 384–392 ZHANG Chengli, HAN Song. The geochemical characteristics of Danfeng metavolcanic rocks in Shangzhou area, Shaanxi province[J]. Chinese Journal of Geology, 1994, 29(4): 384–392.
张宗清, 张旗. 北秦岭晚元古代宽坪蛇绿岩中变质基性火山岩的地球化学特征[J]. 岩石学报, 1995 (S1): 165–177 doi: 10.3321/j.issn:1000-0569.1995.z1.013 ZHANG Zongqin, ZHANG Qi. Geochemistry of metamorphosed late Proterozoic Kuanping ophiolite in the northern Qinling, China[J]. Acta Petrologica Sinica, 1995, 11(Suppl. ): 165–177. doi: 10.3321/j.issn:1000-0569.1995.z1.013
张国伟, 孟庆任, 赖绍聪. 秦岭造山带的结构构造[J]. 中国科学: B 辑, 1995a, 25(9): 994–1003 ZHANG Guowei, MENG Qingren, LAI Shaocong. Structural structure of Qinling orogenic belt[J]. Science in China (Series B), 1995, 25: 994–1003.
张国伟, 张宗清, 董云鹏. 秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义[J]. 岩石学报, 1995b, 11(2): 101–114 doi: 10.3321/j.issn:1000-0569.1995.02.002 ZHANG Guowei, ZHANG Zongqing, DONG Yunpeng. Nature of main tectono-lithostratigraphic units of the Qinling orogen: implications for the tectonic evolution[J]. Acta Petrologica Sinica, 1995, 11: 101–114. doi: 10.3321/j.issn:1000-0569.1995.02.002
张国伟, 张本仁, 袁学诚, 等. 秦岭造山带与大陆动力学[M]. 北京:科学出版社, 2001. 张成立, 王涛, 王晓霞. 秦岭造山带早中生代花岗岩成因及其构造环境[J]. 高校地质学报, 2008, 14(3): 304 doi: 10.3969/j.issn.1006-7493.2008.03.003 ZHANG Chengli, WANG Tao, WANG Xiaoxia. Origin and tectonic setting of the Early Mesozoic granitoids in Qinling orogenic belt[J]. Geological Journal of China Universities, 2008, 14(3): 304. doi: 10.3969/j.issn.1006-7493.2008.03.003
张建新, 于胜尧, 孟繁聪. 北秦岭造山带的早古生代多期变质作用[J]. 岩石学报, 2011, 27(04): 1179–1190 ZHANG Jianxin, YU Shengyao, MENG Fancong. Ployphase Early Paleozoic metamorphism in the northern Qinling orogenic belt[J]. Acta Petrologica Sinica, 2011, 27(4): 1179–1190.
Chen D L, Liu L, Sun Y, et al. LA-ICP-MS zircon U-Pb dating for high-pressure basic granulite from North Qinling and its geological significance[J]. Chinese Science Bulletin, 2004, 49: 2296–2304. doi: 10.1360/03wd0544
Capitani, D C , Petrakakis, K. The computation of equilibrium assemblage diagrams with Theriak/Domino software[J]. American mineralogist, 2010, 95(7): 1006–1016. doi: 10.2138/am.2010.3354
Cao H H, Li S Z, Zhao S J, et al. Detrital zircon geochronology of Neoproterozoic to early Paleozoic sedimentary rocks in the North Qinling Orogenic Belt: Implications for the tectonic evolution of the Kuanping Ocean[J]. Precambrian Research, 2016, 279: 1–16. doi: 10.1016/j.precamres.2016.04.001
Cheng H, Zhang C, Vervoort J D, et al. Timing of eclogite facies metamorphism in the North Qinling by U–Pb and Lu–Hf geochronology[J]. Lithos, 2012, 136: 46–59.
Diwu C R, Sun Y, Lin C L, et al. LA-(MC)-ICPMS U-Pb zircon geochronology and Lu-Hf isotope compositions of the Taihua complex on the southern margin of the North China Craton[J]. Chinese Science Bulletin, 2010, 55: 2557–2571.
Dong Y P, Zhang G W, Neubauer F, et al. Tectonic evolution of the Qinling orogen, China: review and synthesis[J]. Journal of Asian Earth Sciences, 2011a, 41(3): 213–237. doi: 10.1016/j.jseaes.2011.03.002
Dong Y P, Zhang G W, Hauzenberger C, et al. Palaeozoic tectonics and evolutionary history of the Qinling orogen: evidence from geochemistry and geochronology of ophiolite and related volcanic rocks[J]. Lithos, 2011b, 122(1–2): 39–56.
Dong Y P, Genser J, Neubauer F, et al. U-Pb and 40Ar/39Ar geochronological constraints on the exhumation history of the North Qinling terrane, China[J]. Gondwana Research, 2011c, 19(4): 881–893. doi: 10.1016/j.gr.2010.09.007
Dong Y P, Yang Z, Liu X M, et al. Neoproterozoic amalgamation of the Northern Qinling terrain to the North China Craton: Constraints from geochronology and geochemistry of the Kuanping ophiolite[J]. Precambrian Research, 2014, 255: 77–95. doi: 10.1016/j.precamres.2014.09.008
Dong Y P, Santosh M. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China[J]. Gondwana Research, 2016, 29(1): 1–40. doi: 10.1016/j.gr.2015.06.009
Dong Y P, Yang Z, Liu X M, et al. Mesozoic intracontinental orogeny in the Qinling Mountains, central China[J]. Gondwana Research, 2016b, 30: 144–158. doi: 10.1016/j.gr.2015.05.004
Dong Y P, Sun S S, Yang Z, et al. Neoproterozoic subduction-accretionary tectonics of the South Qinling Belt, China[J]. Precambrian Research, 2017, 293: 73–90. doi: 10.1016/j.precamres.2017.02.015
Dong Y P, Neubauer F, Genser J, et al. Timing of orogenic exhumation processes of the Qinling orogen: Evidence from 40Ar/39Ar dating[J]. Tectonics, 2018, 37(10): 4037–4067. doi: 10.1029/2017TC004765
Dong Y P, Sun S S, Santosh M, et al. Central China orogenic belt and amalgamation of East Asian continents[J]. Gondwana Research, 2021, 100: 131–194. doi: 10.1016/j.gr.2021.03.006
Dong Y P, Sun S S, Santosh M, et al. Cross Orogenic belts in Central China: Implications for the tectonic and paleogeographic evolution of the east Asian continental collage[J]. Gondwana Research, 2022, 109: 18–88. doi: 10.1016/j.gr.2022.04.012
England P C, Thompson A B. Pressure—temperature—time paths of regional metamorphism I. Heat transfer during the evolution of regions of thickened continental crust[J]. Journal of Petrology, 1984, 25(4): 894–928. doi: 10.1093/petrology/25.4.894
Gao S, Zhang B R, Li Z J. Geochemical evidence for Proterozoic continental arc and continental-margin rift magmatism along the northern margin of the Yangtze Craton, South China[J]. Precambrian Research, 1990, 47(3–4): 205–221.
Gao S, Ling W, Qiu Y, et al. Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton: evidence for cratonic evolution and redistribution of REE during crustal anatexis[J]. Geochimica et Cosmochimica Acta, 1999, 63(13–14): 2071–2088.
Gao S, Yang J, Zhou L, et al. Age and growth of the Archean Kongling terrain, South China, with emphasis on 3.3 Ga granitoid gneisses[J]. American Journal of science, 2011, 311(2): 153–182. doi: 10.2475/02.2011.03
Gao S, Zhang B R, Wang D P, et al. Geochemical evidence for the Proterozoic tectonic evolution of the Qinling Orogenic Belt and its adjacent margins of the North China and Yangtze cratons[J]. Precambrian Research, 1996, 80(1–2): 23–48.
Gorojovsky L, Alard O. Optimisation of laser and mass spectrometer parameters for the in situ analysis of Rb/Sr ratios by LA-ICP-MS/MS[J]. Journal of Analytical Atomic Spectrometry, 2020, 35(10): 2322–2336. doi: 10.1039/D0JA00308E
Guo J L, Gao S, Wu Y B, et al. 3.45 Ga granitic gneisses from the Yangtze Craton, South China: implications for Early Archean crustal growth[J]. Precambrian Research, 2014, 242: 82–95. doi: 10.1016/j.precamres.2013.12.018
Harley S L. The origins of granulites: a metamorphic perspective[J]. Geological Magazine, 1989, 126(3): 215–247. doi: 10.1017/S0016756800022330
Henry D J, Guidotti C V, Thomson J A. The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms[J]. American mineralogist, 2005, 90(2–3): 316–328.
He Y H, Zhao G C, Sun M, et al. SHRIMP and LA-ICP-MS zircon geochronology of the Xiong’er volcanic rocks: implications for the Paleo-Mesoproterozoic evolution of the southern margin of the North China Craton[J]. Precambrian Research, 2009, 168(3–4): 213–222.
Holland T J B, Powell R. An internally consistent thermodynamic data set for phases of petrological interest[J]. Journal of metamorphic Geology, 1998, 16(3): 309–343.
Holland T, Powell R. Activity–composition relations for phases in petrological calculations: an asymmetric multicomponent formulation[J]. Contributions to Mineralogy and Petrology, 2003, 145: 492–501. doi: 10.1007/s00410-003-0464-z
Holland T J B, Powell R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids[J]. Journal of metamorphic Geology, 2011, 29(3): 333–383. doi: 10.1111/j.1525-1314.2010.00923.x
Hu J, Liu X C, Chen L Y, et al. A ∼2.5 Ga magmatic event at the northern margin of the Yangtze craton: Evidence from U-Pb dating and Hf isotope analysis of zircons from the Douling Complex in the South Qinling orogen[J]. Chinese Science Bulletin, 2013, 58: 3564–3579. doi: 10.1007/s11434-013-5904-1
Lai S, Zhang G, Yang R. Identification of the island-arc magmatic zone in the Lianghe-Raofeng-Wuliba area, south Qinling and its tectonic significance[J]. Science in China Series D: Earth Sciences, 2000, 43: 69–81. doi: 10.1007/BF02911934
Li S, Hou Z, Yang Y, et al. Timing and geochemical characters of the Sanchazi magmatic arc in Mianlue tectonic zone, South Qinling[J]. Science in China Series D: Earth Sciences, 2004, 47(4): 317–328. doi: 10.1360/02YD0490
Liu X C, Jahn B M, Hu J, et al. Metamorphic patterns and SHRIMP zircon ages of medium‐to‐high grade rocks from the Tongbai orogen, central China: implications for multiple accretion/collision processes prior to terminal continental collision[J]. Journal of Metamorphic Geology, 2011, 29(9): 979–1002. doi: 10.1111/j.1525-1314.2011.00952.x
Liu X C, Jahn B M, Li S Z, et al. U‐Pb zircon age and geochemical constraints on tectonic evolution of the Paleozoic accretionary orogenic system in the Tongbai orogen, central China[J]. Tectonophysics, 2013, 599: 67–88. doi: 10.1016/j.tecto.2013.04.003
Liu Q, Wu Y B, Wang H, et al. Zircon U–Pb ages and Hf isotope compositions of migmatites from the North Qinling terrane and their geological implications[J]. Journal of Metamorphic Geology, 2014, 32(2): 177–193. doi: 10.1111/jmg.12065
Liu L, Liao X, Wang Y, et al. Early Paleozoic tectonic evolution of the North Qinling Orogenic Belt in Central China: Insights on continental deep subduction and multiphase exhumation[J]. Earth-Science Reviews, 2016, 159: 58–81. doi: 10.1016/j.earscirev.2016.05.005
Liao X Y, Liu L, Zhai M G, et al. Metamorphic evolution and Petrogenesis of garnet–corundum silica–undersaturated metapelitic granulites: A new case study from the Mianlüe Tectonic Zone of South Qinling, Central China[J]. Lithos, 2021, 392: 106154.
Massonne H J, Szpurka Z. Thermodynamic properties of white micas on the basis of high-pressure experiments in the systems k2o-mgo-al2o3-sio2-h2o and k2o-feo-al2o3-sio2-h2o[J]. Lithos, 1997, 41(1–3): 229–250.
Mao X H, Zhang J X, Yu S Y, et al. Early Paleozoic granulite-facies metamorphism and anatexis in the northern West Qinling orogen: Monazite and zircon U-Pb geochronological constraints[J]. Science China Earth Sciences, 2017, 60: 943–957. doi: 10.1007/s11430-016-9029-7
Ratschbacher L, Hacker B R, Calvert A, et al. Tectonics of the Qinling (Central China): tectonostratigraphy, geochronology, and deformation history[J]. Tectonophysics, 2003, 366(1–2): 1–53.
Smye A J, Greenwood L V, Holland T J B. Garnet–chloritoid–kyanite assemblages: eclogite facies indicators of subduction constraints in orogenic belts[J]. Journal of Metamorphic Geology, 2010, 28(7): 753–768. doi: 10.1111/j.1525-1314.2010.00889.x
Shi Y, Yu J H, Santosh M. Tectonic evolution of the Qinling orogenic belt, Central China: new evidence from geochemical, zircon U–Pb geochronology and Hf isotopes[J]. Precambrian Research, 2013, 231: 19–60. doi: 10.1016/j.precamres.2013.03.001
Sun S, Dong Y, He D, et al. Thickening and partial melting of the Northern Qinling Orogen, China: insights from zircon U–Pb geochronology and Hf isotopic composition of migmatites[J]. Journal of the Geological Society, 2019, 176(6): 1218–1231. doi: 10.1144/jgs2019-030
Thompson A B, England P C. Pressure—temperature—time paths of regional metamorphism II. Their inference and interpretation using mineral assemblages in metamorphic rocks[J]. Journal of Petrology, 1984, 25(4): 929–955. doi: 10.1093/petrology/25.4.929
Wang C Y, Alard O, Lai Y J, et al. Advances in in-situ Rb-Sr dating using LA-ICP-MS/MS: applications to igneous rocks of all ages and to the identification of unrecognized metamorphic events[J]. Chemical Geology, 2022, 610: 121073. doi: 10.1016/j.chemgeo.2022.121073
Wang X L, Jiang S Y, Dai B Z. Melting of enriched Archean subcontinental lithospheric mantle: Evidence from the ca. 1760 Ma volcanic rocks of the Xiong’er Group, southern margin of the North China Craton[J]. Precambrian Research, 2010, 182(3): 204–216. doi: 10.1016/j.precamres.2010.08.007
Wang Z Q, Gao L D, Wang T, et al. Microfossils from the siltstones and muddy slates: Constraint on the age of the Taowan Group in the Northern Qinling Orogenic Belt, Central China[J]. Science in China Series D: Earth Sciences, 2008, 51: 172–180. doi: 10.1007/s11430-007-0140-7
Wang H, Wu Y B, Gao S, et al. Eclogite origin and timings in the North Qinling terrane, and their bearing on the amalgamation of the South and North China Blocks[J]. Journal of Metamorphic Geology, 2011, 29(9): 1019–1031. doi: 10.1111/j.1525-1314.2011.00955.x
Wang X X, Wang T, Zhang C L. Neoproterozoic, Paleozoic, and Mesozoic granitoid magmatism in the Qinling Orogen, China: Constraints on orogenic process[J]. Journal of Asian Earth Sciences, 2013, 72: 129–151. doi: 10.1016/j.jseaes.2012.11.037
Wang X X, Wang T, Zhang C L. Granitoid magmatism in the Qinling orogen, central China and its bearing on orogenic evolution[J]. Science China Earth Sciences, 2015, 58: 1497–1512. doi: 10.1007/s11430-015-5150-2
Whitney D L, Evans B W. Abbreviations for names of rock-forming minerals[J]. American mineralogist, 2010, 95(1): 185–187. doi: 10.2138/am.2010.3371
Wu Y B, Zheng Y F. Tectonic evolution of a composite collision orogen: an overview on the Qinling–Tongbai–Hong'an–Dabie–Sulu orogenic belt in central China[J]. Gondwana Research, 2013, 23(4): 1402–1428. doi: 10.1016/j.gr.2012.09.007
White R W, Powell R, Holland T J B, et al. The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3[J]. Journal of Metamorphic Geology, 2000, 18(5): 497–511. doi: 10.1046/j.1525-1314.2000.00269.x
White R W, Powell R, Johnson T E. The effect of Mn on mineral stability in metapelites revisited: New a–x relations for manganese‐bearing minerals[J]. Journal of Metamorphic Geology, 2014a, 32(8): 809–828. doi: 10.1111/jmg.12095
White R W, Powell R, Holland T J B, et al. New mineral activity–composition relations for thermodynamic calculations in metapelitic systems[J]. Journal of Metamorphic Geology, 2014, 32(3): 261–286. doi: 10.1111/jmg.12071
Wu C M, Chen H X. Revised Ti-in-biotite geothermometer for ilmenite-or rutile-bearing crustal metapelites[J]. Science Bulletin, 2015, 60: 116–121. doi: 10.1007/s11434-014-0674-y
Woodhead J D, Hergt J M. Strontium, neodymium and lead isotope analyses of NIST glass certified reference materials: SRM 610, 612, 614[J]. Geostandards Newsletter, 2001, 25(2–3): 261–266.
Xu J, Wang Q, Yu X. Geochemistry of high-Mg andesites and adakitic andesite from the Sanchazi block of the Mian-Lue ophiolitic melange in the Qinling Mountains, central China: evidence of partial melting of the subducted Paleo-Tethyan crust[J]. Geochemical Journal, 2000, 34(5): 359–377. doi: 10.2343/geochemj.34.359
Xue F, Lerch M F, Kröner A, et al. Tectonic evolution of the East Qinling Mountains, China, in the Palaeozoic: a review and new tectonic model[J]. Tectonophysics, 1996a, 253(3–4): 271–284.
Xue F, Kröner A, Reischmann T, et al. Palaeozoic pre-and post-collision calc-alkaline magmatism in the Qinling orogenic belt, central China, as documented by zircon ages on granitoid rocks[J]. Journal of the Geological Society, 1996, 153(3): 409–417. doi: 10.1144/gsjgs.153.3.0409
Xue Y Y, Liu H Y, Wang Z Y, et al. Reworking of the Juvenile Crust in the Late Mesozoic in North Qinling, Central China. Journal of Earth Science, 2022, 33(3): 623–641.
Zhai X M, Day H W, Hacker B R, et al. Paleozoic metamorphism in the Qinling orogen, Tongbai Mountains, central China[J]. Geology, 1998, 26(4): 371–374. doi: 10.1130/0091-7613(1998)026<0371:PMITQO>2.3.CO;2
Zhang S B, Zheng Y F, Wu Y B, et al. Zircon U–Pb age and Hf isotope evidence for 3.8 Ga crustal remnant and episodic reworking of Archean crust in South China[J]. Earth and Planetary Science Letters, 2006a, 252(1–2): 56–71.
Zhang S B, Zheng Y F, Wu Y B, et al. Zircon isotope evidence for≥ 3.5 Ga continental crust in the Yangtze craton of China[J]. Precambrian Research, 2006b, 146(1–2): 16–34.
Zhang Q Q, Gao X Y, Chen R X, et al. Granulites record the tectonic evolution from collisional thickening to extensional thinning of the Tongbai orogen in central China[J]. Journal of Metamorphic Geology, 2020, 38(3): 265–295. doi: 10.1111/jmg.12522
Zhao T, Zhai M, Xia B, et al. Zircon U-Pb SHRIMP dating for the volcanic rocks of the Xiong’er Group: Constraints on the initial formation age of the cover of the North China Craton[J]. Chinese Science Bulletin, 2004, 49: 2495–2502.
Zhao G C, He Y H, Sun M. The Xiong'er volcanic belt at the southern margin of the North China Craton: petrographic and geochemical evidence for its outboard position in the Paleo-Mesoproterozoic Columbia Supercontinent[J]. Gondwana research, 2009, 16(2): 170v181.
Zhao S J, Li S Z, Liu X, et al. The northern boundary of the Proto-Tethys Ocean: Constraints from structural analysis and U–Pb zircon geochronology of the North Qinling Terrane[J]. Journal of Asian earth sciences, 2015, 113: 560–574. doi: 10.1016/j.jseaes.2015.09.005
Zhao Y H, Gou L L, Long X P, et al. Zircon U–Pb geochronology and clockwise P–T evolution of garnet-bearing migmatites from the Qinling complex in the Weiziping area of the Qinling Orogen, Central China: Implications for thermal relaxation after crustal thickening[J]. Journal of Asian Earth Sciences, 2020, 195: 104354. doi: 10.1016/j.jseaes.2020.104354
Zhu X Y, Chen F, Li S Q, et al. Crustal evolution of the North Qinling terrain of the Qinling Orogen, China: evidence from detrital zircon U–Pb ages and Hf isotopic composition[J]. Gondwana Research, 2011, 20(1): 194–204. doi: 10.1016/j.gr.2010.12.009
-
期刊类型引用(8)
1. 章双龙,肖富强,邹勇军. 江西赣南地区地热伴生氦气资源的发现及异常成因探讨. 天然气地球科学. 2024(03): 495-506 . 百度学术
2. 李剑,王晓波,徐朱松,崔会英,王晓梅,张斌,国建英,陶士振,陈践发,谢增业,田继先,王义凤. 中国氦气资源成藏规律与开发前景. 天然气地球科学. 2024(05): 851-868 . 百度学术
3. 王海华,薛迎喜,张炜,房大任,王海华,王铭晗. 全球天然氢勘查开发最新发展态势分析. 中国地质调查. 2024(03): 1-8 . 百度学术
4. 刘祥柏,陶士振,杨秀春,赵群,陈燕燕,刘自扬,裴向兵,王龙飞,伊伟,冯建秋,张谭,高建荣,陶小晚,柳庄小雪,李超正,杨怡青,陈悦. 煤系氦气富集机理与资源潜力-以鄂尔多斯盆地东缘为例. 煤田地质与勘探. 2024(09): 49-66 . 百度学术
5. 梅小元. 安徽阜阳盆地发现富氦级别的地热水伴生氦气资源. 资源环境与工程. 2024(06): 762-765 . 百度学术
6. 李玉宏,周俊林,韩伟,魏建设. 公益性氦气资源调查研究进展. 中国地质调查. 2023(04): 1-8 . 百度学术
7. 魏泽坤,冯旭亮,马佳月,杨柳,吴传波,刘凯轩. 鄂尔多斯盆地东南部重磁场特征及其氦气勘探意义. 西北地质. 2023(05): 98-110 . 本站查看
8. 陈磊,刘宗铭,孙洁. 中国氦气市场供需形势及氦气产业发展建议. 国际石油经济. 2023(10): 76-83 . 百度学术
其他类型引用(1)