ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    高级检索

    中国新疆–中亚大地构造单元划分及演化简述

    张向飞, 陈莉, 曹华文, 彭智敏, 陈奋宁, 洪俊, 任飞, 王启宇, 姜丽莉, 高慧, 潘桂棠, 李文昌

    张向飞, 陈莉, 曹华文, 等. 中国新疆–中亚大地构造单元划分及演化简述[J]. 西北地质, 2023, 56(4): 1-39. DOI: 10.12401/j.nwg.2023061
    引用本文: 张向飞, 陈莉, 曹华文, 等. 中国新疆–中亚大地构造单元划分及演化简述[J]. 西北地质, 2023, 56(4): 1-39. DOI: 10.12401/j.nwg.2023061
    ZHANG Xiangfei, CHEN Li, CAO Huawen, et al. Division of Tectonic Units and Their Evolutions within Xinjiang, China to Central Asia[J]. Northwestern Geology, 2023, 56(4): 1-39. DOI: 10.12401/j.nwg.2023061
    Citation: ZHANG Xiangfei, CHEN Li, CAO Huawen, et al. Division of Tectonic Units and Their Evolutions within Xinjiang, China to Central Asia[J]. Northwestern Geology, 2023, 56(4): 1-39. DOI: 10.12401/j.nwg.2023061

    中国新疆–中亚大地构造单元划分及演化简述

    基金项目: 国家自然科学基金–重点基金项目(92055314),国家重点研发计划项目课题(2021YFC2901803),国际地学科学计划项目(IGCP-741),四川省“天府万人计划”杰出科学家项目(川万人第 023号),云南省科学技术奖–杰出贡献奖项目( 2017001)和中国地质调查局项目(DD20221910、ZD20220408)联合资助
    详细信息
      作者简介:

      张向飞(1985–),男,正高级工程师,博士,从事基础地质与区域矿床学研究。E–mail:zhangfei1895@163.com

      通讯作者:

      潘桂棠(1941–),男,研究员,长期从事区域地质和大地构造研究。E–mail:13808091563@163.com

      李文昌(1962–),男,正高级工程师,长期从事找矿勘探和矿床地质研究。E–mail:lwcyndd@163.com

    • 中图分类号: P544;P541

    Division of Tectonic Units and Their Evolutions within Xinjiang, China to Central Asia

    • 摘要:

      中国新疆–中亚地处特提斯构造域和古亚洲构造域交汇部位,跨全球最重要三大构造(成矿)域中的2个,对认识全球构造演化和资源环境效应具有重要意义,前人对该区域开展了大量研究,提出了不同的大地构造单元和成矿区(带)划分方案,然而不同学派之间存在诸多争议。笔者结合“多岛弧盆系”构造理论,遵循将今论古的比较构造地质学研究原则,以大地构造相的时空结构分析为主线,以对接带、造山系和陆块区3类一级大地构造单元,依据优势大地构造相将研究区划分为12个一级构造单元、32个二级构造单元和74个三级构造单元,并针对二级构造单元的构造环境和岩石建造组合进行描述、总结,以建立研究区总体构造格架和演化历史。在此基础上,依据两大构造域时空演化特征,追溯古亚洲洋和特提斯构造域的构造演化历史。通过对研究区构造单元划分和构造演化的重新厘定,以期为区域基础地质研究和资源能源勘查提供基础依据。

      Abstract:

      The region of Xinjiang (China) to central Asia, located at the intersection of Tethys and ancient Asia tectonic domains, spans two of the three most important tectonic (metallogenic) domains in the world. Therefore, it is of great significance to understand the global tectonic evolution and the effects of resources–environment. Previous researchers have carried out a lot of researches on this region, and proposed different geotectonic units and metallogenic regions (belts) division schemes. However, there are many disputes between different research teams. Based on the structural theory of "multi–island–arc–basin–terrain (MABT)" system by our research team, following the research principle of comparative structural geology, i.e., the present is the key to reveal the past, and taking spatial and temporal structure analysis of tectonic faces and environment as the main approach in which the suture zone, orogenic system and continental block are treated as three first–rank tectonic units. Accordingly, 12 first–rank tectonic units, 32 second–rank tectonic units and 74 third–rank tectonic units are divided following the dominant tectonic faces in the research region of this paper. Moreover, tectonic environment and rock formation combination of the second–rank tectonic units are focused on to establish the overall tectonic framework and evolution history of this region. Based on these, according to their temporal–spatial evolution characteristics, the tectonic evolution histories are reconstructed for Ancient Asian Ocean and Tethys Ocean, respectively. Through the division of tectonic units and the redefinition of tectonic framework, it is expected to provide scientific basis for regional basic geological research and resource–energy exploration practice in this domain.

    • 河西走廊的黑河流域位于中国西北内陆干旱区,生态环境脆弱,新生代以来青藏高原的隆起对该地区的气候有着重要的影响(李吉均,2013祁晓凡等,2022),独特的自然地理条件使其对全球气候变化的响应更加敏感。研究该地区的河流相沉积物特征,对于探明古气候变化具有重要意义。目前,对于黑河流域气候变化的研究多集中在河流径流量变化和大气循环方面(崔延华等,2017祁晓凡等,2017梁鹏飞等,2022冯嘉兴等,2023)以及表土花粉研究,对于其古气候的形成演化研究程度较弱。例如,陈雪梅(2012)常婧(2016)利用黑河中游地区河床和表土样品的孢粉记录,分析了河流相沉积物中孢粉的来源以及其所代表的环境意义,全新世以来的环境演化以及农业活动强度,但是对于张掖盆地中游地区晚更新世以来的气候研究,由于缺乏晚更新世—全新世地层精确的年代控制,仍处于不明了状态。笔者以张掖盆地河流沉积地层中孢粉为主要研究对象,同时结合重矿物分析及光释光测年分析,对钻孔剖面地层时代和晚更新世以来古气候特征进行了详细厘定,为研究区末次间冰期以来的古植被古环境恢复以及古气候变化提供基础数据。

      张掖盆地位于黑河流域中部走廊平原,盆地南北分别以祁连山和合黎山–龙首山为边界,东、西分别为永固隆起和榆木山隆起(王具文等,2019),海拔为1284~2500 m,相对高差为1200 m。主要地貌类型有山前冲积平原、山前冲洪积平原、荒漠戈壁平原、河谷冲积平原和走廊淤积平原、风积沙丘等。研究区属温带大陆性干旱气候,气候特点为降雨稀少、蒸发强烈,年降水量小于200 mm,年水面蒸发量大于2050 mm(王文祥等,2021)。

      研究区钻孔HQ8位于张掖盆地平原堡附近,处于黑河及其支流山丹河交汇处(图1)。地理坐标为E 100°21′00.74″,N 39°05′58.83″,钻孔HQ8研究深度至505.65 m,由于56.8~505.65 m深度的孢粉数量极度稀少。所以,笔者只选取相对孢粉含量较高的深度(0.15~56.8 m)进行研究。钻孔编号ZY-1位置在张火公路203号,地理坐标为E 100°28′34.34″, N 38°56′51.60″,剖面深度为0.8~93.4 m,取样11块。

      图  1  研究区地质略图(a)与钻孔HQ8位置图(b)
      Figure  1.  (a) Simplified geologic map of study area and (b) location of borehole HQ8

      根据岩性,笔者将钻孔HQ8自上而下分为6层(图2):第1层深度为0~16.8 m,岩性为棕黄色、灰黄色,巨厚层状,含砾亚砂土夹中粗砂、中细砂层,发育块状递变层理,粒径10~40 mm的砾石含量高。磨圆度较差,分选性较好。第2层深度为16.8~24.65 m,岩性为黄橄榄、橄榄棕,厚层状,含砾中粗砂,发育水平层理、小型交错层理,含零星锈染斑点。第3层深度为24.65~26.05 m,岩性为橄榄灰、灰橄榄,厚层状亚砂土,砾石粒径范围为2~90 mm,块状层理,分选差,次圆状。第4层深度为26.05~48.95 m,岩性为橄榄灰、浅灰色砂砾石,分选性一般,砾石次棱角、次圆状。第5层深度为48.95~53.8 m,岩性为暗棕黄色亚砂土夹砂砾石,发育斜层理、波状层理、水平层理,偶有锈染砂纹并夹香肠状富碳屑透镜体。第6层深度为53.8~56.8 m,岩性为黄橄榄色砂砾石,发育块状层理、水平层理,含大量锈染斑点。

      图  2  钻孔HQ8柱状图及采样位置图
      1.亚砂土夹中粗砂、中细砂;2.含砾中粗砂;3.亚砂土;4.砂砾石;5.亚砂土夹砂砾石;6.砂砾石
      Figure  2.  Comprehensive histogram of borehole HQ8

      光释光测年共取样品3个,取样深度分别为6.0 m、8.4 m和26.2 m。光释光测年主要是依据测定样品等效剂量和环境剂量率,计算样品的埋藏年龄(赖忠平等,2013张克旗等,2015)。用饱和指数方法进行拟合,样品再生剂量点不太分散,生长曲线没有明显饱和,认为测试数据可信。采用细颗粒简单多片再生法获得等效剂量值,测年物质为细颗粒(4~11 um)石英。其中,等效剂量(De)采用石英单测片再生法(Single Aliquot Regeneration,SAR)测定。在样品环境剂量率的测定中样品的U、Th和K含量是用电感耦合等离子质谱(ICP–MS)测得,宇宙射线的贡献是根据Prescott等(1994)推荐的数据估计的;为了计算样品埋藏层的含水量对样品所接收的剂量率的影响,样品的含水量采用经验值5±1%进行估算,并用Fleming提出的校正方法,对环境剂量率进行了修正。样品的测定由自然资源部地下水矿泉水及环境监测中心使用Daybreak 2200光释光仪测定。

      人工重砂共测试样品6个,取样深度分别为0.15 m、2.2 m、7.3 m、10.5 m、29.2 m、55.5 m,样品编号对应为ZS01~ZS06。鉴定工作由河北省区域地质矿产调查研究所测试完成。鉴定依据《地质矿产实验室测试质量管理规范》中的岩石矿物鉴定标准(DZ/T0130.9-2006),分离出电磁、无磁和强磁3部分重矿物;通过双目体式镜下鉴定所分离出的重矿物并进行分类,利用高精度天平对不同种类的重矿物进行称重,通过重矿物平均密度换算为质量百分比。

      在钻孔HQ8深度0.15~56.8 m处分别选取深度为0.15 m、0.8 m、1.8 m、2.6 m、2.8 m、12.6 m、16.6 m、26.4 m、56.8 m,采集具有代表性的岩心样品进行孢粉分析9个,样品编号为ZY01-ZY09。在钻孔ZY-1中,剖面厚度为0.8~93.4 m,选取深度为0.8 m、2.0 m、3.5 m、5.7 m、7.4 m、29.5 m、30.0 m、31.0 m、67.9 m、86.8 m、93.4 m的11个具有代表性的岩芯样品进行孢粉分析,样品编号为XX01-XX09,每块样品重量为100 g。实验处理流程经过称取、酸处理、水洗、重液浮选、离心、制片等过程(Wu et al.,2010李育,2011)。每块孢粉样品加入100 ml的HCl溶液,目的是去除样品中的钙质,再加入100 ml的HF溶液,目的是去除样品中的硅质;加入5 g碳酸氢钠,使溶液中和至中性,再加入重液浮选;反应充分后加水离心洗至中性;加甘油制片(Ma et al.,2019Wang et al.,2020)。实验与鉴定由中国地质调查局水文地质环境地质调查中心实验室完成。使用Tilia软件绘制孢粉图,并使用地层约束聚类分析(CONISS)确定花粉组合带。

      文中研究测定钻孔深度为6.0 m、8.4 m、26.2 m处的光释光年龄对应地层时代为(17.4±0.7) ka、(33.9±2.1) ka、(62.9±3.7) ka(表1),测定年代结果由上至下年代逐渐变老,没有出现年代颠倒现象,符合地层层序律。应用内差值法获得孢粉样品所在深度的年龄(表2),其中深度为56.8 m的年龄小于内插值计算出来的年龄(112.7 ka),因为岩性有多个砂砾石快速沉积层,估算的年龄是极大值。根据目前第四纪年龄分配方案,全新统底界应该在10 ka附近,晚更新世底界应该在130 ka附近(樊隽轩等,2021)。因此,整个地层剖面从上至下应该划为全新统、上更新统。根据内差值法获得的各个深度的年龄,认为全新统所在深度应该在2.6 m以内,具体深度需要之后结合孢粉分析确定。

      表  1  光释光测年龄结果表
      Table  1.  The results of OSL dating of the borehole HQ8
      深度(m)U(10–6Th(10–6K(%)等效剂量E.D (Gy)年剂量Dy(Gy/Ka)含水量(%)年 龄(ka )
      6.01.86±0.0711.39±0.302.17±0.0869.66±1.124.01±0.165±117.4±0.7
      8.42.67±0.0413.55±0.302.14±0.06150.77±6.994.45±0.185±133.9±2.1
      26.21.19±0.066.67±0.261.63±0.03169.91±7.212.70±0.115±162.9±3.7
      下载: 导出CSV 
      | 显示表格
      表  2  内差值法得出孢粉样品深度对应的年龄表
      Table  2.  The age corresponding to the depth of the sample was obtained by internal difference method
      深度(m)0.150.81.82.62.86.08.412.616.626.226.456.8
      年代(ka)7.88.910.511.812.217.433.940.747.362.963.3<112.7
      下载: 导出CSV 
      | 显示表格

      重矿物物源分析结果(表3)显示,物源区母岩类型没有较大的变化,主要来源于岩浆岩和变质岩,说明现在重矿物的不同组合特征反映的主要是后期沉积过程中受到改造而发生变化,而不是物源区母岩类型的改变(Morton et al.,1999)。非海相沉积环境中的化学风化作用主导了重矿物的组合特征,而化学风化作用在温暖湿润的环境下强烈,在寒冷干旱的环境中则相反(刘瑾等,2020)。

      表  3  重矿物物源分析表
      Table  3.  The provenance analysis of heavy minerals
      重矿物组成物源分析
      样品编号岩浆岩矿物高级变质矿物低级变质矿物再造沉积物
      ZS01(0.15 m) 自形锆石、磷灰石、金红石、锐钛矿、单斜辉石、普通角闪石、电气石、磁铁矿、石英、长石、白云母 石榴子石、绿帘石、阳起石、绿泥石 白钛石、
      蚀变矿物
      重晶石 主要为岩浆岩和变质岩,少数为再造沉积物
      ZS02(2.2 m) 自形锆石、磷灰石、金红石、锐钛矿、单斜辉石、普通角闪石、电气石、磁铁矿、石英、长石、黑云母、白云母 石榴子石、绿帘石、阳起石、绿泥石 白钛石、
      蚀变矿物
      重晶石 主要为岩浆岩和变质岩,少数为再造沉积物
      ZS03(7.3 m) 自形锆石、磷灰石、金红石、锐钛矿、单斜辉石、普通角闪石、电气石、钛铁矿、磁铁矿、石英、长石、黑云母、白云母 石榴子石、绿帘石、阳起石、绿泥石 白钛石、
      蚀变矿物
      重晶石 主要为岩浆岩和变质岩,少数为再造沉积物
      ZS04(10.5 m) 自形锆石、磷灰石、金红石、锐钛矿、单斜辉石、普通角闪石、榍石、电气石、钛铁矿、磁铁矿、石英、长石、黑云母、白云母 石榴子石、绿帘石、阳起石、绿泥石 白钛石、
      蚀变矿物
      重晶石 主要为岩浆岩和变质岩,少数为再造沉积物
      ZS05(29.2 m) 自形锆石、磷灰石、金红石、单斜辉石、普通角闪石、电气石、榍石、铬铁矿、磁铁矿、石英、长石、黑云母、白云母、火山岩屑及花岗岩屑 石榴子石、绿帘石、阳起石、绿泥石 白钛石、
      蚀变矿物
      主要来源于岩浆岩和变质岩
      ZS06(55.5 m) 自形锆石、磷灰石、金红石、单斜辉石、普通角闪石、电气石、榍石、磁铁矿、石英、长石、黑云母、白云母、火山岩屑及花岗岩屑 石榴子石、绿帘石、蓝闪石、阳起石、绿泥石 白钛石、
      蚀变矿物
      主要来源于岩浆岩和变质岩
      下载: 导出CSV 
      | 显示表格

      前人通常采用重矿物的风化系数(表4)来表示风化作用强弱(牛东风等,2015)。风化系数K=不稳定矿物(%)+较稳定矿物(%)/稳定矿物(%)+极稳定矿物(%),即风化系数越大,岩石中相对稳定矿物含量较多,相对不稳定矿物含量较少,气候越寒冷;风化系数越小,气候越温暖湿润。

      表  4  重矿物质量百分含量(%)及风化系数
      Table  4.  The results of the mass percentages of the heavy minerals and coefficient of weathering
      稳定性划分矿物名称深度(m)(样品编号)
      0.15(ZS01)2.2(ZS02)7.3(ZS03)10.5(ZS04)29.2(ZS05)55.5(ZS06)
      极稳定矿物锆石0.623.332.291.520.731.39
      金红石0.060.720.430.130.020.26
      锐钛矿0.010.01
      电气石0.210.430.900.12
      稳定矿物白钛石0.010.200.450.170.041.92
      黄铁矿0.010.050.01
      赤褐铁矿43.9151.0453.2457.2212.1835.32
      磁铁矿1.683.963.033.5624.0915.61
      重晶石0.091.112.511.49
      钛铁矿3.959.28
      铬铁矿0.320.10
      榍石0.200.35
      较稳定矿物磷灰石0.060.050.020.03
      石榴子石4.122.719.349.603.058.19
      绿帘石6.198.838.847.003.0516.24
      不稳定矿物单斜辉石2.502.581.975.633.711.49
      普通角闪石11.319.101.320.809.154.13
      阳起石20.6211.463.290.9234.898.45
      风化系数0.960.570.370.321.440.70
      下载: 导出CSV 
      | 显示表格

      研究结果显示,钻孔深度0.15 m、2.2 m、7.3 m、10.5 m、29.2 m、55.5 m的重矿物风化系数分别为0.96、0.57、0.37、0.32、1.44、0.70。由于风化系数越大,气候越寒冷,深度0.15 m和29.2 m相对于研究的其他深度气候是更加寒冷。因此,2.2 m、7.3 m、10.5 m、55.5 m的风化系数相对较小,气候相对的温暖。

      孢粉鉴定在400倍光学显微镜下鉴定,共鉴定到1762粒孢粉,孢粉浓度计算公式为PC=P/M,PC为孢粉浓度,P为鉴定的花粉总数,M为样品质量。通过计算得到孢粉平均浓度18粒/g。

      孢粉中主要是木本植物花粉最为丰富,草本植物花粉次之,蕨类植物孢子极少。其中乔木植物花粉有松属(Pinus)、铁杉属(Tsuga)、栎属(Quercus)、榛属(Corylus)、板栗属(Castanea);灌木植物花粉有麻黄属(Ephedra)、蔷薇科(Rosaceae);草本植物花粉有藜科(Chenopodiaceae)、菊科(Compositae)、蒿属(Artemisia)、豆科(Leguminosae);蕨类植物有卷柏科(Selaginellaceae)、凤丫蕨属(Coniogramme)、单缝孢子(Monoletes)。典型孢粉形态见(图4)。

      图  4  HQ8钻孔孢粉图(比例尺1∶400)
      1.松属Pinus,样品号ZY08,深度26.4 m;2.松属Pinus,样品号ZY04,深度2.6 m;3.栎属Quercus,样品号ZY09,深度56.8 m;4.栗属Castanea,样品号ZY06,深度12.6 m;5.麻黄属Ephedra,样品号ZY01,深度0.15 m;6.蔷薇科Rosaceae,样品号ZY07,深度16.6 m;7.蔷薇科Rosaceae,样品号ZY03,深度1.8 m;8.蒿属Artemisia,样品号ZY06,深度12.6 m;9.菊科Compositae,样品号ZY09,深度56.8 m;10.菊科Compositae,样品号ZY01,深度0.15 m;11.藜科Chenopodiaceae,样品号ZY08,深度0.8 m;12.凤丫蕨属Coniogramme,样品号ZY04,深度2.6 m
      Figure  4.  The picture of sporopollen of the borehole HQ8

      根据分析孢粉植物的生态类型来重建该地区古植被类型,以恢复古气候(刘淼等,2019Li et al.,2019韦一等,2021)。根据地层的孢粉信息和CONISS分析,依据不同植物之间的占比关系,并结合孢粉浓度、蒿藜比(A/C值)、乔木花粉与非乔木花粉比(ln(NAP/AP)值)、藜和麻黄之和(C+E)值和古里雅冰芯对应气候趋势(图6),将钻孔56.8~0.15 m地层自下而上划分为4个孢粉组合带(图5)。4个孢粉组合带特征以及对应的古气候特征分别叙述如下。

      图  6  钻孔中蒿藜比A/C和乔木花粉与非乔木花粉比ln(NAP/AP)和藜和麻黄之和C+E值与古里雅冰芯中δ18O变化趋势对比图
      a. 蒿藜比A/C值随深度变化趋势;b. 乔木花粉与非乔木花粉比ln(NAP/AP)值随深度变化趋势;c. 藜和麻黄之和(C+E)值随深度变化趋势;d. 古里雅冰芯中δ18O随深度变化趋势(Thompson et al.,1989姚檀栋,1997袁林旺等,2000
      Figure  6.  Comparison of A/C, Ln (NAP/AP) and C+E values in boreholes with δ18O in Guliya ice core
      图  5  HQ8钻孔孢粉组合特征图
      Figure  5.  The features of sporopollen assemblage of borehole HQ8

      (1) 孢粉组合带Ⅰ:松-板栗-藜-菊-蒿(56.8~26.4 m, 112.7~63.3 ka)。此带包括两个样品,编号是ZY08、ZY09。本带孢粉含量较高,木本植物花粉占优势,含量为 42.86%~100% (平均为71.43%),主要是松属 (50.57%),其中栎属(0.86%)、板栗属(16.29%)、麻黄属(2.00%)、蔷薇科(1.71%)。草本植物花粉为0.00%~56.00% (平均为28%), 其中藜科(17.72%)、菊科(4.86%)、蒿属(5.43%)。蕨类植物孢子占0.57%,有单缝孢子。代表植被类型是针阔叶混交林草原植被。此阶段的气候在整体上是温暖湿润的。

      在气候的波动方面,此时,A/C值为0.73,通常意义上认为其值小于0.5代表荒漠植被区,草原区一般大于1;同时其值越小越说明气候干燥,越大代表越湿润,而ln(NAP/AP)值在 56.8~26.4 m逐渐减小,反映气候逐渐湿润。

      (2)孢粉组合带Ⅱ:松-麻黄-藜-蒿(26.4~2.6 m, 63.3~11.8 ka)。此带包括4个样品,编号是ZY04、ZY05、ZY06、ZY07。本带孢粉含量较低,木本植物花粉占优势,含量为69.59%~98.13% (平均为 85.11%),主要是松属(57.14%)、铁杉属(0.84%)、板栗属(2.18%)、麻黄属(22.56%)、蔷薇科(2.39%)。草本植物花粉为0.93%~0.40% (平均为11.66%),其中藜科(6.94%)、蒿属(7.71%)。蕨类植物孢子占0.23%,有凤丫蕨属。代表针阔叶混交林草原植被。此阶段的气候在整体上是干燥寒冷的。

      在气候的波动方面,其中深度26.4 m处,孢粉极少,反映此时气候干燥寒冷,并且,由前文光释光年龄得出的26.2 m深度的年龄为(62.9±3.7) ka,对应古里雅冰芯记录中GR曲线出现低值,证实了此时气候干燥寒冷(Thompson et al.,1989姚檀栋,1997袁林旺等,2000)。钻孔深度为2.8 m处孢粉含量极低,仅发现少量的藜科和松属,表明气候极度干燥寒冷;而2.6 m处孢粉数量大,出现大量铁杉和松属等温暖指示植物,A/C值在2.6 m达到峰值,反映气候温暖湿润。

      (3)孢粉组合带Ⅲ:松-藜-蒿(2.6~0.8 m,11.8~8.9 ka)。此带包括两个样品,编号是ZY03、ZY02。本带孢粉含量较低,草本植物花粉占优势,含量为40.00%~65.63% (平均为52.82%),其中藜科(38.75%),代表性的有蒿属(14.06%)。木本植物花粉占比34.38%~60.00%(平均为47.19%),其中松属(36.25%)、榛属(3.12%)、板栗属(4.69%)、麻黄属(1.56%)、蔷薇科(1.56%)。未发现蕨类植物孢子。此时,A/C值是0.38,比值较小;ln(NAP/AP)数值较大,代表稀树针阔叶混交林草原植被,气候较凉干旱为主。

      (4)孢粉组合带Ⅳ:松-藜-菊-蒿(0.8~0.15 m, 8.9~7.8 ka)。此带包括1个样品,编号是ZY01。孢粉含量高,草本植物花粉占优势,含量占比高达72.25%,木本植物花粉27.16%,蕨类植物孢子占0.58%,发现卷柏科。此阶段的气候在整体上是温暖较干的。

      在气候的波动方面,此时,A/C值是0.56,略大于2.6 m处该值比值较大;ln(NAP/AP)在0.15 m数值大,反映气候温暖较干旱。代表稀树针阔叶混交林草原植被。此外藜和麻黄加和值(C+E)值越大,代表气候越干旱。各指标与古里雅冰芯反映温度作图比较,变化趋势一致。

      (1)孢粉带Ⅰ–孢粉带Ⅳ中,只有孢粉带Ⅲ的孢粉含量较低,根据孢粉组合代表的植被所反映的气候变化规律符合全球全新世时期气候变化规律,孢粉带Ⅲ和孢粉带Ⅳ为全新世时期的沉积;结合光释光年龄测定结果(表2),推断全新统与更新统分界线在2.6 m,即2.6~0.15 m是全新统。

      (2)孢粉带Ⅰ的孢粉含量较高,为针阔叶混交森林草原植被,气候温暖湿润,为暖期时候的沉积,参考光释光年龄为(33.9±2.1) ka,即上更新统(Q3)。

      (3)孢粉带Ⅱ的孢粉含量高,为针阔叶混交林草原植被,气候温暖湿润,即上更新统(Q3)。

      (4)孢粉带Ⅲ为针阔叶混交森林草原植被,由晚更新世(Q3)冷期寒冷气候开始转暖的北方期的沉积,是气候较凉较干时候的沉积,即全新统(Q4)。

      (5)孢粉带Ⅳ为针阔叶混交森林草原植被,是温暖较干气候下的沉积,与现代当地植被面貌基本吻合,也即为现代沉积(全新统Q4)。

      剖面厚度0.8~93.4 m,取样11块。根据地层所负载的古植物孢粉信息,划分为4个孢粉组合带(图3),现由下而上分别叙述。

      图  3  TY-1钻孔孢粉组合特征图
      Figure  3.  Features of sporopollen assemblage of borehole TY-1

      (1)孢粉组合带Ⅰ:落叶松-栎-蒿为主带。代表地段93.4~31 m,包括3个样品。本带孢粉含量低,共发现19粒孢粉。木本植物花粉占孢粉总量的57.67%,有桦木属、栎属、漆树属。草本植物花粉占28.04%,有藜科、蒿属。蕨类植物孢子占14.29%,有单缝孢子。代表稀疏的针阔叶混交林草原植被,反应气候干冷。

      (2)孢粉组合带Ⅱ:松-蒿-瘤足蕨-凤尾蕨为主带。代表地段31~29.5 m,包括3个样品。本带孢粉含量较低,共发现54粒孢粉。木本植物花粉占孢粉总量的43.13%,有松属、落叶松、栎属、板栗属、漆树属。蕨类植物孢子占28.69%,有瘤足蕨科、凤尾蕨科、水龙骨科、单缝孢子。草本植物花粉占28.18%,有藜科、蒿属、锦葵属、十字花科。代表针阔叶混交林草原植被,反应气候较暖稍润。

      (3)孢粉组合带Ⅲ:云杉-松-麻黄-藜-瘤足蕨-凤尾蕨为主带。代表地段29.5~3.5 m,包括3个样品。本带孢粉含量高,共发现687粒孢粉。木本植物花粉占孢粉总量的80.48%,有云杉科、松属、栎属、板栗属、麻黄属。草本植物花粉占11.87%,有藜科、菊科、蒿属、唇形科、十字花科。蕨类植物孢子占7.65%,有瘤足蕨科、凤尾蕨科、水龙骨科、单缝孢子。代表针阔叶混交森林植被,反应气候温暖湿润。

      (4)孢粉组合带Ⅳ:松-麻黄-蒿-瘤足蕨为主带。代表地段3.5~0.8 m,包括两个样品。本带孢粉含量较高,共发现113粒孢粉。草本植物花粉含量上升,由前带的11.87%上升到48.39%,有藜科、蒿属、旋花科、锦葵、十字花科、蓼科。木本植物花粉含量下降,由80.48%下降到36.99%,但是植物属种比较丰富,有松属、落叶松属、栎属、胡桃属、板栗属、胡颓子、蔷薇科。蕨类植物孢子占14.62%,有瘤足蕨科、凤尾蕨科、凤丫蕨属、单缝孢子。代表针阔叶混交林草原植被,反应气候有向暖干方向发展的趋势。

      本次研究中自112.7 ka以来的孢粉组合代表的气候变化趋势,与古里雅冰芯中δ18O所反映的125 ka以来温度变化趋势具有一致性(Thompson et al.,1989姚檀栋,1997袁林旺等,2000),同时与上文重矿物风化系数反映的气候变化趋势相似,自下而上趋向干燥寒冷(表5)。

      表  5  孢粉分析与重矿物风化系数对气候的指示对照表
      Table  5.  The comparison of the weathering coefficient of heavy minerals and their climatic indicators and palynological analysis results
      地层时代气候 钻孔深度(m)孢粉特征
      (地层从下至上)
      孢粉反映气候
      变化趋势
      重砂风化系数对孢粉
      反映气候变化的佐证
      全新世冰后期0.8~0.15较少-很多寒冷干燥-温暖湿润2.2 m温暖~0.15 m寒冷
      2.6~0.8很多-较少温暖湿润-寒冷干燥
      晚更新世末次冰期2.8~2.6较少-很多寒冷干燥-温暖湿润7.3 m比2.2 m温暖
      7.3~2.8较多-较少温暖湿润-寒冷干燥
      10.5~7.3增加趋势升温10.5 m比7.3 m温暖
      26.05~10.5很少-很多寒冷干燥-温暖湿润29.2 m寒冷~10.5 m温暖
      末次间冰期29.2~26.05孢粉含量极少持续寒冷干燥
      53.8~29.2很多-很少温暖湿润-寒冷干燥55.5 m较29.2 m温暖湿润
      56.8~53.8增加趋势升温
      下载: 导出CSV 
      | 显示表格

      此前,对张掖盆地晚更新世以来的古气候定量化研究程度较弱,前人在相邻的酒泉盆地、民乐盆地做过相关研究,酒泉盆地、民乐盆地与张掖盆地(均属于河西走廊盆地群),它们在构造上均位于塔里木-华北板块与祁连-阿尔金板块挤压碰撞所形成的北祁连褶皱带上。因此,在区域内具有相似的地貌特征、演化背景、成因及沉积层序。通过对比相邻盆地,以及吉兰泰盐湖(彭卫,2018)、黄土高原的临夏、洛川和富县剖面(李秉成等,2004)、黄土高原西部黄土(甘肃静宁、定西、秦安等地晚更新世晚期以来几个黄土剖面)(唐领余等,2007)地层中孢粉所反映的古气候演变规律,证明本次研究的可验证性、可以反映出当地气候变化具有一致性。

      (1)自第四纪晚更新世以来,酒泉盆地在晚更新世早期(末次间冰期)(150~60 ka )处于温暖期,之后进入寒冷期(苏建平等,2005);民乐盆地在末次间冰期即将结束的过渡时期—晚更新世末次冰期早期(70.23~55.99 ka )(Li et al.,2011王丽媛等,2018),气候由间冰期的暖湿气候完全转换成了干冷的特点;与张掖盆地26.2 m处光释光年龄62.9 ka 基本吻合,孢粉含量极低,气候干冷。吉兰泰盐湖(彭卫,2018),在MIS5(85.8~72.1 ka)期间,森林草原植被类型,湿度较高,气候温暖湿润。在黄土高原临夏、洛川和富县的末次间冰期(128~75 ka)的植被中(李秉成等,2004),发现了温带和亚热带的树种,如栾树、漆树、枫杨、黄连木‚以及亚热带树种如铁杉、化香、山核桃、枫香、黄杞等。气候是温暖湿润的。

      (2)晚更新世中期(末次冰期),酒泉盆地在60~40 ka出现第三次冰期,气候寒冷干旱,沙漠区有所扩展,木本植物少见,草本植物只有少量耐旱的蒿、藜和麻黄;民乐盆地在晚更新世末次冰期中期(55.99~23.60 ka)气温较为回升,但是整体寒冷干燥,对应本次研究的张掖盆地钻孔8.4 m(33.9±3.7) ka,孢粉含量较之前有增加,但是气候依然较为干冷。吉兰泰盐湖在MIS4、MIS3(71.9~29.5 ka)期间,以蒿属、藜科、麻黄属为主的典型草原/荒漠草原,荒漠植被有大面积的发育。气候以冷干为主(彭卫,2018)。黄土高原西部黄土剖面(甘肃静宁、定西、秦安等地晚更新世晚期以来几个黄土剖面)的孢粉组合研究结果显示,在46.4~29 ka期间,花粉浓度较低反映当时森林草原植被覆盖较低。以 针叶林植被类型为主,松和云杉占优势气候寒冷(唐领余等,2007)。

      (3)酒泉盆地晚更新世晚期(末次冰期)(40~12 ka),此阶段较为温暖湿润的气候是青藏高原夏季特强季风事件引起的,原本河西走廊30000~16000 ka 期间(末次冰期)以寒冷气候为主(施雅风等,1997),12~10 ka 由于新仙女木事件气候转冷;民乐盆地晚更新世末次冰期晚期的盛冰期所处时代(约23.60~13.78 ka)气候异常寒冷,与本次研究的张掖盆地钻孔在6.0 m(17.4 ka)气候异常寒冷的分析结果对应吻合。吉兰泰盐湖MIS2(29.5~12 ka),周围植被为以蒿属、藜科、禾本科为主的典型草原,有零星荒漠分布,附近山地松林、云杉林发育,气候干燥寒冷(彭卫,2018)。黄土高原西部黄土剖面在29~11.7 ka期间,花粉浓度很低,主要是草本植物呈现由森林-森林草原急剧变化至稀疏草原阶段。20.4 ka,开始进入末次盛冰期(LGM),花粉浓度很低,由草原向荒漠草原方向演化。气候整体干燥寒冷(唐领余等,2007)。

      (4)全新世,酒泉盆地在10~7 ka期间,气候转温暖湿润。民乐盆地在全新世(10.22 ka至今)气候最为温暖湿润;与张掖盆地深度2.6~0.15m(10.5~7.8 ka),气候变化经历了转暖-干燥寒冷-转暖的变化过程一致,与古里雅冰芯氧同位素的气候旋回特征吻合(Thompson et al.,1989姚檀栋,1997袁林旺等,2000)。吉兰泰盐湖(12~9 ka),以蒿属、藜科为主的典型草原为主,荒漠扩张。温度上升,温暖较干燥(彭卫,2018)。黄土高原西部黄土剖面,在11.7~7.5 ka时期,气温逐渐升高,开始阶段花粉浓度低,以草本植物为主,主要是蒿属、禾本科、菊科8.8 ka开始松属、落叶阔叶等木本植物增加,草本植物蒿属、禾本科、菊科仍较多。植被类型从荒漠草原阶段- 疏林草原阶段或森林草原景观。气候总体特征为温凉略干(唐领余等,2007)(表6)。

      表  6  钻孔HQ8反映的张掖盆地与酒泉盆地、民乐盆地气候演化对比表
      Table  6.  The comparison of climatic evolution between Zhangye basin and adjacent Jiuquan basin and Minle basin in the HQ8 borehole
      时代酒泉盆地民乐盆地张掖盆地吉兰泰盐湖黄土高原临夏、
      洛川和富县剖面
      晚更新世早期(末次间冰期) 年龄(ka) 150~60 70.23~55.59 112.2~62.9(深度为56.8~26.2 m) MIS5(85.8~72.1 ka) 128~75
      孢粉组合特征 孢粉组合特征:木本植物主要有松属、桦属、柳属;草本植物以耐旱的蒿、藜、豆科、蔷薇为主,森林草原景观(苏建平等,2005 气候由间冰期的暖湿气候完全转换成了干冷的特点,波动不是很大,约在60.76 ka 附近最为干冷(Li et al.,2011王丽媛等,2018 对应本次研究的26.2 m,年龄是(62.9±3.7) ka 孢粉含量极低。气候干燥寒冷 森林草原,湿度较高 临夏、洛川和富县的末次间冰期的植被中,发现了一些跨越温带和亚热带的树种‚如栾树、漆树、枫杨、黄连木‚以及亚热带树种如铁杉、化香、山核桃、枫香、黄杞等(李秉成等,2004
      气候特征 气候暖湿润,植被茂盛 气候由暖湿转为干冷 气候温暖湿润 黄土高原及其毗邻地区晚更新世气候变化与全球变化是同步的‚温暖湿润
      晚更新世中期(末次冰期) 年龄(ka) 60~40 55.59~23.60 62.9~33.9(深度26.4~8.4 m) MIS4、MIS3(71.9~29.5 ka) 黄土高原西部黄土剖面46.4~29 ka
      孢粉组合特征 孢粉组合特征:木本植物少见,草本植物有少量蒿、藜、麻黄(苏建平等, 2005 气温回升,降水增加,冬季风表现得不强烈,但在40.61 ka和53.34 ka 附近依然较为干冷(Li et al.,2011王丽媛等,2018 对应本次研究的8.4m,年龄是(33.9±3.7) ka。孢粉含量较之前的增加。气候依然较为干冷 周围植被主要以蒿属、藜科、麻黄属为主的典型草原/荒漠草原,荒漠植被有大面积的发育,附近山地有松林发育和胡桃科为主的落叶林(彭卫,2018 花粉浓度较低,反映当时森林草原植被覆盖较低。46.4~46.2 ka 森林草原阶段。46~29 ka 针叶林阶段。这时段以松和云杉占优势‚花粉浓度较高‚应是针叶林繁盛时期(唐领余等,2007
      气候特征 寒冷干燥,冷期 气温较为回升,但是整体寒冷干燥 气候冷干为主 气候寒冷后较湿润
      晚更新世晚期(末次冰期) 年龄(ka) 40~12 23.60~10.22 33.9~10.5(深度为8.4~1.8 m) MIS2(29.5~12 ka) 29~11.7 ka
      孢粉组合特征 孢粉组合特征:木本植物有云杉、松、桑、木樨、桦、柳、榆等,草本植物有蒿、藜、麻黄、禾本科、十字花科、茄科(苏建平等,2005 该段分为盛冰期与晚冰期两个阶段。盛冰期(23.60~13.78 ka )该阶段属于晚更新世末次冰期中的盛冰期,该阶段气候异常寒冷(Li et al.,2011王丽媛等,2018 对应本次研究的6.0 m,年龄是(17.4±0.7) ka。孢粉含量极低 孢粉以蒿属、藜科、禾本科为主的典型草原,有零星荒漠分布,附近山地松林、云杉林发育有落叶榆属疏林发育
      彭卫,2018
      29~23.4 ka 森林-森林草原急剧变化阶段。23.4~20.4 ka 稀疏草原阶段。花粉浓度很低‚主要是草本植物,反映为稀疏草原植被。进入末次盛冰期(LGM)。20.4~17 ka草原向荒漠草原方向演化。花粉浓度很低。17~13.2 ka荒漠草原-森林阶段。11.7 ka以后孢粉贫乏‚植被又向荒漠草原发展(唐领余等,2007
      气候特征 12~10 ka 之间 由于新仙女木事件气候转冷。气候冷热频繁交替,以温暖湿润为主 气候变为异常寒冷 气候干燥寒冷 气候整体干燥寒冷
      下载: 导出CSV 
      | 显示表格
      续表6
      时代酒泉盆地民乐盆地张掖盆地吉兰泰盐湖黄土高原临夏、洛川和富县剖面
      全新世
      (冰后期)
      年龄(ka) 10~7 ka 10.22 ka~ 10.5~7.8 ka(深度1.8~0.15 m) 12~9 ka 11.7~7.5 ka
      孢粉组合特征 木本花粉云杉属、冷杉属、松属桦属、杨属等、铁杉属;草本植物花粉有麻黄属、蒿属、藜属、菊科(苏建平等,2005 全新世时期,气温急剧升高,降雨也随着变多(Li et al.,2011王丽媛等,2018 对应本次研究的深度2.6 m,孢粉含量很多 以蒿属、藜科为主的典型草原为主,荒漠扩张
      彭卫,2018
      11.7~8.8 ka 荒漠草原植被类型。花粉浓度低,以草本植物为主,主要有蒿属、禾本科、菊科,表明发育稀疏草原-荒漠草原植被,可能表明晚冰期的气候寒冷干旱。后期木本植物增加‚显示温度湿度增高。8.8~7.5 ka 疏林草原阶段。木本植物开始增加,尤其是松属增多,落叶阔叶树种零星出现。草本植物蒿属、禾本科、菊科较多。呈现疏林草原或森林草原景观(唐领余等,2007
      气候特征 在10~7 ka ,气候转温暖湿润 气候转暖后干燥寒冷后转暖 气候转暖后干燥寒冷后转暖 温度上升,温暖较干燥 气候总体特征为温凉略干
      下载: 导出CSV 
      | 显示表格

      此次研究的两个钻孔距离较近,可做对比研究,通过孢粉组合特征进行了分带,将代表性孢粉差异与深度相近的孢粉带反应的古气候变化特征进行对比,对比结果如下(表7)。

      表  7  钻孔HQ8、ZY-1孢粉带反映的气候特征对比表
      Table  7.  Comparative table of climatic characteristics of pollen zones in borehole HQ8 and ZY-1
      孢粉带地层深度(m)代表性孢粉气候特征
      钻孔HQ8钻孔ZY-1钻孔HQ8钻孔ZY-1钻孔HQ8钻孔ZY-1
      56.8~26.493.4~31松-板栗-藜-菊-蒿落叶松-栎-蒿温暖湿润-干冷气候较干冷
      26.4~2.631~3.5松-麻黄-藜-蒿松-蒿-瘤足蕨-凤尾蕨-云杉-麻黄-藜温暖湿润较暖稍润-温暖湿润
      2.6~0.8松-藜-蒿较凉干旱
      0.8~0.153.5~0.8松-藜-菊-蒿松-麻黄-蒿-瘤足蕨温暖较干旱向暖干方向发展
      下载: 导出CSV 
      | 显示表格

      此前对于张掖盆地的地层研究程度较浅、晚更新世至全新世地层缺乏精确的年代控制,此次研究结合古里雅冰芯记录中GR曲线值(Thompson et al.,1989姚檀栋等,1997袁林旺等,2000)、新仙女木事件发生时间(Ma et al.,2012Igor et al.,2020)、光释光年龄、孢粉数量与气候特征种属等多个分析指标,综合判断出地层时代以及气候变化趋势。在深度6.0 m处,光释光测试年龄是17.4 ka,早于新仙女木事件发生时间12.5~11.5 ka,推测应该是晚更新世晚期,同时钻孔深度2.8 m处孢粉含量极低,表明气候极度干燥寒冷,该处地层光释光内插值法计算所得年龄为12.2 ka,而2.6 m处地层年龄为11.8 ka,所以推断深度2.8~2.6 m地层所处时代是新仙女木事件发生时期,气候寒冷干燥。而深度2.6 m处发生明显转折,孢粉含量极高,出现大量的铁杉和松属等温暖指示植物,A/C值在2.6 m达到峰值,反映了气候温暖湿润,由于全新世与更新世地层的界限是以第四纪冰期-次亚冰期结束、气候转暖为标志,全新世开始于11.7 ka。因此,将钻孔所在地区地层的全新世和晚更新世地层界限划定为深度2.6 m。

      (1)研究区56.8 m以上地层时代可以划分为两个时代:其中2.6~0.15 m对应地层时代是全新世,钻孔深度为56.8~2.6 m对应地层时代是晚更新世。

      (2)张掖盆地平原堡钻孔沉积特征所反映的气候环境特征表现为明显的冷暖交替现象,此次划分出了研究区的末次间冰期、末次冰期、冰后期。其中钻孔深度为56.8~26.4 m,对应气候是末次间冰期;钻孔深度为26.4~2.6 m,对应气候是末次冰期;在钻孔深度为26.4 m(62.9 ka)和2.6 m(11.8 ka)出现极端寒冷气候转折;钻孔深度为2.6~0.8 m,对应气候是早全新世的相对冷期;钻孔深度为0.8~0.15 m,对应气候是早全新世到中全新世过渡的相对暖期。

    • 图  1   全球奥陶纪洋–陆格局示意图(据Scotese,2006王立全等,2021

      Figure  1.   Diagram of global ocean–continent pattern in Ordovician

      图  2   中国新疆–中亚地区大地构造单元划分图

      a. 全球三大构造域分布简图;b. 中国新疆–中亚构造单元图

      Figure  2.   Division diagram of geotectonic units within Xinjiang (China)–Central Asia

      图  3   古亚洲洋演化简图

      Figure  3.   Simplified cartoon of Ancient Asia Ocean evolution history

      图  4   特提斯洋演化简图

      Figure  4.   Simplified cartoon of Tethys Oceans evolution history

      表  1   中国新疆–中亚地区大地构造单元划分表

      Table  1   Division framework of tectonic units within Xinjiang (China)– Central Asia

      一级构造单元 二级构造单元 三级构造单元
      代号名称代号名称代号名称
      阿尔泰(–兴蒙)造山系 1 阿尔泰弧盆系 1-1 南阿尔泰陆缘弧(Pz1–C)
      1-2 南阿尔泰南缘增生弧(Pz2
      斋桑–额尔齐斯对接带 1 额尔齐斯断陷盆地(N–Q)    
      2 额尔齐斯–斋桑结合带 2-1 卡尔巴–额尔齐斯增生楔(O–C)
      2-2 斋桑-布尔根蛇绿混杂岩带(Pz1–C)
      2-3 吉木乃–北准噶尔洋内弧(Pz2
      乌拉尔–哈萨克斯坦–天山造山系 1 东准噶尔弧盆系 1-1 三塘湖岛弧(O–C)
      1-2 卡拉麦里蛇绿混杂岩带(Pz1–C)
      2 东天山弧盆系 2-1 哈尔里克-大南湖岛弧(O–C)
      2-2 康古尔塔格蛇绿混杂岩带(Pz1–C)
      2-3 觉罗塔格岛弧(D–C)
      3 准噶尔–吐哈地块 3-1 准噶尔地块(AnNh)
      3-2 博格达裂谷盆地(C–P)
      3-3 吐哈地块(Pz1-C)
      4 塔尔巴哈台-西准噶尔弧盆系 4-1 萨雷扎尔–扎尔马岛弧(Pz1
      4-2 塔尔巴哈台–赛米斯台岛弧(Pz2
      4-3 唐巴勒–达拉布特蛇绿混杂岩带(O–C)
      4-4 阿克塔斯特-萨亚克蛇绿混杂岩带(Pz1-C)
      5 巴音沟–米什沟结合带 5-1 依连哈比尔尕蛇绿混杂岩带(Pz2
      5-2 米什沟–冰达坂蛇绿混杂岩带(Pz1–C)
      6 莫因特–巴尔喀什–中天山地块 6-1 卡拉索尔–巴尔喀什–博罗科努陆缘弧(O-C)
      6-2 阿加德尔–莫因特–伊犁裂谷盆地(C–P)
      6-3 巴彦乌拉尔–扎拉依尔奈曼–中天山陆缘弧(O–C)
      7 希迭尔特–热尔套山–卡拉科尔结合带 7-1 希迭尔特-萨雷苏蛇绿混杂岩带(Pz1-C)
      7-2 热尔套山-卡拉科尔蛇绿混杂岩带(Pz1–C)
      8 图尔盖–塔拉斯地块 8-1 田吉兹湖–热兹卡兹甘陆缘弧(O–P)
      8-2 伊希姆–斯捷普尼亚克逆冲带(Ar?陆核)
      8-3 图尔盖-克孜勒库姆前陆盆地(Mz)
      8-4 卡拉套基底断隆带(K–Q右行走滑)
      8-5 塔拉斯–吉尔吉斯山增生弧(O–P)
      8-6 布坎套–费尔干纳陆缘弧(O–P)
      9 乌拉尔弧盆系 9-1 主乌拉尔蛇绿混杂岩带(Pz1–C)
      9-2 东乌拉尔岛弧(O–P)
      东欧陆块区 1 前乌拉尔地块(An€)    
      2 北里海残余盆地(Mz–E)    
      突厥斯坦–阿特巴什–南天山对接带 1 阿特巴什–南天山结合带 1-1 碱泉蛇绿混杂岩带(D–C)
      1-2 额尔宾山–库米什蛇绿混杂岩带(D–C)
      1-3 哈尔克山高压–超高压变质带(Pz1–C)
      1-4 阿特巴什–西南天山蛇绿混杂岩带(Pz1–C)
      2 乌兹别克–突厥斯坦结合带 2-1 乌兹别克–阿赖蛇绿混杂岩带(Pz1–C)
      2-2 曼格什拉克–萨雷卡梅什湖蛇绿混杂岩带(Pz1–C)
      下载: 导出CSV
      续表1
      一级构造单元 二级构造单元三级构造单元
      代号名称代号名称代号名称
      卡拉库姆–塔里木陆块区 1 敦煌陆块 1-1 柳园(阿克塔格)逆冲带(Pz2陆缘裂谷)
      1-2 敦煌断陷盆地(Cz)
      1-3 阿尔金北逆冲带(Ar2-3陆核)
      2 塔里木陆块 2-1 库鲁克塔格逆冲带(Pz1陆缘盆地)
      2-2 西南天山–霍拉山逆冲带(Pz1陆缘裂谷)
      2-3 塔里木前陆盆地(Mz)
      2-4 铁克里克逆冲带(Pt裂谷盆地)
      3 卡拉库姆陆块 3-1 撒马尔罕–克孜勒苏河逆冲带(Pz1陆缘盆地)
      3-2 卡拉库姆–马扎里沙里夫前陆盆地(Mz)
      3-3 法扎巴德–桑格沃尔德逆冲带(C–P陆缘裂谷)
      3-4 兴都库什岩浆弧(Mz)
      北帕米尔–阿尔金–昆仑造山系 1 阿尔金弧盆系 1-1 红柳沟-拉配泉蛇绿混杂岩带(Pz1
      1-2 阿中地块(AnNh)
      1-3 阿帕–茫崖蛇绿混杂岩带(Pz1
      1-4 江尕孜萨依–巴什瓦克高压变质岩带(Pt3–Pz1
      2 柴达木地块(Cz断陷盆地)
      3 东昆仑弧盆系 3-1 祁漫塔格北坡–夏日哈岩浆弧(O–S)
      3-2 祁漫塔格蛇绿混杂岩带(Pz1
      3-3 北昆仑岩浆弧(O–T2
      3-4 乌鲁赛赤河弧间裂谷盆地(C–P)
      4 北帕米尔–西昆仑弧盆系 4-1 恰尔隆–库尔良弧后裂谷盆地(C–P)
      4-2 北帕米尔–柳什塔格岛弧(Pz–T2
      4-3 库地–其曼于特蛇绿混杂岩带(Pz1
      4-4 奥依且克–塔木其岛弧(O–S)
      塔尼马斯–康西瓦–南昆仑对接带 1 南昆仑结合带 1-1 东昆仑南坡增生杂岩带(Pt3–Pz1
      1-2 木孜塔格–布喀达坂蛇绿混杂岩带(Pz2–T2
      2 塔尼马斯-康西瓦结合带 2-1 康西瓦–苏巴什蛇绿混杂岩带(Pz)
      2-2 塔尼马斯(Tanymas)蛇绿混杂岩带(Pz2
      中帕米尔(–羌塘–三江)造山系 1 喀拉塔格–巴颜喀拉地块 1-1 巴颜喀拉前陆盆地(T3
      1-2 喀拉塔格前陆盆地(T3
      2 中帕米尔–甜水海地块(AnNh)    
      巴扎拉克–鲁山普哈特(–班公湖–双湖–怒江)对接带 1 巴扎拉克–鲁山普哈特结合带 1-1 鲁山普哈特(Rushan–Pshart)蛇绿混杂岩带(Pz2–K?)
      1-2 潘焦–巴扎拉克蛇绿混杂岩带(Pz2-K?)
      南帕米尔–拉达克
      (–冈底斯–喜马拉雅)造山系
      1 南帕米尔(–冈底斯)弧盆系 1-1 南帕米尔(–昂龙岗日–班戈–腾冲)岩浆弧
      1-2 什约克(Shyok)(–狮泉河–申扎–嘉黎)蛇绿混杂岩带
      1-3 科西斯坦–拉达克(–冈底斯–察隅)岩浆弧
      2 喀布尔–印度河(–雅鲁藏布江)结合带 2-1 印度河蛇绿混杂岩带(T–K)
      2-2 喀布尔蛇绿混杂岩带(T–K)
      3 白沙瓦–斯里那加(–喜马拉雅)地块(An€)    
      印度陆块区 1 杰赫勒姆前陆盆地(Cz)    
      下载: 导出CSV
    • 柏美祥. 额尔齐斯活动断裂带[J]. 新疆地质, 1996, 14(2): 127-134

      BAI Meixiang. Ertix active fault zone. Xinjiang Geology, 1996, 14(2): 127-134.

      曹福根, 涂其军, 张晓梅, 等. 哈尔里克山早古生代岩浆弧的初步确定—来自塔水河一带花岗质岩体锆石SHRIMP U-Pb测年的证据[J]. 地质通报, 2006, 25(8): 923-927 doi: 10.3969/j.issn.1671-2552.2006.08.004

      CAO Fugen, TU Qijun, ZHANG Xiaomei, et al. Preliminary determination of the Early Paleozoic magmatic arc in the Karlik mountains, East Tianshan, Xinjiang, China-Evidence from zircon SHRIMP U-Pb dating of granite bodies in the Tashuihe area[J]. Geological Bulletin of China, 2006, 25(8): 923-927. doi: 10.3969/j.issn.1671-2552.2006.08.004

      曹华文, 李光明, 张林奎, 等. 喜马拉雅淡色花岗岩成因与稀有金属成矿潜力[J]. 沉积与特提斯地质, 2022, 42: 189-211 doi: 10.19826/j.cnki.1009-3850.2022.04004

      CAO Huawen, LI Guangming, ZHANG Linkui, et al. Genesis of Himalayan leucogranite and its potentiality of rare-metal mineralization[J]. Sedimentary Geology and Tethyan Geology, 2022, 42: 189-211. doi: 10.19826/j.cnki.1009-3850.2022.04004

      陈博, 马中平, 孟广路, 等. 吉尔吉斯斯坦中天山地质特征及研究进展[J]. 中国地质, 2016, 43(2): 458-469 doi: 10.3969/j.issn.1000-3657.2016.02.008

      CHEN Bo, MA Zhongping, MENG Guanglu, et al. The progress in geological study of Middle Tianshan Mountains within Kyrgyzstan[J]. Geology in China, 2016, 43(2): 458-469. doi: 10.3969/j.issn.1000-3657.2016.02.008

      陈刚. 新疆凌云铜矿成矿特征及找矿标志[J]. 新疆地质, 2008, 26(4): 356-362 doi: 10.3969/j.issn.1000-8845.2008.04.007

      CHEN Gang. The Mineralization Characteristics and Prospecting Indicator of Linyun Copper deposit, Xinjiang[J]. Xinjiang Geology, 2008, 26(4): 356-362 (in Chinese with English abstract) doi: 10.3969/j.issn.1000-8845.2008.04.007

      成守德, 刘通, 王世伟. 中亚五国大地构造单元划分简述[J]. 新疆地质, 2010, 28(1): 16-21

      CHENG Shoude, LIU Tong, WANG Shiwei. The brief description of the division of tectonic units in the Five-countries in Central Asia[J]. Xinjiang Geology, 2010, 28(1): 16-21.

      成守德, 祁世军, 陈川, 等. 巴尔喀什-准噶尔单元划分及特征[J]. 新疆地质, 2009, 27(S1): 14-30

      CHENG Shoude, QI Shijun, CHEN Chuan, et al. The division and Features of Balkhash-Junggar Plate Tectonic unit[J]. Xinjiang Geology, 2009, 27(S1): 14-30.

      成守德. 中亚地壳发展演化及主要矿产成矿规律[M]. 北京: 地质出版社, 2015

      CHENG Shoude. Crustal development and evolution, and metallogenic regularities of major minerals in Central Asia[M]. Beijing: Geological Publishing House, 2015.

      陈文, Arnaud N. 巴颜喀拉地体POG型花岗岩同位素年代学研究. 地球学报, 1997, 18(3): 261-266.

      CHEN Wen, ARNAUD N. Isotope Geochronology study for POG-type granite in Bayan Har terrain[J]. Acta Geoscientia Sinica, 1997, 18(3): 261-266.

      崔建堂, 王炬川, 边小卫, 等. 西昆仑康西瓦北侧早古生代角闪闪长岩、英云闪长岩的地质特征及其锆石SHRIMP U-Pb测年[J]. 地质通报, 2006, 25(12): 1441-1449 doi: 10.3969/j.issn.1671-2552.2006.12.013

      CUI Jiantang, WANG Juchuan, BIAN Xiaowei, et al. Geological characteristics of Early Paleozoic amphibolite and tonalite in northern Kangxiwar, West Kunlun, China and their zircon SHRIMP U-Pb dating[J]. Geological Bulletin of China, 2006, 25(12): 1441-1449. doi: 10.3969/j.issn.1671-2552.2006.12.013

      丁道桂, 王道轩, 刘伟新, 等. 西昆仑造山带与盆地[M]. 北京: 地质出版社, 1996

      DING Daogui, WANG Daoxuan, LIU Weixin, et al. Western Kunlun orogenic belt and basin[M]. Beijing: Geological Publishing House, 1996.

      董国臣, 莫宣学, 赵志丹, 等. 大陆碰撞过程的火山岩响应: 以西藏林周林子宗火山岩为例[J]. 沉积与特提斯地质, 2021, 41: 332-339

      DONG Guochen, MO Xuanxue, ZHAO Zhidan, et al. A response of volcanic rocks to the India-Asia continental collision: A case study on Linzizong volcanic rocks in Linzhou, Tibet[J]. Sedimentary Geology and Tethyan Geology, 2021, 41: 332-339.

      董连慧, 刘德权, 唐延龄, 等. 试论新疆成矿体系与时空演化模式[J]. 矿床地质, 2015, 34(6): 1107-1129 doi: 10.16111/j.0258-7106.2015.06.002

      DONG Lianhui, LIU Dequan, TANG Yanling, et al. Five-era metallogenic system of mineral deposits in Xinjiang and its spatial and temporal evolution mode[J]. Mineral Deposits, 2015, 34(6): 1107-1129. doi: 10.16111/j.0258-7106.2015.06.002

      范堡程, 孟广路, 刘明义, 等. 塔吉克斯坦成矿单元划分及其特征[J]. 地质科技情报, 2017, 36(2): 168-175 doi: 10.19509/j.cnki.dzkq.2017.0222

      FAN Baocheng, MENG Guanglu, LIU Mingyi, et al. Division and features of the metallogenic units in Tajikistan[J]. Geological Science and Technology Information, 2017, 36(2): 168-175. doi: 10.19509/j.cnki.dzkq.2017.0222

      付晨阳, 汤良杰, 曹自成, 等. 塔中北坡走滑断裂横向变形差异及其油气地质意义[J]. 石油实验地质, 2017, 39(6): 783-789 doi: 10.11781/sysydz201706783

      FU Chenyang, TANG Liangjie, CAO Zicheng, et al. Lateral deformation difference of strike-slip faults on the northern slope of Tazhong unlift and its control on petroleum geology[J]. Petroleum Geology & Expreiment, 2017, 39(6): 783-789. doi: 10.11781/sysydz201706783

      高俊, 张立飞, 刘圣伟. 西天山蓝片岩榴辉岩形成和抬升的40Ar/39Ar年龄记录[J]. 科学通报, 2000, 45(1): 89-94 doi: 10.3321/j.issn:0023-074X.2000.01.019

      GAO Jun, ZHANG Lifei, LIU Shengwei. 40Ar/39Ar age records of eclogite formation and uplift of bluechist in the Western Tianshan Mountains, China[J]. Science Bulletin of China, 2000, 45(1): 89-94. doi: 10.3321/j.issn:0023-074X.2000.01.019

      高俊, 钱青, 龙灵利, 等. 西天山的增生造山过程[J]. 地质通报, 2009, 28(12): 1804-1816 doi: 10.3969/j.issn.1671-2552.2009.12.013

      GAO Jun, QIAN Qing, LONG Lingli, et al. Accretionary orogenic process of Western Tianshan, China[J]. Geological Bulletin of China, 2009, 28(12): 1804-1816. doi: 10.3969/j.issn.1671-2552.2009.12.013

      耿全如, 张璋, 彭智敏, 等. 班公湖-怒江成矿带及邻区 1: 75 万成矿地质背景图(含说明书)[M]. 北京: 地质出版社, 2017

      GENG Quanru, ZHANG Zhang, PENG Zhimin, et al. 1: 750000 Metallogenic Geological Background Map of Bangong Lake Nujiang Metallogenic Belt and Adjacent Areas (including instructions) [M]. Beijing: Geological Publishing House, 2017.

      耿全如, 李文昌, 王立全, 等. 特提斯中西段古生代洋陆格局与构造演化[J]. 沉积与特提斯地质, 2021, 41, 297-315 doi: 10.19826/j.cnki.1009-3850.2021.02012

      GENG Quanru, LI Wenchang, WANG Liquan, et al. Paleozoic tectonic framework and evolution of the central and western Tethys[J]. Sedimentary Geology and Tethyan Geology, 2021, 41, 297-315. doi: 10.19826/j.cnki.1009-3850.2021.02012

      耿元生, 旷红伟, 杜利林, 等. 华北、华南、塔里木三大陆块中-新元古代岩浆岩的特征及其地质对比意义[J]. 岩石学报, 2020, 36(8): 2276-2312 doi: 10.18654/1000-0569/2020.08.02

      GENG Yuansheng, KUANG Hongwei, DU Lilin, et al. The characteristics of Meso-Neoproterozoic magmatic rocks in North China, South China and Tarim blocks and their significance of geological correlation[J]. Acta Petrologica Sinica, 2020, 36(8): 2276-2312. doi: 10.18654/1000-0569/2020.08.02

      辜平阳, 李永军, 张兵, 等. 西准达尔布特蛇绿岩中辉长岩LA-ICP-MS锆石U-Pb测年[J]. 岩石学报, 2009, 25(6): 1364-1372

      GU Pingyang, LI Yongjun, ZHANG Bing, et al. LA-ICP-MS zircon U-Pb dating of gabbro in the Darbut ophiolite, western Junggar, China[J]. Acta Petrologica Silica, 2009, 25(6): 1364-1372.

      郭华春, 钟莉, 李丽群. 哈尔里克山口门子地区石英闪长岩锆石SHRIMP U-Pb测年及其地质意义[J]. 地质通报, 2006, 25(8): 928-931 doi: 10.3969/j.issn.1671-2552.2006.08.005

      GUO Huachun, ZHONG Li, LI Liqun. Zircon SHRIMP U-Pb dating of quartz diorite in the Koumenzi area, Karlik Mountains, East Tianshan, Xinjiang, China, and its geological significance[J]. Geological Bulletin of China, 2006, 25(8): 928-931. doi: 10.3969/j.issn.1671-2552.2006.08.005

      郭召杰, 张志诚, 张臣, 等. 青藏高原北缘阿尔金走滑边界的侧向扩展-甘肃北山晚新生代走滑构造与地壳稳定性分析[J]. 地质通报, 2008, 27(10): 1678-1686 doi: 10.3969/j.issn.1671-2552.2008.10.010

      GUO Zhaojie, ZHANG Zhicheng, ZHANG Chen, et al. Lateral growth of the Altyn Tagh strike-slip fault at the north margin of the Qinghai-Tibet Plateau: Late Cenozoic strike-slip faults and the crustal stability in the Beishan area, Gansu, China[J]. Geological Bulletin of China, 2008, 27(10): 1678-1686. doi: 10.3969/j.issn.1671-2552.2008.10.010

      韩宝福, 何国琦, 吴泰然, 等. 天山早古生代花岗岩锆石U-Pb定年、岩石地球化学特征及其大地构造意义[J]. 新疆地质, 2004, 22(1): 4-11 doi: 10.3969/j.issn.1000-8845.2004.01.002

      HAN Baofu, HE Guoqi, WU Tairan, et al. Zircon U-Pb and Geochemical features of Early Paleozoic Granites from Tianshan, Xinjiang: Implications for tectonic evolution[J]. Xinjiang Geology, 2004, 22(1): 4-11. doi: 10.3969/j.issn.1000-8845.2004.01.002

      韩宝福, 季建清, 宋彪, 等. 新疆准噶尔晚古生代陆壳垂向生长(Ⅰ)—后碰撞深成岩浆活动的时限[J]. 岩石学报, 2006, 22(5): 1077-1086 doi: 10.3321/j.issn:1000-0569.2006.05.003

      HAN Baofu, JI Jianqing, SONG Biao, et al. Late Paleozoic vertical growth of continental crust around the Junggar Basin, Xinjiang, China (Part1): Timing of post-collisional plutonism[J]. Acta Petrologica Silica, 2006, 22(5): 1077-1086. doi: 10.3321/j.issn:1000-0569.2006.05.003

      韩宝福. 中俄阿尔泰山中生代花岗岩与稀有金属矿床的初步对比分析[J]. 岩石学报, 2008, 24(4): 655-660

      HAN Baofu. A preliminary comparison of Mesozoic granitoids and rare metal deposits in Chinese and Russian Altai mountains[J]. Acta Petrologica Silica, 2008, 24(4): 655-660.

      郝杰, 刘小汉. 1993. 南天山蛇绿混杂岩形成时代及大地构造意义[J]. 地质科学, 28(1): 93-95

      HAO Jie, LIU Xiaohan. 1993. Ophiolite Melange time and tectonic evolutional model in South Tianshan area[J]. Scientia Geologiga Sinica, 28(1): 93-95 (in Chinese with English abstract)

      郝杰, 刘小汉, 桑海清. 新疆东昆仑阿牙克岩体地球化学与40Ar/39Ar年代学研究及其大地构造意义[J]. 岩石学报, 2003, 19(3): 517-522 doi: 10.3969/j.issn.1000-0569.2003.03.017

      HAO Jie, LIU Xiaohan, SANG Haiqing. Geochemical characteristics and 40Ar/39Ar age of the Ayak adamellite and its tectonic significance in the east Kunlun, Xinjiang[J]. Acta Petrologica Sinica, 2003, 19(3): 517-522. doi: 10.3969/j.issn.1000-0569.2003.03.017

      何国琦, 李茂松, 韩宝福. 中国西南天山及邻区大地构造研究[J]. 新疆地质, 2001, 19(1): 7-11 doi: 10.3969/j.issn.1000-8845.2001.01.002

      HE Guoqi, LI Maosong, HAN Baofu. Geotectonic Research of SW Tianshan and it Swest adjacent area, China[J]. Xinjiang Geology, 2001, 19(1): 7-11. doi: 10.3969/j.issn.1000-8845.2001.01.002

      何国琦, 李茂松. 中亚蛇绿岩带研究进展及区域构造连接[J]. 新疆地质, 2000, 18(3): 193-202 doi: 10.3969/j.issn.1000-8845.2000.03.001

      HE Guoqi, LI Maosong. New achievement in Researching Ophiolitic belts in Central Asia and its significance in the links of Tectonic belts between Northern Xinjiang and adiacent area[J]. Xinjiang Geology, 2000, 18(3): 193-202. doi: 10.3969/j.issn.1000-8845.2000.03.001

      何国琦, 成守德, 徐新, 等. 1: 250万中国新疆及邻区大地构造图及说明书[M]. 北京: 地质出版社, 2004

      HE Guoqi, CHENG Shoude, XU Xin, et al. Tectonic map and the description of Xinjiang and its adjacent areas, China (1: 2500000)[M]. Beijing: Geology Publishing House, 2004.

      何国琦, 刘建波, 张越迁, 等. 准噶尔盆地西缘克拉玛依早古生代蛇绿混杂岩带的厘定[J]. 岩石学报, 2007, 23(7): 1573-1576 doi: 10.3969/j.issn.1000-0569.2007.07.002

      HE Guoqi, LIU Jianbo, ZHANG Yueqian, et al. Keramay ophiolitic mélange formed during early Paleozoic in West Junggar basin[J]. Acta Petrologica Sinica, 2007, 23: 1573-1576. doi: 10.3969/j.issn.1000-0569.2007.07.002

      洪俊, 计文化, 张辉善, 等. 南帕米尔北缘切实界别辉长岩LA-ICP-MS锆石U-Pb定年、地球化学特征及其地质意义[J]. 地质通报, 2014, 33 (6): 820-829 doi: 10.3969/j.issn.1671-2552.2014.06.005

      HONG Jun, JI Wenhua, ZHANG Huishan, et al. LA-ICP-MS zircon U-Pb dating, geochemistry and tectonic implications of the Qieshijiebie gabbro on the northern margin of South Pamir[J]. Geology Bulletin of China, 2014, 33 (6): 820-829. doi: 10.3969/j.issn.1671-2552.2014.06.005

      洪俊, 计文化, 张海迪, 等. 帕米尔地区穆尔尕布辉长岩-闪长岩的成因: 锆石U-Pb年龄、Hf同位素及岩石地球化学证据[J]. 中国地质, 2017, 44(4): 722-736. doi: 10.12029/gc20170406

      HONG Jun, JI Wenhua, ZHANG Haidi, et al. Petrogenesis of Murgab gabrro-diorite from Pamir: Evidence from zircon U-Pb dating, Hf isotopes and lithogeochemistry[J]. Geology in China, 2017, 44(4): 722- 736. doi: 10.12029/gc20170406

      胡蔼琴, 格雷姆, 罗杰斯. 新疆塔里木北缘首次发现33亿年的岩石[J]. 科学通报, 1992, 33(7): 627-630

      HU Aiqin, GRAHAM G, ROGERS G. The first found of 3.3 Ga rocks on the north margin of Tarim, Xinjiang, China[J]. China Science Bulletin, 1992, 33(7): 627-630.

      胡蔼琴, 韦刚健. 塔里木盆地北缘新太古代辛格尔灰色片麻岩形成时代问题[J]. 地质学报, 2006, 80(1): 126-134 doi: 10.3321/j.issn:0001-5717.2006.01.014

      HU Aiqin, WEI Gangjian. On the age of the Neo-Archean Qingir gray gneisses from the northern Tarim basin, Xinjiang, China[J]. Acta Geologica Sinica, 2006, 80(1): 126-134. doi: 10.3321/j.issn:0001-5717.2006.01.014

      胡修棉, 李娟, 安慰, 等. 藏南白垩纪—古近纪岩石地层厘定与构造地层划分[J]. 地学前缘, 2017, 24: 174-194 doi: 10.13745/j.esf.2017.01.011

      HU Xiumian, LI Juan, AN Wei, et al. The redefinition of Cretaceous-Paleogene lithostratigraphic units and tectonostratigraphic division in southern Tibet[J]. Earth Science Frontiers, 2017, 24: 174-194. doi: 10.13745/j.esf.2017.01.011

      计文化, 张海迪, 杨博, 等. 中亚重要成矿带成矿规律与优势矿产资源潜力评价综合研究报告[R], 2013.
      简平, 刘敦一, 张旗, 等. 蛇绿岩及蛇绿岩中浅色岩的SHRIMP U-Pb测年[J]. 地学前缘, 2003, 10(4): 439-456 doi: 10.3321/j.issn:1005-2321.2003.04.012

      JIAN Ping, LIU Dunyi, ZHANG Qi, et al. SHRIMP dating of ophiolite and leucocratic rocks within ophiolite[J]. Earth Science Frontiers, 2003, 10(4): 439-456. doi: 10.3321/j.issn:1005-2321.2003.04.012

      姜春发, 朱松年. 1992. 构造迁移理论概述[J]. 中国地质科学院院报, 25: 1-14

      JIANG Chunfa, ZHU Songnian. Introduction to Tectonic Migration Theeory[J]. Bulletin of the Chinese Academy of Geological Sciences, 1992, 25: 1-14.

      李宝强, 孟广路, 王心泉, 等. 中国新疆及中亚邻区地质矿产图(1: 1500000)[M]. 北京: 地质出版社, 2014

      LI Baoqiang, MENG Guanglu, WANG Xinquan, et al. Geological and Mineral Map of Xinjiang and Adjacent Areas in Central Asia, China (1: 1500000) [M]. Beijing: Geological Publishing House, 2014.

      李承东, 冉皞, 赵利刚, 等. 温都尔庙群锆石的LA-MC-ICPMS U-Pb年龄及构造意义[J]. 岩石学报, 2012, 28(11): 3705-3714

      LI Chengdong, RAN Ao, ZHAO Ligang, et al. LA-MC-ICP-MS U-Pb geochronology of zircons from the Wenduermiao Group and its tectonic significance[J]. Acta Petrologica Silica, 2012, 28(11): 3705-3714.

      李春昱, 王荃, 刘雪亚, 等. 亚洲大地构造图(1: 800万)[M]. 北京: 地质出版社, 1982

      LI Chunyu, WANG Quan, LIU Xueya, et al. Tectonic Map of Asia and its explanatory notes[M]. Beijing: Geological Publishing House, 1982.

      李光明, 张林奎, 张志, 等. 青藏高原南部的主要战略性矿产: 勘查进展、资源潜力与找矿方向[J]. 沉积与特提斯地质, 2021, 41: 351-360.
      李杭, 柯强, 李昊, 等. 喀喇昆仑地体甜水海地区102Ma辉长岩的发现及其对区域中生代构造演化的约束[J]. 岩石学报, 2020, 36(4): 1041-1058 doi: 10.18654/2095-8927/005

      LI Hang, KE Qiang, LI Hao, et al. Discovery of 102Ma gabbro in the Tianshaihai area of Karakoram terrane, and its constrains on regional Mesozoic tectonic evolution[J]. Acta Petrologica Sinica, 2020, 36(4): 1041-1058. doi: 10.18654/2095-8927/005

      李锦轶. 新疆东准噶尔蛇绿岩的基本特征和侵位历史[J]. 岩石学报, 1995, 11(S1): 73-84 doi: 10.3321/j.issn:1000-0569.1995.z1.006

      LI Jinyi. Main characteristics and emplacement processes of the East Junggar Ophiolites, Xinjiang, China[J]. Acta Petrologica Sinica, 1995, 11(S1): 73-84. doi: 10.3321/j.issn:1000-0569.1995.z1.006

      李锦轶, 王克卓, 李文铅, 等. 东天山晚古生代以来大地构造与矿产勘查. 新疆地质, 2002, 20(4): 295-301.
      李锦轶. 新疆东部新元古代晚期和古生代构造格局及其演变. 地质论评, 2004, 50(3): 304-322 doi: 10.3321/j.issn:0371-5736.2004.03.015

      LI Jinyi. Late Neoproterozoic and Paleozoic tectonic framework and evolution of Eastern Xinjiang, NW China[J]. Geological Review, 2004, 50(3): 304-322. doi: 10.3321/j.issn:0371-5736.2004.03.015

      李锦轶, 何国琦, 徐新, 等. 新疆北部及邻区地壳构造格架及其形成过程的初步探讨. 地质学报, 2006, 80(1): 148-168 doi: 10.3321/j.issn:0001-5717.2006.01.017

      LI Jinyi, He Guoqi, XU Xin, et al. Crustal tectonic framework of northern Xinjiang and adjacent regions and its formation[J]. Acta Geological Sinica, 2006, 80(1): 148-168. doi: 10.3321/j.issn:0001-5717.2006.01.017

      李荣社, 徐学义, 计文化. 对中国西部造山带地质研究若干问题的思考. 地质通报, 2008, 27(12): 2020-2025.
      李荣社, 计文化, 何世平, 等. 中国西部古亚洲与特提斯两大构造域划分问题讨论. 新疆地质, 2011, 29(3): 247-250 doi: 10.3969/j.issn.1000-8845.2011.03.001

      LI Rongshe, JI Wenhua, HE Shiping, et al. The two tectonic domain division discussion between the Ancient Asian and Tethys in western China[J]. Xinjiang Geology, 2011, 29(3): 247-250. doi: 10.3969/j.issn.1000-8845.2011.03.001

      李廷栋, 耿树方, 范本贤, 等. 1: 250 万中国西部及邻区地质图[M]. 北京: 地质出版社, 2006

      LI Tingdong, GENG Shufang, FAN Benxian, et al. The Geological map of Western China and the adjacent region (1: 2500000) [M]. Beijing: Geological Publishing House, 2006.

      李文昌, 潘桂棠, 侯增谦, 等. 西南”三江”多岛弧盆-碰撞造山成矿理论与勘查技术[M]. 北京: 地质出版社, 2010

      LI Wenchang, PAN Guitang, HOU Zengqian, et al. Archipelagic- Basin, Forming collision Theory and Prospecting Techniques Along the Nujiang- Lancangjiang- Jinshajiang Area in Southwestern China[M]. Beijing: Geological Publishing House, 2010.

      李文铅, 马华东, 王冉, 等. 东天山康古尔塔格蛇绿岩SHRIMP年龄、Nd-Sr同位素特征及构造意义. 岩石学报, 2008, 24(4): 773-780

      LI Wenqian, MA Huadong, WANG Ran, et al. SHRIMP dating and Nd-Sr isotopic tracing of Kangguertage ophiolite in eastern Tianshan, Xinjiang[J]. Acta Petrologica Silica, 2008, 24(4): 773-780.

      李王晔, 李曙光, 郭安林, 等. 青海东昆南构造带苦海辉长岩和德尔尼闪长岩的锆石SHRIMP U-Pb年龄及痕量元素地球化学—对“祁-柴-昆”晚新元古代-早奥陶世多岛洋南界的制约. 中国科学(D辑), 2007, 37(S1): 288-294

      LI Wangye, LI Shuguang, GUO Anlin, et al. Zircon SHRIMP U-Pb ages and trace element geochemistry of Kuhai gabbro and Delni diorite in South Kunlun tectonic belt, Eastern Qinghai: constrains on the South margin of “Qin-Qi-Kun” archipelago ocean from Late Neo-proterozoic to Early Ordovician[J]. Chinese Sciences (D Series), 2007, 37(S1): 288-294.

      李兴振, 刘增乾, 潘桂棠, 等. 西南三江地区构造单元划分及地史演化. 中国地质科学院成都地质矿产研究所所刊, 1991, 13: 1 -19.

      LI Xingzhen, LIU Zengqian, PAN Guitang. Tectonic units division and the geological history evolution in SW Sanjiang, China[J]. Lithofacies Paleogeography, 1991, 13: 1 -19.

      李兴振, 许效松, 潘桂棠. 泛华夏大陆群与东特提斯构造域演化. 岩相古地理, 1995, 15(4): 1 -13.

      LI Xingzhen, XU Xiaosong, PAN Guitang. Evolution of the Pan-Cathaysian landmass group and Eastern Tethyan tectonic domain[J]. Lithofacies Paleogeography, 1995, 15(4): 1 -13.

      李永军, 张天继, 栾新东, 等. 西天山特克斯达坂晚古生代若干不整合的厘定及地质意义[J]. 地球学报, 2008, 29(2): 145-153 doi: 10.3321/j.issn:1006-3021.2008.02.003

      LI Yongjun, ZHANG Tianji, LUAN Xindong, et al. Clarification of Late Paleozoic uncomformities in the Tekes Daban area of West Tianshan and its geological significance[J]. Acta Geoscienca Silica, 2008, 29(2): 145-153. doi: 10.3321/j.issn:1006-3021.2008.02.003

      李亚萍, 李锦轶, 孙桂华, 等. 新疆东准噶尔早泥盆世早期花岗岩的确定及其地质意义. 地质通报, 2009, 28(12): 1885-1893 doi: 10.3969/j.issn.1671-2552.2009.12.020

      LI Yaping, LI Jinyi, SUN Guihua, et al. Determination of the Early Devonian granite in East Junggar, Xinjiang, China and its geological implications[J]. Geological Bulletin of China, 2009, 28(12): 1885-1893. doi: 10.3969/j.issn.1671-2552.2009.12.020

      李耀西, 蓝善先. 新疆西准噶尔布龙果尔组的建造类型、时代及有关问题研究的新进展. 新疆地质, 1992, 10(1): 1-6

      LI Yaoxi, LAN Shanxian. New advances of research on the formation type, geologic age and related problems of Bulongguor formation in West Jungar, Xinjiang[J]. Xinjiang Geology, 1992, 10(1): 1-6.

      廖卓庭, 刘陆军, 张维. 博格达山西南缘早二叠世磨拉石相沉积组合—桃西沟群. 地层学杂志, 1999, 23(3): 190-196 doi: 10.3969/j.issn.0253-4959.1999.03.004

      LIAO Zhuoting, LIU Lujun, ZHANG Wei. Sequence-stratigraphy and facies analysis - Basis for the establishment of formation in geological survey[J]. Journal of Stratigraphy, 1999, 23(3): 190-196. doi: 10.3969/j.issn.0253-4959.1999.03.004

      蔺新望, 王星, 陈光庭, 等. 新疆北部阿尔泰东段泥盆纪岩浆活动及侵位方式的探讨. 现代地质, 2021, 34(3): 514-531

      LIN Xinwang, WANG Xing, CHEN Guangting, et al. Magmatic activity and emplacement of the Devonian intrusive rocks in eastern Altay, Northern Xinjiang[J]. Geosience, 2021, 34(3): 514-531.

      刘斌, 钱一雄. 东天山三条高压变质带地质特征和流体作用. 岩石学报, 2003, 19(2): 283-296 doi: 10.3969/j.issn.1000-0569.2003.02.010

      LIU Bin, QIAN Yixiong. The geological characteristics and fluid evolution in the three high-pressure metamorphic belts of eastern Tianshan[J]. Acta Petrologica Silica, 2003, 19(2): 283-296. doi: 10.3969/j.issn.1000-0569.2003.02.010

      刘成东, 莫宣学, 罗照华, 等. 东昆仑壳-幔岩浆混合作用: 来自锆石SHRIMP年代学的证据. 科学通报, 2004, 49(6): 596-602

      LIU Chengdong, MO Xuanxue, LUO Zhaohua, et al. The mixing between the crust- and mantle-derived magmas in eastern Kunlun: Evidences from zircon SHRIMP geochronology[J]. Chinese Science Bulletin, 2004, 49(6): 596-602.

      刘敦一, 简平, 张旗, 等. 内蒙古图林凯蛇绿岩中埃达克岩SHRIMP测年: 早古生代洋壳消减的证据. 岩石学报, 2003, 77(3): 318-327

      LIU Dunyi, JIAN Ping, ZHANG Qi, et al. SHRIMP dating of adakites in the Tulingkai Ophiolite, inner Mongolia: evidence for the Early Paleozoic subduction[J]. Acta Geologica Sinica, 2003, 77(3): 318-327.

      刘锋, 曹峰, 张志欣, 等. 新疆可可托海近3号脉花岗岩成岩时代及地球化学特征研究. 地质学报, 2014, 30(1): 1-15

      LIU Feng, CAO Feng, ZHANG Zhixin, et al. Characteristics and petrogenesis of zoned amphiboles in Wengeqi mafic-ultramafic complex, Inner Mongolia[J]. Acta Geologica Sinica, 2014, 30(1): 1-15.

      刘国仁, 秦纪华, 赵忠合, 等. 新疆阿尔泰额尔齐斯构造带片麻岩的锆石U-Pb SHRIMP定年及其地质意义. 现代地质, 2008, 22(2): 190-196

      LIU Guoren, QIN Jihua, ZHAO Zhihe, et al. SHRIMP U-Pb age of zircon in the Erqisi tectonic belt in Altay, Xinjiang and their geological significances[J]. Geoscience, 2008, 22(2): 190-196.

      刘良, 车自成, 王焰, 等. 阿尔金高压变质岩带的特征及其构造意义. 岩石学报, 1999, 15(1): 57-64 doi: 10.3321/j.issn:1000-0569.1999.01.006

      LIU Liang, CHE Zicheng, WANG Yan, et al. The prtrological characters and geotectonic setting of high-pressure metamorphic rock belts in Altun Mountains[J]. Acta Petrologica Sinica, 1999, 15(1): 57-64. doi: 10.3321/j.issn:1000-0569.1999.01.006

      刘云华, 莫宣学, 喻学惠, 等. 东昆仑野马泉地区景忍花岗岩锆石SHRIMPU-Pb定年及其地质意义. 岩石学报, 2006, 22(10): 2457-2463 doi: 10.3321/j.issn:1000-0569.2006.10.006

      LIU Yunhua, MO Xuanxue, YU Xuehui, et al. Zircon SHRIMP U-Pb dating of the Jingren granite, Yemaquan region of the east Kunlun and its geological significance[J]. Acta Petrologica Sinica, 2006, 22(10): 2457-2463. doi: 10.3321/j.issn:1000-0569.2006.10.006

      陆松年, 王惠初, 李怀坤, 等. 柴达木盆地北缘“达肯大坂群”的再厘定. 地质通报, 2002, 21(1): 19-23 doi: 10.3969/j.issn.1671-2552.2002.01.004

      LU Songnian, WANG Huichu, LI Huaikun, et al. Redefinition of the “Dakendaban Group” on the northern margin of the Qaidam basin[J]. Geological Bulletin of China, 2002, 21(1): 19-23. doi: 10.3969/j.issn.1671-2552.2002.01.004

      陆松年, 袁桂邦. 阿尔金山阿克塔什塔格早前寒武纪岩浆活动的年代学证据. 地质学报, 2003, 77(1): 61-68 doi: 10.3321/j.issn:0001-5717.2003.01.008

      LU Songnian, YUAN Guibang. Geochronology of Early Precambrian magmatic activities in Aketashitage, East Altyn Tagh[J]. Acta Geologica Sinica, 2003, 77(1): 61-68. doi: 10.3321/j.issn:0001-5717.2003.01.008

      陆松年, 于海峰, 李怀坤, 等. 中国前寒武纪重大地质问题研究-中国西部前寒武纪重大地质事件群及其全球构造意义[M]. 北京: 地质出版社, 2006

      LU Songnian, YU Haifeng, LI Huaikun. Important Geological Event group and its global tectonic implications[M]. Beijing: Geological Publishing House, 2006.

      罗金海, 周新源, 邱斌, 等. 塔里木-卡拉库姆地区的油气地质特征与区域地质演化. 地质论评, 2005, 51(4): 409-415 doi: 10.3321/j.issn:0371-5736.2005.04.007

      LUO Jinhai, ZHOU Xinyuan, QIU Bin, et al. Petroleum geology and Geological evolution of the Tarim-Karakum and adjacent area[J]. Geological Review, 2005, 51(4): 409-415. doi: 10.3321/j.issn:0371-5736.2005.04.007

      吕鹏瑞, 高永伟, 张宇轩, 等. 哈萨克斯坦铬铁矿资源禀赋、供应格局与中哈产能合作建议[J]. 西北地质, 2022, 55(3): 297-305

      LÜ Pengrui, GAO Yongwei, ZHANG Yuxuan, et al. Kazakhstan's Chromite Resource Endowment, Development, Import and Its Suggestions for Production Capacity Cooperation between China and Kazakhstan[J]. Northwestern Geology, 2022, 55(3): 297-305

      马昌明, 李江海, 曹正林, 等. 中亚盆地群石炭-二叠纪岩相古地理恢复及演化. 岩石学报, 2020, 36(11): 3510-3522 doi: 10.18654/1000-0569/2020.11.16

      MA Changqian, LI Jianghai, CAO Zhenglin, et al. Lithofacies paleogeographic reconstruction and evolution of the Carboniferous-Permian basin group in Central Asia[J]. Acta Petrologica Sinica, 2020, 36(11): 3510-3522. doi: 10.18654/1000-0569/2020.11.16

      毛黎光, 肖安成, 王亮, 等. 柴达木盆地西北缘始新世晚期古隆起与阿尔金断裂的形成. 岩石学报, 2013, 29(8): 2876-2882

      MAO Liguang, XIAO Ancheng, WANG Liang, et al. Uplift of NW margin of Qaidam basin in the Late Eocene: Implications for the initiation of Altyn fault[J]. Acta Petrologica Sinica, 2013, 29(8): 2876-2882.

      苗红生, 王晓钦, 何玲娟, 等. 中亚地区上古生界油气形成与分布规律及其对准噶尔盆地油气勘探的启示. 中国石油勘探, 2012, 17(2): 50-56 doi: 10.3969/j.issn.1672-7703.2012.02.010
      莫宣学, 赵志丹, 邓晋福, 等. 印度—亚洲大陆主碰撞过程的火山作用响应[J]. 地学前缘, 2003, 10(3): 135-148 doi: 10.3321/j.issn:1005-2321.2003.03.013

      MO Xuanxue, ZHAO Zhidan, DENG Jinfu, et al. Response of Volcanism to the India-Asia collision[J]. Earth Science Frontiers, 2003, 10(3): 135-148. doi: 10.3321/j.issn:1005-2321.2003.03.013

      牟墩玲, 李三忠, 王倩, 等. 塔里木盆地东南缘早古生代弯山构造[J]. 岩石学报, 2018, 34(12): 3739-3757

      MOU Dunling, LI Sanzhong, WANG Qian, et al. The early Paleozoic orocline in the southeastern Tarim Basin[J]. Acta Petrologica Sinica, 2018, 34(12): 3739-3757.

      潘桂棠, 陈智樑, 李兴振, 等. 东特提斯多弧-盆系统演化模式[J]. 岩相古地理, 1996, 16(2): 52-65

      PAN Guitang, CHEN Zhiliang, LI Xingzhen, et al. Modes for the evolution of the polyarc-basin systems in Eastern Tethys[J]. Lithofacies Paleogeography, 1996, 16(2): 52-65.

      潘桂棠, 李兴振, 王立全, 等. 青藏高原及邻区大地构造单元初步划分[J]. 地质通报, 2002, 21(11): 701-707 doi: 10.3969/j.issn.1671-2552.2002.11.002

      PAN Guitang, LI Xingzhen, WANG Liquan, et al. Preliminary division of tectonic units of the Qinghai-Tibet plateau and its adjacent regions[J]. Geological Bulletin of China, 2002, 21(11): 701-707. doi: 10.3969/j.issn.1671-2552.2002.11.002

      潘桂棠, 朱弟成, 王立全, 等. 班公湖-怒江带作为冈瓦纳大陆北界的地质地球物理证据[J]. 地学前缘, 2004, 11(4): 371-382 doi: 10.3321/j.issn:1005-2321.2004.04.004

      PAN Guitang, ZHU Dicheng, WANG Liquan, et al. Bangong Lake-Nu river suture zone-the northern boundary of Gondwana: evidence from geology and geophysics[J]. Earth Science Frontiers, 2004, 11(4): 371-382. doi: 10.3321/j.issn:1005-2321.2004.04.004

      潘桂棠, 王立全, 李荣社, 等. 多岛弧盆系构造模式: 认识大陆地质的关键[J]. 沉积与特提斯地质, 2012, 32(2): 1-20 doi: 10.3969/j.issn.1009-3850.2012.02.001

      PAN Guitang, WANG Liquan, LI Rongshe, et al. Tectonic model of archipelagic arc-basin systems: the key to the continental geology[J]. Sedimentary Geology and Tethyan Geology, 2012, 32(2): 1-20. doi: 10.3969/j.issn.1009-3850.2012.02.001

      潘桂棠, 陆松年, 肖庆辉, 等. 中国大地构造阶段划分和演化[J]. 地学前缘, 2016, 23(6): 1-23 doi: 10.13745/j.esf.2016.06.001

      PAN Guitang, LU Songnian, XIAO Qinghui, et al. Division of tectonic evolution in China[J]. Earth Science Frontiers, 2016, 23(6): 1-23. doi: 10.13745/j.esf.2016.06.001

      潘桂棠, 陈智梁, 李兴振, 等. 东特提斯地质构造形成演化[M]. 北京: 地质出版社, 1997

      PAN Guitang, CHEN Zhiliang, LI Xingzhen, et al. The tectonics formation and evolution of the East Tethys[M]. Beijing: Geological Publishing House, 1997.

      潘桂棠, 肖庆辉, 陆松年, 等. 2008. 大地构造相的定义、划分、特征及其鉴别标志[J]. 地质通报, 1613-1637. doi: 10.3969/j.issn.1671-2552.2008.10.004

      PAN Guitang, XIAO Qinghui, LU Songnian, et al. Definition, classication and diagnostic indications of tectonic facies[J]. Geological Bulletin of China, 2008, 27(10): 1613-1637. doi: 10.3969/j.issn.1671-2552.2008.10.004

      潘桂棠, 肖庆辉, 陆松年, 等. 中国大地构造单元划分[J]. 中国地质, 2009, 36(1): 1-28 doi: 10.3969/j.issn.1000-3657.2009.01.001

      PAN Guitang, XIAO Qinghui, LU Songnian, et al. Subdivision of tectonic units in China[J]. Geology in China, 2009, 36(1): 1-28. doi: 10.3969/j.issn.1000-3657.2009.01.001

      潘桂棠, 王立全, 张万平, 等. 青藏高原及邻区大地构造图及说明书(1: 1500000)[M]. 北京: 地质出版社, 2013

      PAN Guitang, WANG Liquan, ZHANG Wanping, et al. The tectonic map and instructions of Tibetan Plateau and the adjacent areas (1: 1500000)[M]. Beijing: Geological Publishing House, 2013.

      潘桂棠, 任飞, 尹福光, 等. 洋板块地质与川藏铁路工程地质关键区带[J]. 地球科学, 2020, 45(7): 2293-2304

      PAN Guitang, REN Fei, YIN Fuguang, et al. Key Zones of Oceanic Plate Geology and Sichuan-Tibet Railway Project[J]. Earth Science, 2020, 45(7): 2293-2304.

      潘桂棠, 肖庆辉, 尹福光, 等. 中国大地构造[M]. 北京: 地质出版社, 2017

      PAN Guitang, XIAO Qinghui, YIN Fuguang, et al. Tectonics of China[M]. Beijing: Geological Publishing House, 2017.

      彭银彪, 于胜尧, 张建新, 等. 北阿尔金地区早古生代洋壳俯冲时限: 来自斜长花岗岩和花岗闪长岩的证据[J]. 中国地质, 2018, 45(2): 334-350 doi: 10.12029/gc20180209

      PENG Yinbiao, YU Shengyao, ZHANG Jianxin, et al. Timing of Early Paleozoic oceanic crust subduction in North Altun: Evidence from plagiogranite and granodiorite[J]. Geology in China, 2018, 45(2): 334-350. doi: 10.12029/gc20180209

      任纪舜, 王作勋, 陈炳蔚, 等. 从全球看中国大地构造-中国及邻区大地构造图及简要说明[M]. 北京: 地质出版, 1999

      REN Jishun, WANG Zuoxun, CHEN Bingwei, et al. Geotectonic map and brief description of China and its adjacent areas-Geotectonics of China from a global perspective[M]. Beijing: Geological Publishing House, 1999.

      任纪舜, 牛宝贵, 王军, 等. 1: 500万国际亚洲地质图[M]. 北京: 地质出版社, 2013

      REN Jishun, NIU Baogui, WANG Jun, et al. Asian geological map (1: 5000000)[M]. Beijing: Geological Publishing House, 2013.

      上官时迈, 田伟, 徐义刚, 等. 塔里木溢流玄武岩的喷发特征[J]. 岩石学报, 2012, 28(4): 1261-1272

      SHANGGUAN Shimai, TIAN Wei, XU Yigang, et al. The eruption characteristic of the Tarim flood basalt[J]. Acta Petrologica Sinica, 2012, 28(4): 1261-1272.

      舒良树, 王玉净. 新疆卡拉麦里蛇绿岩带中硅质岩的放射虫化石[J]. 地质论评, 2003, 49(4): 408-412 doi: 10.3321/j.issn:0371-5736.2003.04.011

      SHU Liangshu, WANG Yujing. Late Devonian-Early Radiolarian Fossils from Siliceous rocks of the Kelameili Ophiolite, Xinjiang[J]. Geological Review, 2003, 49(4): 408-412. doi: 10.3321/j.issn:0371-5736.2003.04.011

      田红彪, 郑波, 何峻岭. 新疆阿尔泰造山带乌希里克地区奥陶纪岩浆活动及其地质意义[J]. 岩石学报, 2017, 33(8): 2591-2603

      TIAN Hongbiao, ZHENG Bo, HE Junling. The Ordovician magmatism and implication in Wuxilike, Altay orogenic belt, Xinjiang[J]. Acta Petrologica Sinica, 2017, 33(8): 2591-2603.

      王保弟, 王立全, 王冬兵, 等. 西南三江金沙江弧盆系时空结构及构造演化[J]. 沉积与特提斯地质, 2021, 41: 246-264 doi: 10.19826/j.cnki.1009-3850.2021.02008

      WANG Baodi, WANG Liquan, WANG Dongbing, et al. The temporal and spatial framework and its tectonic evolution of the Jinsha River arc-basin system, Southwest China[J]. Sedimentary Geology and Tethyan Geology, 2021, 41: 246-264. doi: 10.19826/j.cnki.1009-3850.2021.02008

      王宝瑜, 郎智君, 李向东, 等. 中国天山西段地质剖面综合研究[M]. 北京: 科学出版社, 1994

      WANG Baoyu, LANG Zhijun, LI Xiangdong, et al. A comprehensive research on geological profile of the Western Tianshan Mountains in China[M]. Beijing: Science Press, 1994.

      王秉璋, 朱迎堂, 张智勇, 等. 昆秦接合部造山带非史密斯地层的一些特点: 苦海-赛什塘-羊曲构造混杂带剖析[J]. 青海地质, 2000, 1: 9-17

      WANG Bingzhang, ZHU Yingtang, ZHANG Zhiyong, et al. Characteristics of non-Smith strata in junction part of Kunlun and Qinling orogenic belts-an example from the Kuhai-Saishitang-Yangqu tectonic mélange belt[J]. Qinghai Geology, 2000, 1: 9-17.

      王超, 刘良, 车自成, 等. 西南天山阔克萨彦岭巴雷公镁铁质岩石的地球化学特征、LA-ICP-MS U-Pb年龄及其大地构造意义[J]. 地质论评, 2007, 53(6): 743-754 doi: 10.3321/j.issn:0371-5736.2007.06.008

      WANG Chao, LIU Liang, CHE Zicheng, et al. Geochronology, Petrogenesis and Significance of Baleigong mafic rocks in Kokshal Segment, SW Tianshan Mountains[J]. Geological Reviews, 2007, 53(6): 743-754. doi: 10.3321/j.issn:0371-5736.2007.06.008

      王二七. 关于印度与欧亚大陆初始碰撞时间的讨论[J]. 中国科学(D辑), 2017, 47, 284-292

      WANG Erqi. A discussion on the timing of the initial collision between the Indian and Asian continents[J]. Science China Earth Sciences (D series), 2017, 47, 284-292.

      王国强, 李向民, 徐学义, 等. 甘肃新疆交界地区四顶黑山镁铁质—超镁铁质岩的锆石U-Pb年龄及地质意义[J]. 地质通报, 2012, 31(12): 2046-2051 doi: 10.3969/j.issn.1671-2552.2012.12.014

      WANG Guoqiang, LI Xiangmin, XU Xueyi, et al. Zircon U-Pb ages of Sidingheishan mafic-ultramafic rocks in Xinjiang-Gansu border area and their geological significance[J]. Geological Bullitin of China, 2012, 31(12): 2046-2051. doi: 10.3969/j.issn.1671-2552.2012.12.014

      王鸿祯, 莫宣学. 中国地质构造概要[J]. 中国地质, 1996, 8: 4-9

      WANG Hongzhen, MO Xuanxue. Brief Geotectonics of China[J]. China Geology, 1996, 8: 4-9.

      王立全, 潘桂棠, 李才, 等. 藏北羌塘中部果干加年山早古生代堆晶辉长岩的锆石SHRIMP U-Pb年龄—兼论原-古特提斯洋的演化[J]. 地质通报, 2008, 27(12): 2045-2056 doi: 10.3969/j.issn.1671-2552.2008.12.010

      WANG Liquan, PAN Guitang, LI Cai, et al. SHRIMP U-Pb zircon dating of Eopaleozoic cumulate in Guoganjianian Mountain from central Qiangtang area of northern Tibet-Considering the evolution of Proto-and Paleo-Tethys[J]. Geological Bulletin of China, 2008, 27(12): 2045-2056. doi: 10.3969/j.issn.1671-2552.2008.12.010

      王立全, 李定谋, 潘桂棠, 等. 青藏高原地区矿产分布与成矿地质背景图及说明书(1: 1500000)[M]. 成都: 成都地图出版社, 2015

      WANG Liquan, LI Dingmou, PAN Guitang, et al. Mineral distribution and metallogenic geological background Map, and the description of Tibetan Plateau (1: 1500000)[M]. Chengdu: Chengdu Map Publishing House, 2015.

      王立全, 潘桂棠, 丁俊, 等. 青藏高原及邻区地质图及说明书1: 1500000[M]. 北京: 地质出版社, 2013

      WANG Liquan, PAN Guitang, DING Jun, et al. Geological maps and instructions of Tibetan Plateau and its adjacent regions (1: 1500000)[M]. Beijing: Geological Publishing House, 2013.

      王立全, 王保弟, 李光明, 等. 东特提斯地质调查研究进展综述[J]. 沉积与特提斯地质, 2021, 41(2), 283-296.

      WANG Liquan, WANG Baodi, LI Guangming, et al. Major progress of geological surv1: ey and research in East Tethys: An overview[J]. Sedimentary Geology and Tethyan Geology, 2021, 41(2): 283-296.

      王涛, 童英, 李舢, 等. 阿尔泰造山带花岗岩时空演变、构造环境及地壳生长意义-以中国阿尔泰为例[J]. 岩石矿物学杂志, 2010, 29(6): 595-618 doi: 10.3969/j.issn.1000-6524.2010.06.002

      WANG Tao, TONG Ying, LI Shan, et al. Spatial and temporal variations of granitoids in the Altay orogeny and their implications for tectonic setting and crustal growth: perspectives from Chinese Altay[J]. Acta Petrolgica Et Mineralogica, 2010, 29(6): 595-618. doi: 10.3969/j.issn.1000-6524.2010.06.002

      王有宁, 孙永河, 尹继全, 等. 南图尔盖盆地卡拉套断裂体系变形特征[J]. 断块油气田, 2019, 26(4): 421-425

      WANG Youning, SUN Yonghe, YIN Jiquan, et al. Deformation Characteristics of Karatau strike-slip fault in South Turgay Basin[J]. Fault-Block Oil & Gas Field, 2019, 26(4): 421-425.

      王玉往, 王京彬, 王莉娟. 东天山地区两类钒钛磁铁矿型矿床含矿岩石对比[J]. 岩石学报, 2006, 22(5): 1425-1436 doi: 10.3321/j.issn:1000-0569.2006.05.031

      WANG Yuwang, WANG Jingbin, WANG Lijuan. Comparison of host rocks between two vanadic titianomagnetite deposits types from the eastern Tianshan Mountains[J]. Acta Petrologica Sinica, 2006, 22(5): 1425-1436. doi: 10.3321/j.issn:1000-0569.2006.05.031

      王玉往, 王京彬, 王莉娟, 等. 新疆吐尔库班蛇绿混杂岩的发现及其地质意义[J]. 地学前缘, 2011, 18(3): 151-165

      WANG Yuwang, WANG Jingbin, WANG Lijuan, et al. Discovery of Tuerkubantao ophiolitic mélange in Xinjiang and its significance[J]. Earth Science Frontiers, 2011, 18(3): 151-165.

      王作勋, 邬继易. 天山多旋回构造演化及成矿[M]. 北京: 科学出版社, 1990

      WANG Zuoxun, WU Jiyi. Multicycle tectonic evolution and mineralization[M]. Beijing: Science Press, 1990.

      位荀, 徐义刚. 巴楚辉绿岩墙的岩石成因及其对塔里木大火成岩省岩浆演化的启示. 岩石学报, 2013, 29(10): 3323-3335

      WEI Xun, XU Yigang. Petrogenesis of the mafic dykes from Bachu and implications for the magma evolution of the Tarim large ignous province, NW China[J]. Acta Petrologica Sinica, 2013, 29(10): 3323-3335.

      吴波, 何国琦, 吴泰然, 等. 新疆布尔根蛇绿混杂岩的发现及其大地构造意义[J]. 中国地质, 2006, 33(3): 476-486 doi: 10.3969/j.issn.1000-3657.2006.03.004

      WU Bo, HE Guoqi, WU Tairan, et al. Discovery of the Buergen ophiolitic mélange belt in Xinjiang and its tectonic significance[J]. Geology in China, 2006, 33(3): 476-486. doi: 10.3969/j.issn.1000-3657.2006.03.004

      吴福元, 刘传周, 张亮亮, 等. 雅鲁藏布蛇绿岩—事实与臆想[J]. 岩石学报, 2014, 30(2): 293-325

      WU Fuyuan, LIU Chuanzhou, ZHANG Liangliang, et al. Yarlung Zangbo ophiolite: A critical updated view[J]. Acta Petrologica Sinica, 2014, 30(2): 293-325.

      吴福元, 万博, 赵亮, 等.特提斯地球动力学[J]. 岩石学报, 2020, 36(6): 1627−1674.

      WU Fuyuan, WAN Bo, ZHAO Liang, et al. Tethyan geodynamics [J]. Acta Petrologica Sinica, 2020, 36(6): 1627−1674.

      肖文交, Windley BF, 阎全人, 等. 北疆地区阿尔曼太蛇绿岩锆石SHRIMP年龄及其大地构造意义[J]. 地质学报, 2006, 80(1): 32-37 doi: 10.3321/j.issn:0001-5717.2006.01.004

      XIAO Wenjiao, WINDLEY BF, YAN Quanren, et al. SHRIMP Zircon age of the Aermantai ophiolite in the North Xinjiang area, China and its tectonic implications[J]. Acta Geologica Sinica, 2006, 80(1): 32-37. doi: 10.3321/j.issn:0001-5717.2006.01.004

      肖文交, 宋东方, WINDLEY BF, 等. 中亚增生造山过程与成矿作用研究进展[J]. 中国科学: 地球科学, 2019, 49: 1512-1545. doi: 10.1007/s11430-019-9524-6

      XIAO Wenjiao, SONG Dongfang, Windley BF, et al. Research progresses of the accretionary processes and metallogenesis of the Central Asian Orogenic Belt[J]. Science China Earth Sciences, 2019, https://doi.org/10.1007/s11430-019-9524-6.

      肖序常, 汤耀庆, 冯益民, 等. 新疆北部及其邻区大地构造[M]. 北京: 地质出版社, 1992

      XIAO Xuchang, TANG Yaoqing, FENG Yimin. The tectonics of Xinjiang and its adjacent area[M]. Beijing: Geological Publishing House, 1992.

      肖序常, 王军. 西昆仑-喀喇昆仑及其邻区岩石圈结构、演化中几个问题的探讨[J]. 地质论评, 2004, 50(3): 285-294 doi: 10.3321/j.issn:0371-5736.2004.03.013

      XIAO Xuchang, WANG Jun. Discussion on the Lithospheric structure and evolution of the West Kunlun mountain-Karakorum mountains and their adjacent area[J]. Geological Review, 2004, 50(3): 285-294. doi: 10.3321/j.issn:0371-5736.2004.03.013

      许继峰, 陈繁荣, 于学元, 等. 新疆北部阿尔泰地区库尔提蛇绿岩: 古弧后盆地系统的产物[J]. 岩石矿物学杂志, 2001, 20(3): 344-352 doi: 10.3969/j.issn.1000-6524.2001.03.018

      XU Jifeng, CHEN Fanrong, YU Xueyuan, et al. Kuerti ophiolite in Altay of North Xinjiang: Magmatism of an ancient back-arc basin[J]. Acta Petrologica et Mineralogica, 2001, 20(3): 344-352. doi: 10.3969/j.issn.1000-6524.2001.03.018

      许靖华. 西太平洋板内造山作用模式中的大地构造相[J]. 石油大学学报, 1994, 18(5): 1-7

      XU Jinghua. Tectonic facies in a West Pacific model of intra-plate orogenesis[J]. Journal of the University of Petroleum, China, 1994, 18(5): 1-7.

      徐梦婧, 赵佩云, 兰锐, 等. 狮泉河-永珠—嘉黎构造带中西段硅质岩地球化学特征及其沉积环境[J]. 地学前缘, 2020, 27(3): 182-190

      XU Mengqian, ZHAO Peiyun, LAN Rui, et al. Geochemical characteristics and sedimentary enviroments of siliceous in the middle and western parts of the Shiquanhe-Yongzhu-Jiali tectonic belt[J]. Earth Science Frontiers, 2020, 27(3): 182-190.

      徐新, 何国琦, 李华芹, 等. 克拉玛依蛇绿混杂岩带的基本特征和锆石SHRIMP年龄信息[J]. 中国地质, 2006, 33(3): 470-475 doi: 10.3969/j.issn.1000-3657.2006.03.003

      XU Xin, HE Guoqi, LI Huaqin, et al. Basic characteristics of the Karamay ophiolitic mélange, Xinjiang, and its zircon SHRIMP dating[J]. Geology in China, 2006, 33(3): 470-475. doi: 10.3969/j.issn.1000-3657.2006.03.003

      徐学义, 夏林圻, 马中平, 等. 北天山巴音沟蛇绿岩斜长花岗岩SHRIMP锆石U-Pb年龄及蛇绿岩成因研究[J]. 岩石学报, 2006, 22(1): 83-94 doi: 10.3321/j.issn:1000-0569.2006.01.009

      XU Xueyi, XIA Linqi, MA Zhongping, et al. SHRIMP zircon U-Pb geochronology of the plagiogranites of the ophiolite in North Tianshan Mountains and the petrogenesis of the ophiolite[J]. Acta Petrologica Sinica, 2006, 22(1): 83-94. doi: 10.3321/j.issn:1000-0569.2006.01.009

      徐学义, 李荣社, 陈隽璐, 等. 新疆北部古生代构造演化的几点认识[J]. 岩石学报, 2014, 30(6): 1521-1534

      XU Xueyi, LI Rongshe, CHEN Junlu, et al. New constrains on the Paleozoic tectonic evolution of the northern Xinjiang area[J]. Acta Petrologica Sinica, 2014, 30(6): 1521-1534.

      杨富全, 毛景文, 闫升好, 等. 新疆阿尔泰蒙库同造山斜长花岗岩年代学、地球化学及其地质意义[J]. 地质学报, 2008, 82(4): 485-499 doi: 10.3321/j.issn:0001-5717.2008.04.006

      YANG Fuquan, MAO Jinwen, YAN Shenghao, et al. Geochronology, Geochemistry and Geological implications of the Mengku synorogenic plagiogranite pluton in Altay, Xinjiang[J]. Acta Geologica Sinica, 2008, 82(4): 485-499. doi: 10.3321/j.issn:0001-5717.2008.04.006

      杨富全, 张忠利, 王蕊, 等. 新疆阿尔泰稀有金属矿地质特征及成矿作用[J]. 大地构造与成矿学, 2018, 42(6): 1010-1026 doi: 10.16539/j.ddgzyckx.2018.06.006

      YANG Fuquan, ZHANG Zhongli, WANG Rui, et al. Geological characteristics and metallogenesis of rare metal deposits in Altay, Xinjiang[J]. Geotectonica et Metallogenia, 2018, 42(6): 1010-1026. doi: 10.16539/j.ddgzyckx.2018.06.006

      杨高学, 李永军, 刘晓宇, 等. 新疆东准噶尔卡拉麦里钾质玄武岩的地球化学特征、成因及其构造意义[J]. 岩石学报, 2010, 26(8): 2345-2356

      YANG Gaoxue, LI Yongjun, LIU Xiaoyu, et al. Genesis and geochemical characteristics of the Kalamaili potassic basalt in the East Junggar, Xinjiang and tectonic implication[J]. Acta Petrologica Silica, 2010, 26(8): 2345-2356.

      杨经绥, 许志琴, 李海兵, 等. 我国西部柴北缘地区发现榴辉岩[J]. 科学通报, 1998, 43(14): 1544-1549 doi: 10.3321/j.issn:0023-074X.1998.14.023

      YANG Jingsui, XU Ziqin, LI Haibing, et al. The discovery of the eclogite in the north margin of the Chadamu basin, Western China[J]. Chinese Science Bulletin, 1998, 43(14): 1544-1549. doi: 10.3321/j.issn:0023-074X.1998.14.023

      杨经绥, 史仁灯, 吴才来, 等. 北阿尔金地区米兰红柳沟蛇绿岩的岩石学特征和SHRIMP定年[J]. 岩石学报, 2008, 24(7): 1567-1584

      YANG Jingsui, SHI Rendeng, WU Cailai, et al. Petrology and SHRIMP age of the Hongliugou ophiolite at Milan, North Altun, at the northern margin of the Tibetan Plateau[J]. Acta Petrologica Sinica, 2008, 24(7): 1567-1584.

      杨立强, 高雪, 和文言. 义敦岛弧晚白垩世斑岩成矿系统[J]. 岩石学报, 2015, 31(11): 3155-3170

      YANG Liqiang, GAO Xue, HE Wenyan. Late Cretaceous porphyry metallogenic system of the Yidun arc, SW China[J]. Acta Petrologica Sinica, 2015, 31(11): 3155-3170.

      杨天南, 李锦轶, 孙桂华, 等. 中天山早泥盆世陆弧: 来自花岗质糜棱岩地球化学及SHRIMP-U/Pb定年的证据[J]. 岩石学报, 2006, 22(1): 41-48 doi: 10.3321/j.issn:1000-0569.2006.01.004

      YANG Tiannan, LI Jinyi, SUN Guihua, et al. Earlier Devonian active continental arc in Central Tianshan: evidence of geochemical analyses and Zircon SHRIMP dating on mylonitized granitic rock[J]. Acta Petrologica Sinica, 2006, 22(1): 41-48. doi: 10.3321/j.issn:1000-0569.2006.01.004

      尹福光, 唐渊, 徐波. 西南三江地区新生代走滑造山[J]. 沉积与特提斯地质, 2021, 41: 1-14 doi: 10.19826/j.cnki.1009-3850.2020.04001

      YIN Fuguang, TANG Yuan, XU Bo. Cenozoic strike slip orogeny in Sanjiang area, Southwestern China[J]. Sedimentary Geology and Tethyan Geology, 2021, 41: 1-14. doi: 10.19826/j.cnki.1009-3850.2020.04001

      尹继元, 陈文, 袁超, 等. 西准噶尔谢米斯台山东段早石炭世玄武安山岩的成因及意义[J]. 大地构造与成矿学, 2015, 39(5): 876-888 doi: 10.16539/j.ddgzyckx.2015.05.011

      YIN Jiyuan, CHEN Wen, YUAN Chao, et al. Petrogenesis and Tectonic implication of Early Carboniferous Basaltic andesite in the Eastern part of Xiemisitai mountain, northern West Junggar[J]. Geotectonica et Metallogenia, 2015, 39(5): 876-888. doi: 10.16539/j.ddgzyckx.2015.05.011

      余吉远, 李向民, 马中平, 等. 南祁连化隆岩群LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 地质通报, 2012, 45(1): 79-85

      YU Jiyuan, LI Xiangmin, MA Zhongping, et al. The LA-ICP-MA U-Pb age and geological significance of Hualong rock group in South Qilian mountains[J]. Northwestern Geology, 2012, 45(1): 79-85.

      袁超, 孙敏, 肖文交, 等. 原特提斯的消减极性: 西昆仑128公里岩体的启示[J]. 岩石学报, 2003, 19(3): 399-408 doi: 10.3969/j.issn.1000-0569.2003.03.003

      YUAN Chao, SUN Min, XIAO Wenjiao, et al. Subduction polarity of the prototethys: Insights from the Yirba pluton of the western Kunlun range, NW China[J]. Acta Petrologica Sinica, 2003, 19(3): 399-408. doi: 10.3969/j.issn.1000-0569.2003.03.003

      袁四化, 刘永江, 常瑞虹, 等. 从多岛弧盆系构造看西特提斯造山系构造演化[J]. 沉积与特提斯地质, 2021, 41: 316-331 doi: 10.19826/j.cnki.1009-3850.2021.02004

      YUAN Sihua, LIU Yongjiang, CHANG Ruihong, et al. A brief review on the tectonic evolution of the west Tethy sides[J]. Sedimentary Geology and Tethyan Geology, 2021, 41: 316-331. doi: 10.19826/j.cnki.1009-3850.2021.02004

      袁学诚, 徐明才, 唐文榜, 等. 东秦岭陆壳反射地震剖面[J]. 地球物理学报, 1994, 37(6): 749-758 doi: 10.3321/j.issn:0001-5733.1994.06.006

      YUAN Xuecheng, XU Mingcai, TANG Wenbang, et al. Eastern Qinling seismic reflection profiling[J]. Acta Geophysica Sinica, 1994, 37(6): 749-758. doi: 10.3321/j.issn:0001-5733.1994.06.006

      曾庆高, 王保弟, 西洛郎杰, 等. 西藏的缝合带与特提斯演化[J]. 地球科学, 2020, 45: 2735-2763

      ZENG Qinggao, WANG Baodi, XILUO Langjie, et al. Suture zones in Tibetan and Tethys evolution[J]. Earth Science, 2020, 45: 2735-2763.

      张弛, 黄萱. 新疆西准噶尔蛇绿岩形成时代和环境的探讨[J]. 地质论评, 1992, 36(8): 509-524 doi: 10.3321/j.issn:0371-5736.1992.06.009

      ZHANG Chi, HUANG Xuan. Age and tectonic settings of ophiolites in west Junggar, Xinjiang[J]. Geological Review, 1992, 36(8): 509-524. doi: 10.3321/j.issn:0371-5736.1992.06.009

      张德润. 新疆东部地区大地构造问题探讨[J]. 新疆地质, 1990, 8(2): 99-106

      ZHANG Derun. A preliminary study on geotectonics of Eastern Xinjiang[J]. Xinjiang Geology, 1990, 8(2): 99-106.

      张海迪, 吕鹏瑞, 罗彦军, 等. 塔吉克斯坦帕米尔地区构造单元划分及其特征[J]. 地质与勘探, 2019, 55(1): 135-144 doi: 10.12134/j.dzykt.2019.01.013

      ZHANG Haidi, LV Pengrui, LUO Yanjun, et al. Tectonic unit division of the Pamir area in Tajikistan and its geological characteristics[J]. Geology and Exploration, 2019, 55(1): 135-144. doi: 10.12134/j.dzykt.2019.01.013

      张海洋, 牛贺才. 新疆北部晚古生代埃达克岩、富铌玄武岩组合: 古亚洲洋板块向南俯冲的证据[J]. 高校地质学报, 2004, 10(1): 106-113 doi: 10.3969/j.issn.1006-7493.2004.01.010

      ZHANG Haiyang, NIU Hecai. Late Paleozoic adakite and Nb-enriched basalt from Northern Xinjiang: evidence for the southward subduction of the Paleo-Asian ocean[J]. Geological Journal of China Universities, 2004, 10(1): 106-113. doi: 10.3969/j.issn.1006-7493.2004.01.010

      张克信, 潘桂棠, 何卫红, 等. 中国构造-地层大区划分新方案[J]. 地球科学(中国地质大学学报), 2015, 40, 206-233 doi: 10.3799/dqkx.2015.016

      ZHANG Kexin, PAN Guitang, HE Hongwei, et al. New division of tectonic-strata superregion in China[J]. Earth Science-Journal of China University of Geosciences, 2015, 40, 206-233. doi: 10.3799/dqkx.2015.016

      张克信, 何卫红, JIN JS, 等. 洋板块地层在造山带构造-地层区划中的应用[J]. 地球科学(中国地质大学学报), 2020, 45, 2305-2325. doi: 10.3799/dqkx.2020.120

      ZHANG Kexin, HE Hongwei, JIN JS, et al. Application of OPS to Division of Tectonic-Strata Regions in Orogenic Belts[J]. Earth Science-Journal of China University of Geosciences, 2020, 45, 2305-2325. doi: 10.3799/dqkx.2020.120

      张克信, 何卫红, 徐亚东, 等. 论从俯冲增生杂岩带中重建洋板块地层主要类型与序列: 以青藏特提斯二叠系为例[J]. 沉积与特提斯地质, 2021, 41: 137-151

      ZHANG Kexin, HE Hongwei, XU Yadong, et al. Reconstruction of main types for oceanic plate strata in the subduction-accretionary complex and feature of sequence for each type: an example from the Qinghai-Tibet Tethyan Permian strata[J]. Sedimentary Geology and Tethyan Geology, 2021, 41: 137-151.

      张克信, 冯庆来, 宋博文, 等. 造山带非史密斯地层[J]. 地学前缘, 2014, 21(2): 36−47.

      ZHANG Kexin, FENG Qinglai, SONG Bowen, et al. Non-Smithian strata in the orogen[J]. Earth Science Frontiers, 2014, 21(2): 36−47.

      张克信, 何卫红, 骆满生, 等. 中国沉积岩建造与沉积大地构造[M]. 北京: 地质出版社, 2017
      张克信, 徐亚东, 何卫红, 等.中国新元古宙青白口纪早期(1 000-820 Ma)洋陆分布[J]. 地球科学, 2018, 43(11):3837−3852.

      ZHANG Kexin, XU Yadong, HE Weihong, et al. Oceanic and continental blocks distribution during Neoproterozoic Early Qingbaikouan Period (1000-820 Ma) in China[J]. Earth Science, 2018, 43(11):3837−3852.

      张向飞, 李文昌, 杨镇, 等. 青藏高原东缘休瓦促钨钼矿区复式岩体时空分布及演化意义[J]. 沉积与特提斯地质, 2022, 42(1): 105-121 doi: 10.19826/j.cnki.1009-3850.2022.01016

      ZHANG Xiangfei, LI Wenchang, YANG Zhen, et al. Temporal-spatial and evolution implication of the composite intrusion in the Xiuwacu W-Mo deposit, SE Tibetan Plateau[J]. Sedimentary Geology and Tethyan Geology, 2022, 42(1): 105-121. doi: 10.19826/j.cnki.1009-3850.2022.01016

      张亚峰, 蔺新望, 王星, 等. 阿尔泰造山带南缘昆格依特岩体LA-ICP-MS锆石U-Pb年代学、岩石成因及其地质意义[J]. 现代地质, 2014, 28(1): 16-28 doi: 10.3969/j.issn.1000-8527.2014.01.002

      ZHANG Yafeng, LIN Xinwang, WANG Xing, et al. LA-ICP-MS U-Pb geochronology, petrogenesis and its geological implications of Kungeyite plutons in southern Altay orogenic belt[J]. Geoscience, 2014, 28(1): 16-28. doi: 10.3969/j.issn.1000-8527.2014.01.002

      张以榕. 东准噶尔地质及金锡矿产研究[M]. 北京: 地震出版社, 1992

      ZHANG Yirong. Study on the Geology and Au-Sn minerals in Eastern Junggar[M]. Beijing: Earthquake Publishing House, 1992.

      张招崇, 闫升好, 陈柏林, 等. 阿尔泰造山带南缘镁铁质-超镁铁质杂岩体的Sr、Nd、O同位素地球化学及其源区特征探讨[J]. 地质论评, 2006, 52(1): 38-42 doi: 10.3321/j.issn:0371-5736.2006.01.006

      ZHANG Zhaocong, YAN Shenghao, CHEN Bailin, et al. Sr, Nd and O isotope geochemistry of the mafic-ultramafic complexs in the south margin of Altay orogenic belt and discussion on their sources[J]. Geological Review, 2006, 52(1): 38-42. doi: 10.3321/j.issn:0371-5736.2006.01.006

      张招崇, 周刚, 闫升好, 等. 阿尔泰山南缘晚古生代火山岩的地质地球化学特征及其对构造演化的启示[J]. 地质学报, 2007, 81(3): 344-358 doi: 10.3321/j.issn:0001-5717.2007.03.007

      ZHANG Zhaocong, ZHOU Gang, YAN Shenghao, et al. Geology and geochemistry of the Late Paleozoic volcanic rocks of the south margin of the Altai Mountains and implications for tectonic evolution[J]. Acta Geologica Snica, 2007, 81(3): 344-358. doi: 10.3321/j.issn:0001-5717.2007.03.007

      张占武, 崔建堂, 王炬川, 等. 西昆仑康西瓦西北部库尔良早古生代角闪闪长岩花岗闪长岩锆石SHRIMP U-Pb测年[J]. 地质通报, 2007, 26(6): 720-725 doi: 10.3969/j.issn.1671-2552.2007.06.013

      ZHANG Zhanwu, CUI Jiantang, WANG Juchuan, et al. Zircon SHRIMP U-Pb dating of early Paleozoic amphibolite and granodiorite in Korliang, northwestern Kangxiwar, West Kunlun[J]. Geological Bulletin of China, 2007, 26(6): 720-725. doi: 10.3969/j.issn.1671-2552.2007.06.013

      赵振华, 陈华勇, 韩金生. 新疆阿尔泰造山带中生代伟晶岩的稀有金属成矿作用[J]. 中山大学学报(自然科学版) , 2022, 61: 1-26. ZHAO Zhenhua, CHEN Huayong, HAN Jinsheng. Rare metal mineralization of the Mesozoic pegmatite in Altay orogeny, northern Xinjiang[J]. Acta Scientiarum Naturalium Universitis Sunyatseni, 2022, 61, 1-26. doi: 10.13471/j.cnki.acta.snus.2021d058
      朱宝清, 冯益民, 杨军录, 等. 新疆中天山干沟一带蛇绿混杂岩和志留纪前陆盆地的发现及其意义[J]. 新疆地质, 2002, 20(4): 326-330 doi: 10.3969/j.issn.1000-8845.2002.04.006

      ZHU Baoqing, FENG Yimin, YANG Junlu, et al. Discovery of ophiolitic mélange and Silurian foreland basin at Gangou of Tokxun, Xinjiang and their tectonic significance[J]. Xinjiang Geology, 2002, 20(4): 326-330. doi: 10.3969/j.issn.1000-8845.2002.04.006

      朱弟成, 王青, 詹琼窑, 等. 三江北段晚三叠世构造-岩浆作用和几个相关的科学问题[J]. 沉积与特提斯地质, 2021, 41: 232-245 doi: 10.19826/j.cnki.1009-3850.2021.03002

      ZHU Dicheng, WANG Qing, Zhan Qiongyao, et al. Late Triassic tectono-magmatism of northern Sanjiang and associated several scientific problems[J]. Sedimentary Geology and Tethyan Geology, 2021, 41: 232-245. doi: 10.19826/j.cnki.1009-3850.2021.03002

      周鼎武, 苏犁, 简平, 等. 南天山榆树沟蛇绿岩地体中高压麻粒岩SHRIMP锆石U-Pb年龄及构造意义[J]. 科学通报, 2004, 49(14): 1411-1415 doi: 10.3321/j.issn:0023-074X.2004.14.013

      ZHOU Dingwu, SU Li, JIAN Ping, et al. Zircon SHRIMP U-Pb ages of middle-high pressure granulite in Yushugou ophiolite terrane and their tectonic significance, South Tianshan, China[J]. Science Bulletin of China, 2004, 49(14): 1411-1415. doi: 10.3321/j.issn:0023-074X.2004.14.013

      周汝洪, 刘正荣, 裴江平, 等. 新疆天山干沟加里东花岗岩构造环境[J]. 新疆地质, 2009, 27(4): 308-314 doi: 10.3969/j.issn.1000-8845.2009.04.002

      ZHOU Ruhong, LIU Zhengrong, PEI Jiangping, et al. Tectonic setting of the Gangou Caledonian granite in Tianshan of Xinjiang, and its contrast with Per-Cambrian granite in middle Tianshan mountain[J]. Xinjiang Geology, 2009, 27(4): 308-314. doi: 10.3969/j.issn.1000-8845.2009.04.002

      朱文斌, 张志勇, 舒良树, 等. 塔里木北缘前寒武基底隆升剥露史: 来自磷灰石裂变径迹的证据[J]. 岩石学报, 2007, 23(7): 1671-1682 doi: 10.3969/j.issn.1000-0569.2007.07.013

      ZHU Wenbin, ZHANG Zhiyong, SU Liangshu, et al. Uplift and exhumation history of the Precambrian basement, Northern Tarim: Evidence from apatite fission track data[J]. Acta Petrologica Sinica, 2007, 23(7): 1671-1682. doi: 10.3969/j.issn.1000-0569.2007.07.013

      朱永峰, 张立飞, 古丽冰, 等. 西天山石炭纪火山岩SHRIMP年代学及其微量元素地球化学研究[J]. 科学通报, 2005, 50(18): 2004-2014 doi: 10.3321/j.issn:0023-074X.2005.18.014

      ZHU Yongfeng, ZHANG Lifei, GU Libing, et al. SHRIMP Geochronology and trace element geochemistry of the Carboniferous volcanic rocks in Western Tianshan Mountains, China[J]. Science Bulletin of China, 2005, 50(18): 2004-2014. doi: 10.3321/j.issn:0023-074X.2005.18.014

      朱永峰. 中亚成矿域地质矿产研究的若干重要问题[J]. 岩石学报, 2009, 25(6): 1297-1302

      ZHU Yongfeng. Some important issues for the studies on the Central Asian Metallogeny Domain[J]. Acta Petrologica Sinica, 2009, 25(6): 1297-1302.

      朱永峰, 徐新. 新疆塔尔巴哈台山发现早奥陶世蛇绿混杂岩[J]. 岩石学报, 2006, 22(12): 2833-2842 doi: 10.3321/j.issn:1000-0569.2006.12.002

      ZHU Yongfeng, XU Xin. The discovery of Early Ordovician ophiolite mélange in Taerbahatai Mts. , Xingjiang, NW China[J]. Acta Petrologica Sinica, 2006, 22(12): 2833-2842. doi: 10.3321/j.issn:1000-0569.2006.12.002

      朱迎堂, 郭通珍, 张雪亭, 等. 青海西部可可西里湖地区晚三叠世诺利期地层的厘定及其意义[J]. 地质通报, 2003, 22(7): 474-479 doi: 10.3969/j.issn.1671-2552.2003.07.003

      ZHU Yingtang, GUO Tongzhen, ZHANG Xueting, et al. Discovery of Triassic Norian strata in the Hoh Xil Lake area, western Qinghai, and its geological significance[J]. Geological Bulletin of China, 2003, 22(7): 474-479. doi: 10.3969/j.issn.1671-2552.2003.07.003

      朱志新, 王克卓, 徐达, 等. 依连哈比尔尕山石炭纪侵入岩锆石SHRIMP U-Pb测年及其地质意义[J]. 地质通报, 2006, 25(8): 986-991 doi: 10.3969/j.issn.1671-2552.2006.08.017

      ZHU Zhixin, WANG Kezhuo, XU Da, et al. SHRIMP U-Pb dating of zircons from Carboniferous intrusive rocks on the active continental margin of Eren Habirga, West Tianshan, Xinjiang, China, and its geological implications[J]. Geological Bulletin of China, 2006, 25(8): 986-991. doi: 10.3969/j.issn.1671-2552.2006.08.017

      朱志新, 李锦轶, 董连慧, 等. 新疆南天山盲起苏晚石炭世侵入岩的确定及对南天山洋盆闭合时限的限定[J]. 岩石学报, 2008, 24(12): 2761-2766

      ZHU Zhixin, LI Jinyi, DONG Lianhui, et al. The age determination of Late Carboniferous intrusions in Mangqisu region and its constraints to the closure of oceanic basin in South Tianshan, Xinjiang[J]. Acta Petrologica Sinica, 2008, 24(12): 2761-2766.

      朱志新, 董连慧, 王克卓, 等. 西天山造山带构造单元划分与构造演化[J]. 地质通报, 2013, 32(2-3): 297-306 doi: 10.3969/j.issn.1671-2552.2013.02.009

      ZHU Zhixin, DONG Lianhui, WANG Kezhuo, et al. Tectonic division and regional tectonic evolution of West Tianshan organic belt[J]. Geological Bulletin of China, 2013, 32(2-3): 297-306. doi: 10.3969/j.issn.1671-2552.2013.02.009

      左国朝, 刘义科, 张招崇, 等. 中亚地区中、 南天山造山带构造演化及成矿背景分析[J]. 现代地质, 2011, 25(1): 1-14 doi: 10.3969/j.issn.1000-8527.2011.01.001

      ZUO Guochao, LIU Yike, ZHANG Zhaocong, et al. Tectonic Evolution of Central and South Tianshan Orogenic belts in the Central Asia and Mineralization Background[J]. Geoscience, 2011, 25(1): 1-14. doi: 10.3969/j.issn.1000-8527.2011.01.001

      AHMAD I, KHAN S, LAPEN T, et al. Isotopic Ages for Alkaline Igneous Rocks, Including a 26 Ma ignimbrite, from the Peshawar Plain of Northern Pakistan and their Tectonic Implications[J]. Journal of Asian Earth Sciences, 2013, 62: 414-424. doi: 10.1016/j.jseaes.2012.10.025

      ALEXEIVE DV, BISKE YS, WANG B, et al. Tectono-stratigraphic framework and Palaeozoic evolution of the Chinese South Tianshan[J]. Geotectonics, 2015, 49: 93-122. doi: 10.1134/S0016852115020028

      ANCZKIEWICZ R, OBERLI F, BURG JP, et al. Timing of normal faulting along the Indus Suture in Pakistan Himalaya and a case of major 231Pa/235U initial disequilibrium in zircon[J]. Earth and Planetary Science Letters, 2001, 191: 101-114 doi: 10.1016/S0012-821X(01)00406-X

      ARTEMIEVA IM, THYBO H, KABAN MK. Deep Europe today: Geophysical synthesis of the upper mantle structure and lithospheric processes over 3.5Ga[J]. European Lithosphere Dynamics, 2006, 32: 11-41

      BECK RA, BURBANK DW, SERCOMBE WJ, et al. Stratigraphic evidence for an early collision between northwest India and Asia[J]. Nature, 1995, 373: 55-58. doi: 10.1038/373055a0

      BORNEMAN NL, HODGES KV, SOEST MC, et al. Constraints on age of India-Asia collision and pre-collisional subduction metamorphism from the Sangsang region, south Central Tibet[J]. AGU Fall Meeting Abstracts, 2014, T13D–T05D

      BORNEMAN NL, HODGES KV, SOEST MC, et al. Age and structure of the Shyok suture in the Ladakh region of northwestern India: implications for slip on the Karakoram fault system[J]. Tectonics, 2015, 34: 2011-2033 doi: 10.1002/2015TC003933

      BROOKFIELD ME. Geological development and phanerozoic crustal accretion in the western segment of the southern Tien Shan (Kyrgyzstan, Uzebekistan and Tajikistan) [J]. Tectonophysics, 2000, 328: 1-14 doi: 10.1016/S0040-1951(00)00175-X

      BROWN D, SPADEA P, PUCHKOV VN, et al. Arc-continent collision in the Southern Urals[J]. Earth Science Reviews, 2006, 79(3-4): 261-287. doi: 10.1016/j.earscirev.2006.08.003

      BURTMAN S, MOLNAR P, Geological and geophysical evidence for deep subduction of continental crust beneath the Pamir[J]. Geology of Society Ameriacan Special, 1993, 281: 1-76.

      CHAPMAN JB, SCOGGIN SH, KAPP P, et al. Mesozoic to Cenozoic magmatic history of the Pamir[J]. Earth Planet Science Letter, 2018, 482: 181-192. doi: 10.1016/j.jpgl.2017.10.041

      Chen Shenqiang, Chen Hanlin, Zhu Kongyang, et al. Petrogenesis of the Middle-Late Triassic S- and I-type granitoids in the eastern Pamir and implications for the Tanymas-Jinshajiang Paleo-Tethys Ocean[J]. International Journal of Earth Sciences, 2021a.

      CHEN Xin, SCHERT HP, GU Pingyang, et al. Newly discovered MORB-Type HP garnet amphibolites from the Indus-Yarlung Tsangpo suture zone: Implications for the Cenozoic India-Asia collision[J]. Gondwana Research, 2021, 90: 102-117. doi: 10.1016/j.gr.2020.11.006

      CHEVALIER ML, TAPPONNIER P, VANDER Woerd, et al. Spatially constant slip rate along the southern segment of the Karakorum fault since 200ka[J]. Tectonophysics, 2012, 530-531: 152-179. doi: 10.1016/j.tecto.2011.12.014

      DENG Jun, WANG Qingfei, LI Gongjian, et al. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China[J]. Gondwana Research, 2014, 26(2): 419-437 doi: 10.1016/j.gr.2013.08.002

      Ding Lin, Paul K, Wan Xiaoqiao. Paleocene–Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet[J]. Tectonics, 2005, 24(3): 1−18

      DIPIETRO JA, PULLEN A, KROL MA. Geologic history and thermal evolution in the hinterland region, western Himalaya, Pakistan[J]. Earth-Science Reviews, 2021, 223: 103817. doi. org/10.1016/j. earscirev. 2021.103817. doi: 10.1016/j.earscirev.2021.103817

      GAINA C, MüLLER D. Cenozoic tectonic and depth/age evolution of the Indonesian gateway and associated back-arc basins[J]. Earth-Science Reviews, 2007, 83: 177-203. doi: 10.1016/j.earscirev.2007.04.004

      GARZANTI E, GAETANI M. Unroofing history of Late Paleozoic magmatic arc within the “Turan Plate” (Tuarkyr, Turkmenistan) [J]. Sedimentary Geology, 2002, 151: 67-87. doi: 10.1016/S0037-0738(01)00231-7

      GONG Xiaohan, ZHOU Hailong, XU Jifeng, et al. Development of a complex arc–back-arc basin system within the South Tianshan Ocean: Insights from the Wuwamen ophiolitic peridotites[J]. Lithos, 2021, 404-405: 106487doi: org/10.1016/ j.lithos.2021.106487

      HAN Yigui, ZHAO Guochun. Final amalgamation of the Tianshan and Junggar orogenic collage in the southwestern Central Asian Orogenic Belt: Constraints on the closure of the Paleo-Asian Ocean[J]. Earth Sci. Rev. 2018, 186, 129-152. doi: 10.1016/j.earscirev.2017.09.012

      He John, Kapp P, Chapman J B, et al. Structural setting and detrital zircon U–Pb geochronology of Triassic–Cenozoic strata in the eastern Central Pamir, Tajikistan[J]. Geological Society, 2018, 483.

      HEGNER E, KLEMD R, KRöNER A, et al. Mineral agesand P-T conditionsof Late Paleozoic high-pressure eclogite and provenance of melange sediments from Atbashi in the south Tianshan orogen of Kyrgyzstan[J]. American Journal of Science, 2010, 310: 916-950. doi: 10.2475/09.2010.07

      HERRINGTON RJ, ZAYKOV VV, MASLENNIKOV VV, et al. Mineral deposits of the urals andlinks to geodynamic evolution[J]. Economic Geology 100th Anniversary Volume, 2005, 1069-1095.

      HOU Zengqian, ZHENG Yuanchuan, YANG Zhiming, et al. Contribution of mantle components within juvenile lower-crust to collisional zone porphyry Cu systems in Tibet[J]. Mineralium Deposita, 2013, 48(2): 173-192. doi: 10.1007/s00126-012-0415-6

      HOU Zengqian, YANG Zhiming, LU Yongjun, et al. A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones[J]. Geology, 2015, 43: 247-250.

      HSü KJ, Pan GT, Sengör AMC. Tectonic evolution of the Tibetan Plateau, a working hypothesis based on the archipelago model of orogenesis[J]. International Geology Review, 1995, 37: 473-508. doi: 10.1080/00206819509465414

      HU Xiumian, AN Wei, WANG Jiangang, et al, Himalayan detrital chromian spinels and timing of Indus-Yarlung ophiolite erosion[J]. Tectonophysics, 2014, 621: 60-68. doi: 10.1016/j.tecto.2014.02.003

      IMRECKE DB, ROBINSON AC, OWEN LA, et al. Mesozoic evolution of the eastern Pamir[J]. Lithos, 2019, 11: 560-580. doi: 10.1130/L1017.1

      IVANOV KS, PUCHKOV VN, FYODOROV YN, et al. Tectonics of the Urals and adjacent part of the West-Siberian platform basement: Main features of geology and development[J]. Journal of Asian Earth Sciences, 2013, 72(2013): 12-24.

      JAGOUTZ O, ROYDEN L, HOLT AF, et al. Anomalously fast convergence of India and Eurasia caused by double subduction[J]. Nature Geoscience, 2015, 8, 475. doi: 10.1038/ngeo2418

      JIAN Ping, LIU Dunyi, KRöNER A, et al. Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for continental growth[J]. Lithos, 2008, 101(3-4): 233-259. doi: 10.1016/j.lithos.2007.07.005

      KHAN ZA, TEWARI RC. Indus-Yarlung-Tsangpo Suture Zone Concept- A Second Opinion[J]. Journal of Tethys, 2017, 5(3): 218-239.

      KLEMD R, BROCKER M, HACKER BR, et al. New age constrains on the metamorphic evolution of the high-pressure/low-temperature belt in the western Tianshan Mountains, NW China[J]. The Journal of Geology, 2005, 113: 157-168. doi: 10.1086/427666

      KLEMD R, GAO Jun, LI Jilei, et al. Metamorphic evolution of (ultra)-highpressure subduction-related transient crust in the South Tianshan Orogen (Central Asian Orogenic Belt): geodynamic implications[J]. Gondwana Research, 2015, 28: 1-25. doi: 10.1016/j.gr.2014.11.008

      LI Hao, XU Xingwang, BORG G, et al. Geology and geochemistry of the giant Huoshaoyun zinc-lead deposit, Karakorum Range, NW Tibet[J]. Ore Geology Reviews, 2019, 106: 251-272. doi: 10.1016/j.oregeorev.2019.02.002

      LI Jinyi. Permian geodynamic setting of Northeast China and adjacent regions: Closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate[J]. Journal of Asian Earth Sciences, 2006, 26(3-4): 207-224. doi: 10.1016/j.jseaes.2005.09.001

      Li Jinyi, Chen Xuanhua, Wang Zhihong, et al. Late Palaeozoic mineralization and tectonic evolution of the West Junggar metallogenic belt, Central Asia: constraints from Re–Os and 40Ar/39Ar geochronology[J]. International Geology Review, 2016, doi. org/10. 1080/00206814. 2016. 1205525.

      LI Wenchang, PAN Guitang, ZHANG Xiangfei, et al. Tectonic evolution and multi–episodic metallogenesis of the Sanjiang Paleo-Tethys multi-arc-basin-terrane system, SW Tibetan Plateau[J]. Journal of Asian Earth Sciences, 2021, 221, 104932. doi. org/10.1016/j. jseaes. 104932. doi: 10.1016/j.jseaes.2021.104932

      Li Wangchao, Yin Changqing, Zhang Zeming, et al. Low temperature eclogite facies rocks discovered in the Eastern Himalayan Syntaxis: Poly-cyclic metamorphic evolution and implications[J]. Journal of Metamorphic Geology, 2022, doi: 10.1111/jmg.12689.

      LIU Wenliang, XIA Bin, ZHONG Yun, et al. Age and composition of the Rebang Co and Julu ophiolites, central Tibet: implications for the evolution of the Bangong Meso-Tethys[J]. International Geology Review, 2014, 56: 430-47. doi: 10.1080/00206814.2013.873356

      LONG Xiaoping, YUAN Chao, SUN Min, et al. Reworking of the Tarim Craton by underplating of mantle plume-derived magmas: Evidence from Neoproterozoic granitoids in the Kuluketage area, NW China[J]. Precambrian Research, 2011, 187(1-2): 1-14. doi: 10.1016/j.precamres.2011.02.001

      MATSUARU K, EHIRO M, KOJIMA S. On Orbitolina (Foraminiferida) from the Shyok suture zone, Ladakh, NW India[J]. Journal of the Palaeontological Society of India, 2006, 51: 43-49.

      MASLENNIKOV VV, AYUPOVA NR, HERRINGTON RJ, et al. Ferruginous and manganiferous haloes around massive sulphide deposits of the Urals[J]. Ore Geology Reviews, 2012, 47: 5-41. doi: 10.1016/j.oregeorev.2012.03.008

      METCALFE I. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys[J]. Journal of Asian Earth Sciences, 2013, 66, 1-33. doi: 10.1016/j.jseaes.2012.12.020

      MEYER M, KLEMD R, KONOPELKO D. High-pressure mafic oceanic rocks from the Makbal Complex, Tianshan Mountains (Kazakhstan & Kyrgyzstan): implications for the metamorphic evolution of a fossil subduction zone[J]. Lithos, 2013, 177: 207-225. doi: 10.1016/j.lithos.2013.06.015

      MEYER M, KLEMD R, HEGNER E, et al. Subduction and exhumation mechanisms of ultra-high and high-P oceanic and continental crust at Makbal (Tianshan, Kazakhstan and Kyrgyzstan) [J]. Journal of Metamorphic Geology, 2014, 32, 861-884. doi: 10.1111/jmg.12097

      MINTS MV. Tectonics and Geodynamics of Granulite-Gneiss Complexes in the East European Craton[J]. Geotectonics, 2014, 48(6): 498-524.

      MONTERO P, BEA F, GERDES A, et al. Single-zircon evaporation ages and Rb-Sr dating of four major variscan batholiths of the Urals: A perspective on the timing of deformation and granite generation[J]. Tectonophysics, 2000, 317: 93-108. doi: 10.1016/S0040-1951(99)00270-X

      PAN Guitang, WANG Liquan, LI Rongshe, et al. Tectonic evolution of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences, 2012, 53: 3-14. doi: 10.1016/j.jseaes.2011.12.018

      PIRAJNO F, UYSAL I, NAUMOV EA. Oceanic lithosphere and ophiolites: Birth, life and final resting place of related ore deposits[J]. Gondwana Research, 2020, 88(2020): 333-352. doi: 10.1016/j.gr.2020.08.004

      ROBINSON AC, YIN Aa, MANNING CE, et al. Tectonic evolution of the northeastern Pamir: constraints from the northern portion of the Cenozoic Kongur Shan extensional system, western China[J]. Geology Society of American Bulletin, 2004, 116: 953-973. doi: 10.1130/B25375.1

      Robinson A C, Ducea M, Lapen T J. Detrital zircon and isotopic constraints on the crustal architecture and tectonic evolution of the northeastern Pamir[J]. Tectonics, 2012, 31.

      Robinson A C. 2015. Mesozoic tectonics of the Gondwanan terranes of the Pamir plateau[J]. Journal of Asian Earth Sciences, 102: 170−179.

      ROJAS Agramonte, HERWARTZ D, GARCIA Casco. Early Palaeozoic deep subduction of continental crust in the Kyrgyz North Tianshan: evidence from Lu–Hf garnet geochronology and petrology of mafic dikes[J]. Contributions to Mineralogy and Petrology, 2013, 166: 525-543. doi: 10.1007/s00410-013-0889-y

      ROLLAND Y, PêCHER A, PICARD C. Middle Cretaceous back-arc formationand arcevolutionalong theAsian margin: theShyok SutureZone in northern Ladakh (NW Himalaya) [J]. Tectonophysics, 2000, 325: 145-173. doi: 10.1016/S0040-1951(00)00135-9

      RUTTE D, RATSCHBACHER L, SCHNEIDER S, et al. Building the Pamir-Tibetan Plateau-crustal stacking, extensional collapse, and lateral extrusion in the Central Pamir: 1. Geometry and kinematics[J]. Tectonics, 2017, 36: 342-384. doi: 10.1002/2016TC004293

      SAIBI H, ABOUD E, GOTTSMANN J. Curie point depth from spectral analysis of aeromagnetic data for geothermal reconnaissance in Afghanistan[J]. Journal of African Earth Sciences, 2015, 111: 92-99. doi: 10.1016/j.jafrearsci.2015.07.019

      SAKTURA WM, BUCKMAN S, NUTMAN AP, et al. Late Jurassic Changmar Complex from the Shyok ophiolite, NW Himalaya: a prelude to the Ladakh Arc[J]. Geological Magazine, 2020, 158, 239-260.

      Saktura W M, Buckman S, Nutman A P, et al. Jurassic-Cretaceous arc magmatism along the Shyok-Bangong Suture of NW Himalaya: formation of the peri-Gondwana basement to the Ladakh Arc[J]. Journal of the Geological Society, 2021, doi. org/10.1144/jgs2021-035.

      SAVELIEVA GN, NESBITT RW. A synthesis of the stratigraphic and tectonic setting of the Uralian ophiolites[J]. Journal of the Geological Society, 1996, 153: 525-537. doi: 10.1144/gsjgs.153.4.0525

      SCHMIDT J, HACKER BR, RATSCHBACHER L, et al. Cenozoic deep crust in the Pamir[J]. Earth and Planetary Science Letters, 2011, 312: 411-421. doi: 10.1016/j.jpgl.2011.10.034

      SCHWAB M, RATSCHBACHER L, SIEBEL W, et al. Assembly of the Pamirs: Age and origin of magmatic belts from the southern Tien Shan to the southern Pamirs and their relation to Tibet[J]. Tectonics, 2004, 23: TC4002.

      Scotese C R. Plate Tectonic Maps and Continental Drift Animations[M]. Arlington, Texas: Paleomap Project, 2006.

      SEARLE MP, NOBLE SR, HURFORD AJ, et al. Age of crustal melting, emplacement and exhumation history of the Shivling leucogranite, Garhwal Himalaya[J]. Geological Magazine, 1999, 136: 513-525. doi: 10.1017/S0016756899002885

      SELTMANN R, PORTER TM, PIRAJNO F. Geodynamics and metallogeny of the central Eurasian porphyry and related epithermal mineral systems: A review[J]. Journal of Asian Earth Sciences, 2013, 79: 810-841.

      SENGöR AMC, NATALIN BA. Phanerozoic Analogues of Archaean Oceanic Basement Fragments: Altaid Ophiolites and Ophirags[J]. Precambrian Geology, 2004, 13: 657-726.

      SENGöR AMC, SUNAL G, NATALIN BA, et al. Altaids: A review of twenty-five years of knowledge accumulation[J]. Earth Science Reviews, 2022, 228(2022) 104013. doi: 10.1016/j.earscirev.2022.104013

      SHENG Shanbo, WANG Zhen, LIANG Shuang, et al. Sedimentary characteristics and exploration direction in the south of the central block in Pre-Caspian Basin[J]. Earth and Environmental Science, 2020, 467 (2020) 012020.

      Shroder J F, Eqrar N, Waizy H, et al. Review of the Geology of Afghanistan and its Water Resources[J]. International Geology Review, 2021.

      SIMONOV VA, SAKIEV KS, VOLKOVA NI, et al. Conditions of formation of the Atbashi Ridge eclogites (South Tien Shan) [J]. Russian Geology and Geophysics, 2008, 49: 803-815. doi: 10.1016/j.rgg.2008.04.001

      ST-ONGE MR, RAYNER N, PALIN RM, et al. Integrated pressure-temperature-time constraints for the Tso Morari dome (Northwest India): Implications for the burial and exhumation path of UHP units in the western Himalaya[J]. Journal of Metamorphic Geology, 2013, 31: 469-504. doi: 10.1111/jmg.12030

      STüBNER K, RATSCHBACHER L, WEISE C, et al. The giant Shakhdara migmatitic gneiss dome, Pamir, India-Asia collision zone: 2. Timing of dome formation[J]. Tectonics, 2013, 32: 1404-1431. doi: 10.1002/tect.20059

      TAGIRI M, YANO T, BAKIROV A, et al. Mineral parageneses and metamorphic P-T paths of ultrahigh-pressure eclogites from Kyrghyzstan Tien-Shan[J]. Island Arc, 1995, 4: 280-292. doi: 10.1111/j.1440-1738.1995.tb00150.x

      TAPPONNIER M, MATTAUER M, PROUST F, et al. Mesozoic ophiolites, sutures, and large-scale tectonic movements in Afghanistan[J]. Earth Planet Science Letter, 1981, 52: 355-371. doi: 10.1016/0012-821X(81)90189-8

      THANH NX, RAJESH VJ, ITAYA T, et al. A Cretaceous forearc ophiolite in the Shyok suture zone, Ladakh, NW India: implications for the tectonic evolution of the Northwest Himalaya[J]. Lithos, 2012, 155: 81-93. doi: 10.1016/j.lithos.2012.08.016

      TONG Yabo, YANG Zhenyu, ZHENG Liandi, et al. Internal crustal deformation in the northern part of Shan-Thai Block: New evidence from paleomagnetic results of Cretaceous and Paleogene red-beds[J]. Tectonophysics, 2013, 608: 1138-1158. doi: 10.1016/j.tecto.2013.06.031

      Villarreal D P, Robinson A C, Carrapa B, et al. Evidence for Late Triassic crustal suturing of the Central and Southern Pamir[J]. Journal of Asian Earth Sciences, 2020, X3.

      WAN Bo, WU Fuyuan, CHEN Ling, et al. Cyclical one-way continental rupture-drift in the Tethyan evolution: Subduction-driven plate tectonics[J]. Scence China (Earth Sciences), 2019, 62(12): 2005-2016. doi: 10.1007/s11430-019-9393-4

      Wang Rui, Zhu Dicheng, Wang Qing, et al. Porphyry mineralization in the Tethyan orogen[J]. Science China-Earth Sciences, 2020a, 63: 2029–2041.

      WANG Shifeng, TANG Wenkun, LIU Yiduo, et al. Rushan-Pshart Paleo-Tethyan suture deduced from geochronological, geochemical, and Sr–Nd–Hf isotopic characteristics of granitoids in Pamir[J]. Lithos, 2020, 364-365.

      Wang Shifeng, Fu Xiugen, Liu Yiduo, et al. Bitu ophiolite in eastern Tibet: The last piece of the jigsaw puzzle in the Paleotethyan regime along the eastern Cimmerian continental margin[J]. Lithos, 2021a, 406-407,106520.

      WANG Tao, HONG Dawei, JAHN BM, et al. Timing, petrogenesis, and setting of Paleozoic synorogenic intrusions from the Altai mountains, Northwest China: Implications for the tectonic evolution of an accretionary orogeny[J]. The Journal of Geology, 2006, 735-751.

      WANG Xiaojun, SONG Yong, BIAN Baoli, et al. Basement structure of the Junggar Basin[J]. Earth Science Frontiers, 2021b, 28(6): 235-255.

      WILKE FD, O’BRIEN PJ, SCHMIDT A, et al. Subduction, peak and multi-stage exhumation metamorphism: Traces from one coesite-bearing eclogite, Tso Morari, western Himalaya[J]. Lithos, 2015, 231: 77-91. doi: 10.1016/j.lithos.2015.06.007

      W WINDLEY BF. , KRöNER A, GUO Jinghui, et al. Neoproterzoic to Paleozoic geology of the Altai Orogen, NW China: new zircon age data and tectonic evolution[J]. Journal of Geology, 2002, 110: 719-737. doi: 10.1086/342866

      XIAO Wenjiao, WINDLEY BF, LIU Deyou, et al. Accretionary tectonics of the Western Kunlun Orogen, China: a Paleozoic-early Mesozoic, long-lived active continental margin with implications for the growth of southern Eurasia[J]. Journal of Geology, 2005, 113: 687-705. doi: 10.1086/449326

      XIAO Wenjiao, HAN Chunming, YUAN Chao, et al. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China: Implications for the tectonic evolution of central Asia[J]. Journal of Asian Earth Sciences, 2008, 32: 102-117. doi: 10.1016/j.jseaes.2007.10.008

      XIAO Wenjiao, WINDLEY BF, HUANG Baochun, et al. End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: Implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia[J]. International Journal of Earth Sciences, 2009, 98(6): 1189-1217. doi: 10.1007/s00531-008-0407-z

      XIAO Wenjiao, WINDLEY BF, ALLEN MB, et al. Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage[J]. Gondwana Research, 2013, 23: 1316-1341. doi: 10.1016/j.gr.2012.01.012

      XIAO Wenjiao, SANTOSH M. The western Central Asian Orogenic Belt: A window to accretionary orogenesis and continental growth[J]. Gondwana Research, 2014, 25, 1429-1444. doi: 10.1016/j.gr.2014.01.008

      XIAO Wenjiao, WINDLEY BF, SUN Shu, et al. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion[J]. Annual Review of Earth and Planetary Sciences, 2015, 43, 477-507. doi: 10.1146/annurev-earth-060614-105254

      XU Xin, SONG Shuguang, Allen MB, et al. An 850-820Ma LIP dismembered during breakup of the Rodinia supercontinent and destroyed by Early Paleozoic continental subduction in the northern Tibetan Plateau, NW China[J]. Precambrian Research, 2016, 282: 52-73. doi: 10.1016/j.precamres.2016.07.007

      YANG Gaoxue, LI Yongjun, Santosh M, et al. Geochronology and geochemistry of basalts from the Karamay ophiolitic mélange in West Junggar (NW China): Implications for Devonian-Carboniferous intra-oceanic accretionary tectonics of the southern Altaids[J]. GSA Bulletin, 2013, 125(4): 401-419.

      YANG Jingsui, Dobrzhinetskaya LF, BAI Wenji, et al. Diamond- and coesite-bearing chromitites from the Luobusa ophiolite, Tibet[J]. Geology, 2007, 35: 875-878.

      YANG Liqiang, DENG Jun, GAO Xue, et al. Timing of formation and origin of the Tongchanggou porphyry–skarn deposit: Implications for Late Cretaceous Mo–Cu metallogenesis in the southern Yidun Terrane, SE Tibetan Plateau[J]. Ore Geology Reviews, 2017, 81: 1015-1032. doi: 10.1016/j.oregeorev.2016.03.015

      ZENG Yunchuan, XU Jifeng, CHEN Jianlin, et al. Geochronological and geochemical constraints on the origin of the Yunzhug ophiolite in the Shiquanhe-Yunzhug-Namu Tso ophiolite belt, Lhasa Terrane, Tibetan Plateau[J]. Lithos, 2018, 300-301: 250-260. doi: 10.1016/j.lithos.2017.11.025

      ZHANG Lifei, ELLIS D, JIANG Wenbo. Ultrahigh-pressure metamorphism in western Tianshan, China: part I. Evidence from inclusions of coesite pseudomorphs in garnet and from quartz exsolution lamellae in omphacite in eclogites[J]. American Minerals, 2002, 87: 853-860. doi: 10.2138/am-2002-0707

      ZHANG Qichao, LIU Yan, WU Zhenzhen, et al. Late Triassic granites from the northwestern margin of the Tibetan Plateau, the Dahongliutan example: Petrogenesis and tectonic implications for the evolution of the Kangxiwa paleo-Tethys[J]. International Geology Review, 2019, 61(2): 175-194. doi: 10.1080/00206814.2017.1419444

      ZHANG Xiangfei, LI Wenchang, YANG Zhen, et al. Stable isotopes and Fluid Inclusions constraints on the Source and Evolution of Ore Fluids in the Xiuwacu W-Mo Granite-related Quartz-vein deposit, Yunnan Province, China[J]. Ore Geology Reviews, 2021, 136, 104245: doi. org/10.1016/ j. oregeorev. 104245. doi: 10.1016/j.oregeorev.2021.104245

      ZHANG Xiangfei, LI Wenchang, YANG Zhen, et al. Implications of aplite dykes for mineralization in the Late Cretaceous vein-type Xiuwacu W-Mo deposit in the southern Yidun Terrane, SE Tibetan Plateau[J]. Journal of Asian Earth Sciences, 2020, 204, 104555: doi. org/10.1016 /j. jseaes. 104555. doi: 10.1016/j.jseaes.2020.104555

      ZHENG Yongfei, MAO Jinwen, CHEN Yanjing, et al. Hydrothermal ore deposits in collisional orogens[J]. Science Bulletin, 2019, 64: 205-212. doi: 10.1016/j.scib.2019.01.007

      ZHU Dicheng, ZHAO Zhidan, NIU Yaoling, et al. Theorigin and pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research, 2013, 23: 1429-1454. doi: 10.1016/j.gr.2012.02.002

      ZHU Dicheng, ZHAO Zhidan, NIU Yaoling, et al. The Lhasa Terrane: record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011, 301: 241-55. doi: 10.1016/j.jpgl.2010.11.005

    • 期刊类型引用(5)

      1. 孟勇,张欣,陈奋宁,李佐臣,冯益民,祁尧刚,郑若蕾. 古亚洲洋构造域中西段新元古代晚期至晚泥盆世的构造运动. 地质学报. 2025(01): 58-77 . 百度学术
      2. 张永玲,张治国,刘希军,田昊,李得超,肖让,肖尧. 内蒙朝克山辉长岩中单斜辉石矿物化学特征及地质意义. 西北地质. 2024(01): 122-138 . 本站查看
      3. 李平,朱涛,吕鹏瑞,王洪亮,陈隽璐. 西天山早寒武世夏特辉长岩:南天山洋早期俯冲的岩浆记录. 西北地质. 2024(03): 44-58 . 本站查看
      4. 杨高学,刘晓宇,朱钊,李海,佟丽莉. 中亚造山带西准噶尔地区达尔布特蛇绿岩研究进展与展望. 西北地质. 2024(03): 1-10+301 . 本站查看
      5. 刘嘉情,钟世华,李三忠,丰成友,戴黎明,索艳慧,郭广慧,牛警徽,薛梓萌,黄宇. 基于机器学习和全岩成分识别东昆仑祁漫塔格斑岩–矽卡岩矿床成矿岩体和贫矿岩体. 西北地质. 2023(06): 41-56 . 本站查看

      其他类型引用(0)

    图(4)  /  表(2)
    计量
    • 文章访问数:  873
    • HTML全文浏览量:  264
    • PDF下载量:  311
    • 被引次数: 5
    出版历程
    • 收稿日期:  2023-03-04
    • 修回日期:  2023-04-10
    • 录用日期:  2023-04-10
    • 网络出版日期:  2023-04-22
    • 刊出日期:  2023-08-19

    目录

    /

    返回文章
    返回