ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

降雨诱发黄土滑坡–泥流的规律及阈值曲线研究

王家政, 辛鹏, 曹生鸿, 李先臣, 郭丹丹

王家政,辛鹏,曹生鸿,等. 降雨诱发黄土滑坡–泥流的规律及阈值曲线研究[J]. 西北地质,2025,58(2):102−110. doi: 10.12401/j.nwg.2024120
引用本文: 王家政,辛鹏,曹生鸿,等. 降雨诱发黄土滑坡–泥流的规律及阈值曲线研究[J]. 西北地质,2025,58(2):102−110. doi: 10.12401/j.nwg.2024120
WANG Jiazheng,XIN Peng,CAO Shenghong,et al. Study on Regularity and Threshold Curve of Rain-Induced Loess Landslide-Mudflow[J]. Northwestern Geology,2025,58(2):102−110. doi: 10.12401/j.nwg.2024120
Citation: WANG Jiazheng,XIN Peng,CAO Shenghong,et al. Study on Regularity and Threshold Curve of Rain-Induced Loess Landslide-Mudflow[J]. Northwestern Geology,2025,58(2):102−110. doi: 10.12401/j.nwg.2024120

降雨诱发黄土滑坡–泥流的规律及阈值曲线研究

基金项目: 国家自然科学基金“水力作用下新近纪硬土/软岩质滑带结构重构的过程及效应(42077276)”,中国地质调查局地质调查项目“渭河中上游城镇地质灾害风险调查”(DD20190717)联合资助
详细信息
    作者简介:

    王家政(1997−),男,硕士研究生,主要从事滑坡机制方面的研究。E−mail:x17806252143@163.com

    通讯作者:

    辛鹏(1984−),男,研究员,主要从事滑坡机制方面的研究。E−mail:xxiinnpp@126.com

  • 中图分类号: P642.22; TU411

Study on Regularity and Threshold Curve of Rain-Induced Loess Landslide-Mudflow

  • 摘要:

    为研究降雨诱发黄土滑坡-泥流的规律,论文设计了6组室内模型试验,分析了降雨诱发黄土滑坡-泥流的宏观变形过程、水文过程及位移变化规律,探讨了不同降雨强度、单次累计降雨量及坡度对滑坡发展的影响,并建立了发生滑坡及泥流时的阈值曲线。研究表明:在极端降雨条件下,黄土斜坡有滑动及滑动转流动两种破坏模式。当短时强降雨发生时,裂隙化斜坡内张性结构面充水,滑面强度降低,滑体以块体形式滑动,整个滑动过程表现出在长期蠕动中叠加间歇性加速滑动的特征,临界阈值曲线为:I=59D–0.67;当持续性降雨发生时,渐进滑动的斜坡体会出现强裂隙化区域,此区域内孔隙水压力持续升高,富水斜坡体会液化流动,流动过程具有持续高速流动的特征,临界阈值曲线为:E=200–2.5I。

    Abstract:

    In order to study the law of rain-induced loess landslide-mudflow, this paper designed six sets of laboratory model tests, analyzed the macroscopic deformation process, hydrological process and displacement change law of rain-induced loess landslide-mudflow, discussed the influence of different rainfall intensity, single cumulative rainfall and slope on landslide development, and established the threshold curve when landslide and mudflow occurred. The results show that there are two failure modes of loess slope under extreme rainfall conditions: sliding and sliding transflow. When short-term heavy rainfall occurs, the tensile structural surface of the fractured slope is filled with water, the strength of the sliding surface decreases, and the sliding body slides in the form of a block. The whole sliding process shows the characteristics of long-term creep superposition intermittent accelerated sliding, and the critical threshold curve is as follows: I=59D−0.67. When continuous rainfall occurs, a strong fissure area will appear on the slope with progressive sliding, and pore water pressure in this area will continue to rise. The water-rich slope will experience liquefaction flow, which is characterized by continuous high speed. The critical threshold curve is E=200−2.5I.

  • 图  1   物理模型装置和负压计埋设位置

    Figure  1.   Buried location of physical model device and negative pressure gauge

    图  2   E5试验滑动破坏过程

    a.初始状态;b.局部流土(第一次降雨130 min);c.拉张裂隙(第一次降雨200 min);d.局部滑动(第一次降雨213 min);e.裂隙扩展(第一次降雨300 min);f.滑动破坏(第一次降雨350 min)

    Figure  2.   Sliding failure process of E5 test

    图  3   E1试验滑动转流动破坏过程

    a.初始状态;b.裂隙发育(第三次降雨110 min);c.局部侵蚀(第四次降雨150 min);d.渐进滑动(第五次降雨300 min);e.强裂隙化区域(第五次降雨490 min);f.流动破坏(第六次降雨300 min)

    Figure  3.   Failure process of sliding flow in E1 test

    图  4   E1模型剖面2土壤基质吸力随时间变化关系曲线

    Figure  4.   Relation curve of soil matric suction with time in E1 model section 2

    图  5   E3试验1号点位移随时间变化曲线

    Figure  5.   E3 Test the displacement curve of point 1 with time

    图  6   E1试验4号点位移随时间变化曲线

    Figure  6.   Displacement curve of point 4 of E1 test with time

    图  7   E6试验3号点位移随时间变化曲线

    Figure  7.   Displacement curve of E6 test point No. 3 with time

    图  8   降雨期间滑动及流动破坏初始时间

    Figure  8.   Initial time of sliding and flow failure during rainfall

    图  9   E5、E4滑动转流动过程

    a. E5初始滑动;b. E5滑体滑落坡脚;c. E4初始滑动;d .E4滑体堆积坡面

    Figure  9.   Sliding and transforming flow processes of E5 and E4

    图  10   滑动阈值曲线

    Figure  10.   Sliding threshold curve

    图  11   泥流阈值曲线

    Figure  11.   Mudflow threshold curve

    表  1   试验工况

    Table  1   Test condition

    试验
    编号
    边坡
    角度
    降雨
    强度(mm·h)
    单次累计
    降雨量(mm)
    初始
    孔隙比
    E1 30° 6.19 61.9 0.965
    E2 30° 5.04 80.71 0.983
    E3 60° 6.19 55.7 0.965
    E4 60° 5.04 80.71 0.983
    E5 60° 17.89 148.5 0.965
    E6 60° 16.12 145.1 0.983
    下载: 导出CSV

    表  2   马兰黄土的基本物理参数

    Table  2   Basic physical parameters of Malan loess

    液限(%) 塑限(%) 湿陷系数 初始质量含水率(%) 初始干密度(g/cm3
    33.5 20.3 0.058 15 1.44
    下载: 导出CSV

    表  3   降雨方案

    Table  3   Rainfall scheme

    试验编号 降雨次数(次) 降雨持续时间(h) 总降雨量(mm)
    E1 9 10 557.1
    E2 9 16 726.39
    E3 9 9 501.3
    E4 5 16 403.55
    E5 2 8.3 297
    E6 4 9 580.4
    下载: 导出CSV

    表  4   模型试验破坏模式

    Table  4   Failure mode of model test

    试验编号破坏模式降雨强度(mm/h)
    E1滑动转流动6.19
    E2未发生明显破坏5.04
    E3滑动6.19
    E4滑动转流动5.04
    E5滑动17.89
    E6滑动转流动16.12
    下载: 导出CSV
  • 陈海霞, 王家鼎. 降雨影响黄土泥流起动的试验研究[J]. 西北大学学报(自然科学版), 2013, 43(3): 447−450.

    CHEN Haixia, WANG Jiading. Experimental research about the rainfall's effects on mudflow initiation[J]. Journal of Northwest UniversityNatural Science Edition,2013,43(3):447−450.

    陈伟, 骆亚生, 武彩萍. 人工降雨作用下黄土边坡的室内模型试验研究[J]. 中国农村水利水电, 2013(5): 100−104. doi: 10.3969/j.issn.1007-2284.2013.05.027

    CHEN Wei, LUO Yasheng, WU Caiping. The laboratory model test study of loess slope under the artificial rainfall[J]. China Rural Water and Hydropower,2013(5):100−104. doi: 10.3969/j.issn.1007-2284.2013.05.027

    付泉, 党光普, 李致博, 等. 基于分形维数耦合支持向量机和熵权模型的滑坡易发性研究[J]. 西北地质, 2024, 57(6): 255−267.

    FU Quan,DANG Guangpu,LI Zhibo,et al. Study of Landslide Susceptibility Mapping Based on Fractal Dimension Integrating Support Vector Machine with Index of Entropy Model[J]. Northwestern Geology,2024,57(6):255−267.

    黄森. 天水市“7.25”群发性降雨滑坡灾害预警模型研究[D]. 西安: 西北大学, 2021.

    HUANG Sen. Study on the early warning model of "7.25" mass rainfall landslide disaster in Tianshui City[D]. Xi'an:Northwest University, 2021.

    黄志全, 何鹏. 用有效降雨量监测黄土边坡稳定性的研究[J]. 华北水利水电学院学报, 2007, 28(6): 53−55.

    HUANG Zhiquan, HE Peng. Research of slope stability on effective rainfall[J]. Journal of North China Institute of Water Conservancy and Hydroelectric Power,2007,28(6):53−55.

    贾俊, 张茂省, 冯立, 等. 流态破坏型黄土滑坡滑带土临界特征[J]. 西北地质, 2019, 52(2): 136−147.

    JIA Jun, ZHANG Maosheng, FENG Li, et al. Critical characteristics of slip zone soil in loess landslide with flow failure pattern[J]. Northwestern Geology,2019,52(2):136−147.

    金艳丽, 戴福初. 饱和黄土的静态液化特性试验研究[J]. 岩土力学, 2008, 29(12): 3293−3298. doi: 10.3969/j.issn.1000-7598.2008.12.021

    JIN Yanli, DAI Fuchu. Experimental investigation of static liquefaction of saturated loess[J]. Rock and Soil Mechanics,2008,29(12):3293−3298. doi: 10.3969/j.issn.1000-7598.2008.12.021

    李明, 高维英, 杜继稳. 陕西黄土高原诱发地质灾害降雨临界值研究[J]. 陕西气象, 2010, (5): 1−5. doi: 10.3969/j.issn.1006-4354.2010.05.001

    LI Ming, GAO Weiying, DU Jiwen. Study on the critical value of rainfall induced geological disasters in Loess Plateau of Shaanxi Province[J]. Journal of Shaanxi Meteorology,2010,(5):1−5. doi: 10.3969/j.issn.1006-4354.2010.05.001

    李同录, 李颖喆, 赵丹旗, 等. 对水致黄土斜坡破坏模式及稳定性分析原则的思考[J]. 中国地质灾害与防治学报, 2022, 33(2): 25−32.

    LI Tonglu, LI Yingzhe, ZHAO Danqi, et al. Thoughts on modes of loess slope failure triggered by water infiltration and the principals for stability analysis[J]. The Chinese Journal of Geological Hazard and Control,2022,33(2):25−32.

    刘德仁, 张文清, 黄新智, 等. 非饱和黄土边坡水热变化过程室内模型试验研究[J]. 岩土力学, 2017, 38(S2): 236−240.

    LIU Deren, ZHANG Wenqing, HUANG Xinzhi, et al. Laboratory model test on water and heat variation process of unsaturated loess slope[J]. Rock and Soil Mechanics,2017,38(S2):236−240.

    孟振江, 张凡, 彭建兵, 等. 预设节理条件下降雨型黄土滑坡模型试验研究[J]. 工程地质学报, 2022, 30(5): 1528−1537.

    MENG Zhenjiang, ZHANG Fan, PENG Jianbing, et al. Model test research on rainfall-type loess landslide under preset joint conditions.[J]. Journal of Engineering Geology,2022,30(5):1528−1537.

    亓星, 许强, 孙亮, 等. 降雨型黄土滑坡预警研究现状综述[J]. 地质科技情报, 2014, 33(6): 219−225.

    QI Xing, XU Qiang, SUN Liang, et al. Research overview on early warning of precipitation-induced loess landslides[J]. Geological Science and Technology Information,2014,33(6):219−225.

    孟晓捷, 郭小鹏, 薛强, 等. 黄土地质灾害评价因子地形起伏度提取最佳尺度研究: 以榆林市米脂县为例[J]. 西北地质, 2024, 57(6): 234−243.

    MENG Xiaojie,GUO Xiaopeng,XUE Qiang,et al. Research on Optimal Scale for Extraction of Relief Amplitude in Loess Geological Hazards Assessment Factors: a Case Study of Mizhi County, Yulin City[J]. Northwestern Geology,2024,57(6):234−243.

    孙建中, 王兰民, 门玉明, 等. 黄土学(第3册)[M]. 香港: 香港考古学会, 2012.

    SUN Jianzhong,WANG Lanmin,MEN Yuming,et al. Loessology (Vol. 3)[M]. Hongkong:Hongkong Archaeological Society,2012.

    孟晓捷, 张新社, 曾庆铭, 等. 基于加权信息量法的黄土滑坡易发性评价——以1: 5万天水市麦积幅为例[J]. 西北地质, 2022, 55(2): 249−259.

    MENG Xiaojie, ZHANG Xinshe, ZENG Qingming, et al. The Susceptibility Evaluation of Loess Landslide Based on Weighted Information Value Method: Taking 1: 50 000 Map of Maiji District of Tianshui City As an Example[J]. Northwestern Geology,2022,55(2):249−259.

    唐亚明, 薛强, 毕俊擘, 等. 降雨入渗诱发黄土滑塌的模式及临界值初探[J]. 地质论评, 2013, 59(1): 97−106. doi: 10.3969/j.issn.0371-5736.2013.01.010

    TANG Yaming, XUE Qiang, BI Junbo, et al. Preliminary study on loess landslide rainfall triggering modes and thresholds[J]. Geological Review,2013,59(1):97−106. doi: 10.3969/j.issn.0371-5736.2013.01.010

    唐然, 任穗川, 范宣梅, 等. 大型红层缓倾岩层滑坡形成机制——以川北断渠滑坡为例[J]. 成都理工大学学报(自然科学版), 2024, 51(4): 673−686.

    TANG Ran, REN Suichuan, FAN Xuanmei, et al. Formation mechanism of large-scale red bed gently inclined strata landslide: Taking Duangu landslide in north Sichuan as an example[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2024,51(4):673−686.

    王家鼎. 高速黄土滑坡的一种机理——饱和黄土蠕动液化[J]. 地质论评, 1992, 38(6): 532−539. doi: 10.3321/j.issn:0371-5736.1992.06.011

    WANG Jiading. A mechanism of high-speed loess landslides-saturated loess creeping liquefaction[J]. Geological Review,1992,38(6):532−539. doi: 10.3321/j.issn:0371-5736.1992.06.011

    王豪, 何朝阳, 巨能攀, 等. 多设备多参数联动的滑坡预警方法[J]. 成都理工大学学报(自然科学版), 2024, 51(6): 1057−1069.

    WANG Hao, HE Chaoyang, JU Nengpan, et al. A linked multi-device and multi parameter landslide early warning method[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2024,51(6):1057−1069.

    武彩萍, 骆亚生, 陈伟, 等. 降雨对黄土裸坡坡面形态影响的室内模型试验[J]. 水土保持通报, 2013, 33(1): 115−119.

    WU Caiping, LUO Yasheng, CHEN Wei, et al. Indoor model experiment for rainfall effects on bare loess slope shape[J]. Bulletin of Soil and Water Conservation,2013,33(1):115−119.

    辛鹏, 吴树仁, 石菊松, 等. 降雨诱发浅层黄土泥流的研究进展、存在问题与对策思考[J]. 地质论评, 2015, 61(3): 485−493.

    XIN Peng, WU Shuren, SHI Jusong, et al. Comment on the progress in, problems and countermeasure on mudflow induced by rainfall[J]. Geological Review,2015,61(3):485−493.

    许领, 戴福初, 闵弘. 黄土滑坡研究现状与设想[J]. 地球科学进展, 2008, 23(3): 236−242. doi: 10.3321/j.issn:1001-8166.2008.03.003

    XU Ling, DAI Fuchu, MIN Hong. Research progress and some thoughts on loess landslides[J]. Advance in Earth Sciences,2008,23(3):236−242. doi: 10.3321/j.issn:1001-8166.2008.03.003

    张林梵. 基于时序InSAR的黄土滑坡隐患早期识别—以白鹿塬西南区为例[J]. 西北地质, 2023, 56(3): 250−257.

    ZHANG Linfan. Early Identification of Hidden Dangers of Loess Landslide Based on Time Series InSAR: A Case Study of Southwest Bailuyuan[J]. Northwestern Geology,2023,56(3):250−257.

    张茂省, 李同录. 黄土滑坡诱发因素及其形成机理研究[J]. 工程地质学报, 2011, 19(4): 530−540. doi: 10.3969/j.issn.1004-9665.2011.04.014

    ZHANG Maosheng, LI Tonglu. Triggering factors and forming mechanism of loess landslides[J]. Journal of Engineering Geology,2011,19(4):530−540. doi: 10.3969/j.issn.1004-9665.2011.04.014

    张琪, 巨能攀, 张成强, 等. 库水位变化时陡倾软弱顺层岩质滑坡变形机制[J]. 成都理工大学学报(自然科学版), 2023, 50(2): 206−217.

    ZHANG Qi, JU Nengpan, ZHANG Chengqiang, et al. Landslide deformation mechanism of steep weak bedding rock under the variation of reservoir water level[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2023,50(2):206−217.

    曾昌禄, 李荣建, 关晓迪, 等. 不同雨强条件下黄土边坡降雨入渗特性模型试验研究[J]. 岩土工程学报, 2020, 42(S1): 111−115. doi: 10.11779/CJGE2020S1022

    ZENG Changlu, LI Rongjian, GUAN Xiaodi, et al. Experimental study on rainfall infiltration characteristics of loess slopes under different rainfall intensities[J]. Chinese Journal of Geotechnical Engineering,2020,42(S1):111−115. doi: 10.11779/CJGE2020S1022

    Bruce J P, Clark R H. Introduction to Hydrometeorology[M]. London: Pergamon Press, 1969.

    Fausto, Guzzetti, Silvia, et al. The rainfall intensity–duration control of shallow landslides and debris flows: an update[J]. Landslides,2008,5(1):3−17.

    Caine N. The Rainfall Intensity-Duration Control of ShallowLandslides and Debris Flows[J]. Geografiska Annaler: Series A, Physical Geography, 1980, 62: 1−2, 23−27.

    Peng J B, Fan Z J, Wu D Z, et al. Heavy rainfall triggered loess-mudstone landslide and subsequent debris flow in Tianshui, China[J]. Engineering Geology, 2015, 186(Null).

    Sun Y, Zhang J, Wang H A, et al. Probabilistic thresholds for regional rainfall induced landslides[J]. Computers and geotechnics,2024,166(Feb.):106040.1−106040.9.

    Wang S, Gregor I, Wu W. Centrifuge modelling of rainfall-induced slope failure in variably saturated soil[J]. Acta Geotechnica,2021,16(9):2899−2916. doi: 10.1007/s11440-021-01169-x

    Zhuang J Q, Iqbal J, Peng J B, et al. Probability prediction model for landslide occurrences in Xi'an, Shaanxi Province, China[J]. Journal of Mountain Science,2014,11(2):345−359. doi: 10.1007/s11629-013-2809-z

图(11)  /  表(4)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  3
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-23
  • 修回日期:  2024-12-05
  • 录用日期:  2024-12-10
  • 网络出版日期:  2025-02-25
  • 刊出日期:  2025-04-19

目录

    /

    返回文章
    返回