ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    高级检索

    中国新疆–中亚大地构造单元划分及演化简述

    张向飞, 陈莉, 曹华文, 彭智敏, 陈奋宁, 洪俊, 任飞, 王启宇, 姜丽莉, 高慧, 潘桂棠, 李文昌

    张向飞, 陈莉, 曹华文, 等. 中国新疆–中亚大地构造单元划分及演化简述[J]. 西北地质, 2023, 56(4): 1-39. DOI: 10.12401/j.nwg.2023061
    引用本文: 张向飞, 陈莉, 曹华文, 等. 中国新疆–中亚大地构造单元划分及演化简述[J]. 西北地质, 2023, 56(4): 1-39. DOI: 10.12401/j.nwg.2023061
    ZHANG Xiangfei, CHEN Li, CAO Huawen, et al. Division of Tectonic Units and Their Evolutions within Xinjiang, China to Central Asia[J]. Northwestern Geology, 2023, 56(4): 1-39. DOI: 10.12401/j.nwg.2023061
    Citation: ZHANG Xiangfei, CHEN Li, CAO Huawen, et al. Division of Tectonic Units and Their Evolutions within Xinjiang, China to Central Asia[J]. Northwestern Geology, 2023, 56(4): 1-39. DOI: 10.12401/j.nwg.2023061

    中国新疆–中亚大地构造单元划分及演化简述

    基金项目: 国家自然科学基金–重点基金项目(92055314),国家重点研发计划项目课题(2021YFC2901803),国际地学科学计划项目(IGCP-741),四川省“天府万人计划”杰出科学家项目(川万人第 023号),云南省科学技术奖–杰出贡献奖项目( 2017001)和中国地质调查局项目(DD20221910、ZD20220408)联合资助
    详细信息
      作者简介:

      张向飞(1985–),男,正高级工程师,博士,从事基础地质与区域矿床学研究。E–mail:zhangfei1895@163.com

      通讯作者:

      潘桂棠(1941–),男,研究员,长期从事区域地质和大地构造研究。E–mail:13808091563@163.com

      李文昌(1962–),男,正高级工程师,长期从事找矿勘探和矿床地质研究。E–mail:lwcyndd@163.com

    • 中图分类号: P544;P541

    Division of Tectonic Units and Their Evolutions within Xinjiang, China to Central Asia

    • 摘要:

      中国新疆–中亚地处特提斯构造域和古亚洲构造域交汇部位,跨全球最重要三大构造(成矿)域中的2个,对认识全球构造演化和资源环境效应具有重要意义,前人对该区域开展了大量研究,提出了不同的大地构造单元和成矿区(带)划分方案,然而不同学派之间存在诸多争议。笔者结合“多岛弧盆系”构造理论,遵循将今论古的比较构造地质学研究原则,以大地构造相的时空结构分析为主线,以对接带、造山系和陆块区3类一级大地构造单元,依据优势大地构造相将研究区划分为12个一级构造单元、32个二级构造单元和74个三级构造单元,并针对二级构造单元的构造环境和岩石建造组合进行描述、总结,以建立研究区总体构造格架和演化历史。在此基础上,依据两大构造域时空演化特征,追溯古亚洲洋和特提斯构造域的构造演化历史。通过对研究区构造单元划分和构造演化的重新厘定,以期为区域基础地质研究和资源能源勘查提供基础依据。

      Abstract:

      The region of Xinjiang (China) to central Asia, located at the intersection of Tethys and ancient Asia tectonic domains, spans two of the three most important tectonic (metallogenic) domains in the world. Therefore, it is of great significance to understand the global tectonic evolution and the effects of resources–environment. Previous researchers have carried out a lot of researches on this region, and proposed different geotectonic units and metallogenic regions (belts) division schemes. However, there are many disputes between different research teams. Based on the structural theory of "multi–island–arc–basin–terrain (MABT)" system by our research team, following the research principle of comparative structural geology, i.e., the present is the key to reveal the past, and taking spatial and temporal structure analysis of tectonic faces and environment as the main approach in which the suture zone, orogenic system and continental block are treated as three first–rank tectonic units. Accordingly, 12 first–rank tectonic units, 32 second–rank tectonic units and 74 third–rank tectonic units are divided following the dominant tectonic faces in the research region of this paper. Moreover, tectonic environment and rock formation combination of the second–rank tectonic units are focused on to establish the overall tectonic framework and evolution history of this region. Based on these, according to their temporal–spatial evolution characteristics, the tectonic evolution histories are reconstructed for Ancient Asian Ocean and Tethys Ocean, respectively. Through the division of tectonic units and the redefinition of tectonic framework, it is expected to provide scientific basis for regional basic geological research and resource–energy exploration practice in this domain.

    • 萤石,其主要成分是氟化钙(CaF2),是重要的基础性、战略性非金属矿产资源。高端含氟材料在新能源、新材料、新一代信息技术和航空航天等领域的重要性日益凸显,中国、美国、日本、欧盟等国家都将其列为“战略性矿产”或“关键矿产”(陈军元等,2021)。萤石矿在中国属于优势矿产资源,大中型萤石矿床集中于东部沿海、华中和内蒙古中东部(王吉平等,2015)。通过近年地质工作,在中国西部新疆若羌县阿尔金地区卡尔恰尔一带萤石找矿取得重大新发现,已发现卡尔恰尔、小白河沟、库木塔什、拉依旦北、盖吉克、皮亚孜达坂等多处(超)大–中型萤石矿床,改变了中国萤石矿的分布格局,已初步形成西部最重要的萤石矿产资源基地。近年来,阿尔金高压–超高压变质带、蛇绿构造混杂岩带和岩浆岩等基础地质研究方面取得了重要进展,但与萤石矿有关的研究才刚刚起步,主要对地质特征、控矿因素、花岗岩年龄与元素地球化学特征及流体包裹体等方面做了一定研究(高永宝等,2021吴益平等,20212022),总体研究程度较低。目前,卡尔恰尔超大型萤石矿区花岗岩成岩时代还未见报道,成矿流体与物质来源的研究还很薄弱,制约了矿床成因的研究和下一步找矿勘查。

      稀土元素的地球化学性质具有一定特殊性,如化学性质稳定,高度均一化,不易受变质作用影响等,是示踪成矿流体来源和反演热液成矿作用过程的有效手段之一(Lottermoser,1992)。萤石是富稀土矿物,萤石中的Ca2+与稀土离子半径相似,可容纳大量稀土元素,且继承了成矿热液流体中的稀土元素配分型式(Moller,1983Bau et al.,19921995Smith et al.,2000许成等,2001赵省民等,2002许东青等,2009孙海瑞等,2014Sasmaz et al.,2018),在示踪成矿流体来源与演化及矿床成因机理等方面已得到广泛应用(叶锡芳等,2014邹灏等,20142016彭强等,2021许若潮等,2022游超等,2022张苏坤等,2022)。笔者选择阿尔金卡尔恰尔超大型萤石矿带中的卡尔恰尔、小白河沟、库木塔什3处典型萤石矿床为研究对象,简要总结其成矿特征,利用LA–ICP–MS锆石U–Pb测年确定卡尔恰尔矿区碱长花岗岩与片麻状钾长花岗岩的形成时代,通过萤石、方解石的稀土元素地球化学及萤石Sr–Nd同位素等研究,探讨成矿流体特征与成矿物质来源,为区域矿床成因研究和指导找矿提供理论依据。

      研究区位于青藏高原北部边缘,地处柴达木地块与塔里木地块接合部位,大地构造位置主要处于阿尔金造山带(图1a图1b)。区域出露地层以元古界为主,新太古界至新元古界遭受程度不一的变形变质作用改造,以中深变质岩为主(图1c)。新太古界—古元古界阿尔金岩群出露广泛,总体上呈北东向展布,该岩组岩石类型复杂,主要为一套由变质碎屑岩、碳酸盐岩和变质火山碎屑岩组成的变质岩系,主要岩性为黑云斜长片麻岩、斜长或二长变粒岩、石榴矽线黑云片麻岩、二长石英片岩夹石英岩、白云质大理岩、斜长角闪岩透镜体等。中元古界巴什库尔干岩群为一套云母石英片岩、片麻岩、变粒岩、长石石英岩夹变质中基性火山岩、火山碎屑岩的变质岩系。中元古界蓟县纪塔昔达坂岩群可分为下部碎屑岩(木孜萨依组)和上部碳酸盐岩(金雁山组)。新元古界索尔库里群为一套轻变质的碳酸盐岩、碎屑岩夹少量火山碎屑岩地层序列。另外,阿尔金西南缘发育由陆壳深俯冲形成的高压-超高压变质带,岩石的原岩形成时代多为1 000~800 Ma,与区域广泛分布的新元古代花岗片麻岩形成时代基本相同,均与Rodinia超大陆事件引发的全球性岩浆活动相关,而变质时代集中在504~486 Ma之间,代表在~500 Ma发生陆壳深俯冲–碰撞事件(Zhang et al.,2001刘良等,2007张建新等,2010Liu et a1.,2012)。

      图  1  阿尔金造山带卡尔恰尔一带地质矿产图
      Figure  1.  Geological and mineral map of the Kalqiaer area in Altyn Tagh

      区域构造活动频繁,经历了前寒武纪多期变形变质作用的强烈改造和构造置换,以及显生宙以来多期韧性、脆性构造的相互叠加,构造形迹十分复杂。区内构造主要为断裂,褶皱因受到岩浆侵位及断裂构造的破坏,形态极不完整。区域性大断裂由北至南有卡尔恰尔–阔什断裂、盖吉勒断裂、约马克其–库兰勒格断裂、阿尔金南缘断裂(图1c)。围绕区域深大断裂广泛分布次级断裂,主要以北东–近东西向为主。卡尔恰尔–阔什断裂呈北东东向,东西向延伸大于70 km,呈明显带状,是一个长期活动的断裂,该断裂不仅是早期地质构造单元(阿尔金杂岩和中新元古界隆起带)之间的分界线,还对早古生代中酸性侵入岩体的分布有控制作用,卡尔恰尔超大型萤石矿、小白河沟萤石矿即与该断裂及其派生的众多次级断裂关系密切。盖吉勒断裂呈北东向,为一南倾的逆断层,与库木塔什、拉依旦北等萤石矿床的形成密切相关。约马克其–库兰勒格断裂总体为北东东向,出露长约为10 km,在研究区与布拉克北、皮亚孜达坂等萤石矿床的形成关系密切。阿尔金南缘断裂呈北东东向横贯阿尔金南部,长度大于几千公里,构成阿中地块与阿南缘蛇绿混杂岩带的边界(校培喜等,2014)。

      区域经历了多期次岩浆活动,新元古代、早古生代、中生代等均有规模不等的中酸性岩浆侵入,多沿阿尔金山呈北东向带状展布,岩石类型复杂,充分反映了造山带花岗岩类型丰富的特点(图1c)。新元古代侵入岩以花岗质片麻岩、花岗闪长质片麻岩为主,主要出露于研究区东部。早古生代侵入岩分布最为广泛,主要岩性有碱长花岗岩、二长花岗岩、黑云母花岗岩、花岗闪长岩等。区域脉岩极为发育,脉岩类型以碱长花岗岩脉、花岗伟晶岩脉为主,呈北东–北东东走向。其中碱长花岗岩脉主要分布于卡尔恰尔深大断裂南侧,在阿尔金岩群和新元古代花岗质片麻岩中尤为发育,受断裂控制明显,出露宽度普遍较窄,该脉岩与萤石矿关系密切(图1c)。花岗伟晶岩脉主要分布于卡尔恰尔深大断裂北侧,主要就位于阿尔金岩群和新元古代花岗质片麻岩中,脉体中矿物以长石和石英为主,个别含矿伟晶岩脉发育有锂辉石、绿柱石、锂云母、铌钽铁矿等稀有金属矿物。

      卡尔恰尔超大型萤石矿区出露地层主要为古元古界阿尔金岩群(Pt1A),为一套角闪岩相的中深变质岩系,萤石矿化主要分布于黑云母斜长片麻岩中,矿脉延伸方向与岩层走向基本一致。矿床位于卡尔恰尔–阔什断裂南侧,该区域深大断裂派生的次一级断裂系统对萤石矿产分布有明显的控制作用,断裂呈北东–近东西向展布,沿构造裂隙大量充填萤石–方解石脉,构成区内重要的赋矿构造。矿区岩浆岩类型主要为碱长花岗岩、片麻状钾长花岗岩,岩体与围岩地层接触界限明显(图2a图2i)。萤石矿化在空间上与碱长花岗岩关系密切,与围岩地层接触关系较明显(图2a图2c)。矿区圈出31条萤石矿体,由众多萤石-方解石细脉构成,多为复脉型矿脉,北东–近东西向带状展布,长度为1710~4580 m,平均厚度为2.36~4.68 m,最大厚度为23.5 m,矿体延伸稳定,连续性好,钻探验证矿脉有收敛增厚趋势,沿倾向控制最大斜深907 m。矿石中矿物成分较为简单,主要是萤石、方解石,少量石英(图2d图2h),萤石呈2阶段成矿,早阶段萤石呈白色、淡绿色,晚阶段萤石呈紫色、紫黑色,可见紫色萤石矿脉穿插白色萤石矿脉,或紫色萤石矿脉发育于白色萤石矿脉边部(图2a图2c)。矿石呈巨晶–粗晶结构、自形–半自形–他形粒状结构、碎裂结构、糜棱结构,矿石自然类型主要有脉状、条带状、角砾状矿石(图2d图2f)。围岩蚀变主要为碳酸盐化、钾化、硅化、高岭土化、绢云母化、绿帘石化等。矿床成因类型属于热液充填型,矿石工业类型主要是CaF2–CaCO3型,CaF2平均品位为33.9%,探明+控制+推断萤石矿石量为6 631万t,矿物量(CaF2)为2 249万t,达超大型规模。

      图  2  卡尔恰尔超大型萤石矿床矿化特征
      a~c.萤石矿化与碱长花岗岩关系密切,与围岩界线较清晰,紫色萤石矿脉穿插或发育于白色萤石矿脉边部;d~e.脉状萤石矿化;f.角砾状萤石矿化;g~h.钻孔中萤石矿化;i.片麻状钾长花岗岩侵入于阿尔金岩群黑云斜长片麻岩中;Cal.方解石;Fl.萤石
      Figure  2.  Photos of mineralization features of Kalqiaer super–large fluorite deposit

      库木塔什萤石矿区出露地层为古元古界阿尔金岩群,岩性主要是黑云斜长片麻岩,其次为大理岩。矿区断裂主要呈北北东向、北东向、近东西向,多为平移断层,并发育韧性–脆性剪切带,北东向及近东西向断裂控制着区内岩脉的发育和展布。矿区内出露的侵入岩主要有碱长花岗岩、片麻状钾长花岗岩,碱长花岗岩脉与萤石矿脉关系十分密切(图3a图3b),脉岩和矿脉均受断裂控制明显。矿区共圈出14条萤石矿化体,多呈北东向,倾向北北西,倾角为40°~70°,地表出露长为50~980 m,宽为0.3~3.6 m。矿石自然类型主要有脉状、角砾状(图3c图3i),矿石中矿物成分较为简单,主要是萤石、方解石,另发育较多磷灰石,包括绿色柱状氟磷灰石和草黄色粒状铈磷灰石(图3e)。矿石具粗晶结构、自形–半自形–他形粒状结构、碎裂结构。矿石工业类型主要为CaF2–CaCO3型,CaF2平均品位为25%。围岩蚀变较为发育,主要为碳酸盐化、钾化、绢云母化、高岭土化等。矿床成因属热液充填型。

      图  3  库木塔什萤石矿床矿化特征
      a~b. 萤石矿化与碱长花岗岩关系密切;c~f. 脉状萤石矿化及其矿物组成;g~i. 角砾状萤石矿化及其矿物组成;Cal. 方解石;Fl. 萤石;Ap. 磷灰石
      Figure  3.  Photos of mineralization features of Kumutashi fluorite deposit

      小白河沟萤石矿区出露地层为古元古界阿尔金岩群,萤石矿化赋存在黑云斜长片麻岩中。矿区出露的侵入岩主要为碱长花岗岩,其与萤石矿脉关系密切(图4a图4b)。矿区构造以近东西向为主。矿区圈定两条萤石矿化带,南侧矿化带长约为2.5 km,宽约为0.4 km,走向北东东;北侧矿化带宽约0.4为 km,长约为1.7 km,走向近东西。萤石矿体走向近东西,倾向北,倾角为30°~40°,该矿床特点是发育高品位矿石,CaF2品位大于50%,局部可达90%以上。矿石类型主要为块状矿石、纹层状矿石(图4c图4f),矿石中矿物主要为萤石,局部发育方解石和少量石英;萤石呈白色、绿色、紫色、紫黑色等。矿石具粗晶结构、自形–半自形–他形粒状结构。矿石工业类型主要是CaF2型、CaF2–CaCO3型。围岩蚀变主要为碳酸盐化、钾化、绢云母化、高岭土化等。

      图  4  小白河沟萤石矿床矿化特征
      a~b.萤石矿化与碱长花岗岩关系密切;c.纹层状萤石矿石;d~f.块状萤石矿石
      Figure  4.  Photos of mineralization features of Xiaobaihegou fluorite deposit

      用于锆石U–Pb年龄测试的样品经人工破碎后分选出锆石单矿物,制靶后进行阴极发光及透反射照相,根据图像选测试点位并进行合理数据解释。锆石U–Pb测年在自然资源部岩浆作用成矿与找矿重点实验室进行。激光剥蚀系统为GeoLas Pro,ICP–MS为Agilent 7700x,每时间分析数据包括大约40 s的样品信号和10 s的空白信号,激光剥蚀采用氦气作载气、氩气为补偿气以调节灵敏度。数据分析采用软件Glitter 4.4(Van Achterbergh et al.,2001)完成,详细测试过程和仪器参数可参考李艳广等(2015)。锆石U–Pb年龄谐和图采用Isoplot/Ex_ver 3(Ludwig,2003)软件绘制。

      包含萤石、方解石矿物的矿石样品经过人工破碎后在双目镜下挑纯,挑纯出的小颗粒放入玛瑙研钵中,充分研磨至200目以下呈粉末状用于稀土元素实验测试分析。测试实验在自然资源部岩浆作用成矿与找矿重点实验室完成,萤石、方解石的稀土元素分析测试采用ICP–MS电感耦合等离子体质谱法,检测下限n×10–13n×10–12,检测误差小于10%。

      Rb–Sr、Sm–Nd同位素组成测试在自然资源部中南矿产资源监督检测中心完成。采用热电离质谱仪TRITON分析Rb、Sr、Sm、Nd同位素组成,同位素稀释法计算Rb、Sr、Sm、Nd含量及Sr同位素比值。Nd、Sr同位素比值分析中质量分馏分别采用146Nd/144Nd=0.7219,88Sr/86Sr=8.37521进行幂定律校正。整个分析过程用GBW04411、GBW04419、BCR-2和NBS987、GSW标准物质分别对全流程和仪器进行质量监控。NBS987的87Sr/86Sr测定值为0.71028±1,GBW04411测定值分别为Rb=249.8×10−6、Sr=159.3×10−687Sr/86Sr=0.76005±2,与其推荐值在误差范围内一致。全流程Nd、Sm、Sr、Rb空白分别小于9×10−10 g、3×10−10 g、3×10−9 g和4×10−10 g。

      卡尔恰尔矿区与成矿相关的碱长花岗岩样品中锆石以自形粒状为主,粒径多为50~150 μm,阴极发光图像揭示大部分锆石具有清晰的岩浆韵律环带(图5a)。锆石U含量为233×10−6~1 095×10−6,Th含量为100×10−6~462×10−6,Th/U值为0.2~0.62,平均为0.45,显示出岩浆锆石的特点(表1)(Hoskin et al.,2000)。22个分析点投影于谐和线上及附近,206Pb/238U加权平均年龄为(455.8±2)Ma,代表了岩浆结晶年龄,表明其形成于中—晚奥陶世(图5b)。

      图  5  卡尔恰尔萤石矿区碱长花岗岩的锆石CL图(a)和U–Pb年龄图(b)
      Figure  5.  (a) Zircon CL images and (b) U–Pb diagram of alkali feldspar granite from the Kalqiaer fluorite deposit
      表  1  卡尔恰尔萤石矿区碱长花岗岩的锆石LA–ICP–MS U–Pb分析结果表
      Table  1.  LA–ICP–MS zircon U–Pb isotopic data of alkali feldspar granite in Kaerqiaer fluorite deposit
      测试点ThUTh/U207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb207Pb/235U206Pb/238U
      (×10-6比值比值比值MaMaMa
      KJ011003430.290.05640.00210.57340.02100.07370.0009469.082.6460.213.5457.55.1
      KJ021372710.510.05690.00230.57600.02210.07340.0009487.386.2461.914.3456.95.3
      KJ032234570.490.05530.00140.55800.01360.07330.0007422.155.8450.28.9456.04.2
      KJ041052330.450.05670.00200.57210.01890.07320.0008479.075.0459.412.2455.64.9
      KJ0536410950.330.05880.00130.58960.01220.07270.0007561.047.4470.67.8452.54.0
      KJ061513330.450.05410.00190.55150.01840.07390.0008376.376.1446.012.1455.84.9
      KJ071372820.490.05920.00240.59750.02290.07330.0009572.984.2475.614.6456.05.3
      KJ082063690.560.05470.00210.55130.02050.07310.0009400.183.6445.813.4455.05.1
      KJ091432560.560.05520.00250.56390.02460.07410.0010420.097.5454.016.0451.05.7
      KJ101524300.350.05510.00190.56460.01820.07440.0008416.572.8454.511.8452.34.9
      KJ111272770.460.05740.00190.57960.01840.07320.0008508.171.3464.211.8455.64.8
      KJ121493250.460.05690.00200.57740.01920.07360.0008488.175.2462.812.4457.94.9
      KJ131643980.410.05690.00160.57710.01580.07360.0008487.162.6462.610.2457.84.5
      KJ141993700.540.05590.00160.56740.01580.07360.0008449.163.3456.310.2458.04.5
      KJ152586780.380.05500.00150.55500.01440.07320.0007412.158.9448.39.4455.64.4
      KJ161015090.200.05770.00160.58780.01510.07390.0007519.058.1469.49.6456.64.4
      KJ171684880.340.05700.00160.57990.01510.07390.0007489.059.9464.49.7453.64.5
      KJ182334320.540.05610.00160.56970.01560.07370.0008455.662.3457.810.1455.54.5
      KJ194627970.580.05650.00140.57290.01360.07360.0007470.254.9459.98.8458.04.3
      KJ202934720.620.05700.00170.57670.01600.07350.0008488.863.4462.310.3457.24.6
      KJ211704950.340.05530.00160.56300.01550.07380.0008425.962.3453.410.0454.24.5
      KJ221884150.450.05750.00170.58460.01640.07380.0008510.863.5467.410.5457.94.6
      下载: 导出CSV 
      | 显示表格

      卡尔恰尔矿区片麻状钾长花岗岩样品中锆石以自形粒状为主,颗粒较大,粒径多为60~200 μm,阴极发光图像揭示大部分锆石具有清晰的岩浆韵律环带(图6a)。片麻状钾长花岗岩中锆石的U含量为90×10−6~765×10−6,Th含量为24×10−6~270×10−6,Th/U值为0.33~1.76,平均为0.27,显示出岩浆锆石的特点(表2)。16个分析点投影于谐和线上及附近,206Pb/238U加权平均年龄为(914.5±4.1)Ma,代表了岩浆结晶年龄,表明其形成于新元古代早期(图6b)。

      图  6  卡尔恰尔萤石矿区片麻状钾长花岗岩的锆石CL图(a)和U−Pb年龄图(b)
      Figure  6.  (a) Zircon CL images and (b) U–Pb diagram of gneissic feldspar granite from the Kalqiaer fluorite deposit
      表  2  卡尔恰尔萤石矿区片麻状钾长花岗岩的锆石LA–ICP–MS U–Pb分析结果表
      Table  2.  LA–ICP–MS zircon U–Pb isotopic data of gneissic feldspar granite in Kaerqiaer fluorite deposit
      测试点ThUTh/U207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb207Pb/235U206Pb/238U
      (×10-6比值比值比值MaMaMa
      KC011584400.360.06850.00171.30240.02980.13800.0014883.449.1846.813.1853.57.8
      KC02243050.080.07050.00171.52060.03480.15660.0016941.948.7938.714.0938.08.8
      KC031004070.250.06890.00151.48170.03050.15610.0015895.444.4922.912.5935.28.4
      KC042294430.520.06980.00141.47710.02690.15380.0015920.939.3921.011.0922.08.1
      KC051404010.350.06850.00141.43640.02800.15230.0015882.942.1904.211.7913.88.2
      KC06642600.250.06860.00161.47250.03350.15590.0016886.648.6919.213.8933.78.8
      KC07972910.330.07370.00161.62550.03400.16010.00161033.744.1980.113.1957.18.8
      KC0828900.320.07600.00302.02980.07600.19390.00261094.575.81125.625.51142.614.1
      KC091374350.310.07050.00141.47880.02790.15220.0014943.440.7921.711.4913.58.1
      KC10274850.050.06980.00141.42770.02690.14850.0014922.440.7900.611.3892.57.9
      KC11793600.220.07000.00161.48200.03130.15360.0015929.045.2923.012.8921.38.5
      KC121757650.230.06860.00131.38800.02480.14690.0014886.939.0883.810.5883.37.7
      KC132706770.400.07030.00131.49730.02500.15460.0014938.136.4929.310.2926.48.0
      KC14842970.280.06940.00161.49650.03360.15660.0016909.947.9928.913.7937.88.8
      KC151034890.210.07100.00141.43750.02590.14690.0014958.638.9904.710.8883.57.8
      KC161352120.640.11060.00194.74300.07520.31140.00301808.631.01774.913.31747.614.7
      KC171037470.140.07100.00121.53220.02470.15660.0014958.035.1943.49.9938.08.0
      KC18513670.140.08770.00162.48950.04150.20610.00201375.534.01269.012.11208.210.5
      KC19804680.170.06880.00141.42770.02650.15060.0014893.240.2900.611.1904.58.0
      KC201025330.190.07010.00131.49330.02580.15460.0014932.537.4927.710.5926.58.1
      下载: 导出CSV 
      | 显示表格

      卡尔恰尔矿床萤石的ΣREE值为39.4×10−6~57.19×10−6,LREE/HREE值为3.20~3.91,(La/Yb)N值为2.97~4.41,δEu值为0.39~0.42。小白河沟矿床萤石ΣREE值为44.73×10−6~65.79×10−6,LREE/HREE值为2.99~3.61,(La/Yb)N值为2.57~3.59,δEu值为0.38~0.44。库木塔什矿床萤石ΣREE值为41.5×10−6~81.01×10−6,LREE/HREE值为6.5~8.53,(La/Yb)N值为11.6~13.55,δEu值为0.46~0.55(表3)。

      表  3  卡尔恰尔(KE)、小白河沟(XB)、库木塔什(KM)矿床的萤石、方解石稀土元素组成表( 10−6
      Table  3.  Rare earth element data of fluorites and calcites from the Kaerqiaer, Xiaobaihegou and Kumutashi deposit
      矿物样号LaCePrNdSmEuGdTbDyHoErTmYbLuYΣREELREEHREELREE/HREE(La/Yb)NδEuδCe

      KE-16.0412.91.858.612.280.322.400.392.320.461.210.191.110.1631.540.2432.008.243.883.900.420.94
      KE-26.4012.21.868.312.290.322.340.382.280.461.180.181.040.1632.039.4031.388.023.914.410.420.86
      KE-38.6418.02.7211.93.180.463.630.583.380.701.850.271.650.2347.657.1944.9012.293.653.760.410.90
      KE-45.7612.91.929.402.780.372.960.512.890.581.580.231.390.2147.343.4833.1310.353.202.970.390.95
      XB-16.4014.12.129.382.620.402.880.472.710.551.440.201.280.1838.344.7335.029.713.613.590.440.93
      XB-27.8118.82.9815.04.260.574.800.784.560.932.420.362.200.3268.665.7949.4216.373.022.550.380.96
      XB-36.6314.72.3911.53.570.453.660.613.630.782.020.301.850.2659.552.3539.2413.112.992.570.380.90
      KM-116.532.74.2111.72.890.512.710.442.370.461.190.161.020.1531.181.0172.518.508.5311.60.550.94
      KM-210.215.41.806.671.640.261.800.301.640.300.780.100.540.0731.541.5035.975.536.5013.550.460.81


      KE-169.916518.466.611.81.418.891.488.021.614.750.855.440.8740.5365.02333.1131.9110.449.220.401.10
      KE-277.718020.774.613.71.6210.31.778.531.785.130.855.760.9846.6403.42368.3235.1010.499.680.401.08
      KE-383.521325.196.818.12.1513.92.5213.52.677.741.348.641.4473.7490.40438.6551.758.486.930.401.13
      XB-110324528.598.818.52.2615.82.6013.22.808.311.489.741.5870.5551.57496.0655.518.947.590.391.09
      XB-215837843.314426.52.9420.03.4117.23.479.911.7211.51.9591.7821.90752.7469.1610.889.860.371.10
      XB-380.120222.883.315.41.8212.32.2110.82.266.971.268.421.3964.4451.03405.4245.618.896.820.391.14
      KM-168.516218.366.813.01.469.771.629.121.735.070.855.700.9245.8364.84330.0634.789.498.620.381.10
      KM-274.716018.964.312.61.288.871.597.701.514.210.724.720.7237.2361.82331.7830.0411.0411.350.351.02
      KM-369.515817.862.212.01.339.011.658.761.704.830.835.660.9443.0354.21320.8333.389.618.810.381.07
      KM-475.116319.965.212.41.319.171.567.651.544.290.744.880.7640.8367.50336.9130.5911.0111.040.361.01
      下载: 导出CSV 
      | 显示表格

      卡尔恰尔矿床方解石ΣREE值为365×10−6~490×10−6,LREE/HREE值为8.48~10.49,(La/Yb)N值为6.93~9.68,δEu值为0.4。小白河沟矿床方解石ΣREE值为451×10−6~822×10−6,LREE/HREE值为8.89~10.88,(La/Yb)N值为7.59~9.86,δEu值为0.37~0.39。库木塔什矿床方解石ΣREE值为354×10−6~368×10−6,LREE/HREE值为9.49~11.04,(La/Yb)N值为8.62~11.35,δEu值为0.35~0.38(表3)。

      卡尔恰尔矿区6件萤石的Rb含量为0.03×10−6~0.06×10−6,Sr含量为340×10−6~343×10−6,Sm含量为1.77×10−6~1.83×10−6, Nd含量为6.40×10−6~6.82×10−6 87Rb/86Sr值为0.00029~0.00046,87Sr/86Sr值为0.71005~0.71009,147Sm/144Nd值为0.1626~0.1682,143Nd/144Nd值为0.511917~0.512040(表4)。

      表  4  卡尔恰尔(KE)、小白河沟(XB)、库木塔什(KM)矿床的萤石Sr−Nd同位素组成表
      Table  4.  Sr−Nd isotopic composition of fluorites from Kaerqiaer, Xiaobaihegou and Kumutashi deposit
      样号Rb/10-6Sr/10-687Rb/86Sr87Sr/86SrSm/10-6Nd/10-6147Sm/144Nd143Nd/144Nd
      KE-10.053430.000390.710051.776.550.16330.511987
      KE-20.033400.000290.710051.836.820.16260.511917
      KE-30.043420.000360.710071.796.480.16720.511932
      KE-40.053420.000410.710081.836.710.16550.511975
      KE-50.063420.000460.710091.786.400.16820.512040
      KE-60.053430.000460.710041.806.490.16780.512036
      XB-10.262640.002870.710252.629.360.16960.511930
      XB-20.132930.001310.710152.609.450.16640.511919
      XB-30.183680.001450.710253.2611.880.16590.512039
      XB-40.163990.001180.710232.9810.680.16880.512062
      XB-50.213750.001610.710363.9414.150.16840.512061
      KM-11.301990.018780.709501.323.900.20440.512071
      KM-20.022610.000250.709521.293.880.20020.512061
      KM-30.022080.000290.709551.323.940.20240.512044
      下载: 导出CSV 
      | 显示表格

      小白河沟矿区5件萤石的Rb含量为0.13×10−6~0.26×10−6,Sr含量为264×10−6~399×10−6,Sm含量为2.60×10−6~3.94×10−6,Nd含量为9.36×10−6~14.15×10−687Rb/86Sr值为0.00118~0.00287,87Sr/86Sr值为0.71015~0.71036,147Sm/144Nd值为0.1659~0.1696 ,143Nd/144Nd值为0.511919~0.512062(表4)。

      库木塔什矿区3件萤石的Rb含量为0.02×10−6~1.3×10−6,Sr含量为199×10−6~261×10−6,Sm含量为1.29×10−6~1.32×10−6,Nd含量为3.88×10−6~3.94×10−6 87Rb/86Sr值为0.00025~0.01878,87Sr/86Sr值为0.70950~0.70955,147Sm/144Nd值为0.2002~0.2044,143Nd/144Nd值为0.512044~0.512071(表4)。

      本次研究工作对卡尔恰尔超大型萤石矿区碱长花岗岩进行LA−ICP−MS锆石U−Pb定年,获得成岩年龄为(455.8±2)Ma,表明其形成于中—晚奥陶世。一般岩浆热液型萤石矿的成矿时代稍晚于成矿岩体形成时代,卡尔恰尔一带各萤石矿区均见发育有肉红色碱长花岗岩脉体,萤石矿化主要赋存于岩体内外接触带附近,常见萤石−方解石细脉穿插于碱长花岗岩脉体中,碱长花岗岩因强烈热液活动而发育碳酸盐化、萤石化、硅化、绢云母化等矿化蚀变。同时库木塔什萤石矿的研究显示,该矿区碱长花岗岩体属高氟岩体[w(F)>0.1%],成岩年龄为(450±2.7)Ma(高永宝等,2021),与萤石共生的磷灰石LA−ICP−MS U−Pb年龄为(448±27)Ma(待见刊),均表明该区碱长花岗岩与萤石成矿具有密切的时空、成因关系。

      区域上,阿尔金西南缘发育大规模早古生代岩浆岩,均为阿中地块与柴达木地块之间洋-陆转换过程中岩浆活动的产物(曹玉亭等,2010孙吉明等,2012杨文强等,2012郭金城等,2014徐旭明等,2014董洪凯等,2014康磊等,2016过磊等,2019)。区域超高压变质岩研究表明,峰期变质时代集中于504~486 Ma,退变质作用时代为~450 Ma(Zhang et al.,2001刘良等,2007Liu et al.,2012)。卡尔恰尔周边邻近的花岗岩研究显示,帕夏拉依档沟一带二长花岗岩锆石U–Pb年龄为(460±4 )Ma、正长花岗岩锆石U−Pb年龄为(455±3.6)Ma,形成于挤压体制向拉张体制转换的构造环境(张若愚等,20162018),清水泉一带花岗质岩石锆石U−Pb年龄为(451±4)Ma,形成于伸展构造背景(王立社等,2016),而镁铁−超镁铁质侵入体(465 Ma)暗示此时碰撞造山已转入伸展阶段(马中平等,2011)。上述研究均表明,中—晚奥陶世阿中地块和柴达木地块由挤压造山转变成伸展构造背景,卡尔恰尔超大型萤石矿带正是该时期岩浆活动的产物。另外,区域上发育大规模形成于早—中奥陶世碰撞造山阶段的伟晶岩脉群,如吐格曼锂铍稀有金属矿床的成矿黑云母二长花岗岩锆石U−Pb年龄为475~482 Ma,含矿伟晶岩脉中铌钽铁矿U−Pb年龄为(472±8)Ma、锡石U−Pb年龄为(468±8.7)Ma(徐兴旺等,2019李杭等,2020Gao et al.,2021)。综上,早古生代加里东期是区域萤石矿、锂铍稀有金属矿的重要成矿期,萤石成矿稍晚于锂铍稀有金属矿。

      卡尔恰尔超大型萤石矿区片麻状钾长花岗岩获得LA−ICP−MS锆石U−Pb年龄为(914.5±4.1)Ma,表明其形成于新元古代早期。区域上,阿尔金西南缘已发现多处新元古代花岗(片麻)岩,可能与~900 Ma Rodinia超大陆事件引发的全球性岩浆活动相关,在空间分布上自西向东有江尕勒萨依、库如克萨依、清水泉、肖鲁布拉克、亚干布阳等地区花岗(片麻)岩呈带状分布,构成了一条与Rodinia超大陆汇聚相关的花岗岩带,正是这次构造事件使阿中地块和柴达木地块固结,该类同碰撞型花岗质片麻岩年龄大多为870~945 Ma(王超等,2006校培喜等,2014朱小辉等,2014王立社等,2015李琦等,2018马拓等,2018PAK Sang Wan,2019曾忠诚,2020),卡尔恰尔萤石矿区的片麻状钾长花岗岩即为Rodinia 超大陆汇聚引发的岩浆活动的产物。

      卡尔恰尔、小白河沟、库木塔什矿床萤石、方解石稀土元素特征表明,萤石、方解石的稀土元素配分曲线特征与碱长花岗岩、地层变质杂岩(黑云斜长片麻岩)较相似,均表现为右倾的LREE富集型,具有明显的负Eu异常特征(图7),表明萤石、方解石的稀土可能继承了岩体、地层的稀土配分模式。相比较,库木塔什矿区的萤石矿物具有更高的轻重稀土分馏程度。研究表明,萤石形成过程中REE含量的分布与结晶作用所处阶段有关,一般结晶早阶段的萤石富集 LREE,而结晶晚阶段萤石富集HREE(Moller et al.,1983Schonenberger et al.,2008),卡尔恰尔、小白河沟、库木塔什矿床中萤石均表现为明显的LREE富集型,可知其均形成于结晶作用的早阶段。

      图  7  卡尔恰尔一带萤石矿床的稀土元素配分模式图
      碱长花岗岩与黑云母斜长片麻岩数据引自高永宝等(2021)吴益平等(2021)
      Figure  7.  Normalized REE patterns of fluorite deposits from the Kaerqiaer area

      Moller等(1976) 在全球 150 多个萤石矿床研究基础上提出Tb/La−Tb/Ca双变量关系图解,用以判别萤石的成因类型,Tb/La原子数比值可反映成矿流体中稀土元素的分馏程度, Tb/Ca原子数比值可代表萤石结晶时的化学环境,具成因指示意义;卡尔恰尔、小白河沟、库木塔什矿床的萤石样品点均落在热液成因区域(图8a),表明该区萤石矿均为岩浆热液作用的产物。Y、Ho元素由于半径、电价相近,具有相似的地球化学性质,故Y/Ho值常作为一种重要参数来示踪成矿流体作用过程(Deng et al.,2014Graupner et al.,2015Mondillo et al.,2016),在富含 F 的成矿流体体系中,Y相对于 Ho 元素含量会较富集,两者比值一般大于28(Veksler et al.,2005)。Bau等(1995)在研究欧洲数个萤石矿床后提出La/Ho−Y/Ho关系图,可有效判别成矿流体来源,同源同期结晶的萤石Y/Ho 值不变而在图上表现为直线,而不同来源的萤石Y/Ho 值变化较大。卡尔恰尔、小白河沟、库木塔什矿床萤石样品在La/Ho−Y/Ho图中呈水平直线展布(图8b),且萤石样品Y/Ho 值(68~105)均远大于28,表明该区萤石矿为同源同期流体成矿,成矿流体是具有相同物化性质的富含F 的成矿流体。前已述及,不同矿区萤石、方解石的稀土元素配分模式具有一致性,同样是同源同期流体的反映。同时,图8中可看出卡尔恰尔、小白河沟矿床的萤石矿物Tb/La、La/Ho值相近,且与库木塔什矿床有明显区别,表明同处于卡尔恰尔断裂的卡尔恰尔、小白河沟矿床萤石的稀土分馏程度相近,而处于盖吉勒断裂的库木塔什萤石矿具有相对更高的轻重稀土分馏程度,可能反映同一成矿流体体系下不同断裂处分布的萤石矿床成矿环境略有差异。

      图  8  卡尔恰尔一带萤石Tb/Ca−Tb/La图与La/Ho−Y/Ho图(底图据Moller et al.,1976; Bau et al.,1995
      计算Tb/Ca原子数比采用CaF2中Ca的理论值(51.332 8%)
      Figure  8.  Tb/Ca−Tb/La and La/Ho−Y/Ho diagram of fluorite from the Kaerqiaer area

      δEu特征能记录成矿流体的氧化还原条件及温度,还原条件下形成的萤石因Eu2+具较大离子半径而不利于取代Ca2+进入到晶格中,导致Eu2+与稀土体系分离而形成Eu负异常,氧化条件下形成的萤石通常呈Eu正异常(Bau et al.,1992)。同时强烈的Eu负异常指示沉淀时成矿流体处于中低温环境(<250 ℃),而当温度超过250 ℃时则表现出正Eu异常(Bau et al.,1992)。卡尔恰尔、小白河沟、库木塔什矿床中萤石、方解石的δEu<0,表示沉淀时成矿流体处于还原条件下中低温环境。

      在反映成矿物质来源的 La/Yb−ΣREE关系图中(图9a),不同矿区的萤石样品均落在沉积岩、钙质泥岩区及其附近,说明成矿物质可能一部分来自围岩。在(Y+La)−Y/La 关系图(图9b)中,样品均落在钙碱性花岗岩区域内,说明萤石矿在成因上确实与花岗岩的侵入有密切关系。显然,元素图解不仅展示了围岩地层对成矿物质的影响,还显示了岩浆热液对成矿作用的影响,且该区成矿碱长花岗岩体属高氟岩体[w(F)>0.1%],可为萤石成矿提供氟物质,萤石赋矿地层具有一定选择性,主要为阿尔金岩群中的黑云斜长片麻岩、碳酸盐岩等富钙质岩系。因此,初步认为成矿主要物质之一的 Ca 元素可能主要是由岩浆热液对地层的淋滤萃取而来,而F元素则可能主要来源于成矿岩体碱长花岗岩。

      图  9  卡尔恰尔一带萤石的La/Yb−ΣREE与(Y+La)−Y/La图解(底图据Allegre et al.,1978
      Figure  9.  La/Yb−ΣREE and (Y+La)−Y/La diagram of fluorite from the Kaerqiaer area

      萤石一般具有较低的Rb含量和较高的Sr含量,此次Sr、Nd同位素测试结果显示,卡尔恰尔一带萤石具有较低的Rb/Sr值,使得萤石的87Sr/86Sr组成可以直接代表成矿流体的87Sr/86Sr初始比值。卡尔恰尔矿区萤石的87Sr/86Sr值为0.71005~0.71009,小白河沟矿区萤石的87Sr/86Sr值为0.71015~0.71036,库木塔什矿区萤石的87Sr/86Sr值为0.70950~0.70955,可看出各矿区成矿流体的87Sr/86Sr值基本一致,反映了成矿流体中Sr可能同源。卡尔恰尔矿区萤石的143Nd/144Nd值为0.511917~0.512040,小白河沟矿区萤石的143Nd/144Nd值为0.511919~0.512062,库木塔什矿区萤石的143Nd/144Nd值为0.512044~0.512071,均介于上、下地壳143Nd/144Nd值(0.50071~0.51212)之间。在87Sr/86Sr −143Nd/144Nd图解中(图10),萤石样品点均落于上、下地壳之间区域,说明萤石成矿物质来源于地壳。

      图  10  卡尔恰尔一带萤石的87Sr/86Sr −143Nd/144Nd图解
      Figure  10.  87Sr/86Sr −143Nd/144Nd diagram of fluorite from the Kaerqiaer area

      (1)阿尔金卡尔恰尔超大型萤石矿带成矿与碱长花岗岩关系密切,萤石矿化主要赋存于岩体内外接触带附近,赋矿围岩主要为阿尔金岩群中的黑云斜长片麻岩、碳酸盐岩等富钙质岩系,矿体明显受北东向断裂构造控制,矿石类型主要有脉状、角砾状、块状、条带状矿石,矿物组成主要是萤石、方解石。

      (2)卡尔恰尔超大型萤石矿区与成矿有关的碱长花岗岩成岩年龄为(455.8±2) Ma,结合前人研究,认为该萤石矿带形成于加里东期中—晚奥陶世,为挤压造山转变成伸展构造背景下岩浆活动的的产物。矿区片麻状钾长花岗岩成岩年龄为(914.5±4.1)Ma,形成于新元古代早期,与 Rodinia 超大陆汇聚事件有关。

      (3)稀土元素特征显示,卡尔恰尔、小白河沟、库木塔什3个矿床的萤石、方解石稀土元素配分模式均为右倾的LREE富集型,具有明显负Eu异常,与成矿岩体、围岩地层十分相似,表明萤石、方解石的稀土可能继承了岩体、地层的稀土配分模式。各矿床萤石均为热液成因,表现出同源同期成矿流体的特征,成矿环境为还原条件下的中低温环境。

      (4)各矿区萤石Sr−Nd同位素组成显示成矿物质来源于地壳,结合成矿特征,初步认为Ca可能主要来自于岩浆热液对地层的淋滤萃取,而F可能主要来源于成矿岩体碱长花岗岩。

    • 图  1   全球奥陶纪洋–陆格局示意图(据Scotese,2006王立全等,2021

      Figure  1.   Diagram of global ocean–continent pattern in Ordovician

      图  2   中国新疆–中亚地区大地构造单元划分图

      a. 全球三大构造域分布简图;b. 中国新疆–中亚构造单元图

      Figure  2.   Division diagram of geotectonic units within Xinjiang (China)–Central Asia

      图  3   古亚洲洋演化简图

      Figure  3.   Simplified cartoon of Ancient Asia Ocean evolution history

      图  4   特提斯洋演化简图

      Figure  4.   Simplified cartoon of Tethys Oceans evolution history

      表  1   中国新疆–中亚地区大地构造单元划分表

      Table  1   Division framework of tectonic units within Xinjiang (China)– Central Asia

      一级构造单元 二级构造单元 三级构造单元
      代号名称代号名称代号名称
      阿尔泰(–兴蒙)造山系 1 阿尔泰弧盆系 1-1 南阿尔泰陆缘弧(Pz1–C)
      1-2 南阿尔泰南缘增生弧(Pz2
      斋桑–额尔齐斯对接带 1 额尔齐斯断陷盆地(N–Q)    
      2 额尔齐斯–斋桑结合带 2-1 卡尔巴–额尔齐斯增生楔(O–C)
      2-2 斋桑-布尔根蛇绿混杂岩带(Pz1–C)
      2-3 吉木乃–北准噶尔洋内弧(Pz2
      乌拉尔–哈萨克斯坦–天山造山系 1 东准噶尔弧盆系 1-1 三塘湖岛弧(O–C)
      1-2 卡拉麦里蛇绿混杂岩带(Pz1–C)
      2 东天山弧盆系 2-1 哈尔里克-大南湖岛弧(O–C)
      2-2 康古尔塔格蛇绿混杂岩带(Pz1–C)
      2-3 觉罗塔格岛弧(D–C)
      3 准噶尔–吐哈地块 3-1 准噶尔地块(AnNh)
      3-2 博格达裂谷盆地(C–P)
      3-3 吐哈地块(Pz1-C)
      4 塔尔巴哈台-西准噶尔弧盆系 4-1 萨雷扎尔–扎尔马岛弧(Pz1
      4-2 塔尔巴哈台–赛米斯台岛弧(Pz2
      4-3 唐巴勒–达拉布特蛇绿混杂岩带(O–C)
      4-4 阿克塔斯特-萨亚克蛇绿混杂岩带(Pz1-C)
      5 巴音沟–米什沟结合带 5-1 依连哈比尔尕蛇绿混杂岩带(Pz2
      5-2 米什沟–冰达坂蛇绿混杂岩带(Pz1–C)
      6 莫因特–巴尔喀什–中天山地块 6-1 卡拉索尔–巴尔喀什–博罗科努陆缘弧(O-C)
      6-2 阿加德尔–莫因特–伊犁裂谷盆地(C–P)
      6-3 巴彦乌拉尔–扎拉依尔奈曼–中天山陆缘弧(O–C)
      7 希迭尔特–热尔套山–卡拉科尔结合带 7-1 希迭尔特-萨雷苏蛇绿混杂岩带(Pz1-C)
      7-2 热尔套山-卡拉科尔蛇绿混杂岩带(Pz1–C)
      8 图尔盖–塔拉斯地块 8-1 田吉兹湖–热兹卡兹甘陆缘弧(O–P)
      8-2 伊希姆–斯捷普尼亚克逆冲带(Ar?陆核)
      8-3 图尔盖-克孜勒库姆前陆盆地(Mz)
      8-4 卡拉套基底断隆带(K–Q右行走滑)
      8-5 塔拉斯–吉尔吉斯山增生弧(O–P)
      8-6 布坎套–费尔干纳陆缘弧(O–P)
      9 乌拉尔弧盆系 9-1 主乌拉尔蛇绿混杂岩带(Pz1–C)
      9-2 东乌拉尔岛弧(O–P)
      东欧陆块区 1 前乌拉尔地块(An€)    
      2 北里海残余盆地(Mz–E)    
      突厥斯坦–阿特巴什–南天山对接带 1 阿特巴什–南天山结合带 1-1 碱泉蛇绿混杂岩带(D–C)
      1-2 额尔宾山–库米什蛇绿混杂岩带(D–C)
      1-3 哈尔克山高压–超高压变质带(Pz1–C)
      1-4 阿特巴什–西南天山蛇绿混杂岩带(Pz1–C)
      2 乌兹别克–突厥斯坦结合带 2-1 乌兹别克–阿赖蛇绿混杂岩带(Pz1–C)
      2-2 曼格什拉克–萨雷卡梅什湖蛇绿混杂岩带(Pz1–C)
      下载: 导出CSV
      续表1
      一级构造单元 二级构造单元三级构造单元
      代号名称代号名称代号名称
      卡拉库姆–塔里木陆块区 1 敦煌陆块 1-1 柳园(阿克塔格)逆冲带(Pz2陆缘裂谷)
      1-2 敦煌断陷盆地(Cz)
      1-3 阿尔金北逆冲带(Ar2-3陆核)
      2 塔里木陆块 2-1 库鲁克塔格逆冲带(Pz1陆缘盆地)
      2-2 西南天山–霍拉山逆冲带(Pz1陆缘裂谷)
      2-3 塔里木前陆盆地(Mz)
      2-4 铁克里克逆冲带(Pt裂谷盆地)
      3 卡拉库姆陆块 3-1 撒马尔罕–克孜勒苏河逆冲带(Pz1陆缘盆地)
      3-2 卡拉库姆–马扎里沙里夫前陆盆地(Mz)
      3-3 法扎巴德–桑格沃尔德逆冲带(C–P陆缘裂谷)
      3-4 兴都库什岩浆弧(Mz)
      北帕米尔–阿尔金–昆仑造山系 1 阿尔金弧盆系 1-1 红柳沟-拉配泉蛇绿混杂岩带(Pz1
      1-2 阿中地块(AnNh)
      1-3 阿帕–茫崖蛇绿混杂岩带(Pz1
      1-4 江尕孜萨依–巴什瓦克高压变质岩带(Pt3–Pz1
      2 柴达木地块(Cz断陷盆地)
      3 东昆仑弧盆系 3-1 祁漫塔格北坡–夏日哈岩浆弧(O–S)
      3-2 祁漫塔格蛇绿混杂岩带(Pz1
      3-3 北昆仑岩浆弧(O–T2
      3-4 乌鲁赛赤河弧间裂谷盆地(C–P)
      4 北帕米尔–西昆仑弧盆系 4-1 恰尔隆–库尔良弧后裂谷盆地(C–P)
      4-2 北帕米尔–柳什塔格岛弧(Pz–T2
      4-3 库地–其曼于特蛇绿混杂岩带(Pz1
      4-4 奥依且克–塔木其岛弧(O–S)
      塔尼马斯–康西瓦–南昆仑对接带 1 南昆仑结合带 1-1 东昆仑南坡增生杂岩带(Pt3–Pz1
      1-2 木孜塔格–布喀达坂蛇绿混杂岩带(Pz2–T2
      2 塔尼马斯-康西瓦结合带 2-1 康西瓦–苏巴什蛇绿混杂岩带(Pz)
      2-2 塔尼马斯(Tanymas)蛇绿混杂岩带(Pz2
      中帕米尔(–羌塘–三江)造山系 1 喀拉塔格–巴颜喀拉地块 1-1 巴颜喀拉前陆盆地(T3
      1-2 喀拉塔格前陆盆地(T3
      2 中帕米尔–甜水海地块(AnNh)    
      巴扎拉克–鲁山普哈特(–班公湖–双湖–怒江)对接带 1 巴扎拉克–鲁山普哈特结合带 1-1 鲁山普哈特(Rushan–Pshart)蛇绿混杂岩带(Pz2–K?)
      1-2 潘焦–巴扎拉克蛇绿混杂岩带(Pz2-K?)
      南帕米尔–拉达克
      (–冈底斯–喜马拉雅)造山系
      1 南帕米尔(–冈底斯)弧盆系 1-1 南帕米尔(–昂龙岗日–班戈–腾冲)岩浆弧
      1-2 什约克(Shyok)(–狮泉河–申扎–嘉黎)蛇绿混杂岩带
      1-3 科西斯坦–拉达克(–冈底斯–察隅)岩浆弧
      2 喀布尔–印度河(–雅鲁藏布江)结合带 2-1 印度河蛇绿混杂岩带(T–K)
      2-2 喀布尔蛇绿混杂岩带(T–K)
      3 白沙瓦–斯里那加(–喜马拉雅)地块(An€)    
      印度陆块区 1 杰赫勒姆前陆盆地(Cz)    
      下载: 导出CSV
    • 柏美祥. 额尔齐斯活动断裂带[J]. 新疆地质, 1996, 14(2): 127-134

      BAI Meixiang. Ertix active fault zone. Xinjiang Geology, 1996, 14(2): 127-134.

      曹福根, 涂其军, 张晓梅, 等. 哈尔里克山早古生代岩浆弧的初步确定—来自塔水河一带花岗质岩体锆石SHRIMP U-Pb测年的证据[J]. 地质通报, 2006, 25(8): 923-927 doi: 10.3969/j.issn.1671-2552.2006.08.004

      CAO Fugen, TU Qijun, ZHANG Xiaomei, et al. Preliminary determination of the Early Paleozoic magmatic arc in the Karlik mountains, East Tianshan, Xinjiang, China-Evidence from zircon SHRIMP U-Pb dating of granite bodies in the Tashuihe area[J]. Geological Bulletin of China, 2006, 25(8): 923-927. doi: 10.3969/j.issn.1671-2552.2006.08.004

      曹华文, 李光明, 张林奎, 等. 喜马拉雅淡色花岗岩成因与稀有金属成矿潜力[J]. 沉积与特提斯地质, 2022, 42: 189-211 doi: 10.19826/j.cnki.1009-3850.2022.04004

      CAO Huawen, LI Guangming, ZHANG Linkui, et al. Genesis of Himalayan leucogranite and its potentiality of rare-metal mineralization[J]. Sedimentary Geology and Tethyan Geology, 2022, 42: 189-211. doi: 10.19826/j.cnki.1009-3850.2022.04004

      陈博, 马中平, 孟广路, 等. 吉尔吉斯斯坦中天山地质特征及研究进展[J]. 中国地质, 2016, 43(2): 458-469 doi: 10.3969/j.issn.1000-3657.2016.02.008

      CHEN Bo, MA Zhongping, MENG Guanglu, et al. The progress in geological study of Middle Tianshan Mountains within Kyrgyzstan[J]. Geology in China, 2016, 43(2): 458-469. doi: 10.3969/j.issn.1000-3657.2016.02.008

      陈刚. 新疆凌云铜矿成矿特征及找矿标志[J]. 新疆地质, 2008, 26(4): 356-362 doi: 10.3969/j.issn.1000-8845.2008.04.007

      CHEN Gang. The Mineralization Characteristics and Prospecting Indicator of Linyun Copper deposit, Xinjiang[J]. Xinjiang Geology, 2008, 26(4): 356-362 (in Chinese with English abstract) doi: 10.3969/j.issn.1000-8845.2008.04.007

      成守德, 刘通, 王世伟. 中亚五国大地构造单元划分简述[J]. 新疆地质, 2010, 28(1): 16-21

      CHENG Shoude, LIU Tong, WANG Shiwei. The brief description of the division of tectonic units in the Five-countries in Central Asia[J]. Xinjiang Geology, 2010, 28(1): 16-21.

      成守德, 祁世军, 陈川, 等. 巴尔喀什-准噶尔单元划分及特征[J]. 新疆地质, 2009, 27(S1): 14-30

      CHENG Shoude, QI Shijun, CHEN Chuan, et al. The division and Features of Balkhash-Junggar Plate Tectonic unit[J]. Xinjiang Geology, 2009, 27(S1): 14-30.

      成守德. 中亚地壳发展演化及主要矿产成矿规律[M]. 北京: 地质出版社, 2015

      CHENG Shoude. Crustal development and evolution, and metallogenic regularities of major minerals in Central Asia[M]. Beijing: Geological Publishing House, 2015.

      陈文, Arnaud N. 巴颜喀拉地体POG型花岗岩同位素年代学研究. 地球学报, 1997, 18(3): 261-266.

      CHEN Wen, ARNAUD N. Isotope Geochronology study for POG-type granite in Bayan Har terrain[J]. Acta Geoscientia Sinica, 1997, 18(3): 261-266.

      崔建堂, 王炬川, 边小卫, 等. 西昆仑康西瓦北侧早古生代角闪闪长岩、英云闪长岩的地质特征及其锆石SHRIMP U-Pb测年[J]. 地质通报, 2006, 25(12): 1441-1449 doi: 10.3969/j.issn.1671-2552.2006.12.013

      CUI Jiantang, WANG Juchuan, BIAN Xiaowei, et al. Geological characteristics of Early Paleozoic amphibolite and tonalite in northern Kangxiwar, West Kunlun, China and their zircon SHRIMP U-Pb dating[J]. Geological Bulletin of China, 2006, 25(12): 1441-1449. doi: 10.3969/j.issn.1671-2552.2006.12.013

      丁道桂, 王道轩, 刘伟新, 等. 西昆仑造山带与盆地[M]. 北京: 地质出版社, 1996

      DING Daogui, WANG Daoxuan, LIU Weixin, et al. Western Kunlun orogenic belt and basin[M]. Beijing: Geological Publishing House, 1996.

      董国臣, 莫宣学, 赵志丹, 等. 大陆碰撞过程的火山岩响应: 以西藏林周林子宗火山岩为例[J]. 沉积与特提斯地质, 2021, 41: 332-339

      DONG Guochen, MO Xuanxue, ZHAO Zhidan, et al. A response of volcanic rocks to the India-Asia continental collision: A case study on Linzizong volcanic rocks in Linzhou, Tibet[J]. Sedimentary Geology and Tethyan Geology, 2021, 41: 332-339.

      董连慧, 刘德权, 唐延龄, 等. 试论新疆成矿体系与时空演化模式[J]. 矿床地质, 2015, 34(6): 1107-1129 doi: 10.16111/j.0258-7106.2015.06.002

      DONG Lianhui, LIU Dequan, TANG Yanling, et al. Five-era metallogenic system of mineral deposits in Xinjiang and its spatial and temporal evolution mode[J]. Mineral Deposits, 2015, 34(6): 1107-1129. doi: 10.16111/j.0258-7106.2015.06.002

      范堡程, 孟广路, 刘明义, 等. 塔吉克斯坦成矿单元划分及其特征[J]. 地质科技情报, 2017, 36(2): 168-175 doi: 10.19509/j.cnki.dzkq.2017.0222

      FAN Baocheng, MENG Guanglu, LIU Mingyi, et al. Division and features of the metallogenic units in Tajikistan[J]. Geological Science and Technology Information, 2017, 36(2): 168-175. doi: 10.19509/j.cnki.dzkq.2017.0222

      付晨阳, 汤良杰, 曹自成, 等. 塔中北坡走滑断裂横向变形差异及其油气地质意义[J]. 石油实验地质, 2017, 39(6): 783-789 doi: 10.11781/sysydz201706783

      FU Chenyang, TANG Liangjie, CAO Zicheng, et al. Lateral deformation difference of strike-slip faults on the northern slope of Tazhong unlift and its control on petroleum geology[J]. Petroleum Geology & Expreiment, 2017, 39(6): 783-789. doi: 10.11781/sysydz201706783

      高俊, 张立飞, 刘圣伟. 西天山蓝片岩榴辉岩形成和抬升的40Ar/39Ar年龄记录[J]. 科学通报, 2000, 45(1): 89-94 doi: 10.3321/j.issn:0023-074X.2000.01.019

      GAO Jun, ZHANG Lifei, LIU Shengwei. 40Ar/39Ar age records of eclogite formation and uplift of bluechist in the Western Tianshan Mountains, China[J]. Science Bulletin of China, 2000, 45(1): 89-94. doi: 10.3321/j.issn:0023-074X.2000.01.019

      高俊, 钱青, 龙灵利, 等. 西天山的增生造山过程[J]. 地质通报, 2009, 28(12): 1804-1816 doi: 10.3969/j.issn.1671-2552.2009.12.013

      GAO Jun, QIAN Qing, LONG Lingli, et al. Accretionary orogenic process of Western Tianshan, China[J]. Geological Bulletin of China, 2009, 28(12): 1804-1816. doi: 10.3969/j.issn.1671-2552.2009.12.013

      耿全如, 张璋, 彭智敏, 等. 班公湖-怒江成矿带及邻区 1: 75 万成矿地质背景图(含说明书)[M]. 北京: 地质出版社, 2017

      GENG Quanru, ZHANG Zhang, PENG Zhimin, et al. 1: 750000 Metallogenic Geological Background Map of Bangong Lake Nujiang Metallogenic Belt and Adjacent Areas (including instructions) [M]. Beijing: Geological Publishing House, 2017.

      耿全如, 李文昌, 王立全, 等. 特提斯中西段古生代洋陆格局与构造演化[J]. 沉积与特提斯地质, 2021, 41, 297-315 doi: 10.19826/j.cnki.1009-3850.2021.02012

      GENG Quanru, LI Wenchang, WANG Liquan, et al. Paleozoic tectonic framework and evolution of the central and western Tethys[J]. Sedimentary Geology and Tethyan Geology, 2021, 41, 297-315. doi: 10.19826/j.cnki.1009-3850.2021.02012

      耿元生, 旷红伟, 杜利林, 等. 华北、华南、塔里木三大陆块中-新元古代岩浆岩的特征及其地质对比意义[J]. 岩石学报, 2020, 36(8): 2276-2312 doi: 10.18654/1000-0569/2020.08.02

      GENG Yuansheng, KUANG Hongwei, DU Lilin, et al. The characteristics of Meso-Neoproterozoic magmatic rocks in North China, South China and Tarim blocks and their significance of geological correlation[J]. Acta Petrologica Sinica, 2020, 36(8): 2276-2312. doi: 10.18654/1000-0569/2020.08.02

      辜平阳, 李永军, 张兵, 等. 西准达尔布特蛇绿岩中辉长岩LA-ICP-MS锆石U-Pb测年[J]. 岩石学报, 2009, 25(6): 1364-1372

      GU Pingyang, LI Yongjun, ZHANG Bing, et al. LA-ICP-MS zircon U-Pb dating of gabbro in the Darbut ophiolite, western Junggar, China[J]. Acta Petrologica Silica, 2009, 25(6): 1364-1372.

      郭华春, 钟莉, 李丽群. 哈尔里克山口门子地区石英闪长岩锆石SHRIMP U-Pb测年及其地质意义[J]. 地质通报, 2006, 25(8): 928-931 doi: 10.3969/j.issn.1671-2552.2006.08.005

      GUO Huachun, ZHONG Li, LI Liqun. Zircon SHRIMP U-Pb dating of quartz diorite in the Koumenzi area, Karlik Mountains, East Tianshan, Xinjiang, China, and its geological significance[J]. Geological Bulletin of China, 2006, 25(8): 928-931. doi: 10.3969/j.issn.1671-2552.2006.08.005

      郭召杰, 张志诚, 张臣, 等. 青藏高原北缘阿尔金走滑边界的侧向扩展-甘肃北山晚新生代走滑构造与地壳稳定性分析[J]. 地质通报, 2008, 27(10): 1678-1686 doi: 10.3969/j.issn.1671-2552.2008.10.010

      GUO Zhaojie, ZHANG Zhicheng, ZHANG Chen, et al. Lateral growth of the Altyn Tagh strike-slip fault at the north margin of the Qinghai-Tibet Plateau: Late Cenozoic strike-slip faults and the crustal stability in the Beishan area, Gansu, China[J]. Geological Bulletin of China, 2008, 27(10): 1678-1686. doi: 10.3969/j.issn.1671-2552.2008.10.010

      韩宝福, 何国琦, 吴泰然, 等. 天山早古生代花岗岩锆石U-Pb定年、岩石地球化学特征及其大地构造意义[J]. 新疆地质, 2004, 22(1): 4-11 doi: 10.3969/j.issn.1000-8845.2004.01.002

      HAN Baofu, HE Guoqi, WU Tairan, et al. Zircon U-Pb and Geochemical features of Early Paleozoic Granites from Tianshan, Xinjiang: Implications for tectonic evolution[J]. Xinjiang Geology, 2004, 22(1): 4-11. doi: 10.3969/j.issn.1000-8845.2004.01.002

      韩宝福, 季建清, 宋彪, 等. 新疆准噶尔晚古生代陆壳垂向生长(Ⅰ)—后碰撞深成岩浆活动的时限[J]. 岩石学报, 2006, 22(5): 1077-1086 doi: 10.3321/j.issn:1000-0569.2006.05.003

      HAN Baofu, JI Jianqing, SONG Biao, et al. Late Paleozoic vertical growth of continental crust around the Junggar Basin, Xinjiang, China (Part1): Timing of post-collisional plutonism[J]. Acta Petrologica Silica, 2006, 22(5): 1077-1086. doi: 10.3321/j.issn:1000-0569.2006.05.003

      韩宝福. 中俄阿尔泰山中生代花岗岩与稀有金属矿床的初步对比分析[J]. 岩石学报, 2008, 24(4): 655-660

      HAN Baofu. A preliminary comparison of Mesozoic granitoids and rare metal deposits in Chinese and Russian Altai mountains[J]. Acta Petrologica Silica, 2008, 24(4): 655-660.

      郝杰, 刘小汉. 1993. 南天山蛇绿混杂岩形成时代及大地构造意义[J]. 地质科学, 28(1): 93-95

      HAO Jie, LIU Xiaohan. 1993. Ophiolite Melange time and tectonic evolutional model in South Tianshan area[J]. Scientia Geologiga Sinica, 28(1): 93-95 (in Chinese with English abstract)

      郝杰, 刘小汉, 桑海清. 新疆东昆仑阿牙克岩体地球化学与40Ar/39Ar年代学研究及其大地构造意义[J]. 岩石学报, 2003, 19(3): 517-522 doi: 10.3969/j.issn.1000-0569.2003.03.017

      HAO Jie, LIU Xiaohan, SANG Haiqing. Geochemical characteristics and 40Ar/39Ar age of the Ayak adamellite and its tectonic significance in the east Kunlun, Xinjiang[J]. Acta Petrologica Sinica, 2003, 19(3): 517-522. doi: 10.3969/j.issn.1000-0569.2003.03.017

      何国琦, 李茂松, 韩宝福. 中国西南天山及邻区大地构造研究[J]. 新疆地质, 2001, 19(1): 7-11 doi: 10.3969/j.issn.1000-8845.2001.01.002

      HE Guoqi, LI Maosong, HAN Baofu. Geotectonic Research of SW Tianshan and it Swest adjacent area, China[J]. Xinjiang Geology, 2001, 19(1): 7-11. doi: 10.3969/j.issn.1000-8845.2001.01.002

      何国琦, 李茂松. 中亚蛇绿岩带研究进展及区域构造连接[J]. 新疆地质, 2000, 18(3): 193-202 doi: 10.3969/j.issn.1000-8845.2000.03.001

      HE Guoqi, LI Maosong. New achievement in Researching Ophiolitic belts in Central Asia and its significance in the links of Tectonic belts between Northern Xinjiang and adiacent area[J]. Xinjiang Geology, 2000, 18(3): 193-202. doi: 10.3969/j.issn.1000-8845.2000.03.001

      何国琦, 成守德, 徐新, 等. 1: 250万中国新疆及邻区大地构造图及说明书[M]. 北京: 地质出版社, 2004

      HE Guoqi, CHENG Shoude, XU Xin, et al. Tectonic map and the description of Xinjiang and its adjacent areas, China (1: 2500000)[M]. Beijing: Geology Publishing House, 2004.

      何国琦, 刘建波, 张越迁, 等. 准噶尔盆地西缘克拉玛依早古生代蛇绿混杂岩带的厘定[J]. 岩石学报, 2007, 23(7): 1573-1576 doi: 10.3969/j.issn.1000-0569.2007.07.002

      HE Guoqi, LIU Jianbo, ZHANG Yueqian, et al. Keramay ophiolitic mélange formed during early Paleozoic in West Junggar basin[J]. Acta Petrologica Sinica, 2007, 23: 1573-1576. doi: 10.3969/j.issn.1000-0569.2007.07.002

      洪俊, 计文化, 张辉善, 等. 南帕米尔北缘切实界别辉长岩LA-ICP-MS锆石U-Pb定年、地球化学特征及其地质意义[J]. 地质通报, 2014, 33 (6): 820-829 doi: 10.3969/j.issn.1671-2552.2014.06.005

      HONG Jun, JI Wenhua, ZHANG Huishan, et al. LA-ICP-MS zircon U-Pb dating, geochemistry and tectonic implications of the Qieshijiebie gabbro on the northern margin of South Pamir[J]. Geology Bulletin of China, 2014, 33 (6): 820-829. doi: 10.3969/j.issn.1671-2552.2014.06.005

      洪俊, 计文化, 张海迪, 等. 帕米尔地区穆尔尕布辉长岩-闪长岩的成因: 锆石U-Pb年龄、Hf同位素及岩石地球化学证据[J]. 中国地质, 2017, 44(4): 722-736. doi: 10.12029/gc20170406

      HONG Jun, JI Wenhua, ZHANG Haidi, et al. Petrogenesis of Murgab gabrro-diorite from Pamir: Evidence from zircon U-Pb dating, Hf isotopes and lithogeochemistry[J]. Geology in China, 2017, 44(4): 722- 736. doi: 10.12029/gc20170406

      胡蔼琴, 格雷姆, 罗杰斯. 新疆塔里木北缘首次发现33亿年的岩石[J]. 科学通报, 1992, 33(7): 627-630

      HU Aiqin, GRAHAM G, ROGERS G. The first found of 3.3 Ga rocks on the north margin of Tarim, Xinjiang, China[J]. China Science Bulletin, 1992, 33(7): 627-630.

      胡蔼琴, 韦刚健. 塔里木盆地北缘新太古代辛格尔灰色片麻岩形成时代问题[J]. 地质学报, 2006, 80(1): 126-134 doi: 10.3321/j.issn:0001-5717.2006.01.014

      HU Aiqin, WEI Gangjian. On the age of the Neo-Archean Qingir gray gneisses from the northern Tarim basin, Xinjiang, China[J]. Acta Geologica Sinica, 2006, 80(1): 126-134. doi: 10.3321/j.issn:0001-5717.2006.01.014

      胡修棉, 李娟, 安慰, 等. 藏南白垩纪—古近纪岩石地层厘定与构造地层划分[J]. 地学前缘, 2017, 24: 174-194 doi: 10.13745/j.esf.2017.01.011

      HU Xiumian, LI Juan, AN Wei, et al. The redefinition of Cretaceous-Paleogene lithostratigraphic units and tectonostratigraphic division in southern Tibet[J]. Earth Science Frontiers, 2017, 24: 174-194. doi: 10.13745/j.esf.2017.01.011

      计文化, 张海迪, 杨博, 等. 中亚重要成矿带成矿规律与优势矿产资源潜力评价综合研究报告[R], 2013.
      简平, 刘敦一, 张旗, 等. 蛇绿岩及蛇绿岩中浅色岩的SHRIMP U-Pb测年[J]. 地学前缘, 2003, 10(4): 439-456 doi: 10.3321/j.issn:1005-2321.2003.04.012

      JIAN Ping, LIU Dunyi, ZHANG Qi, et al. SHRIMP dating of ophiolite and leucocratic rocks within ophiolite[J]. Earth Science Frontiers, 2003, 10(4): 439-456. doi: 10.3321/j.issn:1005-2321.2003.04.012

      姜春发, 朱松年. 1992. 构造迁移理论概述[J]. 中国地质科学院院报, 25: 1-14

      JIANG Chunfa, ZHU Songnian. Introduction to Tectonic Migration Theeory[J]. Bulletin of the Chinese Academy of Geological Sciences, 1992, 25: 1-14.

      李宝强, 孟广路, 王心泉, 等. 中国新疆及中亚邻区地质矿产图(1: 1500000)[M]. 北京: 地质出版社, 2014

      LI Baoqiang, MENG Guanglu, WANG Xinquan, et al. Geological and Mineral Map of Xinjiang and Adjacent Areas in Central Asia, China (1: 1500000) [M]. Beijing: Geological Publishing House, 2014.

      李承东, 冉皞, 赵利刚, 等. 温都尔庙群锆石的LA-MC-ICPMS U-Pb年龄及构造意义[J]. 岩石学报, 2012, 28(11): 3705-3714

      LI Chengdong, RAN Ao, ZHAO Ligang, et al. LA-MC-ICP-MS U-Pb geochronology of zircons from the Wenduermiao Group and its tectonic significance[J]. Acta Petrologica Silica, 2012, 28(11): 3705-3714.

      李春昱, 王荃, 刘雪亚, 等. 亚洲大地构造图(1: 800万)[M]. 北京: 地质出版社, 1982

      LI Chunyu, WANG Quan, LIU Xueya, et al. Tectonic Map of Asia and its explanatory notes[M]. Beijing: Geological Publishing House, 1982.

      李光明, 张林奎, 张志, 等. 青藏高原南部的主要战略性矿产: 勘查进展、资源潜力与找矿方向[J]. 沉积与特提斯地质, 2021, 41: 351-360.
      李杭, 柯强, 李昊, 等. 喀喇昆仑地体甜水海地区102Ma辉长岩的发现及其对区域中生代构造演化的约束[J]. 岩石学报, 2020, 36(4): 1041-1058 doi: 10.18654/2095-8927/005

      LI Hang, KE Qiang, LI Hao, et al. Discovery of 102Ma gabbro in the Tianshaihai area of Karakoram terrane, and its constrains on regional Mesozoic tectonic evolution[J]. Acta Petrologica Sinica, 2020, 36(4): 1041-1058. doi: 10.18654/2095-8927/005

      李锦轶. 新疆东准噶尔蛇绿岩的基本特征和侵位历史[J]. 岩石学报, 1995, 11(S1): 73-84 doi: 10.3321/j.issn:1000-0569.1995.z1.006

      LI Jinyi. Main characteristics and emplacement processes of the East Junggar Ophiolites, Xinjiang, China[J]. Acta Petrologica Sinica, 1995, 11(S1): 73-84. doi: 10.3321/j.issn:1000-0569.1995.z1.006

      李锦轶, 王克卓, 李文铅, 等. 东天山晚古生代以来大地构造与矿产勘查. 新疆地质, 2002, 20(4): 295-301.
      李锦轶. 新疆东部新元古代晚期和古生代构造格局及其演变. 地质论评, 2004, 50(3): 304-322 doi: 10.3321/j.issn:0371-5736.2004.03.015

      LI Jinyi. Late Neoproterozoic and Paleozoic tectonic framework and evolution of Eastern Xinjiang, NW China[J]. Geological Review, 2004, 50(3): 304-322. doi: 10.3321/j.issn:0371-5736.2004.03.015

      李锦轶, 何国琦, 徐新, 等. 新疆北部及邻区地壳构造格架及其形成过程的初步探讨. 地质学报, 2006, 80(1): 148-168 doi: 10.3321/j.issn:0001-5717.2006.01.017

      LI Jinyi, He Guoqi, XU Xin, et al. Crustal tectonic framework of northern Xinjiang and adjacent regions and its formation[J]. Acta Geological Sinica, 2006, 80(1): 148-168. doi: 10.3321/j.issn:0001-5717.2006.01.017

      李荣社, 徐学义, 计文化. 对中国西部造山带地质研究若干问题的思考. 地质通报, 2008, 27(12): 2020-2025.
      李荣社, 计文化, 何世平, 等. 中国西部古亚洲与特提斯两大构造域划分问题讨论. 新疆地质, 2011, 29(3): 247-250 doi: 10.3969/j.issn.1000-8845.2011.03.001

      LI Rongshe, JI Wenhua, HE Shiping, et al. The two tectonic domain division discussion between the Ancient Asian and Tethys in western China[J]. Xinjiang Geology, 2011, 29(3): 247-250. doi: 10.3969/j.issn.1000-8845.2011.03.001

      李廷栋, 耿树方, 范本贤, 等. 1: 250 万中国西部及邻区地质图[M]. 北京: 地质出版社, 2006

      LI Tingdong, GENG Shufang, FAN Benxian, et al. The Geological map of Western China and the adjacent region (1: 2500000) [M]. Beijing: Geological Publishing House, 2006.

      李文昌, 潘桂棠, 侯增谦, 等. 西南”三江”多岛弧盆-碰撞造山成矿理论与勘查技术[M]. 北京: 地质出版社, 2010

      LI Wenchang, PAN Guitang, HOU Zengqian, et al. Archipelagic- Basin, Forming collision Theory and Prospecting Techniques Along the Nujiang- Lancangjiang- Jinshajiang Area in Southwestern China[M]. Beijing: Geological Publishing House, 2010.

      李文铅, 马华东, 王冉, 等. 东天山康古尔塔格蛇绿岩SHRIMP年龄、Nd-Sr同位素特征及构造意义. 岩石学报, 2008, 24(4): 773-780

      LI Wenqian, MA Huadong, WANG Ran, et al. SHRIMP dating and Nd-Sr isotopic tracing of Kangguertage ophiolite in eastern Tianshan, Xinjiang[J]. Acta Petrologica Silica, 2008, 24(4): 773-780.

      李王晔, 李曙光, 郭安林, 等. 青海东昆南构造带苦海辉长岩和德尔尼闪长岩的锆石SHRIMP U-Pb年龄及痕量元素地球化学—对“祁-柴-昆”晚新元古代-早奥陶世多岛洋南界的制约. 中国科学(D辑), 2007, 37(S1): 288-294

      LI Wangye, LI Shuguang, GUO Anlin, et al. Zircon SHRIMP U-Pb ages and trace element geochemistry of Kuhai gabbro and Delni diorite in South Kunlun tectonic belt, Eastern Qinghai: constrains on the South margin of “Qin-Qi-Kun” archipelago ocean from Late Neo-proterozoic to Early Ordovician[J]. Chinese Sciences (D Series), 2007, 37(S1): 288-294.

      李兴振, 刘增乾, 潘桂棠, 等. 西南三江地区构造单元划分及地史演化. 中国地质科学院成都地质矿产研究所所刊, 1991, 13: 1 -19.

      LI Xingzhen, LIU Zengqian, PAN Guitang. Tectonic units division and the geological history evolution in SW Sanjiang, China[J]. Lithofacies Paleogeography, 1991, 13: 1 -19.

      李兴振, 许效松, 潘桂棠. 泛华夏大陆群与东特提斯构造域演化. 岩相古地理, 1995, 15(4): 1 -13.

      LI Xingzhen, XU Xiaosong, PAN Guitang. Evolution of the Pan-Cathaysian landmass group and Eastern Tethyan tectonic domain[J]. Lithofacies Paleogeography, 1995, 15(4): 1 -13.

      李永军, 张天继, 栾新东, 等. 西天山特克斯达坂晚古生代若干不整合的厘定及地质意义[J]. 地球学报, 2008, 29(2): 145-153 doi: 10.3321/j.issn:1006-3021.2008.02.003

      LI Yongjun, ZHANG Tianji, LUAN Xindong, et al. Clarification of Late Paleozoic uncomformities in the Tekes Daban area of West Tianshan and its geological significance[J]. Acta Geoscienca Silica, 2008, 29(2): 145-153. doi: 10.3321/j.issn:1006-3021.2008.02.003

      李亚萍, 李锦轶, 孙桂华, 等. 新疆东准噶尔早泥盆世早期花岗岩的确定及其地质意义. 地质通报, 2009, 28(12): 1885-1893 doi: 10.3969/j.issn.1671-2552.2009.12.020

      LI Yaping, LI Jinyi, SUN Guihua, et al. Determination of the Early Devonian granite in East Junggar, Xinjiang, China and its geological implications[J]. Geological Bulletin of China, 2009, 28(12): 1885-1893. doi: 10.3969/j.issn.1671-2552.2009.12.020

      李耀西, 蓝善先. 新疆西准噶尔布龙果尔组的建造类型、时代及有关问题研究的新进展. 新疆地质, 1992, 10(1): 1-6

      LI Yaoxi, LAN Shanxian. New advances of research on the formation type, geologic age and related problems of Bulongguor formation in West Jungar, Xinjiang[J]. Xinjiang Geology, 1992, 10(1): 1-6.

      廖卓庭, 刘陆军, 张维. 博格达山西南缘早二叠世磨拉石相沉积组合—桃西沟群. 地层学杂志, 1999, 23(3): 190-196 doi: 10.3969/j.issn.0253-4959.1999.03.004

      LIAO Zhuoting, LIU Lujun, ZHANG Wei. Sequence-stratigraphy and facies analysis - Basis for the establishment of formation in geological survey[J]. Journal of Stratigraphy, 1999, 23(3): 190-196. doi: 10.3969/j.issn.0253-4959.1999.03.004

      蔺新望, 王星, 陈光庭, 等. 新疆北部阿尔泰东段泥盆纪岩浆活动及侵位方式的探讨. 现代地质, 2021, 34(3): 514-531

      LIN Xinwang, WANG Xing, CHEN Guangting, et al. Magmatic activity and emplacement of the Devonian intrusive rocks in eastern Altay, Northern Xinjiang[J]. Geosience, 2021, 34(3): 514-531.

      刘斌, 钱一雄. 东天山三条高压变质带地质特征和流体作用. 岩石学报, 2003, 19(2): 283-296 doi: 10.3969/j.issn.1000-0569.2003.02.010

      LIU Bin, QIAN Yixiong. The geological characteristics and fluid evolution in the three high-pressure metamorphic belts of eastern Tianshan[J]. Acta Petrologica Silica, 2003, 19(2): 283-296. doi: 10.3969/j.issn.1000-0569.2003.02.010

      刘成东, 莫宣学, 罗照华, 等. 东昆仑壳-幔岩浆混合作用: 来自锆石SHRIMP年代学的证据. 科学通报, 2004, 49(6): 596-602

      LIU Chengdong, MO Xuanxue, LUO Zhaohua, et al. The mixing between the crust- and mantle-derived magmas in eastern Kunlun: Evidences from zircon SHRIMP geochronology[J]. Chinese Science Bulletin, 2004, 49(6): 596-602.

      刘敦一, 简平, 张旗, 等. 内蒙古图林凯蛇绿岩中埃达克岩SHRIMP测年: 早古生代洋壳消减的证据. 岩石学报, 2003, 77(3): 318-327

      LIU Dunyi, JIAN Ping, ZHANG Qi, et al. SHRIMP dating of adakites in the Tulingkai Ophiolite, inner Mongolia: evidence for the Early Paleozoic subduction[J]. Acta Geologica Sinica, 2003, 77(3): 318-327.

      刘锋, 曹峰, 张志欣, 等. 新疆可可托海近3号脉花岗岩成岩时代及地球化学特征研究. 地质学报, 2014, 30(1): 1-15

      LIU Feng, CAO Feng, ZHANG Zhixin, et al. Characteristics and petrogenesis of zoned amphiboles in Wengeqi mafic-ultramafic complex, Inner Mongolia[J]. Acta Geologica Sinica, 2014, 30(1): 1-15.

      刘国仁, 秦纪华, 赵忠合, 等. 新疆阿尔泰额尔齐斯构造带片麻岩的锆石U-Pb SHRIMP定年及其地质意义. 现代地质, 2008, 22(2): 190-196

      LIU Guoren, QIN Jihua, ZHAO Zhihe, et al. SHRIMP U-Pb age of zircon in the Erqisi tectonic belt in Altay, Xinjiang and their geological significances[J]. Geoscience, 2008, 22(2): 190-196.

      刘良, 车自成, 王焰, 等. 阿尔金高压变质岩带的特征及其构造意义. 岩石学报, 1999, 15(1): 57-64 doi: 10.3321/j.issn:1000-0569.1999.01.006

      LIU Liang, CHE Zicheng, WANG Yan, et al. The prtrological characters and geotectonic setting of high-pressure metamorphic rock belts in Altun Mountains[J]. Acta Petrologica Sinica, 1999, 15(1): 57-64. doi: 10.3321/j.issn:1000-0569.1999.01.006

      刘云华, 莫宣学, 喻学惠, 等. 东昆仑野马泉地区景忍花岗岩锆石SHRIMPU-Pb定年及其地质意义. 岩石学报, 2006, 22(10): 2457-2463 doi: 10.3321/j.issn:1000-0569.2006.10.006

      LIU Yunhua, MO Xuanxue, YU Xuehui, et al. Zircon SHRIMP U-Pb dating of the Jingren granite, Yemaquan region of the east Kunlun and its geological significance[J]. Acta Petrologica Sinica, 2006, 22(10): 2457-2463. doi: 10.3321/j.issn:1000-0569.2006.10.006

      陆松年, 王惠初, 李怀坤, 等. 柴达木盆地北缘“达肯大坂群”的再厘定. 地质通报, 2002, 21(1): 19-23 doi: 10.3969/j.issn.1671-2552.2002.01.004

      LU Songnian, WANG Huichu, LI Huaikun, et al. Redefinition of the “Dakendaban Group” on the northern margin of the Qaidam basin[J]. Geological Bulletin of China, 2002, 21(1): 19-23. doi: 10.3969/j.issn.1671-2552.2002.01.004

      陆松年, 袁桂邦. 阿尔金山阿克塔什塔格早前寒武纪岩浆活动的年代学证据. 地质学报, 2003, 77(1): 61-68 doi: 10.3321/j.issn:0001-5717.2003.01.008

      LU Songnian, YUAN Guibang. Geochronology of Early Precambrian magmatic activities in Aketashitage, East Altyn Tagh[J]. Acta Geologica Sinica, 2003, 77(1): 61-68. doi: 10.3321/j.issn:0001-5717.2003.01.008

      陆松年, 于海峰, 李怀坤, 等. 中国前寒武纪重大地质问题研究-中国西部前寒武纪重大地质事件群及其全球构造意义[M]. 北京: 地质出版社, 2006

      LU Songnian, YU Haifeng, LI Huaikun. Important Geological Event group and its global tectonic implications[M]. Beijing: Geological Publishing House, 2006.

      罗金海, 周新源, 邱斌, 等. 塔里木-卡拉库姆地区的油气地质特征与区域地质演化. 地质论评, 2005, 51(4): 409-415 doi: 10.3321/j.issn:0371-5736.2005.04.007

      LUO Jinhai, ZHOU Xinyuan, QIU Bin, et al. Petroleum geology and Geological evolution of the Tarim-Karakum and adjacent area[J]. Geological Review, 2005, 51(4): 409-415. doi: 10.3321/j.issn:0371-5736.2005.04.007

      吕鹏瑞, 高永伟, 张宇轩, 等. 哈萨克斯坦铬铁矿资源禀赋、供应格局与中哈产能合作建议[J]. 西北地质, 2022, 55(3): 297-305

      LÜ Pengrui, GAO Yongwei, ZHANG Yuxuan, et al. Kazakhstan's Chromite Resource Endowment, Development, Import and Its Suggestions for Production Capacity Cooperation between China and Kazakhstan[J]. Northwestern Geology, 2022, 55(3): 297-305

      马昌明, 李江海, 曹正林, 等. 中亚盆地群石炭-二叠纪岩相古地理恢复及演化. 岩石学报, 2020, 36(11): 3510-3522 doi: 10.18654/1000-0569/2020.11.16

      MA Changqian, LI Jianghai, CAO Zhenglin, et al. Lithofacies paleogeographic reconstruction and evolution of the Carboniferous-Permian basin group in Central Asia[J]. Acta Petrologica Sinica, 2020, 36(11): 3510-3522. doi: 10.18654/1000-0569/2020.11.16

      毛黎光, 肖安成, 王亮, 等. 柴达木盆地西北缘始新世晚期古隆起与阿尔金断裂的形成. 岩石学报, 2013, 29(8): 2876-2882

      MAO Liguang, XIAO Ancheng, WANG Liang, et al. Uplift of NW margin of Qaidam basin in the Late Eocene: Implications for the initiation of Altyn fault[J]. Acta Petrologica Sinica, 2013, 29(8): 2876-2882.

      苗红生, 王晓钦, 何玲娟, 等. 中亚地区上古生界油气形成与分布规律及其对准噶尔盆地油气勘探的启示. 中国石油勘探, 2012, 17(2): 50-56 doi: 10.3969/j.issn.1672-7703.2012.02.010
      莫宣学, 赵志丹, 邓晋福, 等. 印度—亚洲大陆主碰撞过程的火山作用响应[J]. 地学前缘, 2003, 10(3): 135-148 doi: 10.3321/j.issn:1005-2321.2003.03.013

      MO Xuanxue, ZHAO Zhidan, DENG Jinfu, et al. Response of Volcanism to the India-Asia collision[J]. Earth Science Frontiers, 2003, 10(3): 135-148. doi: 10.3321/j.issn:1005-2321.2003.03.013

      牟墩玲, 李三忠, 王倩, 等. 塔里木盆地东南缘早古生代弯山构造[J]. 岩石学报, 2018, 34(12): 3739-3757

      MOU Dunling, LI Sanzhong, WANG Qian, et al. The early Paleozoic orocline in the southeastern Tarim Basin[J]. Acta Petrologica Sinica, 2018, 34(12): 3739-3757.

      潘桂棠, 陈智樑, 李兴振, 等. 东特提斯多弧-盆系统演化模式[J]. 岩相古地理, 1996, 16(2): 52-65

      PAN Guitang, CHEN Zhiliang, LI Xingzhen, et al. Modes for the evolution of the polyarc-basin systems in Eastern Tethys[J]. Lithofacies Paleogeography, 1996, 16(2): 52-65.

      潘桂棠, 李兴振, 王立全, 等. 青藏高原及邻区大地构造单元初步划分[J]. 地质通报, 2002, 21(11): 701-707 doi: 10.3969/j.issn.1671-2552.2002.11.002

      PAN Guitang, LI Xingzhen, WANG Liquan, et al. Preliminary division of tectonic units of the Qinghai-Tibet plateau and its adjacent regions[J]. Geological Bulletin of China, 2002, 21(11): 701-707. doi: 10.3969/j.issn.1671-2552.2002.11.002

      潘桂棠, 朱弟成, 王立全, 等. 班公湖-怒江带作为冈瓦纳大陆北界的地质地球物理证据[J]. 地学前缘, 2004, 11(4): 371-382 doi: 10.3321/j.issn:1005-2321.2004.04.004

      PAN Guitang, ZHU Dicheng, WANG Liquan, et al. Bangong Lake-Nu river suture zone-the northern boundary of Gondwana: evidence from geology and geophysics[J]. Earth Science Frontiers, 2004, 11(4): 371-382. doi: 10.3321/j.issn:1005-2321.2004.04.004

      潘桂棠, 王立全, 李荣社, 等. 多岛弧盆系构造模式: 认识大陆地质的关键[J]. 沉积与特提斯地质, 2012, 32(2): 1-20 doi: 10.3969/j.issn.1009-3850.2012.02.001

      PAN Guitang, WANG Liquan, LI Rongshe, et al. Tectonic model of archipelagic arc-basin systems: the key to the continental geology[J]. Sedimentary Geology and Tethyan Geology, 2012, 32(2): 1-20. doi: 10.3969/j.issn.1009-3850.2012.02.001

      潘桂棠, 陆松年, 肖庆辉, 等. 中国大地构造阶段划分和演化[J]. 地学前缘, 2016, 23(6): 1-23 doi: 10.13745/j.esf.2016.06.001

      PAN Guitang, LU Songnian, XIAO Qinghui, et al. Division of tectonic evolution in China[J]. Earth Science Frontiers, 2016, 23(6): 1-23. doi: 10.13745/j.esf.2016.06.001

      潘桂棠, 陈智梁, 李兴振, 等. 东特提斯地质构造形成演化[M]. 北京: 地质出版社, 1997

      PAN Guitang, CHEN Zhiliang, LI Xingzhen, et al. The tectonics formation and evolution of the East Tethys[M]. Beijing: Geological Publishing House, 1997.

      潘桂棠, 肖庆辉, 陆松年, 等. 2008. 大地构造相的定义、划分、特征及其鉴别标志[J]. 地质通报, 1613-1637. doi: 10.3969/j.issn.1671-2552.2008.10.004

      PAN Guitang, XIAO Qinghui, LU Songnian, et al. Definition, classication and diagnostic indications of tectonic facies[J]. Geological Bulletin of China, 2008, 27(10): 1613-1637. doi: 10.3969/j.issn.1671-2552.2008.10.004

      潘桂棠, 肖庆辉, 陆松年, 等. 中国大地构造单元划分[J]. 中国地质, 2009, 36(1): 1-28 doi: 10.3969/j.issn.1000-3657.2009.01.001

      PAN Guitang, XIAO Qinghui, LU Songnian, et al. Subdivision of tectonic units in China[J]. Geology in China, 2009, 36(1): 1-28. doi: 10.3969/j.issn.1000-3657.2009.01.001

      潘桂棠, 王立全, 张万平, 等. 青藏高原及邻区大地构造图及说明书(1: 1500000)[M]. 北京: 地质出版社, 2013

      PAN Guitang, WANG Liquan, ZHANG Wanping, et al. The tectonic map and instructions of Tibetan Plateau and the adjacent areas (1: 1500000)[M]. Beijing: Geological Publishing House, 2013.

      潘桂棠, 任飞, 尹福光, 等. 洋板块地质与川藏铁路工程地质关键区带[J]. 地球科学, 2020, 45(7): 2293-2304

      PAN Guitang, REN Fei, YIN Fuguang, et al. Key Zones of Oceanic Plate Geology and Sichuan-Tibet Railway Project[J]. Earth Science, 2020, 45(7): 2293-2304.

      潘桂棠, 肖庆辉, 尹福光, 等. 中国大地构造[M]. 北京: 地质出版社, 2017

      PAN Guitang, XIAO Qinghui, YIN Fuguang, et al. Tectonics of China[M]. Beijing: Geological Publishing House, 2017.

      彭银彪, 于胜尧, 张建新, 等. 北阿尔金地区早古生代洋壳俯冲时限: 来自斜长花岗岩和花岗闪长岩的证据[J]. 中国地质, 2018, 45(2): 334-350 doi: 10.12029/gc20180209

      PENG Yinbiao, YU Shengyao, ZHANG Jianxin, et al. Timing of Early Paleozoic oceanic crust subduction in North Altun: Evidence from plagiogranite and granodiorite[J]. Geology in China, 2018, 45(2): 334-350. doi: 10.12029/gc20180209

      任纪舜, 王作勋, 陈炳蔚, 等. 从全球看中国大地构造-中国及邻区大地构造图及简要说明[M]. 北京: 地质出版, 1999

      REN Jishun, WANG Zuoxun, CHEN Bingwei, et al. Geotectonic map and brief description of China and its adjacent areas-Geotectonics of China from a global perspective[M]. Beijing: Geological Publishing House, 1999.

      任纪舜, 牛宝贵, 王军, 等. 1: 500万国际亚洲地质图[M]. 北京: 地质出版社, 2013

      REN Jishun, NIU Baogui, WANG Jun, et al. Asian geological map (1: 5000000)[M]. Beijing: Geological Publishing House, 2013.

      上官时迈, 田伟, 徐义刚, 等. 塔里木溢流玄武岩的喷发特征[J]. 岩石学报, 2012, 28(4): 1261-1272

      SHANGGUAN Shimai, TIAN Wei, XU Yigang, et al. The eruption characteristic of the Tarim flood basalt[J]. Acta Petrologica Sinica, 2012, 28(4): 1261-1272.

      舒良树, 王玉净. 新疆卡拉麦里蛇绿岩带中硅质岩的放射虫化石[J]. 地质论评, 2003, 49(4): 408-412 doi: 10.3321/j.issn:0371-5736.2003.04.011

      SHU Liangshu, WANG Yujing. Late Devonian-Early Radiolarian Fossils from Siliceous rocks of the Kelameili Ophiolite, Xinjiang[J]. Geological Review, 2003, 49(4): 408-412. doi: 10.3321/j.issn:0371-5736.2003.04.011

      田红彪, 郑波, 何峻岭. 新疆阿尔泰造山带乌希里克地区奥陶纪岩浆活动及其地质意义[J]. 岩石学报, 2017, 33(8): 2591-2603

      TIAN Hongbiao, ZHENG Bo, HE Junling. The Ordovician magmatism and implication in Wuxilike, Altay orogenic belt, Xinjiang[J]. Acta Petrologica Sinica, 2017, 33(8): 2591-2603.

      王保弟, 王立全, 王冬兵, 等. 西南三江金沙江弧盆系时空结构及构造演化[J]. 沉积与特提斯地质, 2021, 41: 246-264 doi: 10.19826/j.cnki.1009-3850.2021.02008

      WANG Baodi, WANG Liquan, WANG Dongbing, et al. The temporal and spatial framework and its tectonic evolution of the Jinsha River arc-basin system, Southwest China[J]. Sedimentary Geology and Tethyan Geology, 2021, 41: 246-264. doi: 10.19826/j.cnki.1009-3850.2021.02008

      王宝瑜, 郎智君, 李向东, 等. 中国天山西段地质剖面综合研究[M]. 北京: 科学出版社, 1994

      WANG Baoyu, LANG Zhijun, LI Xiangdong, et al. A comprehensive research on geological profile of the Western Tianshan Mountains in China[M]. Beijing: Science Press, 1994.

      王秉璋, 朱迎堂, 张智勇, 等. 昆秦接合部造山带非史密斯地层的一些特点: 苦海-赛什塘-羊曲构造混杂带剖析[J]. 青海地质, 2000, 1: 9-17

      WANG Bingzhang, ZHU Yingtang, ZHANG Zhiyong, et al. Characteristics of non-Smith strata in junction part of Kunlun and Qinling orogenic belts-an example from the Kuhai-Saishitang-Yangqu tectonic mélange belt[J]. Qinghai Geology, 2000, 1: 9-17.

      王超, 刘良, 车自成, 等. 西南天山阔克萨彦岭巴雷公镁铁质岩石的地球化学特征、LA-ICP-MS U-Pb年龄及其大地构造意义[J]. 地质论评, 2007, 53(6): 743-754 doi: 10.3321/j.issn:0371-5736.2007.06.008

      WANG Chao, LIU Liang, CHE Zicheng, et al. Geochronology, Petrogenesis and Significance of Baleigong mafic rocks in Kokshal Segment, SW Tianshan Mountains[J]. Geological Reviews, 2007, 53(6): 743-754. doi: 10.3321/j.issn:0371-5736.2007.06.008

      王二七. 关于印度与欧亚大陆初始碰撞时间的讨论[J]. 中国科学(D辑), 2017, 47, 284-292

      WANG Erqi. A discussion on the timing of the initial collision between the Indian and Asian continents[J]. Science China Earth Sciences (D series), 2017, 47, 284-292.

      王国强, 李向民, 徐学义, 等. 甘肃新疆交界地区四顶黑山镁铁质—超镁铁质岩的锆石U-Pb年龄及地质意义[J]. 地质通报, 2012, 31(12): 2046-2051 doi: 10.3969/j.issn.1671-2552.2012.12.014

      WANG Guoqiang, LI Xiangmin, XU Xueyi, et al. Zircon U-Pb ages of Sidingheishan mafic-ultramafic rocks in Xinjiang-Gansu border area and their geological significance[J]. Geological Bullitin of China, 2012, 31(12): 2046-2051. doi: 10.3969/j.issn.1671-2552.2012.12.014

      王鸿祯, 莫宣学. 中国地质构造概要[J]. 中国地质, 1996, 8: 4-9

      WANG Hongzhen, MO Xuanxue. Brief Geotectonics of China[J]. China Geology, 1996, 8: 4-9.

      王立全, 潘桂棠, 李才, 等. 藏北羌塘中部果干加年山早古生代堆晶辉长岩的锆石SHRIMP U-Pb年龄—兼论原-古特提斯洋的演化[J]. 地质通报, 2008, 27(12): 2045-2056 doi: 10.3969/j.issn.1671-2552.2008.12.010

      WANG Liquan, PAN Guitang, LI Cai, et al. SHRIMP U-Pb zircon dating of Eopaleozoic cumulate in Guoganjianian Mountain from central Qiangtang area of northern Tibet-Considering the evolution of Proto-and Paleo-Tethys[J]. Geological Bulletin of China, 2008, 27(12): 2045-2056. doi: 10.3969/j.issn.1671-2552.2008.12.010

      王立全, 李定谋, 潘桂棠, 等. 青藏高原地区矿产分布与成矿地质背景图及说明书(1: 1500000)[M]. 成都: 成都地图出版社, 2015

      WANG Liquan, LI Dingmou, PAN Guitang, et al. Mineral distribution and metallogenic geological background Map, and the description of Tibetan Plateau (1: 1500000)[M]. Chengdu: Chengdu Map Publishing House, 2015.

      王立全, 潘桂棠, 丁俊, 等. 青藏高原及邻区地质图及说明书1: 1500000[M]. 北京: 地质出版社, 2013

      WANG Liquan, PAN Guitang, DING Jun, et al. Geological maps and instructions of Tibetan Plateau and its adjacent regions (1: 1500000)[M]. Beijing: Geological Publishing House, 2013.

      王立全, 王保弟, 李光明, 等. 东特提斯地质调查研究进展综述[J]. 沉积与特提斯地质, 2021, 41(2), 283-296.

      WANG Liquan, WANG Baodi, LI Guangming, et al. Major progress of geological surv1: ey and research in East Tethys: An overview[J]. Sedimentary Geology and Tethyan Geology, 2021, 41(2): 283-296.

      王涛, 童英, 李舢, 等. 阿尔泰造山带花岗岩时空演变、构造环境及地壳生长意义-以中国阿尔泰为例[J]. 岩石矿物学杂志, 2010, 29(6): 595-618 doi: 10.3969/j.issn.1000-6524.2010.06.002

      WANG Tao, TONG Ying, LI Shan, et al. Spatial and temporal variations of granitoids in the Altay orogeny and their implications for tectonic setting and crustal growth: perspectives from Chinese Altay[J]. Acta Petrolgica Et Mineralogica, 2010, 29(6): 595-618. doi: 10.3969/j.issn.1000-6524.2010.06.002

      王有宁, 孙永河, 尹继全, 等. 南图尔盖盆地卡拉套断裂体系变形特征[J]. 断块油气田, 2019, 26(4): 421-425

      WANG Youning, SUN Yonghe, YIN Jiquan, et al. Deformation Characteristics of Karatau strike-slip fault in South Turgay Basin[J]. Fault-Block Oil & Gas Field, 2019, 26(4): 421-425.

      王玉往, 王京彬, 王莉娟. 东天山地区两类钒钛磁铁矿型矿床含矿岩石对比[J]. 岩石学报, 2006, 22(5): 1425-1436 doi: 10.3321/j.issn:1000-0569.2006.05.031

      WANG Yuwang, WANG Jingbin, WANG Lijuan. Comparison of host rocks between two vanadic titianomagnetite deposits types from the eastern Tianshan Mountains[J]. Acta Petrologica Sinica, 2006, 22(5): 1425-1436. doi: 10.3321/j.issn:1000-0569.2006.05.031

      王玉往, 王京彬, 王莉娟, 等. 新疆吐尔库班蛇绿混杂岩的发现及其地质意义[J]. 地学前缘, 2011, 18(3): 151-165

      WANG Yuwang, WANG Jingbin, WANG Lijuan, et al. Discovery of Tuerkubantao ophiolitic mélange in Xinjiang and its significance[J]. Earth Science Frontiers, 2011, 18(3): 151-165.

      王作勋, 邬继易. 天山多旋回构造演化及成矿[M]. 北京: 科学出版社, 1990

      WANG Zuoxun, WU Jiyi. Multicycle tectonic evolution and mineralization[M]. Beijing: Science Press, 1990.

      位荀, 徐义刚. 巴楚辉绿岩墙的岩石成因及其对塔里木大火成岩省岩浆演化的启示. 岩石学报, 2013, 29(10): 3323-3335

      WEI Xun, XU Yigang. Petrogenesis of the mafic dykes from Bachu and implications for the magma evolution of the Tarim large ignous province, NW China[J]. Acta Petrologica Sinica, 2013, 29(10): 3323-3335.

      吴波, 何国琦, 吴泰然, 等. 新疆布尔根蛇绿混杂岩的发现及其大地构造意义[J]. 中国地质, 2006, 33(3): 476-486 doi: 10.3969/j.issn.1000-3657.2006.03.004

      WU Bo, HE Guoqi, WU Tairan, et al. Discovery of the Buergen ophiolitic mélange belt in Xinjiang and its tectonic significance[J]. Geology in China, 2006, 33(3): 476-486. doi: 10.3969/j.issn.1000-3657.2006.03.004

      吴福元, 刘传周, 张亮亮, 等. 雅鲁藏布蛇绿岩—事实与臆想[J]. 岩石学报, 2014, 30(2): 293-325

      WU Fuyuan, LIU Chuanzhou, ZHANG Liangliang, et al. Yarlung Zangbo ophiolite: A critical updated view[J]. Acta Petrologica Sinica, 2014, 30(2): 293-325.

      吴福元, 万博, 赵亮, 等.特提斯地球动力学[J]. 岩石学报, 2020, 36(6): 1627−1674.

      WU Fuyuan, WAN Bo, ZHAO Liang, et al. Tethyan geodynamics [J]. Acta Petrologica Sinica, 2020, 36(6): 1627−1674.

      肖文交, Windley BF, 阎全人, 等. 北疆地区阿尔曼太蛇绿岩锆石SHRIMP年龄及其大地构造意义[J]. 地质学报, 2006, 80(1): 32-37 doi: 10.3321/j.issn:0001-5717.2006.01.004

      XIAO Wenjiao, WINDLEY BF, YAN Quanren, et al. SHRIMP Zircon age of the Aermantai ophiolite in the North Xinjiang area, China and its tectonic implications[J]. Acta Geologica Sinica, 2006, 80(1): 32-37. doi: 10.3321/j.issn:0001-5717.2006.01.004

      肖文交, 宋东方, WINDLEY BF, 等. 中亚增生造山过程与成矿作用研究进展[J]. 中国科学: 地球科学, 2019, 49: 1512-1545. doi: 10.1007/s11430-019-9524-6

      XIAO Wenjiao, SONG Dongfang, Windley BF, et al. Research progresses of the accretionary processes and metallogenesis of the Central Asian Orogenic Belt[J]. Science China Earth Sciences, 2019, https://doi.org/10.1007/s11430-019-9524-6.

      肖序常, 汤耀庆, 冯益民, 等. 新疆北部及其邻区大地构造[M]. 北京: 地质出版社, 1992

      XIAO Xuchang, TANG Yaoqing, FENG Yimin. The tectonics of Xinjiang and its adjacent area[M]. Beijing: Geological Publishing House, 1992.

      肖序常, 王军. 西昆仑-喀喇昆仑及其邻区岩石圈结构、演化中几个问题的探讨[J]. 地质论评, 2004, 50(3): 285-294 doi: 10.3321/j.issn:0371-5736.2004.03.013

      XIAO Xuchang, WANG Jun. Discussion on the Lithospheric structure and evolution of the West Kunlun mountain-Karakorum mountains and their adjacent area[J]. Geological Review, 2004, 50(3): 285-294. doi: 10.3321/j.issn:0371-5736.2004.03.013

      许继峰, 陈繁荣, 于学元, 等. 新疆北部阿尔泰地区库尔提蛇绿岩: 古弧后盆地系统的产物[J]. 岩石矿物学杂志, 2001, 20(3): 344-352 doi: 10.3969/j.issn.1000-6524.2001.03.018

      XU Jifeng, CHEN Fanrong, YU Xueyuan, et al. Kuerti ophiolite in Altay of North Xinjiang: Magmatism of an ancient back-arc basin[J]. Acta Petrologica et Mineralogica, 2001, 20(3): 344-352. doi: 10.3969/j.issn.1000-6524.2001.03.018

      许靖华. 西太平洋板内造山作用模式中的大地构造相[J]. 石油大学学报, 1994, 18(5): 1-7

      XU Jinghua. Tectonic facies in a West Pacific model of intra-plate orogenesis[J]. Journal of the University of Petroleum, China, 1994, 18(5): 1-7.

      徐梦婧, 赵佩云, 兰锐, 等. 狮泉河-永珠—嘉黎构造带中西段硅质岩地球化学特征及其沉积环境[J]. 地学前缘, 2020, 27(3): 182-190

      XU Mengqian, ZHAO Peiyun, LAN Rui, et al. Geochemical characteristics and sedimentary enviroments of siliceous in the middle and western parts of the Shiquanhe-Yongzhu-Jiali tectonic belt[J]. Earth Science Frontiers, 2020, 27(3): 182-190.

      徐新, 何国琦, 李华芹, 等. 克拉玛依蛇绿混杂岩带的基本特征和锆石SHRIMP年龄信息[J]. 中国地质, 2006, 33(3): 470-475 doi: 10.3969/j.issn.1000-3657.2006.03.003

      XU Xin, HE Guoqi, LI Huaqin, et al. Basic characteristics of the Karamay ophiolitic mélange, Xinjiang, and its zircon SHRIMP dating[J]. Geology in China, 2006, 33(3): 470-475. doi: 10.3969/j.issn.1000-3657.2006.03.003

      徐学义, 夏林圻, 马中平, 等. 北天山巴音沟蛇绿岩斜长花岗岩SHRIMP锆石U-Pb年龄及蛇绿岩成因研究[J]. 岩石学报, 2006, 22(1): 83-94 doi: 10.3321/j.issn:1000-0569.2006.01.009

      XU Xueyi, XIA Linqi, MA Zhongping, et al. SHRIMP zircon U-Pb geochronology of the plagiogranites of the ophiolite in North Tianshan Mountains and the petrogenesis of the ophiolite[J]. Acta Petrologica Sinica, 2006, 22(1): 83-94. doi: 10.3321/j.issn:1000-0569.2006.01.009

      徐学义, 李荣社, 陈隽璐, 等. 新疆北部古生代构造演化的几点认识[J]. 岩石学报, 2014, 30(6): 1521-1534

      XU Xueyi, LI Rongshe, CHEN Junlu, et al. New constrains on the Paleozoic tectonic evolution of the northern Xinjiang area[J]. Acta Petrologica Sinica, 2014, 30(6): 1521-1534.

      杨富全, 毛景文, 闫升好, 等. 新疆阿尔泰蒙库同造山斜长花岗岩年代学、地球化学及其地质意义[J]. 地质学报, 2008, 82(4): 485-499 doi: 10.3321/j.issn:0001-5717.2008.04.006

      YANG Fuquan, MAO Jinwen, YAN Shenghao, et al. Geochronology, Geochemistry and Geological implications of the Mengku synorogenic plagiogranite pluton in Altay, Xinjiang[J]. Acta Geologica Sinica, 2008, 82(4): 485-499. doi: 10.3321/j.issn:0001-5717.2008.04.006

      杨富全, 张忠利, 王蕊, 等. 新疆阿尔泰稀有金属矿地质特征及成矿作用[J]. 大地构造与成矿学, 2018, 42(6): 1010-1026 doi: 10.16539/j.ddgzyckx.2018.06.006

      YANG Fuquan, ZHANG Zhongli, WANG Rui, et al. Geological characteristics and metallogenesis of rare metal deposits in Altay, Xinjiang[J]. Geotectonica et Metallogenia, 2018, 42(6): 1010-1026. doi: 10.16539/j.ddgzyckx.2018.06.006

      杨高学, 李永军, 刘晓宇, 等. 新疆东准噶尔卡拉麦里钾质玄武岩的地球化学特征、成因及其构造意义[J]. 岩石学报, 2010, 26(8): 2345-2356

      YANG Gaoxue, LI Yongjun, LIU Xiaoyu, et al. Genesis and geochemical characteristics of the Kalamaili potassic basalt in the East Junggar, Xinjiang and tectonic implication[J]. Acta Petrologica Silica, 2010, 26(8): 2345-2356.

      杨经绥, 许志琴, 李海兵, 等. 我国西部柴北缘地区发现榴辉岩[J]. 科学通报, 1998, 43(14): 1544-1549 doi: 10.3321/j.issn:0023-074X.1998.14.023

      YANG Jingsui, XU Ziqin, LI Haibing, et al. The discovery of the eclogite in the north margin of the Chadamu basin, Western China[J]. Chinese Science Bulletin, 1998, 43(14): 1544-1549. doi: 10.3321/j.issn:0023-074X.1998.14.023

      杨经绥, 史仁灯, 吴才来, 等. 北阿尔金地区米兰红柳沟蛇绿岩的岩石学特征和SHRIMP定年[J]. 岩石学报, 2008, 24(7): 1567-1584

      YANG Jingsui, SHI Rendeng, WU Cailai, et al. Petrology and SHRIMP age of the Hongliugou ophiolite at Milan, North Altun, at the northern margin of the Tibetan Plateau[J]. Acta Petrologica Sinica, 2008, 24(7): 1567-1584.

      杨立强, 高雪, 和文言. 义敦岛弧晚白垩世斑岩成矿系统[J]. 岩石学报, 2015, 31(11): 3155-3170

      YANG Liqiang, GAO Xue, HE Wenyan. Late Cretaceous porphyry metallogenic system of the Yidun arc, SW China[J]. Acta Petrologica Sinica, 2015, 31(11): 3155-3170.

      杨天南, 李锦轶, 孙桂华, 等. 中天山早泥盆世陆弧: 来自花岗质糜棱岩地球化学及SHRIMP-U/Pb定年的证据[J]. 岩石学报, 2006, 22(1): 41-48 doi: 10.3321/j.issn:1000-0569.2006.01.004

      YANG Tiannan, LI Jinyi, SUN Guihua, et al. Earlier Devonian active continental arc in Central Tianshan: evidence of geochemical analyses and Zircon SHRIMP dating on mylonitized granitic rock[J]. Acta Petrologica Sinica, 2006, 22(1): 41-48. doi: 10.3321/j.issn:1000-0569.2006.01.004

      尹福光, 唐渊, 徐波. 西南三江地区新生代走滑造山[J]. 沉积与特提斯地质, 2021, 41: 1-14 doi: 10.19826/j.cnki.1009-3850.2020.04001

      YIN Fuguang, TANG Yuan, XU Bo. Cenozoic strike slip orogeny in Sanjiang area, Southwestern China[J]. Sedimentary Geology and Tethyan Geology, 2021, 41: 1-14. doi: 10.19826/j.cnki.1009-3850.2020.04001

      尹继元, 陈文, 袁超, 等. 西准噶尔谢米斯台山东段早石炭世玄武安山岩的成因及意义[J]. 大地构造与成矿学, 2015, 39(5): 876-888 doi: 10.16539/j.ddgzyckx.2015.05.011

      YIN Jiyuan, CHEN Wen, YUAN Chao, et al. Petrogenesis and Tectonic implication of Early Carboniferous Basaltic andesite in the Eastern part of Xiemisitai mountain, northern West Junggar[J]. Geotectonica et Metallogenia, 2015, 39(5): 876-888. doi: 10.16539/j.ddgzyckx.2015.05.011

      余吉远, 李向民, 马中平, 等. 南祁连化隆岩群LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 地质通报, 2012, 45(1): 79-85

      YU Jiyuan, LI Xiangmin, MA Zhongping, et al. The LA-ICP-MA U-Pb age and geological significance of Hualong rock group in South Qilian mountains[J]. Northwestern Geology, 2012, 45(1): 79-85.

      袁超, 孙敏, 肖文交, 等. 原特提斯的消减极性: 西昆仑128公里岩体的启示[J]. 岩石学报, 2003, 19(3): 399-408 doi: 10.3969/j.issn.1000-0569.2003.03.003

      YUAN Chao, SUN Min, XIAO Wenjiao, et al. Subduction polarity of the prototethys: Insights from the Yirba pluton of the western Kunlun range, NW China[J]. Acta Petrologica Sinica, 2003, 19(3): 399-408. doi: 10.3969/j.issn.1000-0569.2003.03.003

      袁四化, 刘永江, 常瑞虹, 等. 从多岛弧盆系构造看西特提斯造山系构造演化[J]. 沉积与特提斯地质, 2021, 41: 316-331 doi: 10.19826/j.cnki.1009-3850.2021.02004

      YUAN Sihua, LIU Yongjiang, CHANG Ruihong, et al. A brief review on the tectonic evolution of the west Tethy sides[J]. Sedimentary Geology and Tethyan Geology, 2021, 41: 316-331. doi: 10.19826/j.cnki.1009-3850.2021.02004

      袁学诚, 徐明才, 唐文榜, 等. 东秦岭陆壳反射地震剖面[J]. 地球物理学报, 1994, 37(6): 749-758 doi: 10.3321/j.issn:0001-5733.1994.06.006

      YUAN Xuecheng, XU Mingcai, TANG Wenbang, et al. Eastern Qinling seismic reflection profiling[J]. Acta Geophysica Sinica, 1994, 37(6): 749-758. doi: 10.3321/j.issn:0001-5733.1994.06.006

      曾庆高, 王保弟, 西洛郎杰, 等. 西藏的缝合带与特提斯演化[J]. 地球科学, 2020, 45: 2735-2763

      ZENG Qinggao, WANG Baodi, XILUO Langjie, et al. Suture zones in Tibetan and Tethys evolution[J]. Earth Science, 2020, 45: 2735-2763.

      张弛, 黄萱. 新疆西准噶尔蛇绿岩形成时代和环境的探讨[J]. 地质论评, 1992, 36(8): 509-524 doi: 10.3321/j.issn:0371-5736.1992.06.009

      ZHANG Chi, HUANG Xuan. Age and tectonic settings of ophiolites in west Junggar, Xinjiang[J]. Geological Review, 1992, 36(8): 509-524. doi: 10.3321/j.issn:0371-5736.1992.06.009

      张德润. 新疆东部地区大地构造问题探讨[J]. 新疆地质, 1990, 8(2): 99-106

      ZHANG Derun. A preliminary study on geotectonics of Eastern Xinjiang[J]. Xinjiang Geology, 1990, 8(2): 99-106.

      张海迪, 吕鹏瑞, 罗彦军, 等. 塔吉克斯坦帕米尔地区构造单元划分及其特征[J]. 地质与勘探, 2019, 55(1): 135-144 doi: 10.12134/j.dzykt.2019.01.013

      ZHANG Haidi, LV Pengrui, LUO Yanjun, et al. Tectonic unit division of the Pamir area in Tajikistan and its geological characteristics[J]. Geology and Exploration, 2019, 55(1): 135-144. doi: 10.12134/j.dzykt.2019.01.013

      张海洋, 牛贺才. 新疆北部晚古生代埃达克岩、富铌玄武岩组合: 古亚洲洋板块向南俯冲的证据[J]. 高校地质学报, 2004, 10(1): 106-113 doi: 10.3969/j.issn.1006-7493.2004.01.010

      ZHANG Haiyang, NIU Hecai. Late Paleozoic adakite and Nb-enriched basalt from Northern Xinjiang: evidence for the southward subduction of the Paleo-Asian ocean[J]. Geological Journal of China Universities, 2004, 10(1): 106-113. doi: 10.3969/j.issn.1006-7493.2004.01.010

      张克信, 潘桂棠, 何卫红, 等. 中国构造-地层大区划分新方案[J]. 地球科学(中国地质大学学报), 2015, 40, 206-233 doi: 10.3799/dqkx.2015.016

      ZHANG Kexin, PAN Guitang, HE Hongwei, et al. New division of tectonic-strata superregion in China[J]. Earth Science-Journal of China University of Geosciences, 2015, 40, 206-233. doi: 10.3799/dqkx.2015.016

      张克信, 何卫红, JIN JS, 等. 洋板块地层在造山带构造-地层区划中的应用[J]. 地球科学(中国地质大学学报), 2020, 45, 2305-2325. doi: 10.3799/dqkx.2020.120

      ZHANG Kexin, HE Hongwei, JIN JS, et al. Application of OPS to Division of Tectonic-Strata Regions in Orogenic Belts[J]. Earth Science-Journal of China University of Geosciences, 2020, 45, 2305-2325. doi: 10.3799/dqkx.2020.120

      张克信, 何卫红, 徐亚东, 等. 论从俯冲增生杂岩带中重建洋板块地层主要类型与序列: 以青藏特提斯二叠系为例[J]. 沉积与特提斯地质, 2021, 41: 137-151

      ZHANG Kexin, HE Hongwei, XU Yadong, et al. Reconstruction of main types for oceanic plate strata in the subduction-accretionary complex and feature of sequence for each type: an example from the Qinghai-Tibet Tethyan Permian strata[J]. Sedimentary Geology and Tethyan Geology, 2021, 41: 137-151.

      张克信, 冯庆来, 宋博文, 等. 造山带非史密斯地层[J]. 地学前缘, 2014, 21(2): 36−47.

      ZHANG Kexin, FENG Qinglai, SONG Bowen, et al. Non-Smithian strata in the orogen[J]. Earth Science Frontiers, 2014, 21(2): 36−47.

      张克信, 何卫红, 骆满生, 等. 中国沉积岩建造与沉积大地构造[M]. 北京: 地质出版社, 2017
      张克信, 徐亚东, 何卫红, 等.中国新元古宙青白口纪早期(1 000-820 Ma)洋陆分布[J]. 地球科学, 2018, 43(11):3837−3852.

      ZHANG Kexin, XU Yadong, HE Weihong, et al. Oceanic and continental blocks distribution during Neoproterozoic Early Qingbaikouan Period (1000-820 Ma) in China[J]. Earth Science, 2018, 43(11):3837−3852.

      张向飞, 李文昌, 杨镇, 等. 青藏高原东缘休瓦促钨钼矿区复式岩体时空分布及演化意义[J]. 沉积与特提斯地质, 2022, 42(1): 105-121 doi: 10.19826/j.cnki.1009-3850.2022.01016

      ZHANG Xiangfei, LI Wenchang, YANG Zhen, et al. Temporal-spatial and evolution implication of the composite intrusion in the Xiuwacu W-Mo deposit, SE Tibetan Plateau[J]. Sedimentary Geology and Tethyan Geology, 2022, 42(1): 105-121. doi: 10.19826/j.cnki.1009-3850.2022.01016

      张亚峰, 蔺新望, 王星, 等. 阿尔泰造山带南缘昆格依特岩体LA-ICP-MS锆石U-Pb年代学、岩石成因及其地质意义[J]. 现代地质, 2014, 28(1): 16-28 doi: 10.3969/j.issn.1000-8527.2014.01.002

      ZHANG Yafeng, LIN Xinwang, WANG Xing, et al. LA-ICP-MS U-Pb geochronology, petrogenesis and its geological implications of Kungeyite plutons in southern Altay orogenic belt[J]. Geoscience, 2014, 28(1): 16-28. doi: 10.3969/j.issn.1000-8527.2014.01.002

      张以榕. 东准噶尔地质及金锡矿产研究[M]. 北京: 地震出版社, 1992

      ZHANG Yirong. Study on the Geology and Au-Sn minerals in Eastern Junggar[M]. Beijing: Earthquake Publishing House, 1992.

      张招崇, 闫升好, 陈柏林, 等. 阿尔泰造山带南缘镁铁质-超镁铁质杂岩体的Sr、Nd、O同位素地球化学及其源区特征探讨[J]. 地质论评, 2006, 52(1): 38-42 doi: 10.3321/j.issn:0371-5736.2006.01.006

      ZHANG Zhaocong, YAN Shenghao, CHEN Bailin, et al. Sr, Nd and O isotope geochemistry of the mafic-ultramafic complexs in the south margin of Altay orogenic belt and discussion on their sources[J]. Geological Review, 2006, 52(1): 38-42. doi: 10.3321/j.issn:0371-5736.2006.01.006

      张招崇, 周刚, 闫升好, 等. 阿尔泰山南缘晚古生代火山岩的地质地球化学特征及其对构造演化的启示[J]. 地质学报, 2007, 81(3): 344-358 doi: 10.3321/j.issn:0001-5717.2007.03.007

      ZHANG Zhaocong, ZHOU Gang, YAN Shenghao, et al. Geology and geochemistry of the Late Paleozoic volcanic rocks of the south margin of the Altai Mountains and implications for tectonic evolution[J]. Acta Geologica Snica, 2007, 81(3): 344-358. doi: 10.3321/j.issn:0001-5717.2007.03.007

      张占武, 崔建堂, 王炬川, 等. 西昆仑康西瓦西北部库尔良早古生代角闪闪长岩花岗闪长岩锆石SHRIMP U-Pb测年[J]. 地质通报, 2007, 26(6): 720-725 doi: 10.3969/j.issn.1671-2552.2007.06.013

      ZHANG Zhanwu, CUI Jiantang, WANG Juchuan, et al. Zircon SHRIMP U-Pb dating of early Paleozoic amphibolite and granodiorite in Korliang, northwestern Kangxiwar, West Kunlun[J]. Geological Bulletin of China, 2007, 26(6): 720-725. doi: 10.3969/j.issn.1671-2552.2007.06.013

      赵振华, 陈华勇, 韩金生. 新疆阿尔泰造山带中生代伟晶岩的稀有金属成矿作用[J]. 中山大学学报(自然科学版) , 2022, 61: 1-26. ZHAO Zhenhua, CHEN Huayong, HAN Jinsheng. Rare metal mineralization of the Mesozoic pegmatite in Altay orogeny, northern Xinjiang[J]. Acta Scientiarum Naturalium Universitis Sunyatseni, 2022, 61, 1-26. doi: 10.13471/j.cnki.acta.snus.2021d058
      朱宝清, 冯益民, 杨军录, 等. 新疆中天山干沟一带蛇绿混杂岩和志留纪前陆盆地的发现及其意义[J]. 新疆地质, 2002, 20(4): 326-330 doi: 10.3969/j.issn.1000-8845.2002.04.006

      ZHU Baoqing, FENG Yimin, YANG Junlu, et al. Discovery of ophiolitic mélange and Silurian foreland basin at Gangou of Tokxun, Xinjiang and their tectonic significance[J]. Xinjiang Geology, 2002, 20(4): 326-330. doi: 10.3969/j.issn.1000-8845.2002.04.006

      朱弟成, 王青, 詹琼窑, 等. 三江北段晚三叠世构造-岩浆作用和几个相关的科学问题[J]. 沉积与特提斯地质, 2021, 41: 232-245 doi: 10.19826/j.cnki.1009-3850.2021.03002

      ZHU Dicheng, WANG Qing, Zhan Qiongyao, et al. Late Triassic tectono-magmatism of northern Sanjiang and associated several scientific problems[J]. Sedimentary Geology and Tethyan Geology, 2021, 41: 232-245. doi: 10.19826/j.cnki.1009-3850.2021.03002

      周鼎武, 苏犁, 简平, 等. 南天山榆树沟蛇绿岩地体中高压麻粒岩SHRIMP锆石U-Pb年龄及构造意义[J]. 科学通报, 2004, 49(14): 1411-1415 doi: 10.3321/j.issn:0023-074X.2004.14.013

      ZHOU Dingwu, SU Li, JIAN Ping, et al. Zircon SHRIMP U-Pb ages of middle-high pressure granulite in Yushugou ophiolite terrane and their tectonic significance, South Tianshan, China[J]. Science Bulletin of China, 2004, 49(14): 1411-1415. doi: 10.3321/j.issn:0023-074X.2004.14.013

      周汝洪, 刘正荣, 裴江平, 等. 新疆天山干沟加里东花岗岩构造环境[J]. 新疆地质, 2009, 27(4): 308-314 doi: 10.3969/j.issn.1000-8845.2009.04.002

      ZHOU Ruhong, LIU Zhengrong, PEI Jiangping, et al. Tectonic setting of the Gangou Caledonian granite in Tianshan of Xinjiang, and its contrast with Per-Cambrian granite in middle Tianshan mountain[J]. Xinjiang Geology, 2009, 27(4): 308-314. doi: 10.3969/j.issn.1000-8845.2009.04.002

      朱文斌, 张志勇, 舒良树, 等. 塔里木北缘前寒武基底隆升剥露史: 来自磷灰石裂变径迹的证据[J]. 岩石学报, 2007, 23(7): 1671-1682 doi: 10.3969/j.issn.1000-0569.2007.07.013

      ZHU Wenbin, ZHANG Zhiyong, SU Liangshu, et al. Uplift and exhumation history of the Precambrian basement, Northern Tarim: Evidence from apatite fission track data[J]. Acta Petrologica Sinica, 2007, 23(7): 1671-1682. doi: 10.3969/j.issn.1000-0569.2007.07.013

      朱永峰, 张立飞, 古丽冰, 等. 西天山石炭纪火山岩SHRIMP年代学及其微量元素地球化学研究[J]. 科学通报, 2005, 50(18): 2004-2014 doi: 10.3321/j.issn:0023-074X.2005.18.014

      ZHU Yongfeng, ZHANG Lifei, GU Libing, et al. SHRIMP Geochronology and trace element geochemistry of the Carboniferous volcanic rocks in Western Tianshan Mountains, China[J]. Science Bulletin of China, 2005, 50(18): 2004-2014. doi: 10.3321/j.issn:0023-074X.2005.18.014

      朱永峰. 中亚成矿域地质矿产研究的若干重要问题[J]. 岩石学报, 2009, 25(6): 1297-1302

      ZHU Yongfeng. Some important issues for the studies on the Central Asian Metallogeny Domain[J]. Acta Petrologica Sinica, 2009, 25(6): 1297-1302.

      朱永峰, 徐新. 新疆塔尔巴哈台山发现早奥陶世蛇绿混杂岩[J]. 岩石学报, 2006, 22(12): 2833-2842 doi: 10.3321/j.issn:1000-0569.2006.12.002

      ZHU Yongfeng, XU Xin. The discovery of Early Ordovician ophiolite mélange in Taerbahatai Mts. , Xingjiang, NW China[J]. Acta Petrologica Sinica, 2006, 22(12): 2833-2842. doi: 10.3321/j.issn:1000-0569.2006.12.002

      朱迎堂, 郭通珍, 张雪亭, 等. 青海西部可可西里湖地区晚三叠世诺利期地层的厘定及其意义[J]. 地质通报, 2003, 22(7): 474-479 doi: 10.3969/j.issn.1671-2552.2003.07.003

      ZHU Yingtang, GUO Tongzhen, ZHANG Xueting, et al. Discovery of Triassic Norian strata in the Hoh Xil Lake area, western Qinghai, and its geological significance[J]. Geological Bulletin of China, 2003, 22(7): 474-479. doi: 10.3969/j.issn.1671-2552.2003.07.003

      朱志新, 王克卓, 徐达, 等. 依连哈比尔尕山石炭纪侵入岩锆石SHRIMP U-Pb测年及其地质意义[J]. 地质通报, 2006, 25(8): 986-991 doi: 10.3969/j.issn.1671-2552.2006.08.017

      ZHU Zhixin, WANG Kezhuo, XU Da, et al. SHRIMP U-Pb dating of zircons from Carboniferous intrusive rocks on the active continental margin of Eren Habirga, West Tianshan, Xinjiang, China, and its geological implications[J]. Geological Bulletin of China, 2006, 25(8): 986-991. doi: 10.3969/j.issn.1671-2552.2006.08.017

      朱志新, 李锦轶, 董连慧, 等. 新疆南天山盲起苏晚石炭世侵入岩的确定及对南天山洋盆闭合时限的限定[J]. 岩石学报, 2008, 24(12): 2761-2766

      ZHU Zhixin, LI Jinyi, DONG Lianhui, et al. The age determination of Late Carboniferous intrusions in Mangqisu region and its constraints to the closure of oceanic basin in South Tianshan, Xinjiang[J]. Acta Petrologica Sinica, 2008, 24(12): 2761-2766.

      朱志新, 董连慧, 王克卓, 等. 西天山造山带构造单元划分与构造演化[J]. 地质通报, 2013, 32(2-3): 297-306 doi: 10.3969/j.issn.1671-2552.2013.02.009

      ZHU Zhixin, DONG Lianhui, WANG Kezhuo, et al. Tectonic division and regional tectonic evolution of West Tianshan organic belt[J]. Geological Bulletin of China, 2013, 32(2-3): 297-306. doi: 10.3969/j.issn.1671-2552.2013.02.009

      左国朝, 刘义科, 张招崇, 等. 中亚地区中、 南天山造山带构造演化及成矿背景分析[J]. 现代地质, 2011, 25(1): 1-14 doi: 10.3969/j.issn.1000-8527.2011.01.001

      ZUO Guochao, LIU Yike, ZHANG Zhaocong, et al. Tectonic Evolution of Central and South Tianshan Orogenic belts in the Central Asia and Mineralization Background[J]. Geoscience, 2011, 25(1): 1-14. doi: 10.3969/j.issn.1000-8527.2011.01.001

      AHMAD I, KHAN S, LAPEN T, et al. Isotopic Ages for Alkaline Igneous Rocks, Including a 26 Ma ignimbrite, from the Peshawar Plain of Northern Pakistan and their Tectonic Implications[J]. Journal of Asian Earth Sciences, 2013, 62: 414-424. doi: 10.1016/j.jseaes.2012.10.025

      ALEXEIVE DV, BISKE YS, WANG B, et al. Tectono-stratigraphic framework and Palaeozoic evolution of the Chinese South Tianshan[J]. Geotectonics, 2015, 49: 93-122. doi: 10.1134/S0016852115020028

      ANCZKIEWICZ R, OBERLI F, BURG JP, et al. Timing of normal faulting along the Indus Suture in Pakistan Himalaya and a case of major 231Pa/235U initial disequilibrium in zircon[J]. Earth and Planetary Science Letters, 2001, 191: 101-114 doi: 10.1016/S0012-821X(01)00406-X

      ARTEMIEVA IM, THYBO H, KABAN MK. Deep Europe today: Geophysical synthesis of the upper mantle structure and lithospheric processes over 3.5Ga[J]. European Lithosphere Dynamics, 2006, 32: 11-41

      BECK RA, BURBANK DW, SERCOMBE WJ, et al. Stratigraphic evidence for an early collision between northwest India and Asia[J]. Nature, 1995, 373: 55-58. doi: 10.1038/373055a0

      BORNEMAN NL, HODGES KV, SOEST MC, et al. Constraints on age of India-Asia collision and pre-collisional subduction metamorphism from the Sangsang region, south Central Tibet[J]. AGU Fall Meeting Abstracts, 2014, T13D–T05D

      BORNEMAN NL, HODGES KV, SOEST MC, et al. Age and structure of the Shyok suture in the Ladakh region of northwestern India: implications for slip on the Karakoram fault system[J]. Tectonics, 2015, 34: 2011-2033 doi: 10.1002/2015TC003933

      BROOKFIELD ME. Geological development and phanerozoic crustal accretion in the western segment of the southern Tien Shan (Kyrgyzstan, Uzebekistan and Tajikistan) [J]. Tectonophysics, 2000, 328: 1-14 doi: 10.1016/S0040-1951(00)00175-X

      BROWN D, SPADEA P, PUCHKOV VN, et al. Arc-continent collision in the Southern Urals[J]. Earth Science Reviews, 2006, 79(3-4): 261-287. doi: 10.1016/j.earscirev.2006.08.003

      BURTMAN S, MOLNAR P, Geological and geophysical evidence for deep subduction of continental crust beneath the Pamir[J]. Geology of Society Ameriacan Special, 1993, 281: 1-76.

      CHAPMAN JB, SCOGGIN SH, KAPP P, et al. Mesozoic to Cenozoic magmatic history of the Pamir[J]. Earth Planet Science Letter, 2018, 482: 181-192. doi: 10.1016/j.jpgl.2017.10.041

      Chen Shenqiang, Chen Hanlin, Zhu Kongyang, et al. Petrogenesis of the Middle-Late Triassic S- and I-type granitoids in the eastern Pamir and implications for the Tanymas-Jinshajiang Paleo-Tethys Ocean[J]. International Journal of Earth Sciences, 2021a.

      CHEN Xin, SCHERT HP, GU Pingyang, et al. Newly discovered MORB-Type HP garnet amphibolites from the Indus-Yarlung Tsangpo suture zone: Implications for the Cenozoic India-Asia collision[J]. Gondwana Research, 2021, 90: 102-117. doi: 10.1016/j.gr.2020.11.006

      CHEVALIER ML, TAPPONNIER P, VANDER Woerd, et al. Spatially constant slip rate along the southern segment of the Karakorum fault since 200ka[J]. Tectonophysics, 2012, 530-531: 152-179. doi: 10.1016/j.tecto.2011.12.014

      DENG Jun, WANG Qingfei, LI Gongjian, et al. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China[J]. Gondwana Research, 2014, 26(2): 419-437 doi: 10.1016/j.gr.2013.08.002

      Ding Lin, Paul K, Wan Xiaoqiao. Paleocene–Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet[J]. Tectonics, 2005, 24(3): 1−18

      DIPIETRO JA, PULLEN A, KROL MA. Geologic history and thermal evolution in the hinterland region, western Himalaya, Pakistan[J]. Earth-Science Reviews, 2021, 223: 103817. doi. org/10.1016/j. earscirev. 2021.103817. doi: 10.1016/j.earscirev.2021.103817

      GAINA C, MüLLER D. Cenozoic tectonic and depth/age evolution of the Indonesian gateway and associated back-arc basins[J]. Earth-Science Reviews, 2007, 83: 177-203. doi: 10.1016/j.earscirev.2007.04.004

      GARZANTI E, GAETANI M. Unroofing history of Late Paleozoic magmatic arc within the “Turan Plate” (Tuarkyr, Turkmenistan) [J]. Sedimentary Geology, 2002, 151: 67-87. doi: 10.1016/S0037-0738(01)00231-7

      GONG Xiaohan, ZHOU Hailong, XU Jifeng, et al. Development of a complex arc–back-arc basin system within the South Tianshan Ocean: Insights from the Wuwamen ophiolitic peridotites[J]. Lithos, 2021, 404-405: 106487doi: org/10.1016/ j.lithos.2021.106487

      HAN Yigui, ZHAO Guochun. Final amalgamation of the Tianshan and Junggar orogenic collage in the southwestern Central Asian Orogenic Belt: Constraints on the closure of the Paleo-Asian Ocean[J]. Earth Sci. Rev. 2018, 186, 129-152. doi: 10.1016/j.earscirev.2017.09.012

      He John, Kapp P, Chapman J B, et al. Structural setting and detrital zircon U–Pb geochronology of Triassic–Cenozoic strata in the eastern Central Pamir, Tajikistan[J]. Geological Society, 2018, 483.

      HEGNER E, KLEMD R, KRöNER A, et al. Mineral agesand P-T conditionsof Late Paleozoic high-pressure eclogite and provenance of melange sediments from Atbashi in the south Tianshan orogen of Kyrgyzstan[J]. American Journal of Science, 2010, 310: 916-950. doi: 10.2475/09.2010.07

      HERRINGTON RJ, ZAYKOV VV, MASLENNIKOV VV, et al. Mineral deposits of the urals andlinks to geodynamic evolution[J]. Economic Geology 100th Anniversary Volume, 2005, 1069-1095.

      HOU Zengqian, ZHENG Yuanchuan, YANG Zhiming, et al. Contribution of mantle components within juvenile lower-crust to collisional zone porphyry Cu systems in Tibet[J]. Mineralium Deposita, 2013, 48(2): 173-192. doi: 10.1007/s00126-012-0415-6

      HOU Zengqian, YANG Zhiming, LU Yongjun, et al. A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones[J]. Geology, 2015, 43: 247-250.

      HSü KJ, Pan GT, Sengör AMC. Tectonic evolution of the Tibetan Plateau, a working hypothesis based on the archipelago model of orogenesis[J]. International Geology Review, 1995, 37: 473-508. doi: 10.1080/00206819509465414

      HU Xiumian, AN Wei, WANG Jiangang, et al, Himalayan detrital chromian spinels and timing of Indus-Yarlung ophiolite erosion[J]. Tectonophysics, 2014, 621: 60-68. doi: 10.1016/j.tecto.2014.02.003

      IMRECKE DB, ROBINSON AC, OWEN LA, et al. Mesozoic evolution of the eastern Pamir[J]. Lithos, 2019, 11: 560-580. doi: 10.1130/L1017.1

      IVANOV KS, PUCHKOV VN, FYODOROV YN, et al. Tectonics of the Urals and adjacent part of the West-Siberian platform basement: Main features of geology and development[J]. Journal of Asian Earth Sciences, 2013, 72(2013): 12-24.

      JAGOUTZ O, ROYDEN L, HOLT AF, et al. Anomalously fast convergence of India and Eurasia caused by double subduction[J]. Nature Geoscience, 2015, 8, 475. doi: 10.1038/ngeo2418

      JIAN Ping, LIU Dunyi, KRöNER A, et al. Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for continental growth[J]. Lithos, 2008, 101(3-4): 233-259. doi: 10.1016/j.lithos.2007.07.005

      KHAN ZA, TEWARI RC. Indus-Yarlung-Tsangpo Suture Zone Concept- A Second Opinion[J]. Journal of Tethys, 2017, 5(3): 218-239.

      KLEMD R, BROCKER M, HACKER BR, et al. New age constrains on the metamorphic evolution of the high-pressure/low-temperature belt in the western Tianshan Mountains, NW China[J]. The Journal of Geology, 2005, 113: 157-168. doi: 10.1086/427666

      KLEMD R, GAO Jun, LI Jilei, et al. Metamorphic evolution of (ultra)-highpressure subduction-related transient crust in the South Tianshan Orogen (Central Asian Orogenic Belt): geodynamic implications[J]. Gondwana Research, 2015, 28: 1-25. doi: 10.1016/j.gr.2014.11.008

      LI Hao, XU Xingwang, BORG G, et al. Geology and geochemistry of the giant Huoshaoyun zinc-lead deposit, Karakorum Range, NW Tibet[J]. Ore Geology Reviews, 2019, 106: 251-272. doi: 10.1016/j.oregeorev.2019.02.002

      LI Jinyi. Permian geodynamic setting of Northeast China and adjacent regions: Closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate[J]. Journal of Asian Earth Sciences, 2006, 26(3-4): 207-224. doi: 10.1016/j.jseaes.2005.09.001

      Li Jinyi, Chen Xuanhua, Wang Zhihong, et al. Late Palaeozoic mineralization and tectonic evolution of the West Junggar metallogenic belt, Central Asia: constraints from Re–Os and 40Ar/39Ar geochronology[J]. International Geology Review, 2016, doi. org/10. 1080/00206814. 2016. 1205525.

      LI Wenchang, PAN Guitang, ZHANG Xiangfei, et al. Tectonic evolution and multi–episodic metallogenesis of the Sanjiang Paleo-Tethys multi-arc-basin-terrane system, SW Tibetan Plateau[J]. Journal of Asian Earth Sciences, 2021, 221, 104932. doi. org/10.1016/j. jseaes. 104932. doi: 10.1016/j.jseaes.2021.104932

      Li Wangchao, Yin Changqing, Zhang Zeming, et al. Low temperature eclogite facies rocks discovered in the Eastern Himalayan Syntaxis: Poly-cyclic metamorphic evolution and implications[J]. Journal of Metamorphic Geology, 2022, doi: 10.1111/jmg.12689.

      LIU Wenliang, XIA Bin, ZHONG Yun, et al. Age and composition of the Rebang Co and Julu ophiolites, central Tibet: implications for the evolution of the Bangong Meso-Tethys[J]. International Geology Review, 2014, 56: 430-47. doi: 10.1080/00206814.2013.873356

      LONG Xiaoping, YUAN Chao, SUN Min, et al. Reworking of the Tarim Craton by underplating of mantle plume-derived magmas: Evidence from Neoproterozoic granitoids in the Kuluketage area, NW China[J]. Precambrian Research, 2011, 187(1-2): 1-14. doi: 10.1016/j.precamres.2011.02.001

      MATSUARU K, EHIRO M, KOJIMA S. On Orbitolina (Foraminiferida) from the Shyok suture zone, Ladakh, NW India[J]. Journal of the Palaeontological Society of India, 2006, 51: 43-49.

      MASLENNIKOV VV, AYUPOVA NR, HERRINGTON RJ, et al. Ferruginous and manganiferous haloes around massive sulphide deposits of the Urals[J]. Ore Geology Reviews, 2012, 47: 5-41. doi: 10.1016/j.oregeorev.2012.03.008

      METCALFE I. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys[J]. Journal of Asian Earth Sciences, 2013, 66, 1-33. doi: 10.1016/j.jseaes.2012.12.020

      MEYER M, KLEMD R, KONOPELKO D. High-pressure mafic oceanic rocks from the Makbal Complex, Tianshan Mountains (Kazakhstan & Kyrgyzstan): implications for the metamorphic evolution of a fossil subduction zone[J]. Lithos, 2013, 177: 207-225. doi: 10.1016/j.lithos.2013.06.015

      MEYER M, KLEMD R, HEGNER E, et al. Subduction and exhumation mechanisms of ultra-high and high-P oceanic and continental crust at Makbal (Tianshan, Kazakhstan and Kyrgyzstan) [J]. Journal of Metamorphic Geology, 2014, 32, 861-884. doi: 10.1111/jmg.12097

      MINTS MV. Tectonics and Geodynamics of Granulite-Gneiss Complexes in the East European Craton[J]. Geotectonics, 2014, 48(6): 498-524.

      MONTERO P, BEA F, GERDES A, et al. Single-zircon evaporation ages and Rb-Sr dating of four major variscan batholiths of the Urals: A perspective on the timing of deformation and granite generation[J]. Tectonophysics, 2000, 317: 93-108. doi: 10.1016/S0040-1951(99)00270-X

      PAN Guitang, WANG Liquan, LI Rongshe, et al. Tectonic evolution of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences, 2012, 53: 3-14. doi: 10.1016/j.jseaes.2011.12.018

      PIRAJNO F, UYSAL I, NAUMOV EA. Oceanic lithosphere and ophiolites: Birth, life and final resting place of related ore deposits[J]. Gondwana Research, 2020, 88(2020): 333-352. doi: 10.1016/j.gr.2020.08.004

      ROBINSON AC, YIN Aa, MANNING CE, et al. Tectonic evolution of the northeastern Pamir: constraints from the northern portion of the Cenozoic Kongur Shan extensional system, western China[J]. Geology Society of American Bulletin, 2004, 116: 953-973. doi: 10.1130/B25375.1

      Robinson A C, Ducea M, Lapen T J. Detrital zircon and isotopic constraints on the crustal architecture and tectonic evolution of the northeastern Pamir[J]. Tectonics, 2012, 31.

      Robinson A C. 2015. Mesozoic tectonics of the Gondwanan terranes of the Pamir plateau[J]. Journal of Asian Earth Sciences, 102: 170−179.

      ROJAS Agramonte, HERWARTZ D, GARCIA Casco. Early Palaeozoic deep subduction of continental crust in the Kyrgyz North Tianshan: evidence from Lu–Hf garnet geochronology and petrology of mafic dikes[J]. Contributions to Mineralogy and Petrology, 2013, 166: 525-543. doi: 10.1007/s00410-013-0889-y

      ROLLAND Y, PêCHER A, PICARD C. Middle Cretaceous back-arc formationand arcevolutionalong theAsian margin: theShyok SutureZone in northern Ladakh (NW Himalaya) [J]. Tectonophysics, 2000, 325: 145-173. doi: 10.1016/S0040-1951(00)00135-9

      RUTTE D, RATSCHBACHER L, SCHNEIDER S, et al. Building the Pamir-Tibetan Plateau-crustal stacking, extensional collapse, and lateral extrusion in the Central Pamir: 1. Geometry and kinematics[J]. Tectonics, 2017, 36: 342-384. doi: 10.1002/2016TC004293

      SAIBI H, ABOUD E, GOTTSMANN J. Curie point depth from spectral analysis of aeromagnetic data for geothermal reconnaissance in Afghanistan[J]. Journal of African Earth Sciences, 2015, 111: 92-99. doi: 10.1016/j.jafrearsci.2015.07.019

      SAKTURA WM, BUCKMAN S, NUTMAN AP, et al. Late Jurassic Changmar Complex from the Shyok ophiolite, NW Himalaya: a prelude to the Ladakh Arc[J]. Geological Magazine, 2020, 158, 239-260.

      Saktura W M, Buckman S, Nutman A P, et al. Jurassic-Cretaceous arc magmatism along the Shyok-Bangong Suture of NW Himalaya: formation of the peri-Gondwana basement to the Ladakh Arc[J]. Journal of the Geological Society, 2021, doi. org/10.1144/jgs2021-035.

      SAVELIEVA GN, NESBITT RW. A synthesis of the stratigraphic and tectonic setting of the Uralian ophiolites[J]. Journal of the Geological Society, 1996, 153: 525-537. doi: 10.1144/gsjgs.153.4.0525

      SCHMIDT J, HACKER BR, RATSCHBACHER L, et al. Cenozoic deep crust in the Pamir[J]. Earth and Planetary Science Letters, 2011, 312: 411-421. doi: 10.1016/j.jpgl.2011.10.034

      SCHWAB M, RATSCHBACHER L, SIEBEL W, et al. Assembly of the Pamirs: Age and origin of magmatic belts from the southern Tien Shan to the southern Pamirs and their relation to Tibet[J]. Tectonics, 2004, 23: TC4002.

      Scotese C R. Plate Tectonic Maps and Continental Drift Animations[M]. Arlington, Texas: Paleomap Project, 2006.

      SEARLE MP, NOBLE SR, HURFORD AJ, et al. Age of crustal melting, emplacement and exhumation history of the Shivling leucogranite, Garhwal Himalaya[J]. Geological Magazine, 1999, 136: 513-525. doi: 10.1017/S0016756899002885

      SELTMANN R, PORTER TM, PIRAJNO F. Geodynamics and metallogeny of the central Eurasian porphyry and related epithermal mineral systems: A review[J]. Journal of Asian Earth Sciences, 2013, 79: 810-841.

      SENGöR AMC, NATALIN BA. Phanerozoic Analogues of Archaean Oceanic Basement Fragments: Altaid Ophiolites and Ophirags[J]. Precambrian Geology, 2004, 13: 657-726.

      SENGöR AMC, SUNAL G, NATALIN BA, et al. Altaids: A review of twenty-five years of knowledge accumulation[J]. Earth Science Reviews, 2022, 228(2022) 104013. doi: 10.1016/j.earscirev.2022.104013

      SHENG Shanbo, WANG Zhen, LIANG Shuang, et al. Sedimentary characteristics and exploration direction in the south of the central block in Pre-Caspian Basin[J]. Earth and Environmental Science, 2020, 467 (2020) 012020.

      Shroder J F, Eqrar N, Waizy H, et al. Review of the Geology of Afghanistan and its Water Resources[J]. International Geology Review, 2021.

      SIMONOV VA, SAKIEV KS, VOLKOVA NI, et al. Conditions of formation of the Atbashi Ridge eclogites (South Tien Shan) [J]. Russian Geology and Geophysics, 2008, 49: 803-815. doi: 10.1016/j.rgg.2008.04.001

      ST-ONGE MR, RAYNER N, PALIN RM, et al. Integrated pressure-temperature-time constraints for the Tso Morari dome (Northwest India): Implications for the burial and exhumation path of UHP units in the western Himalaya[J]. Journal of Metamorphic Geology, 2013, 31: 469-504. doi: 10.1111/jmg.12030

      STüBNER K, RATSCHBACHER L, WEISE C, et al. The giant Shakhdara migmatitic gneiss dome, Pamir, India-Asia collision zone: 2. Timing of dome formation[J]. Tectonics, 2013, 32: 1404-1431. doi: 10.1002/tect.20059

      TAGIRI M, YANO T, BAKIROV A, et al. Mineral parageneses and metamorphic P-T paths of ultrahigh-pressure eclogites from Kyrghyzstan Tien-Shan[J]. Island Arc, 1995, 4: 280-292. doi: 10.1111/j.1440-1738.1995.tb00150.x

      TAPPONNIER M, MATTAUER M, PROUST F, et al. Mesozoic ophiolites, sutures, and large-scale tectonic movements in Afghanistan[J]. Earth Planet Science Letter, 1981, 52: 355-371. doi: 10.1016/0012-821X(81)90189-8

      THANH NX, RAJESH VJ, ITAYA T, et al. A Cretaceous forearc ophiolite in the Shyok suture zone, Ladakh, NW India: implications for the tectonic evolution of the Northwest Himalaya[J]. Lithos, 2012, 155: 81-93. doi: 10.1016/j.lithos.2012.08.016

      TONG Yabo, YANG Zhenyu, ZHENG Liandi, et al. Internal crustal deformation in the northern part of Shan-Thai Block: New evidence from paleomagnetic results of Cretaceous and Paleogene red-beds[J]. Tectonophysics, 2013, 608: 1138-1158. doi: 10.1016/j.tecto.2013.06.031

      Villarreal D P, Robinson A C, Carrapa B, et al. Evidence for Late Triassic crustal suturing of the Central and Southern Pamir[J]. Journal of Asian Earth Sciences, 2020, X3.

      WAN Bo, WU Fuyuan, CHEN Ling, et al. Cyclical one-way continental rupture-drift in the Tethyan evolution: Subduction-driven plate tectonics[J]. Scence China (Earth Sciences), 2019, 62(12): 2005-2016. doi: 10.1007/s11430-019-9393-4

      Wang Rui, Zhu Dicheng, Wang Qing, et al. Porphyry mineralization in the Tethyan orogen[J]. Science China-Earth Sciences, 2020a, 63: 2029–2041.

      WANG Shifeng, TANG Wenkun, LIU Yiduo, et al. Rushan-Pshart Paleo-Tethyan suture deduced from geochronological, geochemical, and Sr–Nd–Hf isotopic characteristics of granitoids in Pamir[J]. Lithos, 2020, 364-365.

      Wang Shifeng, Fu Xiugen, Liu Yiduo, et al. Bitu ophiolite in eastern Tibet: The last piece of the jigsaw puzzle in the Paleotethyan regime along the eastern Cimmerian continental margin[J]. Lithos, 2021a, 406-407,106520.

      WANG Tao, HONG Dawei, JAHN BM, et al. Timing, petrogenesis, and setting of Paleozoic synorogenic intrusions from the Altai mountains, Northwest China: Implications for the tectonic evolution of an accretionary orogeny[J]. The Journal of Geology, 2006, 735-751.

      WANG Xiaojun, SONG Yong, BIAN Baoli, et al. Basement structure of the Junggar Basin[J]. Earth Science Frontiers, 2021b, 28(6): 235-255.

      WILKE FD, O’BRIEN PJ, SCHMIDT A, et al. Subduction, peak and multi-stage exhumation metamorphism: Traces from one coesite-bearing eclogite, Tso Morari, western Himalaya[J]. Lithos, 2015, 231: 77-91. doi: 10.1016/j.lithos.2015.06.007

      W WINDLEY BF. , KRöNER A, GUO Jinghui, et al. Neoproterzoic to Paleozoic geology of the Altai Orogen, NW China: new zircon age data and tectonic evolution[J]. Journal of Geology, 2002, 110: 719-737. doi: 10.1086/342866

      XIAO Wenjiao, WINDLEY BF, LIU Deyou, et al. Accretionary tectonics of the Western Kunlun Orogen, China: a Paleozoic-early Mesozoic, long-lived active continental margin with implications for the growth of southern Eurasia[J]. Journal of Geology, 2005, 113: 687-705. doi: 10.1086/449326

      XIAO Wenjiao, HAN Chunming, YUAN Chao, et al. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China: Implications for the tectonic evolution of central Asia[J]. Journal of Asian Earth Sciences, 2008, 32: 102-117. doi: 10.1016/j.jseaes.2007.10.008

      XIAO Wenjiao, WINDLEY BF, HUANG Baochun, et al. End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: Implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia[J]. International Journal of Earth Sciences, 2009, 98(6): 1189-1217. doi: 10.1007/s00531-008-0407-z

      XIAO Wenjiao, WINDLEY BF, ALLEN MB, et al. Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage[J]. Gondwana Research, 2013, 23: 1316-1341. doi: 10.1016/j.gr.2012.01.012

      XIAO Wenjiao, SANTOSH M. The western Central Asian Orogenic Belt: A window to accretionary orogenesis and continental growth[J]. Gondwana Research, 2014, 25, 1429-1444. doi: 10.1016/j.gr.2014.01.008

      XIAO Wenjiao, WINDLEY BF, SUN Shu, et al. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion[J]. Annual Review of Earth and Planetary Sciences, 2015, 43, 477-507. doi: 10.1146/annurev-earth-060614-105254

      XU Xin, SONG Shuguang, Allen MB, et al. An 850-820Ma LIP dismembered during breakup of the Rodinia supercontinent and destroyed by Early Paleozoic continental subduction in the northern Tibetan Plateau, NW China[J]. Precambrian Research, 2016, 282: 52-73. doi: 10.1016/j.precamres.2016.07.007

      YANG Gaoxue, LI Yongjun, Santosh M, et al. Geochronology and geochemistry of basalts from the Karamay ophiolitic mélange in West Junggar (NW China): Implications for Devonian-Carboniferous intra-oceanic accretionary tectonics of the southern Altaids[J]. GSA Bulletin, 2013, 125(4): 401-419.

      YANG Jingsui, Dobrzhinetskaya LF, BAI Wenji, et al. Diamond- and coesite-bearing chromitites from the Luobusa ophiolite, Tibet[J]. Geology, 2007, 35: 875-878.

      YANG Liqiang, DENG Jun, GAO Xue, et al. Timing of formation and origin of the Tongchanggou porphyry–skarn deposit: Implications for Late Cretaceous Mo–Cu metallogenesis in the southern Yidun Terrane, SE Tibetan Plateau[J]. Ore Geology Reviews, 2017, 81: 1015-1032. doi: 10.1016/j.oregeorev.2016.03.015

      ZENG Yunchuan, XU Jifeng, CHEN Jianlin, et al. Geochronological and geochemical constraints on the origin of the Yunzhug ophiolite in the Shiquanhe-Yunzhug-Namu Tso ophiolite belt, Lhasa Terrane, Tibetan Plateau[J]. Lithos, 2018, 300-301: 250-260. doi: 10.1016/j.lithos.2017.11.025

      ZHANG Lifei, ELLIS D, JIANG Wenbo. Ultrahigh-pressure metamorphism in western Tianshan, China: part I. Evidence from inclusions of coesite pseudomorphs in garnet and from quartz exsolution lamellae in omphacite in eclogites[J]. American Minerals, 2002, 87: 853-860. doi: 10.2138/am-2002-0707

      ZHANG Qichao, LIU Yan, WU Zhenzhen, et al. Late Triassic granites from the northwestern margin of the Tibetan Plateau, the Dahongliutan example: Petrogenesis and tectonic implications for the evolution of the Kangxiwa paleo-Tethys[J]. International Geology Review, 2019, 61(2): 175-194. doi: 10.1080/00206814.2017.1419444

      ZHANG Xiangfei, LI Wenchang, YANG Zhen, et al. Stable isotopes and Fluid Inclusions constraints on the Source and Evolution of Ore Fluids in the Xiuwacu W-Mo Granite-related Quartz-vein deposit, Yunnan Province, China[J]. Ore Geology Reviews, 2021, 136, 104245: doi. org/10.1016/ j. oregeorev. 104245. doi: 10.1016/j.oregeorev.2021.104245

      ZHANG Xiangfei, LI Wenchang, YANG Zhen, et al. Implications of aplite dykes for mineralization in the Late Cretaceous vein-type Xiuwacu W-Mo deposit in the southern Yidun Terrane, SE Tibetan Plateau[J]. Journal of Asian Earth Sciences, 2020, 204, 104555: doi. org/10.1016 /j. jseaes. 104555. doi: 10.1016/j.jseaes.2020.104555

      ZHENG Yongfei, MAO Jinwen, CHEN Yanjing, et al. Hydrothermal ore deposits in collisional orogens[J]. Science Bulletin, 2019, 64: 205-212. doi: 10.1016/j.scib.2019.01.007

      ZHU Dicheng, ZHAO Zhidan, NIU Yaoling, et al. Theorigin and pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research, 2013, 23: 1429-1454. doi: 10.1016/j.gr.2012.02.002

      ZHU Dicheng, ZHAO Zhidan, NIU Yaoling, et al. The Lhasa Terrane: record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011, 301: 241-55. doi: 10.1016/j.jpgl.2010.11.005

    • 期刊类型引用(3)

      1. 陈雪,汪小祥,景山,张杰,张响荣. 宁镇矿集区岩石风化成土过程中重金属迁移富集特征. 西北地质. 2025(01): 231-244 . 本站查看
      2. 于生慧,郑江江,李航,赵亮,张蕾,花莉. 东秦岭钼矿区典型沉积物形态分析及钼的迁移行为研究. 中国环境科学. 2025(02): 943-953 . 百度学术
      3. 徐友宁,陈华清,柯海玲,龚慧山,程秀花,张明祖,王晓勇,赵振宏. 蒿坪河流域石煤矿区河流铝的白色污染及其成因分析. 西北地质. 2023(04): 128-140 . 本站查看

      其他类型引用(2)

    图(4)  /  表(2)
    计量
    • 文章访问数:  873
    • HTML全文浏览量:  264
    • PDF下载量:  311
    • 被引次数: 5
    出版历程
    • 收稿日期:  2023-03-04
    • 修回日期:  2023-04-10
    • 录用日期:  2023-04-10
    • 网络出版日期:  2023-04-22
    • 刊出日期:  2023-08-19

    目录

    /

    返回文章
    返回