ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

基于优化最大熵模型的黄土滑坡易发性评价:以陕西省吴起县为例

张天宇, 李林翠, 刘凡, 洪增林, 钱法桥, 胡斌, 张淼

张天宇,李林翠,刘凡,等. 基于优化最大熵模型的黄土滑坡易发性评价:以陕西省吴起县为例[J]. 西北地质,2025,58(2):172−185. doi: 10.12401/j.nwg.2024104
引用本文: 张天宇,李林翠,刘凡,等. 基于优化最大熵模型的黄土滑坡易发性评价:以陕西省吴起县为例[J]. 西北地质,2025,58(2):172−185. doi: 10.12401/j.nwg.2024104
ZHANG Tianyu,LI Lincui,LIU Fan,et al. Evaluation of Loess Landslide Susceptibility Based on Optimised MaxEnt Model: A Case Study of Wuqi County in Shaanxi Province[J]. Northwestern Geology,2025,58(2):172−185. doi: 10.12401/j.nwg.2024104
Citation: ZHANG Tianyu,LI Lincui,LIU Fan,et al. Evaluation of Loess Landslide Susceptibility Based on Optimised MaxEnt Model: A Case Study of Wuqi County in Shaanxi Province[J]. Northwestern Geology,2025,58(2):172−185. doi: 10.12401/j.nwg.2024104

基于优化最大熵模型的黄土滑坡易发性评价:以陕西省吴起县为例

基金项目: 国家自然科学基金项目“基于滑带土水文动态响应的黄土滑坡地貌演化预测模型研究”(42201011),陕西省公益性地质调查项目“黄河支流洛河流域地貌演化及地质灾害隐患识别研究项目”(202101),国家重点研发计划资助“极端天气黄土体灾变风险防控技术装备研发”(2022YFC3003400)联合资助。
详细信息
    作者简介:

    张天宇(1987−),男,博士,高级工程师,环境地质专业。E−mail:2020126091@chd.edu.cn

    通讯作者:

    李林翠(1989−),女,高级工程师,主要从事地质灾害调查和研究。E−mail:llc934157098@163.com

  • 中图分类号: P694

Evaluation of Loess Landslide Susceptibility Based on Optimised MaxEnt Model: A Case Study of Wuqi County in Shaanxi Province

  • 摘要:

    黄土高原地区滑坡灾害频发,严重危害人民生命财产安全和重大工程建设,进行精准的滑坡易发性评价,识别“什么地方易发生”,有助于高效预测滑坡灾害风险,为防灾减灾提供有效的科学依据。笔者以黄土高原腹地吴起县为例,采用优化最大熵模型(MaxEnt),利用505个滑坡点,选取高程、坡向、坡度、地形粗糙度、岩性、河流缓冲区、降雨、NDWI(地表湿度)及道路缓冲区作为评价因子,并引入InSAR地表形变数据作为动态评价因子,开展了滑坡易发性评价。基于Enmeval数据包调整优化的MaxEnt模型,分别随机选取90%和10%的滑坡点进行模型训练及验证,模型精度高(AUC值为0.855),模拟效果准确可信。引入InSAR地表形变速率作为动态评价因子,模型精度、评价结果均有所提升。评价结果显示:研究区较高易发区面积和高易发区面积分别占吴起县总面积10.27%和6.33%,高、较高易发区内的滑坡点占全部滑坡点的73.27%,滑坡易发性评价结果与滑坡点分布现状吻合,评价效果好。高程、坡度和地表粗糙度对模型模拟结果贡献较高,是研究区滑坡易发性重要评价因子。

    Abstract:

    Landslide disasters which occur frequently in the Loess Plateau, seriously endanger the safety of people's lives and property, and affect the construction of major projects. Accurate landslide susceptibility assessment is useful for efficiently and quickly landslide risk prediction, and can provide scientific backing for disaster prevention and reduction by identifying "where landslides are prone". Taking Wuqi County on the Loess Plateau as an example, we use the optimized MaxEnt model and 505 landslide points to evaluate the landslide susceptibility. Elevation, aspect, slope, terrain roughness, lithology, river buffer, rainfall, NDWI (surface humidity), road buffer, and InSAR surface deformation data, which was introduced as dynamic evaluation factors, were selected as influencing factors. The results show: In the MaxEnt model based on Enmeval packet adjustment, when 90% landslide points were randomly selected as the training set and 10% landslide points as the verification set, the model accuracy was the highest (AUC value was 0.855), and the simulation effect was accurate and reliable. InSAR surface deformation rate was introduced as a dynamic evaluation factor, and the model accuracy and evaluation results were both improved. In the study area, the area of high and relatively high susceptibility areas accounted for 10.27% and 6.33% of the total area respectively, and the landslide points in the high and relatively high prone areas accounted for 73.27% of the total landslide points, of which the high prone areas accounted for 48.11%. The evaluation results of landslide susceptibility were consistent with the distribution of landslide points, which proves that the evaluation works well. Elevation, slope and surface roughness contribute significantly to the simulation results, and are important factors affecting the landslide susceptibility.

  • 大兴安岭地区分布着面积十分巨大的岩浆岩带,其中三分之二由火山岩组成,规模如此之大的火山岩分布,其形成原因一直是众多地质学者研究的热点问题。大兴安岭作为兴蒙造山带重要组成部分,在晚古生代经历了古亚洲的闭合,随后在中生代发生了比较典型的隆起事件,在白垩纪该构造隆起达到高潮,众多学者认为该时期大兴安岭处于伸展构造环境下(葛文春等,2001孟恩等,2011Jahn et al., 2001邵济安等,2002林强等,2003Wang et al., 2006Zhang et al., 2008),但对于中-晚侏罗世构造环境研究还没有形成统一认识,主要包括挤压构造背景(赵书跃等,2004刘俊杰等,2006)和造山后伸展构造背景(陈志广等,2006孟恩等,2011程银行等,2013王杰等,2014李鹏川等,2016)等。近年来,随着研究的深入,在大兴安岭地区获得了大量的火山岩年龄数据,但研究大部分围绕大兴安岭北段,而对于中南段研究较少。钓鱼台地区位于内蒙古东部,大兴安岭中段,靠近兴安地块和松嫩地块的结合部位,其构造位置和地质特征均具有代表性。因此,笔者选取内蒙古东部钓鱼台地区的满克头鄂博组火山岩进行岩石学、年代学和地球化学等方面开展相关研究工作,以期厘定该地区火山岩的形成时代、岩浆来源和构造背景,结合前人的研究成果,为大兴安岭中段在中—晚侏罗世的地质演化提供新的证据。

    研究区位于内蒙古自治区乌兰浩特市西北部,南为乌兰浩特市,东为扎赉特旗,西为阿尔山市,研究区区域大地构造属于天山–兴蒙造山带,大兴安岭弧盆系,东乌旗-多宝山岛弧范围内,研究区靠近兴安地块和松嫩地块的结合部位,贺根山-嫩江-黑河板块缝合带位于研究区南部(图1a)。研究区主构造线方向为NE向,古生代与中生代构造线方向总体一致,均为NE向,主要缘于西伯利亚板块东南缘古生代主构造线在本区一改近EW向构造格局所致,因此构造特色显著。断裂构造为研究区主要的构造形迹,其次为褶皱构造。研究区地层出露主要以晚古生界和中生界为主,除了部分地层为碎屑岩沉积外,其余大部分为火山岩沉积,区内岩浆岩较发育,整体呈NE向展布,与区域内主构造线一致,侵入时代主要为白垩纪,以酸性岩类为主。地层单位由老至新划分为古生界石炭系格根敖包组(C2g),中生界侏罗系玛尼吐组(J3mn)、满克头鄂博组(J3m)(图1b)。

    图  1  钓鱼台地区地质简图(a据刘晨等,2017改编)
    1.第四系;2.晚侏罗系玛尼吐组;3.晚侏罗系满克头鄂博组;4.晚石炭系格根敖包组;5.花岗斑岩;6.流纹斑岩;7.正长花岗岩;8.锆石采集点;9.地球化学样品采集点;10.构造
    Figure  1.  Geological sketch of the Diaoyutai area

    本次工作主要对钓鱼台地区满克头鄂博组流纹质凝灰岩进行研究,该组主要分布于工作区西部的门德沟-托欣河一带,总体呈NE向展布,出露面积约为84.07 km2。该组为一套陆相酸性火山岩组合,其角度不整合于格根敖包组及晚三叠世中细粒二长花岗岩之上,与上覆玛尼吐组为整合接触。下部主要岩性为凝灰质含砾砂岩、沉火山角砾凝灰岩及少量复成分砾岩、流纹质火山角砾凝灰岩等,产井上大胎壳叶肢介(Magumbonia-jingshangensis)、蜂窝梁大胎壳叶肢介(Magumbonia-fengwolingensis)。上部主要岩性为流纹质火山角砾凝灰岩、流纹质晶屑凝灰岩、流纹质熔结凝灰岩及流纹岩等。其中锆石年代学样品编号为TW11,地球化学样品为工作区内新鲜的基岩中取得,排除了变质、蚀变等情况的影响,编号为DP7H01~06,同时对岩石样品进行岩石学鉴定。

    流纹质凝灰岩,晶屑玻屑凝灰结构,块状构造,部分具假流纹构造。岩石有晶屑、玻屑、岩屑等组成。晶屑为尖角状或不规则状,有的保留半自形,晶屑成分主要为斜长石、钾长石、石英和少部分的黑云母,钾长石晶屑遭泥化作用,斜长石遭绢云母化作用,有环带构造,多数石英晶屑保留熔蚀港湾状,黑云母晶屑为片状,多数黑云母遭脱铁作用,并有铁质析出,晶屑粒径为0.05~2.00 mm,少部分晶屑可达3.0 mm的角砾级的晶屑,含量约为25%。玻屑部分为粒径小于0.05 mm的火山尘质点,部分玻屑为尖角状、凹面棱角、蠕虫状或不规则状,玻屑集合体呈条纹状,微具有塑性,在刚性的晶屑周围形成绕流,假流纹构造,大部分玻屑遭脱玻化作用,有的略有偏光反应,有的重结晶成细小的长英质,不透明矿物及铁质少量,岩石遭到强烈的绢云母化作用,岩石有裂隙发育,裂隙被铁质充填,含量约为65%。岩屑主要成分为流纹岩、英安岩及安山岩,次棱角状,大小为0.20~2.00 mm,含量约为10%(图2a图2b)。

    图  2  钓鱼台地区火山岩野外(a)及镜下照片(b)
    Figure  2.  (a) Field and (b) microscopic photographs of volcanic rocks in the Diaoyutai area

    河北省廊坊市区域地质调查研究院承担锆石测年工作中单矿物分选工作。首先将每件样品破碎,并粉碎至适当粒径,通过清洗、烘干、筛选等程序,选出不同粒级的锆石晶体,镜下挑选出颗粒较好的锆石晶体进行制靶。锆石CL图像拍摄与LA-ICP-MS U-Pb定年在北京科荟测试技术有限公司完成,采用的激光剥蚀电感耦合等离子质谱仪是德国生产的Jena elite,激光器型号是美国生产的Newwave 193-UC。根据锆石的阴极发光图像、透射光图像选取无包裹体、没有裂隙的合适锆石位置,采用193 mm准分子激光器对锆石表面进行剥蚀,激光剥蚀直径是25 μm,剥蚀频率10 Hz。以He气作为剥蚀物质的载气,将剥蚀物质运送至质谱仪进行测试分析。ICPMS的高频发射器功率是1200 w,冷却气(Ar)流是9 L/min,分析的积分时间共40 s,空白采集时间30 s。样品数据处理以NIST 610和GJ-1作为内部锆石标准,软件使用ICPMSData程序(刘平华等,2010)和Isopolot程序(Ludwing, 2003)进行分析和作图。

    地球化学样品共计6件,进行主量、微量及稀土元素分析,测试由河北省区域地质矿产调查研究所实验室完成。首先对样品进行去风化壳工作,获得新鲜样品后进行粉碎,并用球磨仪研磨成粉末状,主量元素采用Axios max X射线荧光光谱仪进行测试,精度优于5%,微量元素采用电感耦合等离子体质谱仪进行测试,分析精度优于5%,技术方法满足要求,地球化学图解经过去掉烧失量重新计算作图。

    研究区流纹质凝灰岩锆石U-Pb同位素分析结果见表1。所选取锆石样品多成长柱状或方块状,透明度较好,锆石颗粒直径多为100~150 μm,锆石具有明显的岩浆成因的韵律环带(图3)。研究认为,锆石成因不同其相应的Th/U也不相同(Rubatto et al., 2000),一般岩浆锆石的Th/U大于0.4,而变质锆石的Th/U含量较低,Th/U常小于0.07。本次锆石TW11样品中的Th/U值为0.24~1.96,大部分锆石Th/U大于0.4,均表现出明显的岩浆锆石特点(王新雨等,2023代新宇等,2024)。在206Pb/238U-207Pb/235U谐和图上,部分锆石年龄谐和度差,因此不参与最后计算。其余测点年龄加权平均值为(160.3±2.2) Ma,MSWD=3.4,该年龄代表了流纹质凝灰岩形成的年龄(图4)。

    表  1  钓鱼台地区火山岩(TW11)锆石U-Pb测试结果
    Table  1.  Zircon U-Pb test results of volcanic rocks(TW11)in the Diaoyutai area
    编号含量(10−6Th/U207Pb/206Pb207Pb/235U206Pb/238U238U/232Th207Pb/206Pb207Pb/235U206Pb/238U
    PbThU比值比值比值比值年龄
    (Ma)
    年龄
    (Ma)
    年龄
    (Ma)
    TW11-0137.5162.9690.30.240.05330.0020.18780.00720.02560.00033.13342.789.8174.86.21632.1
    TW11-0244.8247.6452.10.550.05610.00290.19640.00990.02550.00031.37453.8110.2182.18.4162.32.2
    TW11-0342.6224.9609.20.370.05230.00220.17610.00760.02450.00032.16301.991.7164.76.51562
    TW11-0429.294.3139.30.680.06060.00360.39160.02360.04670.00081.12633.4123.9335.517.2294.25
    TW11-0582.2400.11221.70.330.05190.00160.17470.00530.02440.00022.4279.770.4163.54.6155.61.4
    TW11-0636.9155.2665.80.230.04930.00210.16830.00690.02490.00033.26164.9100157.96158.71.9
    TW11-0741.7148.4126.91.170.05470.00470.34620.02750.04670.00080.67466.7195.3301.820.7294.34.6
    TW11-0829.7128.9558.80.230.04830.0020.16850.00640.02550.00033.37122.396.3158.15.5162.42
    TW11-0951110.9157.70.70.06050.00320.58030.03240.06940.00121.14620.4114.8464.720.8432.37
    TW11-1061.2206.7257.20.80.05320.00310.33680.01870.04640.00070.97338.9126.8294.814.2292.44.1
    TW11-1131.3139.8495.70.280.05050.00250.17640.00850.02550.00032.8216.7112.91657.3162.42
    TW11-1220.3123.3141.90.870.05460.00440.19380.01540.02590.00050.91394.5178.7179.913.1164.83
    TW11-1338260176.41.470.04760.00470.15820.0140.02490.00050.5479.7218.5149.112.3158.63.5
    TW11-1427.492.3147.40.630.05640.00320.35240.02170.04540.00091.23477.8121.3306.516.3286.25.8
    TW11-1565.2465.6237.51.960.05450.00370.19120.01250.02590.00040.43390.8186.1177.610.71652.5
    TW11-1625.3150.5258.40.580.0480.00320.1620.01020.0250.00041.36101.9148.1152.58.9159.12.4
    TW11-1760.3278.2812.80.340.05140.0020.18780.00760.02650.00042.2257.590.7174.86.5168.52.5
    TW11-1823.7124.8289.30.430.0510.00310.18330.01130.02640.00051.72242.7144.4170.99.71682.9
    TW11-1942.1209.3649.60.320.05050.00270.17310.00940.02480.00032.59220.4119.4162.18.2158.22.1
    TW11-2092.4583801.80.730.05380.00220.18330.00740.02480.00031.43364.960.2170.96.31581.9
    下载: 导出CSV 
    | 显示表格
    图  3  钓鱼台地区火山岩部分锆石阴极发光(CL)图
    Figure  3.  CL images of partial zircon of volcanic rocks in the Diaoyutai area
    图  4  钓鱼台地区火山岩(TW11)锆石U-Pb年龄谐和图(a)及加权平均图(b)
    Figure  4.  (a) U-Pb age concordance and (b) weighted average of volcanic rocks(TW11)in the Diaoyutai area

    流纹质凝灰岩主量元素分析结果见表2,其SiO2含量为73.14%~76.64%,平均为74.98%,Al2O3含量为12.51%~14.41%,平均为13.33%,MgO含量为0.28%~1.15%,CaO含量为0.30%~2.33%,P2O5含量较低为0.03%~0.07%,全碱(ALK)含量较低为5.79%~9.04%,平均值为6.96%,同时Na2O/K2O为0.49~0.96,岩石表现为富钾特征,铝过饱和指数(A/CNK)为1.00~1.57,表现为钙碱性特征。根据火山岩TAS图解(图5a),样品全落入流纹岩范围内,根据SiO2-K2O图解(图5b),样品均显示为高钾钙碱性系列岩石。

    表  2  钓鱼台地区火山岩主量元素(%)、微量和稀土元素(10−6)分析结果
    Table  2.  Major (%), trace and REE element (10−6) analytical results of volcanic rocks in the Diaoyutai area
    样品编号DP7H01DP7H02DP7H03DP7H04DP7H05DP7H06
    岩石名称流纹质凝灰岩
    SiO275.3274.9273.147576.6474.88
    TiO20.060.060.140.230.190.29
    Al2O314.4113.6414.0412.5112.612.79
    Fe2O30.530.150.31.270.691.01
    FeO0.681.691.720.680.540.97
    MnO0.030.070.090.060.070.06
    MgO0.750.561.150.470.310.28
    CaO0.520.952.330.520.30.3
    Na2O2.682.561.92.52.184.42
    K2O3.564.43.894.874.24.62
    P2O50.040.060.070.050.030.05
    LOI1.71.071.031.182.160.71
    100.27100.1499.8199.3499.91100.4
    ALK6.246.965.797.376.389.04
    N/K0.750.580.490.510.520.96
    A/CNK1.571.281.211.211.451
    Mg#53.6135.3650.7431.4932.2520.99
    SI9.155.9812.834.813.922.48
    DI5.411.998.4918.9116.0426.17
    Li31.7334.0446.733.586.555.48
    Be3.442.2533.483.482.41
    V6.964.049.6312.0214.158.81
    Cr2.141.691.572.2714.672.52
    Co0.20.281.071.183.730.53
    Ni1.590.591.221.410.893.41
    Cu2.051.722.913.213.163.58
    Zn21.0742.3542.2980.5789.32131.63
    Ga22.9819.2216.722.4419.5918.85
    Rb148.93152.94102.92180.9199.38118.41
    Zr93.41126.5110.7251.16196.38242.26
    Nb12.4310.878.5419.6321.9913.69
    Mo1.171.820.320.533.270.36
    In0.160.030.020.030.020.02
    Ba741.571207.12595.11152.26103.65387.61
    Sr51.9205.21154.7273.0843.5354.27
    Hf3.573.13.638.438.046.74
    Ta0.980.70.61.381.680.88
    W0.450.250.261.041.562.11
    Pb2119.8811.4820.8937.0916.91
    Bi0.130.120.010.50.630.07
    下载: 导出CSV 
    | 显示表格
    续表2
    样品编号DP7H01DP7H02DP7H03DP7H04DP7H05DP7H06
    Th5.554.594.9619.421.658.77
    U1.741.571.444.056.052.1
    Au0.810.851.380.740.421.22
    Ag0.060.040.030.040.050.06
    B21.8313.2911.184.468.014.33
    F1536.74639.06880.52381.14465.67264.69
    Y1414.112.123.625.127.1
    La19.314.920.529.840.135.9
    Ce39.24237.170.664.163
    Pr3.963.254.26.528.648.84
    Nd13.911.614.622.727.134.8
    Sm2.772.482.544.074.626
    Eu0.460.530.660.360.310.79
    Gd2.512.142.223.824.265.13
    Tb0.410.360.350.610.690.78
    Dy2.362.161.983.884.44.47
    Ho0.430.390.380.80.850.84
    Er1.171.041.092.422.642.37
    Tm0.20.180.210.470.520.44
    Yb1.211.111.222.883.152.64
    Lu0.180.160.190.440.490.41
    ΣREE88.0682.387.24149.37161.87166.41
    LREE79.5974.7679.6134.05144.87149.33
    HREE8.477.547.6415.321717.08
    LREE/HREE9.49.9210.428.758.528.74
    (La/Yb)N11.449.6312.057.429.139.75
    δEu0.530.70.850.280.210.44
    δCe1.11.480.981.240.840.87
    下载: 导出CSV 
    | 显示表格
    图  5  钓鱼台地区火山岩TAS图解和SiO2-K2O图解(a据Irvine et al., 1971;b据Peccerillo et al., 1976
    Figure  5.  TAS diagram and SiO2-K2O diagram of volcanic rocks in the Diaoyutai area

    岩石表现为富集Rb、Th、U、Nd等大离子亲石元素(LILE),亏损Nb、Sr、P、Ti等高场强元素(HFSE)(图6a)。岩石稀土元素ΣREE=82.30×10−6~155.41×10−6,(La/Yb)N=7.42~11.44,轻重稀土分馏明显。轻稀土富集而重稀土亏损,LREE/HREE=8.52~10.42,根据稀土元素球粒陨石标准化配分图显示为明显的右倾特征(图6b),δEu=0.21~0.85,平均值为0.5,表现较为明显的负异常,其中稀土元素配分图与洋岛玄武岩(OIB)配分模式相近(Sun et al., 1989)。

    图  6  钓鱼台地区火山岩微量元素原始地幔标准化蛛网图(a)和稀土元素球粒陨石标准化REE图解(b)(标准化数据源自Sun等, 1989
    Figure  6.  Primitive mantle-normalized trace element spidergrams and chondrite-normalized REE distribution patterns of volcanic rocks in the Diaoyutai area

    大兴安岭地区的火山岩基本都来自于中生代,特别是中晚侏罗世和白垩纪,特别是随着锆石U-Pb测年技术的应用和日渐成熟,使该地区的火山岩的年龄特征进一步显现。郝彬等(2016)在赤峰地区厘定了晚侏罗世(160~147 Ma)和早白垩世(132~129 Ma)的火山岩,主要以中酸性火山岩为主,杨扬等(2012)同样在赤峰地区测得满克头鄂博组火山岩的U-Pb年龄分别为(156±2) Ma和(157±3) Ma,杜洋等(2017)在克一河地区测得满克头鄂博组流纹质火山岩为139 Ma,刘凯等在大兴安岭北段图里河地区测得满克头鄂博组火山岩的年龄为(156±1) Ma。同时也有大量学者获得了大兴安岭其他地区中晚侏罗世火山岩年龄,同样集中在150~170 Ma(Wang et al., 2006陈志广等,2006张吉衡, 2006张连昌等,2007苟军等,2010孙德有等,2011程银行等,2014)。本次在内蒙古中部钓鱼台地区满克头鄂博组流纹质凝灰岩采集的锆石加权平均年龄为(160.3±2.2) Ma,表明在晚侏罗世,该地区存在比较强烈的火山作用,形成了满克头鄂博组酸性的火山岩。

    根据测试分析可知,满克头鄂博组流纹质凝灰岩SiO2含量平均为74.98%,全碱(ALK)含量平均为6.96%,Na2O/K2O平均为0.64,为偏钾质,A/NKC平均为1.29,属于高钾钙碱性系列岩石,表现为壳源岩浆的特点。同时岩石表现为富集Rb、Th、U、Nd等大离子亲石元素(LILE),亏损Nb、Sr、P、Ti等高场强元素(HFSE),特别强烈亏损Sr、P、Ti,也表明岩浆由地壳熔融产生(葛文春等,2001)。

    研究表明,斜长石的分离结晶会导致Eu和Sr的强烈亏损,二者对斜长石是强相容元素,研究区的火山岩,表现出较为明显的Eu异常,平均值为0.50,同时Sr也表现为明显亏损,P的负异常则可能表现为磷灰石的结晶分离,Ti的亏损可能受控于钛铁矿的分离结晶作用。同时在研究区内并未发现该时期基性岩的分布,说明岩浆来源不应为基性岩浆结晶分离的产物,同时岩石的Cr含量平均为4.14×10−6,Ni的含量平均为3.18×10−6,同样表现为未有幔源物质的加入(邓晋福等, 1999)。

    火山岩的Nb/U平均值为5.83,相比于大陆地壳偏低(Rudinick et al., 2003)。Nb/Ta值平均值为14.22,稍高于大陆地壳的平均值(11~12)(Xiong et al., 2005)。Rb/Sr为0.67~4.58,平均为2.25,与OIB(0.047)、原始地幔(0.03)、E-MORB(0.033)相比明显偏高(Sun et al., 1989),与壳源岩浆的范围(>0.5)一致(Tischeendorf et al., 1985),Nd/Th值的平均值为2.39,接近壳源岩石的比值(≈3)(Bea et al., 2001Rudinick et al., 2003),Ti/Zr=5.45,也均分布在壳源岩浆的范围内(Ti/Zr<20)(Wilson, 1989),Ti/Y值的平均值为48.13(Ti/Y<100)(Tischeendorf et al., 1985),其比值也属于壳源岩浆的产物特征。

    Mg#值是区分岩浆来源比较理想的参数,研究表明,典型的大洋中脊拉斑玄武岩(MORB)的Mg#值约为60,下地壳来源的溶体Mg#值均比较低,与熔融程度相关性小,一般小于40,当有地幔物质参与时,才可能导致Mg#值大于40(Rapp et al., 1995)。本次火山岩的Mg#值20.99~53.61,平均为37.41,应主要为壳源岩浆的产物,暗示存在幔源物质的参与。

    根据岩石类型判别图解,流纹质凝灰岩大部分为类似A型花岗岩(图7a),而岩石本身也具有高Si,低Sr的特点,也属于A型花岗岩特征,而根据C/MF-A/MF图解(图7b)显示,流纹质凝灰岩主要来源于变质沉积岩的部分熔融,说明岩浆的原岩均为地壳物质的熔融作用所产生的。综合分析认为钓鱼台地区满克头鄂博组流纹质凝灰岩与A型花岗岩化学特征相似,由地壳物质部分熔融而形成,可能含有少量幔源物质的参与。

    图  7  钓鱼台地区火山岩类型判别图解(a据Whalen et al., 1987; b据Alther et al., 2000
    Figure  7.  Type discrimination diagram of volcanic rocks in the Diaoyutai area

    研究区内火山岩表现富集Rb、Th、U、Nd等大离子亲石元素(LILE),亏损Nb、Sr、P、Ti等高场强元素(HFSE),具有高Si特点,且Sr含量为43.53×10−6~205.21×10−6,平均为97.12×10−6(小于400×10−6),Yb为1.11×10−6~3.15×10−6,平均为2.04×10−6(大于2×10−6),且具有明显的Eu负异常,具有A型花岗岩特征,相似于造山期后花岗岩的特征,根据构造判别图解Y+Nb-Rb(图8a),流纹质凝灰岩基本位于火山弧-后碰撞花岗岩范围内,而根据A型花岗岩类型判断,部分样品为A2型范围内,其余样品基本位于A2型花岗岩与A1型接触范围内,表现为逐步向伸展构造背景之下转变。

    图  8  钓鱼台地区火山岩构造判别图解(a据Pearce et al., 1984; b据Eby, 1990
    Figure  8.  Type discrimination diagram of volcanic rocks in the Diaoyutai area

    关于大兴安岭地区中生代火山岩的形成背景一致争议较大,一种观点认为是古太平洋构造域的影响,这种观念最直接的证据就是中国东部晚中生代岩浆活动具有统一性,表明它们可能的形成受控于东部的太平洋体系(Uyeda et al., 1974Hilde et al., 1977Takahashi et al., 1983邓晋福等,1996朱勤文等,1997)。日本海沟的太平洋板块俯冲带距离大兴安岭超过1800 km,即使认为日本海并未进行弧后扩张,那么大兴安岭距离俯冲带也超过1000 km,根据前人研究成果,当板块以26 °角俯冲到600 km以后,板块中心温度将超过1200 ℃,在这种高温作用下,板块早已经软化,不再产生弹性断层,而大兴安岭与俯冲作用有关的弧火山-侵入岩要远远小于这个数字,因此,古太平洋俯冲的影响边界应截止于东亚大陆边缘,俯冲作用不能完全解释大兴安岭的岩浆活动特征(张立敏等,1983邵济安等,2000)。基于岩石圈热演化过程分析,大兴安岭地区并没有发现与太平洋板块俯冲作用相关的晚中生代安第斯型弧岩浆带,也反映出晚侏罗、早白垩世东亚陆缘的岩浆岩与太平洋板块俯冲无关(上田诚也等,1979)。

    类似于超级地幔柱作用形成的深部熔融,在区域规模上,中国东北地区燕山期岩浆岩甚至可以与大火成岩省媲美。林强等(19981999)认为古亚洲域冷板块向地幔深部运动,从而引发了热地幔柱上升是大兴安岭中生代火山岩形成的重要控制因素。环状火山岩带是地幔柱模式最为显著的特点,然而中生代岩浆作用的时空分布特征不支持该模式,并且中生代火山岩时间跨度范围较大(185~105 Ma),而传统认为地幔柱产生的岩浆作用持续时间一般较短。而且大兴安岭中生代岩浆作用明显呈带状大陆边缘分布,这一点使用地幔柱作用模式很难解释。同时按照地幔柱最为基础的理论研究,地幔柱形成的直接产物是玄武质岩浆的大规模喷溢,而大兴安岭地区中生代基性岩浆活动非常贫乏(Fan et al., 2003张连昌等,2007),因此可能与太平洋构造域也没有直接影响。

    还有一种观点就是与蒙古–鄂霍茨克洋闭合的影响有关(郭锋等,2001Fan et al., 2003)。尹志刚等(2019)在大兴安岭南段东乌旗地区测定的满克头鄂博组流纹岩,其化学特征与A型花岗岩相似,推断形成于造山后伸展环境中。何鹏等(2022)在乌拉盖地区测得满克头鄂博组火山岩形成于154~164 Ma,主要来源于壳源,同样与蒙古–鄂霍茨克洋闭合后岩石圈伸展作用有关。在内蒙古莫合尔图、满洲里、扎鲁特旗、赤峰等地也都发现了该时期具有伸展构造背景的火山岩(陈志广等,2006孟恩等,2011程银行等,2013王杰等,2014)。

    晚古生代末期蒙古–鄂霍茨克洋部分开始俯冲,并在晚三叠世开始自西向东呈剪刀式闭合(莫申国等,2006黄始琪等,2014),在侏罗世早期完成了闭合(Tomurtogoo et al., 2005),但其深部板块的俯冲后撤作用并没有立刻结束,而是持续了一段时间,虽然中生代晚期的火山岩的构造线与其不一致,但是大兴安岭地区中—晚侏罗世的火山岩,特别是大面积分布的具有A型花岗岩特征的火山岩还应与蒙古-鄂霍茨克洋闭合后板块俯冲后撤所带来的伸展减薄环境有关。

    综合研究认为,研究区内晚侏罗世满克头鄂博组的火山岩具有A型花岗岩的地球化学特征,推测岩浆来源于地壳,形成于蒙古-鄂霍茨克洋闭合后板块俯冲后撤作用引起的地壳伸展减薄环境。

    (1)内蒙古东部钓鱼台地区满克头鄂博组火山岩年龄为(160.3±2.2) Ma,时代归属于晚侏罗世。

    (2)内蒙古东部钓鱼台地区满克头鄂博组火山岩具有A型花岗岩的地球化学特征,岩石表现为富集Rb、Th、U、Nd等大离子亲石元素(LILE),亏损Nb、Sr、P、Ti等高场强元素(HFSE),根据微量元素及其比值,火山岩的岩浆来源于地壳沉积岩的部分熔融,可能有地幔物质参与。

    (3)结合前人研究成果,推断研究区内满克头鄂博组火山岩主要形成于伸展构造背景下,与蒙古-鄂霍茨克洋闭合后板块俯冲后撤作用导致的岩石圈伸展作用有关。

  • 图  1   研究区地理位置、地形地貌及滑坡点分布图

    Figure  1.   Geographical location and landslide distribution map of the study area

    图  2   易发性评价因子分布图

    a.高程;b.坡度;c.坡向;d.地形地貌;e.岩性;f.河流缓冲区;g.降雨量;h.NDWI;i.道路缓冲区

    Figure  2.   Distribution of Susceptibility assessment impact factors

    图  3   SBAS-InSAR数据处理基本流程图

    Figure  3.   Basic flow chart of SBAS-InSAR data processing

    图  4   吴起县地表形变速率分布图

    Figure  4.   Map of surface deformation rates in Wuqi County

    图  5   MaxEnt模型易发性评价结果精度ROC曲线验证

    a.未优化未引入地表变形速率;b.优化未引入地表变形速率;c.未优化引入地表变形速率;d.优化引入地表变形速率

    Figure  5.   ROC curve verification of susceptibility evaluated by MaxEnt model

    图  6   吴起县滑坡易发性动态评价结果

    Figure  6.   Results of dynamic evaluation of landslides susceptibility in Wuqi County

    图  7   Maxent 模型对评价因子重要性的刀切法检验

    Figure  7.   Jacknife text of the importance of impact factors in MaxEnt

    图  8   各评价因子响应曲线图

    Figure  8.   Response curve of impact factors

    表  1   基于刀切法评价因子重要性分布表

    Table  1   The importance distribution table of evaluation factors based on knife-cutting method

    评价因子贡献率(%)
    坡度38.4
    岩性18.6
    高程18.1
    河流缓冲区9.4
    坡向6.6
    道路缓冲区2.6
    NDWI2.3
    地表粗糙度1.6
    地表形变速率1.2
    降雨1.1
    NDBI0
    NDVI0
    平面曲率0
    剖面曲率0
    下载: 导出CSV

    表  2   不同参数设置下MaxEnt模型评价结果

    Table  2   Evaluation results of MaxEnt model under different parameters setting

    是否引入地表形变速率 模型评价 调控倍频 特征组合 Delta.AICc 10%训练遗漏率
    引入地表形变速率 默认 1 LQHPT 13.0896 0.131827
    优化 1.5 QHP 0 0.129843
    未引入地表形变速率 默认 1 LQHPT 37.4817 0.126679
    优化 0.5 QHP 0 0.115884
    下载: 导出CSV

    表  3   易发性评价结果与滑坡点分布现状对比

    Table  3   Comparison of susceptibility evaluation results and landslide point distribution status

    易发登记 面积(km2 面积百分比(%) 滑坡点数量(个) 滑坡点占比 滑坡点密度
    高易发区 241.96 6.33 243 48.11 1.01
    较高易发区 392.90 10.27 127 25.15 0.32
    中易发区 596.17 15.59 80 15.8 0.13
    较低易发区 845.52 22.11 44 8.7 0.05
    低易发区 1747.84 45.70 11 2.2 0.1
    合计 3824.39 100% 505 100% /
    下载: 导出CSV

    表  4   各评价因子的贡献率和置换重要性比值表

    Table  4   Contribution and inportance of impact variables affecting the landslide susceptibility

    评价因子 因子贡献率(%) 置换重要性(%)
    高程 25.2 33.9
    坡度 20.1 24.2
    粗糙度 14 11.3
    河流缓冲区 11.7 7.3
    岩性 11.3 4.1
    降雨 7.1 7.9
    坡向 5.1 2.2
    地表变形速率 3.2 3.6
    道路缓冲区 1.5 4.3
    NDWI 0.7 1.1
    下载: 导出CSV
  • 陈舞, 王浩, 张国华, 等. 基于T-S模糊故障树和贝叶斯网络的隧道坍塌易发性评价[J]. 上海交通大学学报, 2020, 54(8): 820−830.

    CHEN Wu, WANG Hao, ZHANG Guohua, et al. Evaluation of Tunnel Collapse Susceptibility Based on T-S Fuzzy Fault Tree and Bayesian Network[J]. Journal of Shanghai Jiaotong University,2020,54(8):820−830.

    段钊, 赵法锁, 陈新建. 陕北黄土高原区滑坡发育类型与时空分布特征——以吴起县为例[J]. 灾害学, 2011, 26(4): 52−56.

    DUAN Zhao, ZHAO Fasuo, CHEN Xinjian. Types and Spatio-Temporal Distribution of Loess Landslides in Loess Plateau Region —A Case Study in Wuqi County[J]. Journal of Catastrophology,2011,26(4):52−56.

    郭飞, 赖鹏, 黄发明, 等. 基于知识图谱的滑坡易发性评价文献综述及研究进展[J]. 地球科学, 2024, 49(5): 1587−1606.

    GUO Fei,LAI Peng,HUANG Faming,et al. Literature review and research progress of landslide susceptibility mapping based on knowledge graph[J]. Earth Science,2024,49(5):1587−1606.

    高秉海, 何毅, 张立峰, 等. 顾及InSAR形变的CNN滑坡易发性动态评估——以刘家峡水库区域为例[J]. 岩石力学与工程学报, 2023, 42(2): 450−465.

    GAO Binghai, HE Yi, ZHANG Lifeng, et al. Dynamic evaluation of landslide susceptibility by CNN considering InSAR deformation: A case study of Liujiaxia reservoir[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(2):450−465.

    胡胜, 邱海军, 王宁练, 等. 地形对黄土高原滑坡的影响[J]. 地理学报, 2021, 76(11): 2697−2709.

    HU Sheng, QIU Haijun, WANG Ninglian, et al. The influence of terrain on loess landslides in Loess Plateau[J]. Acta Geographica Sinica,2021,76(11):2697−2709.

    贾丽娜, 陈世昌. 基于AHP和GIS的舟曲地质灾害易发性评价[J]. 西北地质, 2024, 57(1): 23−33.

    JIA Lina,CHEN Shichang. Geological Hazard Susceptibility Evaluation Based on AHP and GIS in Zhouqu County, Gansu[J]. Northwestern Geology,2024,57(1):23−33.

    胡燕, 李德营, 孟颂颂, 等. 基于证据权法的巴东县城滑坡灾害易发性评价[J]. 地质科技通报, 2020, 39(3): 187−194.

    HU Yan, LI Deying, MENG Songsong, et al. Landslide susceptibility evaluation in Badong County based on weights of evidence method[J]. Bulletin of Geological Science and Technology,2020,39(3):187−194.

    黄煜, 谢婉丽, 刘琦琦, 等. 基于GIS与MaxEnt模型的滑坡易发性评价——以铜川市中部城区为例[J]. 西北地质, 2023, 56(1): 266−275.

    HUANG Yu, XIE Wanli, LIU Qiqi, et al. Landslide Susceptibility Assessment Based on GIS and MaxEnt Model: Example from Central Districts in Tongchuan City[J]. Northwestern Geology,2023,56(1):266−275.

    姜建伟, 赵法锁, 祝俊华, 等. 陕西省吴起县斜坡几何形态与地质灾害相关性研究[J]. 灾害学, 2018, 33(2): 188−192.

    JIANG Jianwei, ZHAO Fasuo, ZHU Junhua, et al. Study on the correlation between slope geometrical morphology and geological disasters in Wuqi County of Shaanxi Province[J]. Journal of Catastrophology,2018,33(2):188−192.

    李泽芝, 王新刚. 镇域尺度下秦巴山区堆积层滑坡易发性不同单元评价性能对比研究[J]. 西北地质, 2024, 57(1): 1−11.

    LI Zezhi,WANG Xingang. Comparative Study on Evaluation Performance of Different Units of Susceptibility of Accumulation Layer Landslide in Qinba Mountain Area at Town Scale[J]. Northwestern Geology,2024,57(1):1−11.

    林琴, 郭永刚, 吴升杰, 等. 基于梯度提升的优化集成机器学习算法对滑坡易发性评价: 以雅鲁藏布江与尼洋河两岸为例[J]. 西北地质, 2024, 57(1): 12−22.

    LIN Qin,GUO Yonggang,WU Shengjie,et al. Evaluation of Landslide Susceptibility by Optimization Integrated Machine Learning Algorithm Based on Gradient Boosting: Take Both Banks of Yarlung Zangbo River and Niyang River as Examples[J]. Northwestern Geology,2024,57(1):12−22.

    刘东生, 安芷生, 文启忠, 等. 中国黄土的地质环境[J]. 科学通报, 1978(1): 19−26.

    LIU Tongsheng, AN Zhisheng, WEN Qizhong, et al. Geological Environment of Chinese Loess[J]. Chinese Science Bulletin,1978(1):19−26.

    兰恒星, 彭建兵, 祝艳波, 等. 黄河流域地质地表过程与重大灾害效应研究与展望[J]. 中国科学: 地球科学, 2022, 65(2): 234−256.

    LAN Hengxing,PENG Jianbing,ZHU Yanbo,et al. Research on geological and surfacial processes and major disaster effects in the Yellow River Basin[J]. Science China Earth Sciences,2022,65(2):234−256.

    麦鉴锋, 冼宇阳, 刘桂林. 气候变化情景下广东省降雨诱发型滑坡灾害潜在分布及预测[J]. 地球信息科学学报, 2021, 23(11): 2042−2054. doi: 10.12082/dqxxkx.2021.210182

    MAI Jianfeng, XIAN Yuyang, LIU Guilin. Predicting Potential Rainfall-Triggered Landslides Sites in Guangdong Province (China) using MaxEnt Model under Climate Changes Scenarios[J]. Journal of Geo-information Science,2021,23(11):2042−2054. doi: 10.12082/dqxxkx.2021.210182

    牛全福, 冯尊斌, 党星海, 等. 黄土区滑坡研究中地形因子的选取与适宜性分析[J]. 地球信息科学学报, 2017, 19(12): 1584−1592.

    NIU Quanfu, FENG Zunbin, DANG Xinghai, et al. Suitability analysis of topographic factors in Loess landslide research[J]. Journal of Geo-information Science,2017,19(12):1584−1592.

    彭建兵, 兰恒星, 钱会, 等. 宜居黄河科学构想[J]. 工程地质学报, 2020, 28(2): 189−201.

    PENG Jianbing, LAN Hengxing, QIAN Hui, et al. Scientific research framework of livable Yellow River[J]. Journal of Engineering Geology,2020,28(2):189−201.

    彭建兵, 王启耀, 门玉明, 等. 黄土高原滑坡灾害[M]. 北京: 科学出版社, 2019.

    PENG Jianbing, WANG Qiyao, MEN Yuming, et al. Landslides in loess Plateau[M]. Beijing: Science Press, 2019.

    孙萍萍, 张茂省, 贾俊, 等. 中国西部黄土区地质灾害调查研究进展[J]. 西北地质, 2022, 55(3): 96−107.

    SUN Pingping, ZHANG Maosheng, JIA Jun, et al. Geo-hazards Research and Investigation in the Loess Regions of Western China[J]. Northwestern Geology,2022,55(3):96−107.

    孙长明, 马润勇, 尚合欣等. 基于滑坡分类的西宁市滑坡易发性评价[J]. 水文地质工程地质, 2020, 47(3): 173−181.

    SUN Changming, MA Runyong, SHANG Hexin, et al. Landslide susceptibility assessment in Xining based on landslide classification[J]. Hydrogeology & Engineering Geology,2020,47(3):173−181.

    孙萍萍, 张茂省, 程秀娟, 等. 黄土高原地质灾害发生规律[J]. 山地学报, 2019, 37(5): 737−746.

    SUN Pingping, ZHANG Maosheng, CHENG Xiujuan, et al. On the Regularity of Geological Hazards on the Loess Plateau in China[J]. Mountain Research,2019,37(5):737−746.

    唐亚明, 张茂省, 李林, 等. 滑坡易发性危险性风险评价例析[J]. 水文地质工程地质, 2011, 38(2): 125−129.

    TANG Yaming, ZHANG Maosheng, LI Lin, et al. Discrimination to the landslide susceptibility, hazard and risk assessment[J]. Hydrogeology & Engineering Geology,2011,38(2):125−129.

    唐兴港, 王慧勇, 黄豆, 等. 长江中下游地区滑坡的易发性评价——以江西省为例[J]. 水土保持通报, 2021, 41(3): 166−172.

    TANG Xinggang, WANG Huiyong, HUANG Dou, et al. Evaluation of Landslide Susceptibility in Middle and Lower Reaches of Yangtze River-Taking Jiangxi Province as a Caes Study[J]. Bulletin of Soiland Water Conservation,2021,41(3):166−172.

    唐亚明, 程秀娟, 薛强, 等. 基于层次分析法的黄土滑塌风险评价指标权重分析[J]. 中国地质灾害与防治学报, 2012, 23(4): 40−46.

    TANG Yaming, CHENG Xiujuan, XUE Qiang, et al. Weights analysis of loess collapse risk assessing factors based on analytical hierarchy process[J]. The Chinese Journal of Geological Hazard and Control,2012,23(4):40−46.

    吴树仁, 石菊松, 张春山, 等. 地质灾害风险评估技术指南初论[J]. 地质通报, 2009, 28(8): 995−1005.

    WU Shuren, SHI Jusong, ZHANG Chunshan, et al. Preliminary discussion on technical guideline for geohazard risk assessment[J]. Geological Bulletin of China,2009,28(8):995−1005.

    王本栋, 李四全, 许万忠, 等. 基于3种不同机器学习算法的滑坡易发性评价对比研究[J]. 西北地质, 2024, 57(1): 34−43.

    WANG Bendong,LI Siquan,XU Wanzhong,et al. A Comparative Study of Landslide Susceptibility Evaluation Based on Three Different Machine Learning Algorithms[J]. Northwestern Geology,2024,57(1):34−43.

    王高峰, 郭宁, 邓兵, 等. 不同组合模型区域滑坡易发性及精度分析[J]. 西北地质, 2021, 54(2): 259−272.

    WANG Gaofeng, GUO Ning, DENG Bing, et al. Analysis of Landslide Susceptibility and Accuracy in Different Combination Models[J]. Northwestern Geology,2021,54(2):259−272.

    王晓帆, 段雨营, 金露露, 等. 基于优化的最大嫡模型预测中国高山栋组植物的历史、现状与未来分布变化[J]. 生态学报, 2023, 43(16): 6590−6604.

    WANG Xiaofan, DUAN Yuying, JIN Lulu, et al. Prediction of historical, present and future distribution of Ouercus sect. Heterobalanus based on the optimized MaxEnt model in China[J]. Acta Ecologica Sinica,2023,43(16):6590−6604.

    万洋, 郭捷, 马凤山, 等. 基于最大熵模型的中尼交通廊道滑坡易发性分析[J]. 中国地质灾害与防治学报, 2022, 33(2): 88−95.

    WAN Yang, GUO Jie, MA Fengshan, et al. Landslide susceptibility assessment based on MaxEnt model of along Sino-Nepal traffic corridor[J]. The Chinese Journal of Geological Hazard and Control,2022,33(2):88−95.

    熊小辉, 汪长林, 白永健, 等. 基于不同耦合模型的县域滑坡易发性评价对比分析——以四川普格县为例[J]. 中国地质灾害与防治学报, 2022, 33(4): 114−124.

    XIONG Xiaohui, WANG Changlin, BAI Yongjian, et al. Comparison of landslide susceptibility assessment based on multiple hybrid models at county level: A case study for Puge County, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(4):114−124.

    于开宁, 吴涛, 魏爱华, 等. 基于AHP-突变理论组合模型的地质灾害危险性评价——以河北平山县为例[J]. 中国地质灾害与防治学报, 2023, 34(2): 146−155.

    YU Kaining, WU Tao, WEI Aihua, et al. Geological hazard assessment based on the models of AHP, catastrophe theory and their combination: A case study in Pingshan County of Heibei Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(2):146−155.

    赵冬梅, 角媛梅, 邱应美, 等. 基于maxEnt模型的哈尼梯田核心区滑坡易发性评价[J]. 水土保持学报, 2020, 27(4): 392−399.

    ZHAO Dongmei, JIAO Yuanmei, QIU Yingmei, et al. Assessment on Landslide Susceptibility of the Core Area of Hani Race Terraces Heritage Site Maximum Entropy Model[J]. Research of Soil and Water Conservation,2020,27(4):392−399.

    张伟, 周松林, 尹仑. 基于优化 MaxEnt 模型的高山峡谷区地质灾害易发性评价—以云南省德钦县为例[J]. 灾害学, 2023, 38(2): 185−190.

    ZHANG Wei,ZHOU Songlin,YIN Lun. Evaluation of Susceptibility to Geological Hazard in Alpine Canyon Area Based on Optimized MaxEnt Model: A Case Study in Deqin County,Yunnan Province[J]. Journal of Catastrophology,2023,38(2):185−190.

    曾韬睿, 邬礼扬, 金必晶, 等. 基于stacking集成策略和SBAS-InSAR的滑坡动态易发性制图[J]. 岩石力学与工程学报, 2023, 42(9): 2266−2282.

    ZENG Taorui, WU Liyang, JIN Bijing, et al. Landslide dynamic susceptibility mapping based on stacking ensemble strategy and SBAS-InSAR[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(9):2266−2282.

    朱耿平, 乔慧捷. Maxent模型复杂度对物种潜在分布区预测的影响[J]. 生物多样性, 2016, 24(10): 1189−1196. doi: 10.17520/biods.2016265

    ZHU Gengping, QIAO Huijie. Effect of the Maxent model’s complexity on the prediction of species potential distributions[J]. Biodiversity Science,2016,24(10):1189−1196. doi: 10.17520/biods.2016265

    张茂省, 李同录. 黄土滑坡诱发因素及其形成机理研究[J]. 工程地质学报, 2011, 19(4): 530−540.

    ZHANG Maosheng, LI Tonglu. Triggering factors and forming mechanism of loess landslide[J]. Journal of Engineering Geology,2011,19(4):530−540.

    Ayalew L, Yamagishi H. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan[J]. Geomorphology,2005,65(1/2):15−31.

    Berardino P, Fornaro G, Lanari R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. Geoscience and Remote Sensing,2002,40(11):2375−2383. doi: 10.1109/TGRS.2002.803792

    Corominas J, Van W C J, Frattini P, et al. Recommendations for the Quantitative Analysis of Landslide Risk[J]. Bulletin of Engineering Geology and the Environment,2014,73(2):209−263.

    Calderon-Guevara W, Sanchez-Silva M, Nitescu B, et al. Comparative Review of Data-driven Landslide Susceptibility Models: Case Study in the Eastern Andes Mountain Range of Colombia[J]. Natural Hazards,2022,113:1105−1132. doi: 10.1007/s11069-022-05339-2

    Calvello M, Peduto D, Arena L. Combined use of statistical and DInSAR data analyses to define the state of activity of slow-moving landslides[J]. Landslides,2017,14(2):473−489. doi: 10.1007/s10346-016-0722-6

    Chao Zhou, Ying Cao, Xie Hu, et al. Enhanced dynamic landslide hazard mapping using MT-InSAR method in the Three Gorges Reservoir Area[J]. Landslides,2022,19:1585−1597. doi: 10.1007/s10346-021-01796-1

    Fell R, Corominas J, Bonnard C, et al. Guidelines for Landslide Susceptibility, Hazard and Risk Zoning for Land use Planning[J]. Engineering Geology,2008,102(3-4):85−98. doi: 10.1016/j.enggeo.2008.03.022

    Felicisimo Á M, Cuartero A, Remondo J, et al. Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study[J]. Landslides,2013,10(2):175−189. doi: 10.1007/s10346-012-0320-1

    Huang Faming, Yao Chi, Liu Weiping, et al. Landslide susceptibility assessment in the Nantian area of China: a comparison of frequency ratio model and support vector machine[J]. Geomatics,2018,1(9):919−938.

    Hitoshi S, Daichi N, Hiroshi M. Comparison of landslide susceptibility based on a decision-tree model and actual landslide occurrence: The Akaishi Mountains, Japan[J]. Geomorphology,2009,109(3-4):108−121. doi: 10.1016/j.geomorph.2009.02.026

    Kornejady A, Ownegh M, Bahrem A. Landslide susceptibility assessment using maximum entropy model with two different data sampling methods[J]. Catena,2017,152:144−162. doi: 10.1016/j.catena.2017.01.010

    Lima P, Steger S, Glade T, et al. Literature review and bibliometric analysis on data-driven assessment of landslide susceptibility[J]. Journal of Mountain Science, 2022, 19(6): 1670-1698.

    Lee S, Ryu J H, Won J S, et al. Determination and application of the weights for landslide susceptibility mapping using an artificial neural network[J]. Engineering Geology,2004,71(3−4):289−302. doi: 10.1016/S0013-7952(03)00142-X

    Muscarella R, Galante P J, Soley-Guardia M, et al. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models[J]. Methods in Ecology & Evolution,2015,5(11):1198−1205.

    Piacentini D, Devoto S, Mantovani M, et al. Landslide susceptibility modeling assisted by Persistent Scatterers Interferometry(PSI): an example from the northwestern coast of Malta[J]. Natural Hazards,2015,78(1):681−697. doi: 10.1007/s11069-015-1740-8

    Phillips S J, Erson R P, Dudik M, et al. Opening the black box: an open-source release of Maxent[J]. Ecography,2017,40(7):887−893. doi: 10.1111/ecog.03049

    Steven J P, Robert P A, Robert E S. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling,2006,190(3):231−259.

    Tang Yaming, Feng Fan, Guo Zizheng, et al. Integrating principal component analysis with statistically-based models for analysis of causal factors and landslide susceptibility mapping: A comparative study from the Loess Plateau area in Shanxi (China)[J]. Journal of Cleaner Production,2020,277(20):124−159.

    Warren D L, Seifert S N. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria[J]. Ecological Applications,2011,21(2):335−342. doi: 10.1890/10-1171.1

    Xu Ling, Yan Dongdong, Zhao Tengyuan. Probabilistic evaluation of loess landslide impact using multivariate model[J]. Landslides,2021,18(3):1011−1023. doi: 10.1007/s10346-020-01521-4

    Yuan Meijiao, Dong Meizhao, Yin Pingding, et al. Performance evaluation for four GIS-based models purposed to predict and map landslide susceptibility: A case study at a World Heritage site in Southwest China-ScienceDirect[J]. Catena,2019,183:104−221.

    Yong Weili, Xian Minwang, Hang Mao. Influence of Human Activity on Landslide Susceptibility Development in the Three Gorges area[J]. Natural Hazards,2020,104:2115−2151. doi: 10.1007/s11069-020-04264-6

    Yikunoamlak G, Selemawi A, Esayas M, et al. Current and future predicting potential areas of Oxytenanthera abyssinica(A. Richard) using MaxEnt model under climate change in Northern Ethiopia[J]. Ecological Processes,2020,9(1):1−15. doi: 10.1186/s13717-019-0204-6

    Zhuang Jianqi, Peng Jianbing, Wang Gonghui, et al. Distribution and characteristics of landslide in Loess Plateau: a case study in Shaanxi Province[J]. Engineering Geology,2018,236(26):89−96.

  • 期刊类型引用(1)

    1. 赵利刚,王文龙,高学生,王树庆,许雅雯,胡晓佳. 内蒙古达茂旗北部包尔汉图群时代及中早-中三叠世变质锆石年龄的启示. 华北地质. 2024(02): 1-15+37 . 百度学术

    其他类型引用(0)

图(8)  /  表(4)
计量
  • 文章访问数:  17
  • HTML全文浏览量:  1
  • PDF下载量:  13
  • 被引次数: 1
出版历程
  • 收稿日期:  2024-02-25
  • 修回日期:  2024-10-22
  • 录用日期:  2024-11-21
  • 网络出版日期:  2025-02-26
  • 刊出日期:  2025-04-19

目录

/

返回文章
返回