Metamorphic P–T Conditions and In–situ Rb–Sr Geochronology of the Kuanping Group in the Laoyu Area of the Qinling Orogenic Belt
-
摘要:
秦岭造山带涝峪地区发育宽坪岩群的典型剖面,是研究宽坪岩群变质变形、构造热历史的重要区域。然而,由于缺乏对该地区宽坪岩群变质温压条件和年代学的约束,导致区域变质与多期变形事件的关系及地质意义认识仍不清楚。笔者以该地区宽坪岩群SN向剖面中的二云母石英片岩、含石榴子石二云母石英片岩、绿片岩和大理岩为研究对象,开展了详细的岩相学研究。在此基础上,重点对二云母石英片岩和含石榴子石二云母石英片岩进行了黑云母Ti温度计、多硅白云母地质压力计、变质相平衡模拟和原位LA–ICP–MS黑云母和白云母Rb–Sr年代学研究,进而探讨了涝峪地区宽坪岩群经历多期构造热事件的意义。野外和岩相学观察发现二云母石英片岩和绿片岩发生了强烈的变形,金云母大理岩经历了强烈的糜棱岩化作用。黑云母Ti温度计和多硅白云母压力计限定得到二云母石英片岩样品KP-3和KP-4的变质温压条件为300~500 ℃、2.0~8.0 kbar,对应的平均值为440 ℃、4.0 kbar。黑云母Ti温度计限定得到含石榴子石二云母石英片岩样品KP2202的变质温度为652~683 ℃。变质相平衡模拟P–T视剖面图计算得到二云母石英片岩样品KP-3和KP-4的变质温压条件为400~480 ℃和2.0~10 kbar;而含石榴子石二云母石英片岩样品KP2202的变质温压条件为645~680 ℃、8.0~9.0 kbar。综合地质温压计和相平衡模拟的结果,可以确定二云母石英片岩为绿片岩相变质作用的产物,而含石榴子石二云母石英片岩经历了低角闪岩相变质作用。原位LA–ICP–MS黑云母和白云母Rb–Sr分析显示二云母石英片岩记录两期等时线年龄,分别为~290 Ma和~155 Ma,而含石榴子石二云母石英片岩记录的等时线年龄为~110 Ma。因此涝峪地区宽坪岩群中的二云母石英片岩记录了3期等时线年龄,分别为~290 Ma、~155 Ma和~110 Ma。结合前人的研究结果,3期等时线年龄均代表了后期构造热事件的时代,其中~290 Ma的等时线年龄与古特提斯洋向北俯冲作用相对应,而~155 Ma和~110 Ma的等时线年龄可能与中生代时期北秦岭构造带发生强烈的变形和花岗岩岩浆活动导致的热重置有关。
Abstract:The laoyu area of the Qinling orogenic belt has a typical section of the Kuanping group, which is important for studying the metamorphism, deformation, and tectonothermal history of the Kuanping group. However, the metamorphic P–T conditions and chronology of the Kuanping group in this region are still lacking, which hinders our understanding of the relationship between its regional metamorphism and later deformation events, as well as their geological significances. In this study, detailed petrographic studies were carried out on two–mica quartz schist, garnet–bearing two–mica quartz schist, greenschist, and marble in the north–south section of the Kuanping group in this area. Based on this, the geological significances of multiple tectonothermal events that the Kuanping group in the Laoyu region underwent were examined with a focus on two-mica quartz schist and garnet–bearing two–mica quartz schist using Ti–in–biotite thermometry, phengite geobarometry, phase equilibrium modelling, and in situ LA–ICP–MS biotite and muscovite Rb–Sr dating. According to field and petrographic observations, two–mica quartz schist and greenschist were both significantly deformed, and phlogopite marble suffered strong mylonitization. The Ti–in–biotite thermometer and phengite geobarometer yielded the metamorphic PT conditions of 300~500 ℃ and 2.0~8.0 kbar (average values are 440 ℃ and 4.0 kbar) for the two–mica quartz schist samples KP-3 and KP-4. The Ti–in–biotite thermometry constrained the metamorphic temperature of the garnet–bearing two–mica quartz schist sample KP2202 to be 652~683 ℃. According to the PT pseudosection modeling, the metamorphic PT conditions of the two–mica quartz schists and and the garnet–bearing two–mica quartz schists are 400~480 ℃ and 2.0~10 kbar, and 645~680 ℃ and 8.0~9.0 kbar, respectively. On the basis of the results from the geothermobarometry and phase equilibrium modelling, the two–mica quartz schist is the consequence of greenschist–facies metamorphism, whereas the garnet–bearing two–mica quartz schist formed by low–amphibolite facies metamorphism. In–situ LA–ICP–MS biotite and muscovite Rb–Sr dating shows that the two–mica quartz schist records two isochron ages of ~290 Ma and ~155 Ma, while the garnet–bearing two–mica quartz schist records an isochron age of ~110 Ma. Consequently, the two–mica quartz schists in the Kuanping group of the Laoyu region record three isochron ages, which are ~290 Ma, ~155 Ma, and ~110 Ma. Combined with the results of previous studies, all three isochron ages represent the timings of late tectonothermal events, where the isochron age of ~290 Ma corresponds to the northward subduction of the paleo–Tethys Oceanic crust, while the isochron ages of ~155 Ma and ~110 Ma may be related to the intense deformation and thermal resetting caused by granitic magmatism in the North Qinling tectonic belt during the Mesozoic.
-
生态系统不仅创造和维持了人类必要的生存环境条件,而且为人类提供了生产生活资料以及休闲和审美享受(李双成等,2018;程静等,2021)。生态系统的产品和服务维系着人类的生命活动,也反映出生态系统的健康程度,影响着人类的幸福指数。国土空间格局变化甚至结构失衡一个主重要的原因就是生态系统的完整性和组成成分遭到破坏,引起服务价值减少或者失衡。因此,将生态系统服务功能价值纳入国土空间优化决策考量中,解决国土空间冲突,提出优化的对策建议,是新时期国土空间优化与管控的关键所在,也是服务地区高质量发展和解决生态环境问题的有效途径。
面对生态危机、环境与发展之间的矛盾,人类与生态系统之间的关系、生态系统服务价值方面的研究工作相继开展。1970年,SCEP(Study of Critical Environmental Service)在《人类对全球环境的影响报告》中首次提出了生态系统服务功能的“Service(服务)”一词,生态系统价值评价由此展开(赵海燕,2019),其中Costanza的研究最具有代表性(Costanza,2001,2008,2009,2012)。2001年,由联合国组织的千年生态系统评估工作组在全球和区域尺度开展“生态系统与人类福利”的研究,评估全球生态系统过去、现在和未来的生态系统服务价值,是目前对生态系统服务价值规模最大的一次评估工作。总体上,关于生态系统服务价值评估中,大体可以分为单个生态系统的价值评估、单项生态系统服务价值以及区域尺度的生态系统服务价值。当量因子法由学者Constanza提出,谢高地等人结合中国国情,对单位面积价值当量因子静态评估方法进行了改进和发展,构建了中国的生态系统服务价值当量系数,为国内生态服务价值评价奠定了基础。前人在这方面做了探索性研究(张馨芳,2014;马淑花,2018;王小莉,2018;梁庆恒,2019),为生态系统服务价值评估提供了有益的参考。
宁夏沿黄经济区位于西北干旱−半干旱过渡地带,是黄河上游重要的生态屏障区,其生态问题不仅关乎自身及周边省区的发展,而且关乎西北地区乃至整个国家的发展和生态安全。前人针对宁夏生态系统服务价值、生态保护补偿机制做了很多的探索研究工作(仲俊涛,2013;王重玲,2014;乔斌,2016;徐志涛,2016;徐志涛,2016),为进一步开展干旱−半干旱地区生态系统科学管理、土地资源合理有效配置以及生态保护政策制定与实施提供科学依据。随着国家“双碳”战略的深入实施,宁夏引黄生态经济区作为重要生态功能区,发挥生态系统服务价值潜力,提升生态碳汇量,助力生态优先绿色发展意义重大。
纵观国内外研究现状,在该领域的研究工作仍处于探索中,在决策过程中没有受到足够的重视。因此,笔者以宁夏沿黄经济区为研究区,基于ArcGIS平台,采用修正当量因子法,估算5大生态系统11种生态服务功能的价值,分析其空间分布特征和各项服务功能占比,探索其驱动因素,提出提升路径,服务黄河流域宁夏段生态保护与高质量发展先行区建设。
1. 研究区概况
宁夏沿黄生态经济区位于宁夏北部,地理坐标为E 104°17′~106°57′,N 37°25′~39°23′,海拔为956~3542 m,南起中卫沙坡头,北至石嘴山,以青铜峡为界分为银川平原和卫宁平原,包括银川市、石嘴山市全域以及吴忠市利通区、青铜峡市和中卫市沙坡头区、中宁县共13个县(市、区),面积为226.92 km2,占宁夏总面积的43.68%。银川平原由贺兰山洪积和黄河冲积而成,地势平坦。卫宁平原位于卫宁北山与香山–烟筒山–牛首山之间,呈带状河谷平原,长约为100 km,宽为10~15 km。经济区地貌类型主要包括山地、丘陵、台地、平原和沙漠5个类型(图1)。区内气候干旱,冬寒漫长,夏日短,少酷暑,日照充足,干旱少雨,风大沙多。截止2018年底,常住人口为4.53×108人,占宁夏全区65.91%(城镇人口占全区78.22%);地区生产总值为3.21×10元,占宁夏全区86.67%;耕地面积占宁夏全区33.81%;粮食产量为2.22×109 kg,占宁夏全区的56.42%。
2. 数据及评估方法
2.1 数据来源
文中采用的宁夏1980~2020年土地利用数据来源于中国科学院地理科学与资源研究所提供的1 km栅格数据。其中,2020年的数据采用第三次国土调查数据。
2.2 评估方法
参照中科院地理科学与资源研究所提供的土地利用分类数据,对宁夏沿黄经济区生态系统进行划分:将土地利用类型中的水田、旱地划分为农田生态系统;将针阔混交、阔叶、针叶、灌木划分为森林生态系统;将灌草丛、草甸、草原划分为草地生态系统;将水系、湿地划分为水域生态系统;将城镇用地、农村居民点其他建设用地划为城市生态系统;将裸地、未利用地划分为荒漠生态系统。生态系统服务是生态系统为人类的生存和发展提供的物质与环境,笔者可将生态系统服务大致可分为供给服务、调节服务、支持服务和文化服务4大类。
当量因子法是生态系统面积与单位面积当量因子价值相乘所得。生态系统食物生产、原材料生产、气体调节、气候调节、净化环境、维持养分循环、生物多样性和美学景观功能与生物量总体呈正相关关系,水资源供给和水文调节与降水变化相关,而土壤保持与降水、地形坡度、土壤性质和植被盖度密切相关。基于上述认识,以宁夏沿黄经济区为例,笔者进一步分析确定NPP、降水和土壤保持调节的时空动态因子,对相应的当量因子进行修正和调节(图2,表1)。
因此,笔者利用NPP、降水和土壤保持调节,结合生态系统服务价值基础当量表,通过下式进行修正:
$$ {F}_{ni}=\left\{\begin{array}{c}{P}_{i}\times {F}_{n1}\\ {R}_{i}\times {F}_{n2}\\ {S}_{i}\times {F}_{n3}\end{array}\right. $$ (1) 式中:
$ {F}_{ni} $ 指某种生态系统在第i地区第n类生态系统服务功能的单位面积价值当量因子;NPP时空调节因子(
$ {P}_{i} $ )计算方法如下式:$$ {P}_{i}={B}_{i}/\overline{B} $$ (2) 式中:
$ {B}_{i} $ 指该类生态系统第i地区的NPP(t/hm2),$ \bar{B} $ 表示全国范围该类生态系统的年均NPP(t/hm2)。降水时空调节因子(
$ {R}_{ij} $ )具体计算方法如下式:$$ {R_{ij}} = {W_{ij}}/\overline W $$ (3) 式中:
$ W_{b} $ 指第i地区第j月的平均单位面积降水量(mm/hm2);$ \bar{W} $ 是指全国年均单位面积降雨量(mm/hm2)。土壤保持时空调节因子(
$ {S}_{ij} $ ),借鉴国际估算土壤侵蚀应用最广的土壤流失方程,构建各地区土壤保持价值当量因子变异调节,具体计算方式为:$$ S_{ij} = E_{ij}/\overline E $$ (4) 式中:
$ E_{i j} $ 为该生态系统第i地区第j月的土壤保持模拟量;$ \bar{E} $ 表示全国单位面积平均土壤保持模拟量。表 1 单位面积生态系统服务价值当量统计表(万元/hm2·a)Table 1. Equicalent factor table of ecosystem service value (104 yuan/hm2.a)生态系统 供给服务 调节服务 支持服务 文化服务 食物
生产原料
生产水资
源供给气体
调节气候
调节净化
环境水文
调节水土
保持维持
养分循环生物
多样性美学
景观旱地 0.5485 0.2581 0.0060 0.4323 0.2323 0.0645 0.0804 1.0300 0.0774 0.0839 0.0387 针阔混交 0.2000 0.4581 0.1102 1.5164 4.5363 1.2841 1.0451 2.8600 0.1420 1.6777 0.7356 灌木 0.1226 0.2775 0.0655 0.9098 2.7295 0.8259 0.9974 1.7200 0.0839 1.0131 0.4452 草原 0.0645 0.0903 0.0238 0.3291 0.8647 0.2839 0.2918 0.6200 0.0323 0.3614 0.1613 水系 0.5162 0.1484 2.4683 0.4969 1.4777 3.5813 30.4410 0.9300 0.0452 1.6454 1.2196 湿地 0.3291 0.3226 0.7711 1.2260 2.3230 2.3230 7.2142 2.3100 0.1161 5.0783 3.0521 荒漠 0.0065 0.0194 0.0060 0.0710 0.0645 0.2000 0.0625 0.1300 0.0065 0.0774 0.0323 裸地 0.0000 0.0000 0.0000 0.0129 0.0000 0.0645 0.0089 0.0200 0.0000 0.0129 0.0065 3. 结果分析
3.1 生态系统服务价值结构组成
通过评估结果,经济区生态系统服务价值仍有挖掘潜力,水域生态系统和草地生态系统贡献较大,以水文调节、气候调节、水资源供给和气体调节服务价值为主(图3、图4)。2020年,经济区生态系统服务价值总量达到59.8亿元,生态系统服务价值总体上:调节服务价值>供给服务价值>支持服务>文化服务价值(图3),其中以水文调节、水资源供给、气候调节和气体调节服务价值为主,占总生态服务价值比重分别为59.07%、8.97%、5.02%、4.91%(图3);受各类生态系统分布和单位面积生态系统服务功能强弱的综合影响,各类生态系统的生态系统服务价值贡献率有很大差异,区内水系生态系统和草地生态系统对经济区生态系统总服务价值的贡献较大,贡献率分别为42.46%和23.76%,其次为湿地、农田、林地、荒漠等。
通过评估,可以看出经济区各分项系统服务功能价值中,水系生态系统的价值最高,约占总价值量的42.46%。林地生态体系对土壤的保护以及防止水土流失的功能显著,同时在土壤保护功能中耕地也起到了相当大的作用。提供食物生产功能的主要用地类型为耕地与林地。耕地在气候调节功能中也占有相当一定份额,而水域对于水文调节功能也具有重要作用。林地、耕地、水域在生物多样性功能中提供价值比重较大,其中林地与水域生态系统中外界影响较小,可以充分的发挥生物多样化的功能性。在娱乐及文化功能中林地和水域提供的价值量较大。
在全部生态系统服务功能中,食物生产、娱乐文化以及废物处理功能比重较小,在保持研究区生态系统功能的稳定性还需加强以上几项功能,对于土地利用结构的调整中应该相对应的对提供以上功能的地类进行优化与配置。
3.2 生态系统服务价值空间分布差异性特征
经济区生态系统服务价值呈现出“中间高,四周低;盆地和山区高,荒漠和丘陵低”的空间特征(图5)。总体上看,各区县的生态系统服务价值及其单位面积价值高值区主要分布在银川盆地、卫宁盆地以及贺兰山区高海拔林地地区,一般的高值区的农田或林地覆盖率较高,生态环境保护较好;生态系统服务价值的低值区主要分布在盆地周边得荒漠丘陵地带,近年来,荒漠区光伏新能源产业、宁夏香山的硒砂瓜高品质农业的发展,提升了荒漠地区的生态系统服务价值。
3.3 生态系统服务价值时间维度差异性特征
2010~2020年,10年间生态系统服务价值呈增长趋势,其中美学景观、水资源供给、生物多样性和水文调节增长较快(图6),植被覆盖度、湿地面积等都有所增加,国土空间格局逐渐趋于合理,但与经济发展速度相比还处于低协调度状态。10年间,该经济区生态系统服务价值增长率为11.55%,生态系统的文化服务、调节服务以及供给服务增加较快,其中水资源供给、水文调节、美学景观、食物生产等服务价值增长较快,增长比率分别为16.43%、15.87%、8.15%和7.2%,说明经济区国土空间规划格局趋于合理,促进生态系统服务价值的提高,对经济的平稳发展具有重要意义。但与当地的GDP、人均消费的增长,还处于低协调度状态。
3.4 生态系统服务价值的驱动因素分析
3.4.1 地形地貌
地形地貌对沿黄生态经济区生态系统服务价值具有一定的控制作用。区内主要分为银川平原和卫宁平原2部分。银川平原西部贺兰山山势巍峨,是天然的生态屏障,其生态服务价值也是相对高值区。平原区沟渠纵横、农田密布、湖沼星罗棋布,是重要的农林牧副渔生产区,生态系统服务价值就相比较高。东部陶灵盐台地势波状起伏,主要有农田、荒漠区、能源基地等,生态服务价值就相对较低。卫宁平原西高东低,南北高中间低,主要有黄河冲积平原、丘陵荒漠和冲洪积高台地三大地貌单元。丘陵荒漠主要分布于腾格里沙漠边缘地带,系西北季风搬运的粉细砂堆积而成,地貌形态呈新月形沙丘、沙丘链和草丛沙丘、沙地等,其生态系统服务价值就相对较低,但也是目前新能源的一个潜力区。黄河冲积平原区地势平坦,主要为居民区和农田,生态系统服务价值相对较高。平原区南侧为南山台子,为第四纪冲积和洪积作用形成的高台地,地势较平坦,其生态系统服务价值相对荒漠区来说较高,但是小于平原区。
3.4.2 人类活动的扰动
生态系统服务功能价值变化和人类活动扰动、社会经济发展密切相关。自古以来,人类依水而生,在自然条件的基础上,也在加以改造。如银川盆地有着悠久灌溉史,有着秦渠、汉渠等古老的渠系,经历了古灌渠系阶段、现代渠系阶段(引灌阶段、排灌阶段、田园都市阶段),滋养了银川平原的农业发展。因此,银川盆地的生态系统服务价值总体高于其他地区。
4. 讨论
4.1 区内生态系统碳汇与生态服务价值相关性较强
据《宁夏沿黄生态经济区综合地质调查报告》,以第三次全国国土调查数据为依据,采用固碳速率法,初步评价了不同生态系统的碳汇能力,2020年宁夏回族自治区生态系统碳汇量约为459.92×104 t/a,且高值集中区域分布在“两带、五区”(马洪云等,2021),两带分别为沿黄河、清水河两带,五区分别是:南华山自然保护区、六盘山区、贺兰山保护区、罗山保护区、白芨滩自然保护区。生态服务价值与生态系统碳汇量的分布特征相似,存在区域差异性,南部山区、银川和卫宁盆地地区生态系统碳汇与社会经济发展水平匹配度稍好,周边荒漠生态系统碳汇、生态服务价值较低。
4.2 基于国土空间优化的生态服务价值提升路径
在重点城市、能源富集区域、黄河和清水河沿线打造多元素、多层次、网络化的复合型用地优化格局,落实生态系统碳汇用地调整,维护自治区生态系统碳平衡,增强碳汇质量,提升生态服务价值。在空间布局上,以银川市、吴忠市、石嘴山市、中卫市、固原市等重点城市和人口聚集区为节点,以河流为生态廊道,联通重点城市、人口聚集区、生态保护区,建立生态本体相连的生态走廊,疏散城市热岛效应。在城市中,混合土地利用类型,通过增加城市内部公园绿地面积为主,在城市周边布局生态公益林。
提升能源开发高新技术,延伸能源产业延伸链,降低能耗,加强能源的绿色开发和生态保护修复协同发展的可持续道路。在宁夏北部能源富集区,发展和提升能源基地开发的高新技术,禁止老旧能源发展技术,加快产业延伸链,降低单位GDP能耗,建议在能源基地周围建立大型生态公益林地,增加能源基地周围的碳汇量,优化提升生态服务价值。
4.3 考虑水、土资源约束,实施生态修复工程,促进生态服务价值显化
考虑水土资源约束,宁夏北部引黄灌区,地势平坦,土壤肥沃,应优化产业结构,加快生态廊道建设,打造绿色生态城市和沿黄黄金生态廊道;宁夏中部干旱带,干旱少雨,风大沙多,土地贫瘠,生存条件较差,科学部署清水河沿线生态修复工程、加强对生态屏障和廊道的管控与修复,以打造生态碳汇廊道目的,连接碳汇低值区和高值区,并依托沙漠、戈壁、荒漠、采煤沉陷区等低生态服务价值区建设一批百万千瓦级光伏基地,可优化增加碳汇量;宁夏南部山区,丘陵沟壑林立,有较大的森林碳汇资源,严格保障六盘山区生态红线,保障优质碳汇不降低,开展碳汇交易活动,提升碳汇功能,凸显生态服务价值。
5. 结论
(1)宁夏沿黄经济生态区6大生态系统11种生态系统服务价值,区内呈现出“中间高,四周低;盆地和山区高,荒漠和丘陵低”的空间特征。
(2)生态系统服务功能以水文调节、气候调节、水资源供给和气体调节服务为主,所占比重分别为59.07%、8.97%、5.02%、4.91%。
(3)区内生态系统服务价值中调节服务价值>供给服务价值>支持服务价值>美学价值;生态服务价值呈增长趋势,与经济发展速度相比,还处于低协调度状态。
(4)区内生态系统碳汇与生态服务价值相关性较强,其分布特征相似,后期可考虑水、土资源约束情况下,实施国土空间优化与生态修复工程,提升生态系统碳汇以及生态服务价值。
-
图 1 秦岭造山带地质简图(据Dong et al.,2011a修改)
LLWF.灵宝–鲁山–舞阳断裂;LLF.洛南–栾川断裂;N–SCB.华南板块北缘;1.华北板块南缘;2.宽坪岩群;3.秦岭杂岩;4.商丹缝合带;5.二郎坪群;6.南秦岭南部带;7.南秦岭北部带;8.MLSZ.勉略缝合带;9.大别地体
Figure 1. Simplified tectonic division of the Qinling orogenic belt
图 2 涝峪地区地质图及采样位置(据陕西省地质局区测队,1966;陕西地质局13队,1972修改)
Figure 2. Simplified geological map of Laoyu area, showing the with sample location
图 4 二云母石英片岩和含石榴子石二云母石英片岩显微照片
a.二云母石英片岩样品KP-3片理发生褶皱弯曲(单偏光);b.二云母石英片岩样品KP-3部分区域TIMA扫描图显示褶皱变形;c.二云母石英片岩样品KP-3中的黑云母、白云母、石英和钠长石等矿物(正交偏光);d.二云母石英片岩样品KP-4中黑云母、白云母和石英等矿物(单偏光);e.二云母石英片岩样品KP-4中黑云母、白云母和石英等矿物以及明显的片理构造(正交偏光);f.二云母石英片岩样品KP-4部分区域TIMA扫描图;g、h.含石榴子石二云母石英片岩样品KP2202石榴子石变斑晶和基质矿物黑云母,白云母,斜长石,和石英(单偏光);i.含石榴子石二云母石英片岩样品KP2202中黑云母、白云母、石英、斜长石和钛铁矿等矿物(背散射照片)
Figure 4. Photomicrographs of the two-mica quartz schist and the garnet-berting two-mica quartz schist
图 14 宽坪岩群变质温压条件及P–T轨迹
轨迹1和2分别为桐柏地区宽坪岩群北部和南部构造单元变质P–T轨迹(Liu et al., 2011);轨迹3为红土岭地区含石榴子石石英片岩变质P–T轨迹(王海杰等,2021);区域4和5分别为涝峪地区宽坪岩群中二云母石英片岩和含石榴子石二云母石英片岩变质温压条件(本研究)
Figure 14. Summary of metamorphic P–T conditions and paths for the Kuanping Group
表 1 二云母石英片岩样品KP-3和KP-4中黑云母和白云母成分
Table 1 Mineral composition of biotite and muscovite in the two-mica quartz schist of sample KP-3 and KP-4
样品
矿物KP-3 Bt Ms SiO2 36.86 38.09 37.80 37.83 37.22 37.78 37.82 37.52 52.08 49.36 51.96 50.57 48.34 47.86 48.25 47.59 TiO2 1.02 0.96 1.11 0.89 0.83 1.11 0.97 1.13 0.12 0.11 0.19 0.19 0.12 0.11 0.12 0.20 Al2O3 18.09 18.02 17.74 16.90 17.33 17.52 17.45 17.36 27.74 29.36 28.04 29.78 33.02 33.08 32.75 32.79 FeO 20.10 19.12 19.74 19.25 20.17 19.42 20.42 20.14 2.39 2.13 2.56 2.29 2.16 1.98 2.12 2.22 MnO 0.18 0.14 0.16 0.04 0.00 0.09 0.12 0.09 0.00 0.04 0.01 0.04 0.00 0.01 0.02 0.05 MgO 8.79 9.19 9.24 9.53 9.49 9.62 9.22 9.74 2.84 2.40 2.74 2.36 1.31 1.29 1.36 1.23 CaO 0.01 0.00 0.11 0.03 0.02 0.04 0.00 0.04 0.00 0.02 0.01 0.01 0.00 0.00 0.00 0.00 Na2O 0.06 0.07 0.03 0.05 0.08 0.05 0.04 0.09 0.16 0.20 0.18 0.22 0.33 0.41 0.48 0.35 K2O 8.85 9.03 8.21 8.81 8.96 8.80 9.23 8.52 10.33 10.20 10.34 10.52 10.52 10.75 10.53 10.72 Totals 93.96 94.61 94.15 93.34 94.09 94.42 95.27 94.63 95.66 94.94 96.03 95.98 95.80 95.49 95.63 95.14 Oxygens 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 Si 2.84 2.89 2.88 2.91 2.86 2.88 2.87 2.86 3.44 3.31 3.43 3.34 3.20 3.19 3.21 3.19 Ti 0.06 0.06 0.06 0.05 0.05 0.06 0.06 0.07 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Al 1.64 1.61 1.59 1.53 1.57 1.57 1.56 1.56 2.16 2.32 2.18 2.32 2.58 2.60 2.57 2.59 Fe3+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 Fe2+ 1.29 1.21 1.26 1.24 1.30 1.24 1.30 1.28 0.13 0.12 0.14 0.13 0.12 0.11 0.12 0.12 Mn 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 1.01 1.04 1.05 1.09 1.09 1.09 1.04 1.11 0.28 0.24 0.27 0.23 0.13 0.13 0.14 0.12 Ca 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.03 0.02 0.03 0.04 0.05 0.06 0.05 K 0.87 0.87 0.80 0.87 0.88 0.85 0.89 0.83 0.87 0.87 0.87 0.89 0.89 0.91 0.89 0.92 Sum 7.73 7.70 7.66 7.71 7.75 7.71 7.74 7.72 6.92 6.95 6.92 6.95 6.97 6.99 6.98 6.99 Mg# 0.44 0.46 0.45 0.47 0.46 0.47 0.45 0.46 0.68 0.67 0.66 0.65 0.52 0.54 0.53 0.50 AlⅥ 0.47 0.50 0.47 0.44 0.43 0.45 0.44 0.42 1.67 1.61 1.66 1.78 1.78 1.77 1.77 1.55 XTi 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 XFe 0.46 0.43 0.44 0.44 0.45 0.44 0.46 0.45 0.07 0.06 0.07 0.06 0.06 0.05 0.06 0.06 XMg 0.36 0.37 0.37 0.39 0.38 0.38 0.37 0.39 0.14 0.12 0.13 0.11 0.06 0.06 0.07 0.06 T(℃)① 428 405 461 385 333 463 405 468 - - - - - - - - T(℃)② 491 482 495 464 455 488 476 485 - - - - - - - - 续表1 样品
矿物KP-4 Bt Ms SiO2 39.47 39.17 38.65 38.87 37.79 37.96 37.32 37.30 49.08 49.20 51.91 50.22 48.64 49.35 48.80 48.45 TiO2 0.83 0.83 0.93 0.76 0.84 0.79 0.98 0.96 0.23 0.09 0.20 0.09 0.05 0.23 0.11 0.05 Al2O3 17.77 18.12 17.97 18.22 18.05 17.53 17.42 17.19 34.04 35.13 30.48 33.82 33.17 32.12 32.23 32.49 FeO 16.53 16.74 16.65 16.10 17.53 17.59 18.11 17.90 0.64 0.57 1.09 0.57 1.92 2.37 1.89 2.01 MnO 0.04 0.12 0.11 0.11 0.13 0.07 0.07 0.14 0.00 0.01 0.00 0.15 0.00 0.03 0.00 0.00 MgO 10.91 11.11 10.94 10.96 10.53 10.48 10.70 10.86 1.57 1.46 2.53 1.81 1.51 1.77 1.71 1.43 CaO 0.14 0.12 0.11 0.12 0.03 0.05 0.09 0.05 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 Na2O 0.04 0.05 0.01 0.09 0.09 0.09 0.03 0.01 0.35 0.37 0.10 0.26 0.31 0.32 0.32 0.28 K2O 7.97 8.14 8.00 8.20 8.99 8.92 8.49 8.61 9.68 9.82 9.31 9.71 10.59 10.74 10.61 10.76 Totals 93.71 94.38 93.35 93.41 93.97 93.49 93.21 93.02 97.03 98.12 96.68 98.09 96.18 96.92 95.67 95.47 Oxygens 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 Si 2.95 2.92 2.91 2.92 2.87 2.89 2.86 2.86 3.18 3.15 3.36 3.22 3.21 3.24 3.24 3.22 Ti 0.05 0.05 0.05 0.04 0.05 0.05 0.06 0.06 0.01 0.00 0.01 0.00 0.00 0.01 0.01 0.00 Al 1.57 1.59 1.60 1.61 1.61 1.58 1.57 1.56 2.60 2.66 2.33 2.55 2.58 2.49 2.52 2.55 Fe3+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.07 0.05 0.07 0.00 0.00 0.00 0.00 Fe2+ 1.04 1.04 1.05 1.01 1.11 1.12 1.16 1.15 0.04 0.03 0.06 0.03 0.11 0.13 0.10 0.11 Mn 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 Mg 1.22 1.23 1.23 1.23 1.19 1.19 1.22 1.24 0.15 0.14 0.24 0.17 0.15 0.17 0.17 0.14 Ca 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.00 0.04 0.05 0.01 0.03 0.04 0.04 0.04 0.04 K 0.76 0.77 0.77 0.79 0.87 0.87 0.83 0.84 0.80 0.80 0.77 0.79 0.89 0.90 0.90 0.91 Sum 7.60 7.63 7.62 7.63 7.72 7.72 7.72 7.73 6.89 6.90 6.83 6.88 6.97 6.98 6.97 6.98 Mg# 0.54 0.54 0.54 0.55 0.52 0.51 0.51 0.52 0.81 0.82 0.81 0.85 0.58 0.57 0.62 0.56 AlⅥ 0.52 0.51 0.51 0.53 0.48 0.47 0.43 0.42 1.84 1.87 1.73 1.82 1.78 1.72 1.75 1.77 X(Ti) 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 X(Fe) 0.37 0.37 0.37 0.36 0.39 0.40 0.40 0.40 0.02 0.02 0.03 0.02 0.05 0.06 0.05 0.06 X(Mg) 0.43 0.44 0.43 0.44 0.42 0.42 0.43 0.43 0.08 0.07 0.12 0.09 0.07 0.09 0.08 0.07 T(℃)① 381 382 433 341 378 346 442 440 - - - - - - - - T(℃)② 455 452 465 447 454 446 463 458 - - - - - - - - 注:Mg#=Mg/(Mg+Fe2+),XTi=Ti/(Ti+Fe2++Mg+AlVI),XFe=Fe/(Ti+Fe2++Mg+AlVI),XMg=Mg/(Ti+Fe2++Mg+AlVI);①为Henry等(2005)计算的黑云母Ti温度计结果;②为Wu等(2015)计算的黑云母Ti温度计结果。 表 2 含石榴子石二云母石英片岩样品KP2202中黑云母、白云母、斜长石和石榴子石成分
Table 2 Mineral compositions of biotite, muscovite, plagioclase and garnet in the garnet-bearing two-mica quartz schist sample KP2202
样品 KP2202 位置 接触 基质 矿物 Bt Bt SiO2 34.34 33.63 34.90 34.56 34.02 34.09 34.27 35.23 34.54 34.79 33.95 34.59 34.34 34.55 34.55 34.41 TiO2 2.82 2.87 3.08 3.23 3.13 3.08 3.21 2.95 3.06 3.30 3.15 3.37 3.42 3.39 3.08 3.30 Al2O3 17.78 18.10 18.31 18.33 17.94 18.11 17.61 18.47 18.73 17.94 17.86 18.26 18.42 18.32 18.68 18.09 Cr2O3 0.08 0.08 0.03 0.05 0.03 0.07 0.12 0.05 0.03 0.01 0.01 0.02 0.02 0.10 0.02 0.00 FeO 23.43 22.76 23.32 23.57 23.76 23.44 22.97 22.73 22.26 21.81 21.73 22.11 22.36 22.02 21.00 22.34 MnO 0.43 0.32 0.53 0.54 0.48 0.52 0.39 0.31 0.29 0.29 0.27 0.24 0.25 0.24 0.19 0.30 MgO 5.51 6.19 5.30 5.15 4.95 5.73 5.78 6.22 5.99 6.17 6.17 6.23 6.08 6.34 6.58 6.36 CaO 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na2O 0.14 0.13 0.14 0.12 0.10 0.09 0.06 0.13 0.17 0.12 0.08 0.05 0.10 0.17 0.10 0.08 K2O 10.01 9.41 10.12 9.99 9.90 9.99 9.91 10.22 10.27 9.99 10.35 9.75 10.21 9.91 10.01 10.00 SrO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NiO 0.01 0.00 0.01 0.02 0.00 0.05 0.04 0.00 0.01 0.00 0.01 0.04 0.03 0.07 0.00 0.03 Totals 94.56 93.49 95.75 95.56 94.31 95.16 94.34 96.30 95.36 94.42 93.59 94.66 95.23 95.11 94.22 94.91 Oxygens 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 Si 2.71 2.67 2.72 2.70 2.70 2.68 2.71 2.71 2.69 2.73 2.70 2.70 2.68 2.69 2.70 2.69 Ti 0.17 0.17 0.18 0.19 0.19 0.18 0.19 0.17 0.18 0.19 0.19 0.20 0.20 0.20 0.18 0.19 Al 1.66 1.70 1.68 1.69 1.68 1.68 1.64 1.68 1.72 1.66 1.67 1.68 1.69 1.68 1.72 1.67 Cr 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 Fe3+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe2+ 1.55 1.51 1.52 1.54 1.58 1.54 1.52 1.46 1.45 1.43 1.44 1.45 1.46 1.43 1.37 1.46 Mn 0.03 0.02 0.04 0.04 0.03 0.04 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 Mg 0.65 0.73 0.62 0.60 0.59 0.67 0.68 0.71 0.70 0.72 0.73 0.73 0.71 0.74 0.77 0.74 Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.02 0.03 0.02 0.01 0.01 0.02 0.03 0.02 0.01 K 1.01 0.96 1.01 1.00 1.00 1.00 1.00 1.00 1.02 1.00 1.05 0.97 1.02 0.98 1.00 1.00 Sum 7.80 7.79 7.78 7.77 7.78 7.81 7.78 7.79 7.80 7.76 7.81 7.75 7.79 7.77 7.77 7.79 Mg# 0.30 0.33 0.29 0.28 0.27 0.30 0.31 0.33 0.32 0.34 0.34 0.33 0.33 0.34 0.36 0.34 T(℃) 651.93 658.34 662.65 670.67 667.59 665.50 673.55 657.52 664.55 678.05 673.30 681.07 682.69 682.28 669.56 678.18 XAn - - - - - - - - - - - - - - - - XAb - - - - - - - - - - - - - - - - XOr - - - - - - - - - - - - - - - - XAlm - - - - - - - - - - - - - - - - XSps - - - - - - - - - - - - - - - - Xpy - - - - - - - - - - - - - - - - XGrs - - - - - - - - - - - - - - - - 续表2 样品 KP2202 位置 - 边部 核部 矿物 Ms Pl Grt Grt SiO2 45.44 45.36 45.60 45.33 45.76 45.74 61.80 62.30 61.47 36.66 36.54 37.05 36.37 36.23 36.94 36.56 TiO2 1.09 1.14 0.62 0.71 0.62 0.65 0.00 0.05 0.02 0.06 0.08 0.10 0.06 0.03 0.00 0.08 Al2O3 35.01 34.91 35.29 35.11 35.43 34.84 24.06 23.28 24.25 20.64 21.19 21.14 21.02 20.84 20.98 20.83 Cr2O3 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.03 0.00 0.02 0.00 0.04 0.00 0.00 0.00 0.00 FeO 1.50 1.52 1.68 1.67 1.54 1.65 0.15 0.18 0.08 29.03 28.37 30.50 33.61 33.81 33.93 33.70 MnO 0.00 0.01 0.09 0.02 0.06 0.01 0.00 0.00 0.04 8.10 6.34 5.91 5.62 5.64 5.58 5.37 MgO 0.54 0.60 0.57 0.54 0.52 0.62 0.00 0.01 0.01 1.36 1.25 1.36 1.51 1.55 1.61 1.63 CaO 0.02 0.00 0.06 0.00 0.08 0.00 5.94 5.71 6.28 3.45 5.26 3.41 1.27 1.05 1.02 0.97 Na2O 0.36 0.40 0.50 0.34 0.40 0.33 8.33 8.48 8.36 0.00 0.00 0.00 0.01 0.03 0.02 0.02 K2O 11.28 11.44 11.12 10.89 11.26 11.03 0.19 0.18 0.22 0.00 0.02 0.00 0.00 0.00 0.00 0.03 SrO 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.16 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NiO 0.00 0.02 0.04 0.01 0.00 0.02 0.00 0.03 0.01 0.01 0.00 0.00 0.01 0.00 0.02 0.02 Totals 95.24 95.39 95.57 94.63 95.68 94.90 100.53 100.41 100.82 99.34 99.04 99.51 99.48 99.19 100.09 99.22 Oxygens 11.00 11.00 11.00 11.00 11.00 11.00 8.00 8.00 8.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 Si 3.05 3.04 3.05 3.05 3.05 3.07 2.73 2.76 2.72 3.00 2.98 3.01 2.98 2.98 3.00 3.00 Ti 0.06 0.06 0.03 0.04 0.03 0.03 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.01 Al 2.77 2.76 2.78 2.79 2.79 2.76 1.25 1.22 1.26 1.99 2.04 2.02 2.03 2.02 2.01 2.01 Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe3+ 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.01 0.03 0.00 0.00 Fe2+ 0.08 0.09 0.09 0.09 0.09 0.09 0.00 0.00 0.00 1.97 1.93 2.07 2.29 2.29 2.31 2.31 Mn 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.56 0.44 0.41 0.39 0.39 0.38 0.37 Mg 0.05 0.06 0.06 0.05 0.05 0.06 0.00 0.00 0.00 0.17 0.15 0.16 0.18 0.19 0.20 0.20 Ca 0.00 0.00 0.00 0.00 0.01 0.00 0.28 0.27 0.30 0.30 0.46 0.30 0.11 0.09 0.09 0.09 Na 0.05 0.05 0.07 0.04 0.05 0.04 0.71 0.73 0.72 0.00 0.00 0.00 0.00 0.01 0.00 0.00 K 0.97 0.98 0.95 0.94 0.96 0.95 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Sum 7.02 7.04 7.04 7.01 7.03 7.01 5.00 5.00 5.01 8.00 8.00 7.98 8.00 8.00 7.99 7.99 Mg# 0.39 0.41 0.38 0.36 0.38 0.40 - - - - - - - - - - T(°C) - - - - - - - - - - - - - - - - XAn - - - - - - 0.28 0.27 0.29 - - - - - - - XAb - - - - - - 0.71 0.72 0.70 - - - - - - - XOr - - - - - - 0.01 0.01 0.01 - - - - - - - XAlm - - - - - - - - - 0.66 0.65 0.70 0.77 0.77 0.78 0.78 XSps - - - - - - - - - 0.19 0.15 0.14 0.13 0.13 0.13 0.13 Xpy - - - - - - - - - 0.06 0.05 0.06 0.06 0.06 0.07 0.07 XGrs - - - - - - - - - 0.10 0.15 0.10 0.04 0.03 0.03 0.03 注:Mg#=Mg/(Mg+Fe2+), XAn = Ca/(Ca+Na+K), XAb = Na/(Ca+Na+K), XOr = K/(Ca+Na+K); XAlm = Fe2+/(Fe2++ Mn + Mg + Ca), XSps = Mn/
(Fe2+ + Mn + Mg + Ca), XPy = Mg/(Fe2+ + Mn + Mg + Ca), XGrs = Ca/(Fe2+ + Mn + Mg + Ca)。表 3 糜棱岩化含金云母大理岩样品KP-1中金云母成分
Table 3 Mineral compositions of phlogopite in the mylonitizd phlogopite-bearing marble sample KP-1
样品 KP-1 矿物 Phl SiO2 42.92 43.62 43.77 43.51 42.62 43.51 42.03 43.87 43.86 44.71 43.33 41.89 42.29 43.08 TiO2 0.60 0.82 0.55 0.39 0.55 0.73 0.78 0.46 0.41 0.39 0.49 0.53 0.57 0.62 Al2O3 16.35 15.69 15.68 16.11 16.33 16.48 16.59 15.23 15.02 15.02 15.95 17.42 17.57 17.54 FeO 1.45 1.62 1.23 1.91 1.35 1.48 1.70 1.57 1.48 1.55 2.02 1.71 1.87 1.82 MnO 0.02 0.00 0.03 0.00 0.01 0.03 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 MgO 22.49 22.69 22.96 22.92 22.37 22.06 22.36 23.16 22.77 23.38 22.63 22.06 21.88 21.84 CaO 0.02 0.02 0.05 0.02 0.06 0.04 0.00 0.11 0.05 0.02 0.02 0.08 0.07 0.09 Na2O 0.09 0.00 0.08 0.05 0.03 0.05 0.08 0.03 0.03 0.02 0.00 0.11 0.09 0.04 K2O 10.34 10.31 10.22 9.94 10.51 10.45 10.61 10.29 10.39 10.40 10.41 10.60 10.69 10.78 Totals 94.27 94.75 94.56 94.86 93.83 94.82 94.15 94.78 94.01 95.49 94.85 94.41 95.03 95.79 Oxygens 11 11 11 11 11 11 11 11 11 11 11 11 11 11 Si 3.01 3.04 3.05 3.02 3.00 3.03 2.96 3.06 3.08 3.09 3.02 2.94 2.95 2.98 Ti 0.03 0.04 0.03 0.02 0.03 0.04 0.04 0.02 0.02 0.02 0.03 0.03 0.03 0.03 Al 1.35 1.29 1.29 1.32 1.36 1.35 1.38 1.25 1.24 1.22 1.31 1.44 1.45 1.43 Fe3+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe2+ 0.09 0.09 0.07 0.11 0.08 0.09 0.10 0.09 0.09 0.09 0.12 0.10 0.11 0.11 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 2.35 2.36 2.38 2.37 2.35 2.29 2.35 2.40 2.38 2.41 2.35 2.31 2.28 2.25 Ca 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.01 Na 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.02 0.01 0.01 K 0.92 0.92 0.91 0.88 0.94 0.93 0.95 0.91 0.93 0.92 0.93 0.95 0.95 0.95 Sum 7.76 7.74 7.74 7.74 7.77 7.73 7.79 7.76 7.75 7.74 7.76 7.79 7.78 7.76 Mg# 0.97 0.96 0.97 0.96 0.97 0.96 0.96 0.96 0.96 0.96 0.95 0.96 0.95 0.96 注:Mg#=Mg/(Mg+Fe2+)。 表 4 用于变质相平衡模拟计算的全岩主量元素成分
Table 4 Whole-rock compositions used for phase equilibrium modelling
样品号 全岩成分 (%) SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O P2O5 LOI Total KP-3 71.24 0.65 12.38 2.27 3.22 0.04 2.28 0.15 1.41 3.33 0.07 2.37 99.41 KP-4 79.14 0.52 9.34 1.78 1.88 0.03 1.84 0.11 0.11 2.76 0.05 2.22 99.78 KP2202 67.62 0.83 15.35 1.14 4.56 0.12 1.54 0.94 1.14 4.30 0.06 1.67 99.27 样品号 相平衡模拟中的各组分含量(mol%) SiO2 Al2O3 CaO MgO FeO K2O Na2O TiO2 O* KP-3 71.790 7.351 0.162 3.425 4.436 2.140 1.377 0.493 0.861 图9a、图9b KP-4 78.552 5.463 0.117 2.723 2.890 1.747 0.106 0.388 0.665 图10a、图10b KP2202 71.096 9.510 1.059 2.414 4.913 2.883 1.162 0.656 0.452 图11a、图11b 表 5 二云母石英片岩样品KP-3的原位LA–ICP–MS黑云母和白云母Rb–Sr同位素数据
Table 5 In-situ LA–ICP–MS biotite and muscovite Rb–Sr isotopic data for two-mica quartz schist sample KP-3
点位 87Rb/86Sr ±1σ 87Sr/86Sr ±1σ KP-3-1 18.0166 0.5389 0.7905 0.0054 KP-3-2 29.3416 0.7385 0.8532 0.006 KP-3-3 16.2009 0.2907 0.8181 0.0062 KP-3-4 11.5061 0.3663 0.7899 0.0087 KP-3-5 18.3369 0.634 0.7584 0.0045 KP-3-6 12.2389 0.2162 0.8048 0.0076 KP-3-7 9.3939 0.2595 0.7795 0.0064 KP-3-8 7.7139 0.1553 0.7546 0.0055 KP-3-9 21.9059 1.0708 0.792 0.0062 KP-3-10 25.4976 1.1164 0.8426 0.0173 KP-3-11 14.0422 0.6728 0.7924 0.0106 KP-3-12 5.4361 0.1816 0.7467 0.0082 KP-3-13 25.5866 1.2185 0.8107 0.0158 KP-3-14 13.3642 0.3398 0.7751 0.0106 KP-3-15 23.5856 0.3439 0.8086 0.0043 KP-3-16 22.733 0.6971 0.7778 0.0089 KP-3-17 9.3486 0.2784 0.7632 0.0067 KP-3-18 13.6249 0.4057 0.7588 0.0059 KP-3-19 14.5342 0.3112 0.804 0.0065 KP-3-20 8.2599 0.2115 0.7797 0.006 KP-3-21 12.2192 0.2215 0.8111 0.0043 KP-3-22 7.9982 0.1289 0.7937 0.0036 KP-3-23 12.193 0.2094 0.7927 0.0043 KP-3-24 19.7496 0.2937 0.795 0.005 KP-3-25 15.4003 0.207 0.7731 0.0056 KP-3-26 9.3778 0.2017 0.7779 0.0034 KP-3-27 24.297 1.0354 0.8161 0.0112 KP-3-28 12.085 0.3581 0.7911 0.0082 KP-3-29 33.6078 0.9551 0.8365 0.0091 KP-3-30 7.9611 0.246 0.7531 0.0046 KP-3-31 49.9564 4.4104 0.8407 0.0177 KP-3-32 4.1449 0.1021 0.7694 0.0053 KP-3-33 7.4286 0.1467 0.7646 0.0044 KP-3-34 20.7555 0.8895 0.8076 0.0073 KP-3-35 27.518 0.5935 0.8106 0.0049 KP-3-36 1.5058 0.1521 0.8035 0.0167 KP-3-37 1.2356 0.2309 0.8377 0.051 KP-3-38 0.2741 0.0215 0.7836 0.0107 KP-3-39 0.1349 0.0185 0.6885 0.0255 KP-3-40 0.3264 0.0426 0.7562 0.0312 表 6 二云母石英片岩样品KP-4原位LA–ICP–MS黑云母和白云母Rb–Sr同位素数据
Table 6 In-situ LA–ICP–MS biotite and muscovite Rb–Sr isotopic data for two-mica quartz schist sample KP-4
点位 87Rb/86Sr ±1σ 87Sr/86Sr ±1σ KP-4-1 25.4466 0.454 0.8146 0.01 KP-4-2 41.2259 0.8178 0.8114 0.0079 KP-4-3 50.6532 1.1725 0.7922 0.0087 KP-4-4 26.9311 0.438 0.8014 0.0064 KP-4-5 29.0531 0.6666 0.8158 0.0067 KP-4-8 33.0924 1.6649 0.7448 0.0052 KP-4-9 16.6476 0.937 0.7454 0.0037 KP-4-10 41.2109 0.9943 0.8229 0.0076 KP-4-11 52.4346 0.8291 0.8285 0.0066 KP-4-12 2.8604 0.0843 0.7251 0.0041 KP-4-15 26.8263 1.3235 0.8287 0.0105 KP-4-16 34.8779 2.2549 0.8122 0.0077 KP-4-17 17.2552 0.4462 0.7808 0.0089 KP-4-18 23.5465 0.563 0.8049 0.007 KP-4-19 50.8047 1.5759 0.8137 0.0101 KP-4-20 97.7716 2.5025 0.936 0.0087 KP-4-21 18.9715 0.5902 0.7807 0.0095 KP-4-22 41.6778 2.2637 0.8275 0.0074 KP-4-23 20.7999 1.0744 0.8215 0.0108 KP-4-25 41.9771 0.9381 0.7939 0.0067 KP-4-26 22.8923 0.7196 0.829 0.0054 KP-4-27 31.4178 1.6919 0.7813 0.0101 KP-4-28 75.0006 1.6558 0.9076 0.0148 KP-4-29 39.9303 0.4539 0.8809 0.0064 KP-4-30 32.9889 0.4273 0.8558 0.0057 KP-4-31 23.0713 0.4501 0.8065 0.007 KP-4-32 25.7233 0.2788 0.8232 0.0048 KP-4-33 22.6323 0.6414 0.7783 0.0051 KP-4-34 28.391 0.3844 0.8181 0.0062 KP-4-35 22.4479 0.319 0.814 0.0049 KP-4-36 2.8775 0.0568 0.7304 0.0022 KP-4-37 3.76 0.1344 0.7325 0.0032 KP-4-38 2.9363 0.067 0.7258 0.0018 KP-4-39 1.4073 0.0335 0.7136 0.0018 KP-4-40 1.6294 0.0683 0.7213 0.0016 表 7 含石榴子石二云母石英片岩样品KP2202原位LA–ICP–MS黑云母和白云母Rb–Sr同位素数据
Table 7 In-situ LA–ICP–MS biotite and muscovite Rb–Sr isotopic data for garnet-bearing two-mica quartz schist sample KP2202
点位 87Rb/86Sr ±1σ 87Sr/86Sr ±1σ 备注 KP2202-1 21.3446 0.3768 0.9061 0.0048 Ms type-1 KP2202-2 19.0802 0.3769 0.8668 0.0042 Ms type-1 KP2202-3 16.1607 0.2511 0.8231 0.0034 Ms type-1 KP2202-4 16.9611 0.2304 0.8289 0.0036 Ms type-1 KP2202-5 18.6972 0.2885 0.8846 0.0048 Ms type-1 KP2202-6 17.0929 0.2986 0.8348 0.0044 Ms type-1 KP2202-7 18.5684 0.3145 0.8665 0.0049 Ms type-1 KP2202-30 16.5679 0.2640 0.8370 0.0051 Ms type-1 KP2202-31 17.7241 0.3035 0.8377 0.0039 Ms type-1 KP2202-32 18.4186 0.3005 0.8608 0.0037 Ms type-1 KP2202-40 17.4755 0.2839 0.8292 0.0035 Ms type-1 KP2202-41 17.9974 0.4653 0.8317 0.0037 Ms type-1 KP2202-42 17.6600 0.2556 0.8307 0.0043 Ms type-1 KP2202-43 16.9642 0.2634 0.7930 0.0043 Ms type-1 KP2202-44 16.5281 0.2798 0.7920 0.0034 Ms type-1 KP2202-45 16.7014 0.3672 0.8173 0.0042 Ms type-1 KP2202-46 16.5453 0.3081 0.8112 0.0036 Ms type-1 KP2202-11 16.9159 0.2898 0.7945 0.0044 Ms type-2 KP2202-12 18.1469 0.3106 0.8010 0.0036 Ms type-2 KP2202-13 17.9112 0.3321 0.7941 0.0043 Ms type-2 KP2202-14 19.9469 0.3315 0.7963 0.0041 Ms type-2 KP2202-22 18.9035 0.3015 0.8021 0.0043 Ms type-2 KP2202-23 19.8987 0.3443 0.8003 0.0038 Ms type-2 KP2202-24 16.6555 0.3950 0.7835 0.0034 Ms type-2 KP2202-25 19.9471 0.3723 0.7958 0.0044 Ms type-2 KP2202-26 18.9892 0.3332 0.7960 0.0048 Ms type-2 KP2202-27 13.2982 0.4708 0.7900 0.0042 Ms type-2 KP2202-28 21.1990 0.5195 0.7927 0.0044 Ms type-2 KP2202-29 18.4951 0.4068 0.7961 0.0044 Ms type-2 KP2202-33 12.7696 1.1655 0.7887 0.0030 Ms type-2 KP2202-34 20.1844 0.5434 0.8058 0.0044 Ms type-2 KP2202-35 20.0061 0.3414 0.7961 0.0042 Ms type-2 KP2202-36 20.5787 0.3102 0.7904 0.0041 Ms type-2 KP2202-8 160.8024 8.5605 1.0268 0.0116 Bt KP2202-9 144.9303 10.2530 1.0157 0.0092 Bt KP2202-10 213.5181 8.7199 1.0947 0.0099 Bt KP2202-15 94.4528 9.3357 0.9103 0.0055 Bt KP2202-16 159.5003 4.9954 1.0145 0.0085 Bt KP2202-17 13.2294 1.5834 0.7817 0.0039 Bt KP2202-18 167.0161 7.1487 1.0332 0.0092 Bt KP2202-19 356.2216 22.0736 1.3801 0.0217 Bt KP2202-20 298.3693 22.7725 1.1905 0.0173 Bt KP2202-21 88.7981 7.0720 0.9202 0.0058 Bt KP2202-37 105.1556 9.6343 0.8970 0.0079 Bt KP2202-38 65.7936 2.7566 0.8580 0.0062 Bt KP2202-39 125.3506 3.5819 0.9300 0.0086 Bt KP2202-47 219.2769 13.2706 1.0912 0.0131 Bt KP2202-48 19.1462 1.1634 0.7931 0.0047 Bt KP2202-49 174.1023 10.2901 1.0229 0.0126 Bt KP2202-50 27.7117 1.1152 0.7805 0.0040 Bt -
陈龙龙, 唐利, 沈彦谋, 等. 秦岭造山带栾川Mo-W矿集区和柞水–山阳Cu-Mo矿集区斑岩型矿床成矿差异性对比[J]. 西北地质, 2024, 57(2): 67−89. CHEN Longlong, TANG Li, SHEN Yanmou, et al. Comparison on Metallogenic Differences of Porphyry Deposits between Luanchuan Mo-W and Zhashui-Shanyang Cu-Mo Ore-clusters in Qinling Orogenic Belt: Constraints of Magmatic Source and Metallogenic Conditions[J]. Northwestern Geology, 2024, 57(2): 67−89.
陈能松, 韩郁菁, 游振东, 等. 豫西东秦岭造山带核部杂岩全岩Sm-Nd、Rb-Sr和单晶锆石~(207)Pb-~(206)Pb计时及其地壳演化[J]. 地球化学, 1991(03): 219–228 doi: 10.3321/j.issn:0379-1726.1991.03.003 CHEN Nengsong, HAN Yuqing, YOU Zhendong, et al. Whole-rock Sm–Nd, Rb–Sr, and single grain zircon Pb–Pb dating of complex rocks from the interior of the Qinling orogenic belt, Western Henan and its crustal evolution[J]. Geochemica, 1991, 20(3): 219–228. doi: 10.3321/j.issn:0379-1726.1991.03.003
丁丽雪, 马昌前, 李建威, 等. 华北克拉通南缘蓝田和牧护关花岗岩体: LA-ICPMS 锆石 U–Pb 年龄及其构造意义[J]. 地球化学, 2010, 39(5): 401–413 DING Lixue, MA Changqian, LI Jianwei, et al. LA-ICPMS zircon U–Pb ages of the Lantian and Muhuguan granitoid plutons, southern margin of the North China craton: Implications for tectonic setting[J]. Geochimica, 2010, 39(5): 401–413.
第五春荣, 孙勇, 刘良, 等. 北秦岭宽坪杂岩的解体及新元古代 N-MORB[J]. 岩石学报, 2010 (7): 2025–2038 DIWU Chunrong, SUN Yong, LIU Liang, et al. The disintegration of Kuanping Group in North Qinling orogenic belts and Neo-proterozoic N-MORB[J]. Acta Petrologica Sinica, 2010, 26(7): 2025–2038.
胡娟. 桐柏北部宽坪群变质作用研究[D]. 北京: 中国地质科学院, 2010 HU Juan. Study on metamorphism of the KuanPing Group, northern Tongba[D]. Beijing: Chinese Academy of Geological Sciences, 2010.
李康宁, 汤庆艳, 栾晓刚, 等. 西秦岭三叠纪大河坝组砂岩构造背景与物质来源[J]. 西北地质, 2024, 57(3): 113−127. LI Kangning, TANG Qingyan, LUAN Xiaogang, et al. Tectonic Setting and Provenance of Sandstones from Triassic Daheba Formation in the West Qinling Orogenic Belt[J]. Northwestern Geology, 2024, 57(3): 113−127.
李靠社. 陕西宽坪杂岩变基性熔岩锆石 U–Pb 年龄[J]. 陕西地质, 2002, 20(1): 72–78 doi: 10.3969/j.issn.1001-6996.2002.01.010 LI Kaoshe. Zircon U–Pb age of meta-basic lava from the Kuanping Rock Group, Shaanxi Province[J]. Geology of Shaanxi, 2002, 20(1): 72–78. doi: 10.3969/j.issn.1001-6996.2002.01.010
李三忠, 张国伟, 李亚林, 等. 勉县地区勉略带内麻粒岩的发现及构造意义[J]. 岩石学报, 2000, 16(2): 220–226 doi: 10.3321/j.issn:1000-0569.2000.02.011 LI Sanzhong, ZHANG Guowei, LI Yalin, et al. Discovery of granulite in the Mianxian-Lueyang suture zone, Mianxian area and its tectonic significance[J]. Acta Petrologica Sinica, 2000, 16(2): 220–226. doi: 10.3321/j.issn:1000-0569.2000.02.011
刘良, 陈丹玲, 王超, 等. 阿尔金, 柴北缘与北秦岭高压-超高压岩石年代学研究进展及其构造地质意义[J]. 西北大学学报: 自然科学版, 2009 (3): 472–479. LIU Liang, CHEN Danling, WANG Chao, et al. New progress on geochronology of high-pressure/ultrahigh-pressure metamorphic rocks from the South Altyn Tagh, the North Qaidam and the North Qinling orogenic, NW China and their geological significance[J]. Journal of Northwest University (Natural Science Edition), 2009, 39(3): 472–479.
刘良, 廖小莹, 张成立, 等. 北秦岭高压-超高压岩石的多期变质时代及其地质意义[J]. 岩石学报, 2013, 29(5): 1634–1656 LIU Liang, LIAO Xiaoying, ZHANG Chengli, et al. , Multi-metamorphic timings of HP-UHP rocks in the North Qingling and their geological implications[J], Acta Petrologica Sinica, 2013, 29(5): 1634–1656.
马大铨, 李志昌, 肖志发. 鄂西崆岭杂岩的组成, 时代及地质演化[J]. 地球学报: 中国地质科学院院报, 1997, 18(3): 233–241 MA Daquan, LI Zhichang, XIAO Zhifa. The constitute, geochronology and geologic evolution of the Kongling complex, western Hubei[J]. Acta Geoscientia Sinica, 1997, 18(3): 233–241.
秦海鹏, 吴才来, 武秀萍, 等. 秦岭造山带蟒岭花岗岩锆石 LA-ICP-MSU-Pb 年龄及其地质意义[J]. 地质论评, 2012, 58(4): 783–793 doi: 10.3969/j.issn.0371-5736.2012.04.019 QIN Haipeng, WU Cailai, WU Xiuping, et al. LA-ICP-MS Zircon U-Pb ages and implications for tectonic setting of the Mangling granitoid plutons in Qinling Orogen Belt[J]. Geological Review, 2012, 58(4): 783–793. doi: 10.3969/j.issn.0371-5736.2012.04.019
冉亚洲, 陈涛, 梁文天, 等. 西秦岭郎木寺组火山岩锆石U–Pb年龄及其构造意义[J]. 西北地质, 2024, 57(1): 110−121. RAN Yazhou, CHEN Tao, LIANG Wentian, et al. Zircon U–Pb Age of Volcanic Rocks from the Langmusi Formation in the Western Qinling Mountains and Its Tectonic Significance[J]. Northwestern Geology, 2024, 57(1): 110−121.
陕西省地质局区测队. 东江口幅I-49-19 1/20万地质图矿产图说明书[DS]. 全国地质资料馆, 1966 陕西地质局13队. 西安幅I-49-13 1/20万地质矿产图及其说明书[DS]. 全国地质资料馆, 1972 魏春景, 朱文萍. 多硅白云母地质压力计的研究进展[J]. 地质通报, 2007, 26(9): 1123–1130 doi: 10.3969/j.issn.1671-2552.2007.09.014 WEI Chunjing, ZHU Wenping. Progress in the study of phengite geobarometry[J]. Geological Bulletin of China, 2007, 26(9): 1123–1130. doi: 10.3969/j.issn.1671-2552.2007.09.014
王汉辉, 唐利, 杨勃畅, 等. 东秦岭黄水庵碳酸岩型Mo–REE矿床方解石地球化学特征和氟碳铈矿U–Th–Pb年龄及其意义. 西北地质, 2023, 56(1): 48−62. WANG Hanhui, TANG Li, YANG Bochang, et al. Geochemical Characteristics of Calcite and Bastnäsite U–Th–Pb Age of the Huangshui’an Carbonatite–hosted Mo–REE Deposit, Eastern Qinling. Northwestern Geology, 2023, 56(1): 48−62.
王宗起, 闫臻, 王涛, 等. 秦岭造山带主要疑难地层时代研究的新进展[J]. 地球学报, 2009, 30(5): 561–570 doi: 10.3321/j.issn:1006-3021.2009.05.001 WANG Zongqi, YAN Zhen, WANG Tao, et al. New advances in the study on ages of metamorphic strata in the Qinling orogenic belt[J]. Acta Geoscientica Sinica, 2009, 30(5): 561–570. doi: 10.3321/j.issn:1006-3021.2009.05.001
王晓霞, 王涛, 齐秋菊, 等. 秦岭晚中生代花岗岩时空分布, 成因演变及构造意义[J]. 岩石学报, 2011, 27(6): 1573–1593 WANG Xiaoxia, WANG Tao, QI Qiuju, et al. Temporal-spatial variations, origin and their tectonic significance of the Late Mesozoic granites in the Qinling, Central China[J]. Acta Petrologica Sinica, 2011, 27(6): 1573–1593.
王海杰, 陈丹玲, 任云飞, 等. 北秦岭构造带与华北板块关系探讨: 来自宽坪杂岩变碎屑岩锆石 U-Pb 年代学与变质作用证据[J]. 岩石学报, 2021, 37(5): 1489–1507 doi: 10.18654/1000-0569/2021.05.10 WANG HaiJie, CHEN DanLing, REN YunFei, et al. The relationship between the North Qinling Belt and the North China Craton: Constrains from zircon U-Pb geochronology and metamorphism of metaclastic rocks from the Kuanping Complex[J]. Acta Petrologica Sinica, 2021, 37(5): 1489–1507. doi: 10.18654/1000-0569/2021.05.10
肖思云, 张维吉, 宋子季, 等. 北秦岭变质地层[M]. 西安: 西安交通大学出版社, 1988 向华, 钟增球, 李晔, 等. 北秦岭造山带早古生代多期变质与深熔作用: 锆石 U–Pb 年代学证据[J]. 岩石学报, 2014 (8): 2421–2434 XIANG Hua, ZHONG ZengQiu, LI Ye, et al. Early Paleozoic polymetamorphism and anatexis in the North Qinling orogen: Evidence from U-Pb zircon geochronology[J]. Acta Petrologica Sinica, 2014, 30(8): 2421-2434.
杨阳, 王晓霞, 柯昌辉, 等. 北秦岭蟒岭岩体的锆石 U-Pb 年龄, 地球化学及其演化[J]. 矿床地质, 2014, 33(1): 14-36 doi: 10.3969/j.issn.0258-7106.2014.01.002 YANG Yang, WANG Xiaoxia, KE Changhui, et al. Zircon U-Pb ages, geochemistry and evolution of Mangling pluton in North Qinling Mountains[J]. Mineral Deposits, 2014, 33(1): 14–36. doi: 10.3969/j.issn.0258-7106.2014.01.002
闫全人, 王宗起, 闫臻, 等. 秦岭造山带宽坪群中的变铁镁质岩的成因, 时代及其构造意义[J]. 地质通报, 2008, 27(9): 1475–1492 doi: 10.3969/j.issn.1671-2552.2008.09.010 YAN Quanren, WANG Zongqi, YAN Zhen, et al. Origin, age and tectonic implications of metamafic rocks in the Kuanping Group of the Qinling orogenic belt, China[J]. Geological Bulletin of China, 2008, 27(9): 1475-1492. doi: 10.3969/j.issn.1671-2552.2008.09.010
张维吉. 宽坪群的层序划分及时代归属[J]. 长安大学学报 (地球科学版), 1987, 1(9): 15–29 ZHANG Weiji. The subdivision of the Kuanping Group and its geological date[J]. Journal of Xi'an College of Geology, 1987, 1(9): 15–29.
张维吉, 马志和. 陕西蟒岭马河地区宽坪群多期褶皱变形[J]. 西安地质学院学报, 1988, (04), 33–42 ZHANG Weiji, MA Zhihe. The polydeformation of Kuanping Group at Mahe of Mangling, Shaanxi Province[J]. Journal of Xi’an College of Geology, 1988, (04), 33–42
张维吉, 李育敬. 陶湾群层序及时代研究[J]. 西安地质学院学报, 1989, 11(2): 1–10. ZHANG Weiji, LI Yujing. The sequences and the age of the Taowan Group[J]. Journal of Xi’an College of Geology, 1989, 11(2), 1–10
张宗清, 刘敦一, 付国民. 北秦岭变质地层同位素年代硏究[M]. 北京:地质出版社, 1994 张成立, 韩松. 陕西商州地区丹凤变质火山岩的地球化学特征[J]. 地质科学, 1994, 29(4): 384–392 ZHANG Chengli, HAN Song. The geochemical characteristics of Danfeng metavolcanic rocks in Shangzhou area, Shaanxi province[J]. Chinese Journal of Geology, 1994, 29(4): 384–392.
张宗清, 张旗. 北秦岭晚元古代宽坪蛇绿岩中变质基性火山岩的地球化学特征[J]. 岩石学报, 1995 (S1): 165–177 doi: 10.3321/j.issn:1000-0569.1995.z1.013 ZHANG Zongqin, ZHANG Qi. Geochemistry of metamorphosed late Proterozoic Kuanping ophiolite in the northern Qinling, China[J]. Acta Petrologica Sinica, 1995, 11(Suppl. ): 165–177. doi: 10.3321/j.issn:1000-0569.1995.z1.013
张国伟, 孟庆任, 赖绍聪. 秦岭造山带的结构构造[J]. 中国科学: B 辑, 1995a, 25(9): 994–1003 ZHANG Guowei, MENG Qingren, LAI Shaocong. Structural structure of Qinling orogenic belt[J]. Science in China (Series B), 1995, 25: 994–1003.
张国伟, 张宗清, 董云鹏. 秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义[J]. 岩石学报, 1995b, 11(2): 101–114 doi: 10.3321/j.issn:1000-0569.1995.02.002 ZHANG Guowei, ZHANG Zongqing, DONG Yunpeng. Nature of main tectono-lithostratigraphic units of the Qinling orogen: implications for the tectonic evolution[J]. Acta Petrologica Sinica, 1995, 11: 101–114. doi: 10.3321/j.issn:1000-0569.1995.02.002
张国伟, 张本仁, 袁学诚, 等. 秦岭造山带与大陆动力学[M]. 北京:科学出版社, 2001. 张成立, 王涛, 王晓霞. 秦岭造山带早中生代花岗岩成因及其构造环境[J]. 高校地质学报, 2008, 14(3): 304 doi: 10.3969/j.issn.1006-7493.2008.03.003 ZHANG Chengli, WANG Tao, WANG Xiaoxia. Origin and tectonic setting of the Early Mesozoic granitoids in Qinling orogenic belt[J]. Geological Journal of China Universities, 2008, 14(3): 304. doi: 10.3969/j.issn.1006-7493.2008.03.003
张建新, 于胜尧, 孟繁聪. 北秦岭造山带的早古生代多期变质作用[J]. 岩石学报, 2011, 27(04): 1179–1190 ZHANG Jianxin, YU Shengyao, MENG Fancong. Ployphase Early Paleozoic metamorphism in the northern Qinling orogenic belt[J]. Acta Petrologica Sinica, 2011, 27(4): 1179–1190.
Chen D L, Liu L, Sun Y, et al. LA-ICP-MS zircon U-Pb dating for high-pressure basic granulite from North Qinling and its geological significance[J]. Chinese Science Bulletin, 2004, 49: 2296–2304. doi: 10.1360/03wd0544
Capitani, D C , Petrakakis, K. The computation of equilibrium assemblage diagrams with Theriak/Domino software[J]. American mineralogist, 2010, 95(7): 1006–1016. doi: 10.2138/am.2010.3354
Cao H H, Li S Z, Zhao S J, et al. Detrital zircon geochronology of Neoproterozoic to early Paleozoic sedimentary rocks in the North Qinling Orogenic Belt: Implications for the tectonic evolution of the Kuanping Ocean[J]. Precambrian Research, 2016, 279: 1–16. doi: 10.1016/j.precamres.2016.04.001
Cheng H, Zhang C, Vervoort J D, et al. Timing of eclogite facies metamorphism in the North Qinling by U–Pb and Lu–Hf geochronology[J]. Lithos, 2012, 136: 46–59.
Diwu C R, Sun Y, Lin C L, et al. LA-(MC)-ICPMS U-Pb zircon geochronology and Lu-Hf isotope compositions of the Taihua complex on the southern margin of the North China Craton[J]. Chinese Science Bulletin, 2010, 55: 2557–2571.
Dong Y P, Zhang G W, Neubauer F, et al. Tectonic evolution of the Qinling orogen, China: review and synthesis[J]. Journal of Asian Earth Sciences, 2011a, 41(3): 213–237. doi: 10.1016/j.jseaes.2011.03.002
Dong Y P, Zhang G W, Hauzenberger C, et al. Palaeozoic tectonics and evolutionary history of the Qinling orogen: evidence from geochemistry and geochronology of ophiolite and related volcanic rocks[J]. Lithos, 2011b, 122(1–2): 39–56.
Dong Y P, Genser J, Neubauer F, et al. U-Pb and 40Ar/39Ar geochronological constraints on the exhumation history of the North Qinling terrane, China[J]. Gondwana Research, 2011c, 19(4): 881–893. doi: 10.1016/j.gr.2010.09.007
Dong Y P, Yang Z, Liu X M, et al. Neoproterozoic amalgamation of the Northern Qinling terrain to the North China Craton: Constraints from geochronology and geochemistry of the Kuanping ophiolite[J]. Precambrian Research, 2014, 255: 77–95. doi: 10.1016/j.precamres.2014.09.008
Dong Y P, Santosh M. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China[J]. Gondwana Research, 2016, 29(1): 1–40. doi: 10.1016/j.gr.2015.06.009
Dong Y P, Yang Z, Liu X M, et al. Mesozoic intracontinental orogeny in the Qinling Mountains, central China[J]. Gondwana Research, 2016b, 30: 144–158. doi: 10.1016/j.gr.2015.05.004
Dong Y P, Sun S S, Yang Z, et al. Neoproterozoic subduction-accretionary tectonics of the South Qinling Belt, China[J]. Precambrian Research, 2017, 293: 73–90. doi: 10.1016/j.precamres.2017.02.015
Dong Y P, Neubauer F, Genser J, et al. Timing of orogenic exhumation processes of the Qinling orogen: Evidence from 40Ar/39Ar dating[J]. Tectonics, 2018, 37(10): 4037–4067. doi: 10.1029/2017TC004765
Dong Y P, Sun S S, Santosh M, et al. Central China orogenic belt and amalgamation of East Asian continents[J]. Gondwana Research, 2021, 100: 131–194. doi: 10.1016/j.gr.2021.03.006
Dong Y P, Sun S S, Santosh M, et al. Cross Orogenic belts in Central China: Implications for the tectonic and paleogeographic evolution of the east Asian continental collage[J]. Gondwana Research, 2022, 109: 18–88. doi: 10.1016/j.gr.2022.04.012
England P C, Thompson A B. Pressure—temperature—time paths of regional metamorphism I. Heat transfer during the evolution of regions of thickened continental crust[J]. Journal of Petrology, 1984, 25(4): 894–928. doi: 10.1093/petrology/25.4.894
Gao S, Zhang B R, Li Z J. Geochemical evidence for Proterozoic continental arc and continental-margin rift magmatism along the northern margin of the Yangtze Craton, South China[J]. Precambrian Research, 1990, 47(3–4): 205–221.
Gao S, Ling W, Qiu Y, et al. Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton: evidence for cratonic evolution and redistribution of REE during crustal anatexis[J]. Geochimica et Cosmochimica Acta, 1999, 63(13–14): 2071–2088.
Gao S, Yang J, Zhou L, et al. Age and growth of the Archean Kongling terrain, South China, with emphasis on 3.3 Ga granitoid gneisses[J]. American Journal of science, 2011, 311(2): 153–182. doi: 10.2475/02.2011.03
Gao S, Zhang B R, Wang D P, et al. Geochemical evidence for the Proterozoic tectonic evolution of the Qinling Orogenic Belt and its adjacent margins of the North China and Yangtze cratons[J]. Precambrian Research, 1996, 80(1–2): 23–48.
Gorojovsky L, Alard O. Optimisation of laser and mass spectrometer parameters for the in situ analysis of Rb/Sr ratios by LA-ICP-MS/MS[J]. Journal of Analytical Atomic Spectrometry, 2020, 35(10): 2322–2336. doi: 10.1039/D0JA00308E
Guo J L, Gao S, Wu Y B, et al. 3.45 Ga granitic gneisses from the Yangtze Craton, South China: implications for Early Archean crustal growth[J]. Precambrian Research, 2014, 242: 82–95. doi: 10.1016/j.precamres.2013.12.018
Harley S L. The origins of granulites: a metamorphic perspective[J]. Geological Magazine, 1989, 126(3): 215–247. doi: 10.1017/S0016756800022330
Henry D J, Guidotti C V, Thomson J A. The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms[J]. American mineralogist, 2005, 90(2–3): 316–328.
He Y H, Zhao G C, Sun M, et al. SHRIMP and LA-ICP-MS zircon geochronology of the Xiong’er volcanic rocks: implications for the Paleo-Mesoproterozoic evolution of the southern margin of the North China Craton[J]. Precambrian Research, 2009, 168(3–4): 213–222.
Holland T J B, Powell R. An internally consistent thermodynamic data set for phases of petrological interest[J]. Journal of metamorphic Geology, 1998, 16(3): 309–343.
Holland T, Powell R. Activity–composition relations for phases in petrological calculations: an asymmetric multicomponent formulation[J]. Contributions to Mineralogy and Petrology, 2003, 145: 492–501. doi: 10.1007/s00410-003-0464-z
Holland T J B, Powell R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids[J]. Journal of metamorphic Geology, 2011, 29(3): 333–383. doi: 10.1111/j.1525-1314.2010.00923.x
Hu J, Liu X C, Chen L Y, et al. A ∼2.5 Ga magmatic event at the northern margin of the Yangtze craton: Evidence from U-Pb dating and Hf isotope analysis of zircons from the Douling Complex in the South Qinling orogen[J]. Chinese Science Bulletin, 2013, 58: 3564–3579. doi: 10.1007/s11434-013-5904-1
Lai S, Zhang G, Yang R. Identification of the island-arc magmatic zone in the Lianghe-Raofeng-Wuliba area, south Qinling and its tectonic significance[J]. Science in China Series D: Earth Sciences, 2000, 43: 69–81. doi: 10.1007/BF02911934
Li S, Hou Z, Yang Y, et al. Timing and geochemical characters of the Sanchazi magmatic arc in Mianlue tectonic zone, South Qinling[J]. Science in China Series D: Earth Sciences, 2004, 47(4): 317–328. doi: 10.1360/02YD0490
Liu X C, Jahn B M, Hu J, et al. Metamorphic patterns and SHRIMP zircon ages of medium‐to‐high grade rocks from the Tongbai orogen, central China: implications for multiple accretion/collision processes prior to terminal continental collision[J]. Journal of Metamorphic Geology, 2011, 29(9): 979–1002. doi: 10.1111/j.1525-1314.2011.00952.x
Liu X C, Jahn B M, Li S Z, et al. U‐Pb zircon age and geochemical constraints on tectonic evolution of the Paleozoic accretionary orogenic system in the Tongbai orogen, central China[J]. Tectonophysics, 2013, 599: 67–88. doi: 10.1016/j.tecto.2013.04.003
Liu Q, Wu Y B, Wang H, et al. Zircon U–Pb ages and Hf isotope compositions of migmatites from the North Qinling terrane and their geological implications[J]. Journal of Metamorphic Geology, 2014, 32(2): 177–193. doi: 10.1111/jmg.12065
Liu L, Liao X, Wang Y, et al. Early Paleozoic tectonic evolution of the North Qinling Orogenic Belt in Central China: Insights on continental deep subduction and multiphase exhumation[J]. Earth-Science Reviews, 2016, 159: 58–81. doi: 10.1016/j.earscirev.2016.05.005
Liao X Y, Liu L, Zhai M G, et al. Metamorphic evolution and Petrogenesis of garnet–corundum silica–undersaturated metapelitic granulites: A new case study from the Mianlüe Tectonic Zone of South Qinling, Central China[J]. Lithos, 2021, 392: 106154.
Massonne H J, Szpurka Z. Thermodynamic properties of white micas on the basis of high-pressure experiments in the systems k2o-mgo-al2o3-sio2-h2o and k2o-feo-al2o3-sio2-h2o[J]. Lithos, 1997, 41(1–3): 229–250.
Mao X H, Zhang J X, Yu S Y, et al. Early Paleozoic granulite-facies metamorphism and anatexis in the northern West Qinling orogen: Monazite and zircon U-Pb geochronological constraints[J]. Science China Earth Sciences, 2017, 60: 943–957. doi: 10.1007/s11430-016-9029-7
Ratschbacher L, Hacker B R, Calvert A, et al. Tectonics of the Qinling (Central China): tectonostratigraphy, geochronology, and deformation history[J]. Tectonophysics, 2003, 366(1–2): 1–53.
Smye A J, Greenwood L V, Holland T J B. Garnet–chloritoid–kyanite assemblages: eclogite facies indicators of subduction constraints in orogenic belts[J]. Journal of Metamorphic Geology, 2010, 28(7): 753–768. doi: 10.1111/j.1525-1314.2010.00889.x
Shi Y, Yu J H, Santosh M. Tectonic evolution of the Qinling orogenic belt, Central China: new evidence from geochemical, zircon U–Pb geochronology and Hf isotopes[J]. Precambrian Research, 2013, 231: 19–60. doi: 10.1016/j.precamres.2013.03.001
Sun S, Dong Y, He D, et al. Thickening and partial melting of the Northern Qinling Orogen, China: insights from zircon U–Pb geochronology and Hf isotopic composition of migmatites[J]. Journal of the Geological Society, 2019, 176(6): 1218–1231. doi: 10.1144/jgs2019-030
Thompson A B, England P C. Pressure—temperature—time paths of regional metamorphism II. Their inference and interpretation using mineral assemblages in metamorphic rocks[J]. Journal of Petrology, 1984, 25(4): 929–955. doi: 10.1093/petrology/25.4.929
Wang C Y, Alard O, Lai Y J, et al. Advances in in-situ Rb-Sr dating using LA-ICP-MS/MS: applications to igneous rocks of all ages and to the identification of unrecognized metamorphic events[J]. Chemical Geology, 2022, 610: 121073. doi: 10.1016/j.chemgeo.2022.121073
Wang X L, Jiang S Y, Dai B Z. Melting of enriched Archean subcontinental lithospheric mantle: Evidence from the ca. 1760 Ma volcanic rocks of the Xiong’er Group, southern margin of the North China Craton[J]. Precambrian Research, 2010, 182(3): 204–216. doi: 10.1016/j.precamres.2010.08.007
Wang Z Q, Gao L D, Wang T, et al. Microfossils from the siltstones and muddy slates: Constraint on the age of the Taowan Group in the Northern Qinling Orogenic Belt, Central China[J]. Science in China Series D: Earth Sciences, 2008, 51: 172–180. doi: 10.1007/s11430-007-0140-7
Wang H, Wu Y B, Gao S, et al. Eclogite origin and timings in the North Qinling terrane, and their bearing on the amalgamation of the South and North China Blocks[J]. Journal of Metamorphic Geology, 2011, 29(9): 1019–1031. doi: 10.1111/j.1525-1314.2011.00955.x
Wang X X, Wang T, Zhang C L. Neoproterozoic, Paleozoic, and Mesozoic granitoid magmatism in the Qinling Orogen, China: Constraints on orogenic process[J]. Journal of Asian Earth Sciences, 2013, 72: 129–151. doi: 10.1016/j.jseaes.2012.11.037
Wang X X, Wang T, Zhang C L. Granitoid magmatism in the Qinling orogen, central China and its bearing on orogenic evolution[J]. Science China Earth Sciences, 2015, 58: 1497–1512. doi: 10.1007/s11430-015-5150-2
Whitney D L, Evans B W. Abbreviations for names of rock-forming minerals[J]. American mineralogist, 2010, 95(1): 185–187. doi: 10.2138/am.2010.3371
Wu Y B, Zheng Y F. Tectonic evolution of a composite collision orogen: an overview on the Qinling–Tongbai–Hong'an–Dabie–Sulu orogenic belt in central China[J]. Gondwana Research, 2013, 23(4): 1402–1428. doi: 10.1016/j.gr.2012.09.007
White R W, Powell R, Holland T J B, et al. The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3[J]. Journal of Metamorphic Geology, 2000, 18(5): 497–511. doi: 10.1046/j.1525-1314.2000.00269.x
White R W, Powell R, Johnson T E. The effect of Mn on mineral stability in metapelites revisited: New a–x relations for manganese‐bearing minerals[J]. Journal of Metamorphic Geology, 2014a, 32(8): 809–828. doi: 10.1111/jmg.12095
White R W, Powell R, Holland T J B, et al. New mineral activity–composition relations for thermodynamic calculations in metapelitic systems[J]. Journal of Metamorphic Geology, 2014, 32(3): 261–286. doi: 10.1111/jmg.12071
Wu C M, Chen H X. Revised Ti-in-biotite geothermometer for ilmenite-or rutile-bearing crustal metapelites[J]. Science Bulletin, 2015, 60: 116–121. doi: 10.1007/s11434-014-0674-y
Woodhead J D, Hergt J M. Strontium, neodymium and lead isotope analyses of NIST glass certified reference materials: SRM 610, 612, 614[J]. Geostandards Newsletter, 2001, 25(2–3): 261–266.
Xu J, Wang Q, Yu X. Geochemistry of high-Mg andesites and adakitic andesite from the Sanchazi block of the Mian-Lue ophiolitic melange in the Qinling Mountains, central China: evidence of partial melting of the subducted Paleo-Tethyan crust[J]. Geochemical Journal, 2000, 34(5): 359–377. doi: 10.2343/geochemj.34.359
Xue F, Lerch M F, Kröner A, et al. Tectonic evolution of the East Qinling Mountains, China, in the Palaeozoic: a review and new tectonic model[J]. Tectonophysics, 1996a, 253(3–4): 271–284.
Xue F, Kröner A, Reischmann T, et al. Palaeozoic pre-and post-collision calc-alkaline magmatism in the Qinling orogenic belt, central China, as documented by zircon ages on granitoid rocks[J]. Journal of the Geological Society, 1996, 153(3): 409–417. doi: 10.1144/gsjgs.153.3.0409
Xue Y Y, Liu H Y, Wang Z Y, et al. Reworking of the Juvenile Crust in the Late Mesozoic in North Qinling, Central China. Journal of Earth Science, 2022, 33(3): 623–641.
Zhai X M, Day H W, Hacker B R, et al. Paleozoic metamorphism in the Qinling orogen, Tongbai Mountains, central China[J]. Geology, 1998, 26(4): 371–374. doi: 10.1130/0091-7613(1998)026<0371:PMITQO>2.3.CO;2
Zhang S B, Zheng Y F, Wu Y B, et al. Zircon U–Pb age and Hf isotope evidence for 3.8 Ga crustal remnant and episodic reworking of Archean crust in South China[J]. Earth and Planetary Science Letters, 2006a, 252(1–2): 56–71.
Zhang S B, Zheng Y F, Wu Y B, et al. Zircon isotope evidence for≥ 3.5 Ga continental crust in the Yangtze craton of China[J]. Precambrian Research, 2006b, 146(1–2): 16–34.
Zhang Q Q, Gao X Y, Chen R X, et al. Granulites record the tectonic evolution from collisional thickening to extensional thinning of the Tongbai orogen in central China[J]. Journal of Metamorphic Geology, 2020, 38(3): 265–295. doi: 10.1111/jmg.12522
Zhao T, Zhai M, Xia B, et al. Zircon U-Pb SHRIMP dating for the volcanic rocks of the Xiong’er Group: Constraints on the initial formation age of the cover of the North China Craton[J]. Chinese Science Bulletin, 2004, 49: 2495–2502.
Zhao G C, He Y H, Sun M. The Xiong'er volcanic belt at the southern margin of the North China Craton: petrographic and geochemical evidence for its outboard position in the Paleo-Mesoproterozoic Columbia Supercontinent[J]. Gondwana research, 2009, 16(2): 170v181.
Zhao S J, Li S Z, Liu X, et al. The northern boundary of the Proto-Tethys Ocean: Constraints from structural analysis and U–Pb zircon geochronology of the North Qinling Terrane[J]. Journal of Asian earth sciences, 2015, 113: 560–574. doi: 10.1016/j.jseaes.2015.09.005
Zhao Y H, Gou L L, Long X P, et al. Zircon U–Pb geochronology and clockwise P–T evolution of garnet-bearing migmatites from the Qinling complex in the Weiziping area of the Qinling Orogen, Central China: Implications for thermal relaxation after crustal thickening[J]. Journal of Asian Earth Sciences, 2020, 195: 104354. doi: 10.1016/j.jseaes.2020.104354
Zhu X Y, Chen F, Li S Q, et al. Crustal evolution of the North Qinling terrain of the Qinling Orogen, China: evidence from detrital zircon U–Pb ages and Hf isotopic composition[J]. Gondwana Research, 2011, 20(1): 194–204. doi: 10.1016/j.gr.2010.12.009
-
期刊类型引用(9)
1. 解铭威,周慧荻,陈耸,王向荣. 银川市生态系统服务价值评估及多情景模拟. 水土保持研究. 2025(01): 294-304 . 百度学术
2. 洪桦,张渝. 基于土地利用变化的生态系统服务价值演变研究——以福州滨海新城为例. 农业与技术. 2024(04): 107-112 . 百度学术
3. 龚芯磊 ,陈鸿申 ,胡世敏 ,李正荣 ,聂坤 ,梁龙 . 特定模型与GIS结合的生态系统服务功能评价及分区研究——以黔北芙蓉江流域绥正道地区为例. 贵州地质. 2024(03): 328-338 . 百度学术
4. 陈彦珍,张丽华,王亚军,宋学云,曾乐,郝爱华,贺甜田. 不同枸杞品种的区域差异性研究. 宁夏农林科技. 2024(07): 46-52 . 百度学术
5. 张永生,李建国,赵广臣. 农田回归用水引入鸣翠湖后水质改善的数值模拟研究. 水电能源科学. 2024(11): 51-54 . 百度学术
6. 朱青青,刘超,沈艳,马红彬,谭松伟,王国会,李燕,李千飞,李国强. 宁夏罗山草地生态系统服务价值的地形效应. 应用生态学报. 2024(12): 3267-3274 . 百度学术
7. 欧阳渊,刘洪,张景华,唐发伟,张腾蛟,黄勇,黄瀚霄,李富,陈敏华,宋雯洁. 西南山区生态地质调查技术方法研究. 西北地质. 2023(04): 218-242 . 本站查看
8. 江山,石绍山,郭常来,冯雨林,孙家全,孙秀波,周丽. 大凌河流域1998~2019年NDVI时空变化及其对气温和降水的响应. 西北地质. 2023(04): 254-262 . 本站查看
9. 高媛,李谦. 湿地生态系统服务价值评估研究现状及展望. 绿色科技. 2023(18): 62-68 . 百度学术
其他类型引用(1)