ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

中亚造山带西准噶尔地区达尔布特蛇绿岩研究进展与展望

杨高学, 刘晓宇, 朱钊, 李海, 佟丽莉

杨高学,刘晓宇,朱钊,等. 中亚造山带西准噶尔地区达尔布特蛇绿岩研究进展与展望[J]. 西北地质,2024,57(3):1−10. doi: 10.12401/j.nwg.2023060
引用本文: 杨高学,刘晓宇,朱钊,等. 中亚造山带西准噶尔地区达尔布特蛇绿岩研究进展与展望[J]. 西北地质,2024,57(3):1−10. doi: 10.12401/j.nwg.2023060
YANG Gaoxue,LIU Xiaoyu,ZHU Zhao,et al. Progress and Prospect of the Darbut Ophiolite in West Junggar, Central Asian Orogenic Belt[J]. Northwestern Geology,2024,57(3):1−10. doi: 10.12401/j.nwg.2023060
Citation: YANG Gaoxue,LIU Xiaoyu,ZHU Zhao,et al. Progress and Prospect of the Darbut Ophiolite in West Junggar, Central Asian Orogenic Belt[J]. Northwestern Geology,2024,57(3):1−10. doi: 10.12401/j.nwg.2023060

中亚造山带西准噶尔地区达尔布特蛇绿岩研究进展与展望

基金项目: 国家自然科学基金项目“达尔布特及克拉玛依蛇绿混杂岩中洋岛型玄武岩地球化学特征及成因研究”(41303027),陕西省自然科学基金项目“西准噶尔唐巴勒蛇绿混杂岩:对俯冲起始机制的启示”(2023-JC-YB-236)和“西准噶尔哈拉阿拉特山早二叠世年代地层序列及沉积演化——对古准噶尔洋闭合的约束”(2023-JC-QN-0318)联合资助。
详细信息
    作者简介:

    杨高学(1980−),男,教授,博士,主要从事蛇绿岩和大地构造学研究。E–mail:ygx@chd.edu.cn

  • 中图分类号: P581

Progress and Prospect of the Darbut Ophiolite in West Junggar, Central Asian Orogenic Belt

  • 摘要:

    蛇绿岩是研究古大洋的主要载体和划分古板块边界的重要证据,记录了从大洋岩石圈的最初形成到最后洋盆闭合的诸多信息,是研究洋–陆转换过程的关键地质体。西准噶尔达尔布特蛇绿岩是北疆地区发育规模最大、最为典型的蛇绿岩带之一,相关研究近年来取得了系列成果。①在萨尔托海铬铁矿中发现金刚石等深部矿物群,从而对此前铬铁矿的浅部成矿理论提出了质疑。②在蛇绿岩中识别出前弧玄武岩,它是俯冲起始的地质记录之一。③蛇绿岩中存在古海山物质组分,其中玄武岩具有OIB特征。④萨尔托海铬铁矿是深部地幔预富集和浅部再富集的结果。⑤达尔布特蛇绿岩形成于俯冲有关的构造环境,并有地幔柱的参与。在取得进展的同时,也出现了一些新的科学问题和研究方向,主要包括深部物质循环过程、俯冲起始机制、陆壳增生机制和俯冲带型蛇绿岩成因等。

    Abstract:

    Ophiolite is a major material for studying of ancient oceans and important lithological evidence for delineating ancient plate boundaries. It records valuable information from the initial formation of the oceanic lithosphere to the final closure of the ocean basin, and is also a key geological target for studying the ocean–continent transition process. The Darbut ophiolite in West Junggar is one of the largest and most typical ophiolites exposed in northern Xinjiang. A series of new advances have been achieved in recent years: ① Diamonds and other exotic minerals have been recovered from chromitites of the Sartohay ophiolites, thus challenging the previous theory of shallow chromitite genesis. ② Fore–arc basalts have been identified in the ophiolite, which is one of the geological records of subduction initiation. ③ Ancient seamount material components have been recognized in the ophiolite, in which the basalt show OIB characteristics. ④ Sartohay chromitite is the result of deep mantle pre–enrichment and shallow re–enrichment. ⑤ A formation environment mainly associated with a subduction–related tectonic setting, with the involvement of the mantle plume, has been suggested. Despite progresses mentioned above, some new scientific issues and research directions have emerged, mainly concerning deep mantle mass recycling processes, subduction initiation mechanisms, crustal growth processes, and subduction zone ophiolite genesis.

  • 碳汇的增加和碳源的减少是降低大气中CO2浓度、实现“碳达峰、碳中和”目标的2个主要途径(王国强等,2023)。生态系统能够通过光合作用将CO2吸收并固定在植被、土壤、湿地等载体中(李姝等,2015),因此在增加“碳汇”、调节区域碳循环中具有重要作用。围绕生态系统的碳汇功能评估,国内学者目前已开展了一系列研究工作,其中包括针对不同类型陆地生态系统的碳汇评估方法(潘竟虎等,2015关晋宏等,2016冯晶红等,2020谢立军等,2022张杰等,2022),不同区域不同土地利用类型生态系统的碳汇时空变化 (彭文甫等,2016杨文学等,2016严慈等,2021魏媛等,2022杨静媛等,2022洪增林等,2023)及碳汇影响因素(胡雷等,2015张赫等,2020李磊等,2022)等。但是,由于方法的不同、样本量的限制,有关生态系统碳汇变化估算结果仍存在极大不确定性。现有的碳汇评估方法多针对某一区域的单一生态系统类型进行,涉及不同土地利用类型时多采用同一固碳系数进行评估,难以体现不同区域不同时期生态系统的碳汇能力的差异;同时,关于碳汇评估效果的影响因素的研究相对缺乏,主要集中在经济发展、产业结构、土地利用变化等方面。

    位于胡焕庸线以西的西北地区占据着国土面积的32%,但深居内陆,气候干旱、降水稀少,生态系统敏感脆弱,是双碳目标实现的关键和难点区域。精准估算西北地区生态系统碳汇,是促进区域生态保护,寻求生态系统碳汇能力提升途径的基础,对中国碳中和战略目标实现有着重要意义。笔者以西北地区为对象,在分析近40年碳汇用地演化的基础上,在省域尺度上采用特异性的固碳速率法分析了不同区域、不同时期和不同类型生态系统碳汇时空变化规律,并深入探讨了其驱动因素,以期为西北地区低碳国土空间塑造、固碳能力提升及双碳目标实现提供重要的参考依据。

    西北地区地理位置为E 73°~123°,N 36°~50°,深居中国西北部内陆,涵盖陕西、甘肃、宁夏、青海、新疆5省(区)和内蒙古自治区西部,面积约为375×104 km2。该区地域辽阔,人口相对稀少,气候干旱,降水稀少,蒸发旺盛(党学亚等,2022),多年平均降水量为235 mm。特殊的地理位置及气候条件决定了西北地区水资源短缺,生态环境脆弱(李文明等,2022徐友宁等,2022)。根据西北地区地形地貌特点(计文化等,2022),将研究区划分为平原、台地、丘陵、低山、中山、高山6类,其中平原和丘陵面积最大(28.51%和28.37%),高山次之(18.53%),低山最小(0.76%)。

    文中土地利用、地貌类型、降水、气温等数据均来源于中国科学院资源环境科学与数据中心(https://www.resdc.cn)。土地利用数据涉及1980~2020年,通过Arcgis10.2软件按生态系统类型将其划分为林地、草地、农田、湿地、未利用地、水域6类,建设用地不涉及碳汇,本次估算不包括在内。

    受数据资料限制,文中碳汇估算系数采用不同时期省域平均值测算,虽能体现不同省域不同时期生态系统碳汇能力的差异,但省域内地域性差异无法体现。耕地生态系统碳汇只考虑了施肥、秸秆还田、无固碳措施对土壤固碳速率的影响,忽略免耕固碳效应,测算的耕地碳汇量会有所偏低。

    根据《陆地生态系统生产总值(GEP)核算技术指南》(生态环境部环境规划院,中国科学院生态环境研究中心,2020),采用固碳速率法直接测算林地、草地、农田、湿地4种生态系统净碳汇量,其计算公式为:

    $$ {Q_{\text{t}}} = FCS + GSCS + WCS + CSCS $$ (1)

    式中:$ {Q_{\text{t}}} $为碳汇总量(tC/a);FCS为林地碳汇量(tC/a);GSCS为草地碳汇量(tC/a);WCS为湿地碳汇量(tC/a);CSCS为农田碳汇量(tC/a)。

    $$ FCS = FCSR \times SF \times \left( {1 + \beta } \right) $$ (2)

    式中:FCSR为林地固碳速率(tC/hm2·a);SF为林地面积(km2);β为土壤固碳系数。

    $$ GSCS = GSR \times SG $$ (3)

    式中:GSR为草地土壤固碳速率(tC/hm2·a);SG为草地面积(km2)

    $$ WCS = SCS{R_{\text{i}}} \times S{W_{\text{i}}} $$ (4)

    式中:$ SCS{R_{\text{i}}} $ 为第i类水域湿地的固碳速率(tC/hm2﹒a);$ S{W_{\text{i}}} $为第i类水域湿地的面积(km2)。

    $$ CSCS = \left( {BSS + SCS{R_n} + PR \times SCS{R_s}} \right) \times SC $$ (5)

    式中:BSS为无固碳措施下固碳速率(tC/hm2·a);$ SCS{R_n} $为施用化肥固碳速率(tC/hm2·a);$ SCS{R_s} $为秸秆还田固碳速率(tC/ hm2·a);PR为秸秆还田率。

    $$ BSS = NSC \times BD \times H \times 0.1 $$ (6)

    式中:NSC为土壤有机碳的变化;BD为土壤容重(g/cm3);H为土壤厚度(取20 cm)。

    $$\operatorname{SCSR}_n=0.6352 \times T N F-1.0834 S $$ (7)

    式中:TNF为单位面积耕地化学氮肥、复合肥总施用量(kg/hm2·a)

    $$ TNF = {{\left( {NF + CF \times 0.3} \right)} \mathord{\left/ {\vphantom {{\left( {NF + CF \times 0.3} \right)} {{S_p}}}} \right. } {{S_p}}} $$ (8)

    式中:Sp为耕作面积(hm2);NFCF为化学氮肥和复合肥施用量(t)。

    $$ SCS{R_n} = 17.116 \times S + 30.553 $$ (9)

    式中:S为单位面积秸秆还田量(t/hm2·a)。

    $$ S = {{\sum\nolimits_{j = 1}^n {{C_{yj}} \times SG{R_j}} } \mathord{\left/ {\vphantom {{\sum\nolimits_{j = 1}^n {{C_{yj}} \times SG{R_j}} } {{S_p}}}} \right. } {{S_p}}} $$ (10)

    式中:$ {C_{yj}} $为作物j在当年的产量(t);$ SG{R_j} $为作物j的草谷比;$ {S_p} $为耕作面积(hm2)。

    文中水域及未利用地的碳汇量估算采用以下公式:

    $$ {Q_i} = \sum\nolimits_{j = 1}^n {{S_{\text{i}}}} \times {F_i} $$ (11)

    式中:$ {Q_i} $为碳汇量(tC/a);$ {S_i} $为不同土地类型面积(km2);$ {F_i} $为不同土地类型的固碳速率(tC/ hm2·a)。所用参数具体值及来源见表1表2

    表  1  主要参数列表
    Table  1.  List of main parameters
    参数定义取值单位来源
    FCSR林地固碳速率0.28~1.36tC/hm2·a陆地GEP核算技术指南
    β林地土壤固碳系数0.646/陆地GEP核算技术指南
    GSR草地土壤固碳速率0.02~0.06tC/hm2·a陆地GEP核算技术指南
    $ SCS{R_{\text{i}}} $湿地的固碳速率0.3026~0.6711tC/hm2·a陆地GEP核算技术指南
    $ {S}_{水域} $水域的固碳速率0.303tC/hm2·a张赫等,2020
    $ {S}_{未利用地} $未利用地固碳速率0.0005tC/hm2·a张赫等,2020
    PR秸秆还田推广实行率0.8%~33.2%/张国等,2017
    NSC土壤有机碳的变化0.06/陆地GEP核算技术指南
    H土壤厚度20cm陆地GEP核算技术指南
    NF化学氮肥施用量/t各省统计年鉴
    CF复合肥施用量/t各省统计年鉴
    $ {C_{{\text{yj}}}} $作物j在当年的产量/t各省统计年鉴
    $ SG{R_{\text{j}}} $作物j的草谷比表2/农业农村部办公厅
    下载: 导出CSV 
    | 显示表格
    表  2  不同作物的草谷比
    Table  2.  Ratio of grass to grain of different crops
    作物草谷比作物草谷比
    水稻0.623油料2.0
    麦类1.366棉花8.1
    玉米2.0豆类1.57
    薯类0.5麻类8.10
    烟叶1.0其它谷物0.85
    下载: 导出CSV 
    | 显示表格

    为消除不同地貌区面积差异的影响,引入分布指数(P)来描述碳汇类型在地貌区的分布情况,计算公式如下(李磊等,2022):

    $$ P = {{\left( {{{{S_{ie}}} \mathord{\left/ {\vphantom {{{S_{ie}}} {{S_i}}}} \right. } {{S_i}}}} \right)} \mathord{\left/ {\vphantom {{\left( {{{{S_{ie}}} \mathord{\left/ {\vphantom {{{S_{ie}}} {{S_i}}}} \right. } {{S_i}}}} \right)} {\left( {{{{S_e}} \mathord{\left/ {\vphantom {{{S_e}} S}} \right. } S}} \right)}}} \right. } {\left( {{{{S_e}} \mathord{\left/ {\vphantom {{{S_e}} S}} \right. } S}} \right)}} $$ (12)

    式中:P为分布指数;$ {S_{ie}} $为在e区域内i类型的面积;$ {S_i} $为研究区内i类型的总面积;$ {S_e} $表示e区域(本研究中指地貌区域)的面积;S为研究区总面积。当P=1时,表示该类型在e区域平稳分布;当P>1时,表示该类型在e区域为优势分布,反之劣势分布,且P值越大,分布优势越显著。

    土地利用覆被变化是影响生态系统碳汇最主要的因素之一。从40年间西北地区土地利用分布可以看出(图1),受特有的气候和自然地理条件限制,未利用地和草地在西北地区占主导地位。未利用地主要分布于塔里木盆地、准噶尔盆地的荒漠区以及内蒙古北部的沙漠区,占比达46.11%~47.35%;草地主要分布于新疆天山山脉地区、青海南部地区及内蒙古赛罕塔拉城中草原、鄂尔多斯草原,占比达35.79%~36.90%;其次为耕地,主要分布在环塔里木盆地和环准噶尔盆地的边缘地带、关中平原、银川平原、甘肃的高原地区等,占比为7.55%~8.24%;再次是林地,主要分布在陕西秦岭、甘肃南部及中部武威地区、青海东南部,占4.80%~5.04%;湿地、水域和建设用地很少,分别占1.28%~1.46%、1.66%~2.04%和0.48%~0.94%。

    图  1  1980~2020年西北地区土地利用分布图
    Figure  1.  Land use distribution in Northwest China from 1980 to 2020

    时间尺度上,1980~2020年西北地区土地利用类型整体变化不大,但局部有一定的变化。林地、湿地和水域分布有增有减,其中林地在2015年前总体呈缓慢增长趋势,增幅1.52%,之后减少8 926 km2,减幅4.72%;湿地最大年变幅1.10%,40年总体减少14 190 km2。草地在2015年前呈波动性减少,2015年之后有所增加,40年中总体表现为增加,增加量14265 km2,增幅1.04%。耕地和建设用地持续增加,40年分别增加27 017 km2和17 041 km2,增幅分别为9.58%和94.48%,这与城市不断扩张有关。未利用地波动性减少,减少40434 km2,减幅2.28%。

    随着不同历史时期土地利用分布的变化,生态系统碳汇量也发生一系列的变化(表3)。1980~2020年,西北地区生态系统碳汇量从1980年的3 956.50×104 tC/a上升至2020年的5826.44×104 tC/a,整体呈波动上升态势,仅个别区域(新疆)在2020年略有下降。区域生态系统碳汇总量的变化可分为2个阶段:1980年至2015年间,碳汇总量持续上升至6203.08×104 tC/a,35年间增加2246.58×104 tC/a;2016~2020年,由于新疆片区生态系统碳汇下降376.64×104 tC/a,导致区域碳汇总量降至5 826.44×104 tC/a。碳汇强度随时间的变化与碳汇量趋势一致,整体呈波动上升态势,仅个别时期有所下降。1980~2015年,生态系统碳汇强度从0.105 tC/ hm2上升到了0.165 tC/ hm2,但之后有所降低,2020年碳汇强度为0.155tC/ hm2。区域生态碳汇类型主要以林地碳汇为主,占比74.08%~81.77%,其次是草地(6.83%~10.95%)、水域(4.47%~7.55%)、耕地(4.48%~5.25%)、湿地(1.44%~2.30%)和未利用地(0.13%~0.21%)。

    表  3  40年间西北地区生态系统碳汇量及占比
    Table  3.  Carbon sink amount and proportion of ecosystem in Northwest China in 40 years
    年份碳汇量(104 tC/a)及占比碳汇强度(tC/hm2
    林地草地耕地湿地水域未利用地合计
    19802953.84433.05177.1790.40293.698.343956.500.105
    74.66%10.95%4.48%2.28%7.42%0.21%100.00%
    19902980.04433.42188.5590.54282.878.333983.730.106
    74.81%10.88%4.73%2.27%7.10%0.21%100.00%
    20002971.03428.09208.0492.34302.708.354010.570.107
    74.08%10.67%5.19%2.30%7.55%0.21%100.00%
    20103923.06424.95262.9291.62292.558.385003.490.133
    78.41%8.49%5.25%1.83%5.85%0.17%100.00%
    20155072.23423.64314.0789.46295.368.326203.080.165
    81.77%6.83%5.06%1.44%4.76%0.13%100.00%
    20204734.70435.97299.9087.40260.228.255826.440.155
    81.26%7.48%5.15%1.50%4.47%0.14%100.00%
    下载: 导出CSV 
    | 显示表格

    由于自然地理条件的差异,西北地区不同区域碳汇量差异较大(图2)。1980~2010年,碳汇量从高到低依次为新疆、甘肃、陕西、青海、内蒙古(西北片区)、宁夏;2015~2020年,碳汇空间格局发生变化,陕西超越甘肃位居第二。整个研究期内碳汇量最高的区域是新疆,达1 386.63~1 817.34×104 t/a。

    图  2  不同区域碳汇量分布图
    Figure  2.  Distribution of carbon sink in different regions

    由于不同行政区域面积相差较大,相比碳汇总量,碳汇强度更能客观反映一个地区的碳汇水平,便于不同地区进行横向比较。碳汇强度分布图(图3)显示,整个研究期内陕西省碳汇强度最高,达28.09~58.43 t/km2,其主要原因是该省林地面积占比较高,达22.55%~23.66%;甘肃省次之(林地占比9.57%~10.23%),宁夏第三;新疆在1980~2000年位列第四、青海位列第五,但2010~2020年间青海超过新疆,位居第四;整个研究期内蒙古(西北片区)一直位居第六,主要与该地区林地面积占比仅为1.84%~2.07%有关。

    图  3  不同区域碳汇强度分布
    Figure  3.  Distribution of carbon sink strength in different regions

    研究期内各区域的碳汇效应在时间变化上具有较大差异性。陕西、宁夏整体呈持续上升趋势,但1980~2000年上升相对较缓,之后上升速率加快;甘肃、内蒙古、青海碳汇强度整体呈波动上升趋势,且上升较缓;新疆呈先持续缓慢上升到2015年又有所下降。

    不同生态系统类型中湿地和未利用地的碳汇量占比很小,且变化趋势不明显。因此,文中仅分析林地、草地、水域、耕地4类生态系统的碳汇量变化趋势(图4)。

    图  4  不同生态系统碳汇变化趋势
    Figure  4.  Change trend of carbon sink in different ecosystems

    通过评估,西北地区林地碳汇量整体呈持平-持续上升–下降或基本持平态势,不同区域在时间变化上有所差异。1980~2000年,各区域基本呈持平状态,之后持续上升。2015~2020年,除新疆外基本持平或略增;新疆先波动持平,2010年开始上升,2015年又开始下降。2000~2015年,青海、内蒙古(西北片区)、陕西上升幅度较大,年增幅分别达23.99%和20.86%、7.62%;宁夏、甘肃上升幅度较小,年增幅分别达2.54%和1.02%。2000年以后,各区域林地碳汇量持续上升,与当地相继开展的“天然林资源保护工程”和“退耕还林”等政策有关(胡雷等,2015关晋宏等,2016张杰等,2022)。新疆林地碳汇量由开始的持平到2015年后大幅下降,与区域林地从1990开始缓慢减少到2015年后大幅降低有关,这与马丽娜等(2022)研究结论一致。

    评估期内,草地碳汇量整体处于基本持平态势,不同区域在时间变化上有所差异。内蒙古(西北片区)、甘肃、陕西、宁夏整体呈持平趋势;青海1980~2015年先波动持平,之后上升,年上升幅度1.10%;新疆1980-2015年波动缓慢下降(年下降幅度0.11%),在2015年又开始上升(年上升幅度0.73%);宁夏持续减少,减少约5 929 tC/a,降幅9.50%。

    内蒙古(西北片区)、甘肃、陕西、宁夏草地碳汇量年度变化差异不大,这与草地面积变化较小有关。新疆2015年之前碳汇量缓慢下降,与区域草地退化,草地面积减少有关;之后受土地利用转移影响(王志强等,2022),草地面积增加导致其碳汇量相应增加。青海碳汇量增加与2015年后草地面积增加有关。

    据评估,近40年的耕地碳汇量除青海外整体呈波动性增长态势。但不同区域在时间变化上也有所差异。受节水灌溉等影响,新疆、宁夏呈持续上升趋势,年升幅分别为3.62%和2.40%,这与40年间耕地面积不断增加,及农业产量提高有关;青海40年间整体变化不大,仅增加1.55万t,这与其耕地面积较少、作物产量较低有关。陕西、甘肃、内蒙古(西北地区)呈现先持续上升,2015年后又下降态势,2015年前升幅分别为1.76%、0.68%、3.13%,2015年后降幅分别为2.47%、0.81%和2.20%。陕西从1980年耕地面积虽然在缓慢减少,但由于作物产量提高,加上复合肥投入的增加,导致碳汇强度提高,从而使碳汇量不断增加;但由于2015~2020年耕地面积减少幅度增大,从而使整体碳汇量有所降低。近40年,甘肃和内蒙古耕地数量基本持平,由于作物产量提高及复合肥投入加大,使碳汇量不断增加,之后甘肃耕地面积大量缩减导致碳汇量降低,而内蒙古(西北片区)由于耕地面积、复合肥投入的减少略有降低。

    近40年来,内蒙古(西北片区)、甘肃、陕西、宁夏水域碳汇量整体呈持平趋势;新疆呈现先波动上升,至2015年又下降趋势,5年间下降50.80×104 t,年降幅6.39%;青海有升有降,之后2010年持续上升,年上幅1.64%。水域碳汇量随水域面积变化而变化,新疆受冰川融化、降水等(徐丽萍等,2020)影响水域面积发生改变。青海2010年之后受径流量、降水等影响,水域面积逐年增大(郭丰杰等,2022)。

    植被生长变化受多种要素影响。地貌是自然环境最基本的组成要素,在不同尺度上制约着气候、植被、土壤、水文等其他自然环境要素的变化(巩杰等,2017)。气候因素中,温度和降水是影响生态系统净生产力的两个最主要因素(刘应帅等,2022),它能通过影响植物的光合作用和呼吸作用进而影响生态系统的碳汇能力。因此探讨碳汇强度与地貌、降水、温度的关系对生态系统碳汇的提升至关重要。西北地区碳汇强度及各驱动因素分布见图5

    图  5  西北地区碳汇强度及各驱动因素分布图
    Figure  5.  Distribution of carbon sink intensity and driving factors in Northwest China

    西北地区地处中国第一和第二地势阶梯之上,横跨干旱–半干旱区、青藏高原高寒区、东部季风区3大自然地理分区;有阿尔泰山、天山、昆仑山、阿尔金山、祁连山、秦岭、大巴山、巴颜喀拉山和可可西里山等山脉;并有内蒙古高原、黄土高原、准噶尔盆地、塔里木盆地、柴达木盆地(党学亚等,2022)。不同的地貌类型,其生态系统的碳汇量也有差异。通过评估,各生态碳汇类型在地貌区中的分布见表4。地貌对生态碳汇类型的分布具有明显的控制作用。林地在山区呈优势分布,特别是中山地貌区,分布指数达4.4,在其他地貌类型区呈劣势分布;草地在山区呈优势分布,在其他地貌类型区呈劣势分布;耕地在地势较为平坦的平原和台地呈优势分布,在低中山区呈稳态分布;水域和湿地在平原呈优势分布;未利用地在丘陵区呈优势分布,在平原和台地呈稳态分布。

    表  4  生态碳汇类型在地貌类型中的分布指数
    Table  4.  Distribution index of ecological carbon sink types in landform types
    类型平原台地丘陵低山中山高山
    林地0.30.40.41.64.41.3
    草地0.80.90.81.51.51.5
    耕地1.71.30.71.01.20.1
    水域2.50.90.30.50.10.4
    未利用地1.01.11.40.60.30.8
    下载: 导出CSV 
    | 显示表格

    西北地区平均降水量差别较大(2.1~1 208 mm),为研究碳汇强度在不同降水区的变化趋势,以100 mm为一个梯度,将研究区降水量划分为12个级别。研究表明,西北地区碳汇强度总体上随降水量增加呈先上升后下降又上升的态势(图6)。具体地,在降水量2~802 mm段,呈持续上升阶段,并在102~802 mm出现最大值,其碳汇强度约为127.41 t/km2;在803~1 002 mm出现持续下降,最低约为44.06 t/km2;在1003~1 208 mm随降水量增加而增加。结合区域地形地貌分析,902~1 002 mm主要分布在陕西南部汉中及汉江流域,海拔低,耕地、草地较多,其碳汇强度相对较低。

    图  6  不同降水区碳汇强度分布图
    Figure  6.  Distribution of carbon sink intensity in different precipitation areas

    为进一步分析降水量与碳汇强度相关性,对不同降水区平均降水量与其对应的平均碳汇强度作相关分析。结果显示,降水量2~802 mm段呈显著正相关(r=0.915 2),803~1 002 mm段呈显著负相关(r=−0.981 5); 1003~1 208 mm段呈显著正相关(r=0.997 7)。

    为研究碳汇强度在不同气温区的变化趋势,以3 ℃为一个梯度,将研究区气温(−22.3~17.7 ℃)划分为14个级别。研究表明,西北地区碳汇强度总体上随气温增加呈波动上升的态势(图7)。低于零下2 ℃区域,其碳汇强度均较低,最高为9.52 t/km2;−2.0~10 ℃区域,其碳汇强度变化不大,在1~4 ℃区最高,为12.27 t/km2;10 ℃开始,其碳汇强度随温度升高而持续上升,在16~18 ℃区域出现最大值,其碳汇强度为71.98 t/km2

    图  7  不同气温区碳汇强度分布图
    Figure  7.  Distribution of carbon sink intensity in different temperature zones

    对不同气温区平均温度与其对应的平均碳汇强度作相关分析。结果显示,2 ℃以下呈正相关(r=0.631 5),2 ℃以上呈显著正相关(r=0.959 5)。

    (1)受特有的自然地理环境控制性影响,西北地区未利用地和草地占主导地位。土地利用类型40年间整体变化不大,但局部有一定的变化。林地先呈缓慢增长趋势,2015年后开始下降;草地先波动性减少后又增长趋势;耕地、建设用地呈持续增长趋势;未利用地波动性减少;湿地、水域则有增有减。

    (2)2020年西北地区生态碳汇量约为5 826.44×104 tC/a,其中林地占主导地位,其次为草地、水域、耕地、湿地、未利用地。碳汇量大小依次为新疆、陕西、甘肃、青海、内蒙古(西北片区)、宁夏;碳汇强度大小依次为陕西、甘肃、宁夏、新疆、青海、内蒙古(西北片区)。1980~2020年,西北地区碳汇量变化整体呈波动上升态势,个别时期有所下降,主要由于新疆在2015~2020年间林地降幅较大所致。

    (3)受水土保持、天然林保护等措施影响,各区域林地碳汇整体呈上升趋势,而新疆受2015年林地大幅下降影响有所降低。草地整体处于基本持平态势。耕地碳汇受灌溉、经济等投入影响,除青海外整体呈波动性增长态势。受气温等影响,青海水域面积有所增加,新疆则先增加后降低。

    (4)西北地区生态碳汇与地貌、降水、气温有一定的相关关系。地貌是控制性因素,降水和气温具有一定的正相关关系。不同的地貌类型,决定了土地利用类型,决定了碳汇的强度大小;不同降水区呈现出相关差异性,低降水区和高降水区呈显著正相关,中降水区呈显著负相关;碳汇强度与气温呈现正相关,在较高温和高温区相关性显著。

  • 图  1   中亚造山带构造格架图(a)(据Jahn et al.,2000)及西准噶尔地质简图(b)(据Yang et al.,2013

    Figure  1.   (a) Simplified tectonic sketch of the Central Asian Orogenic Belt and (b) regional geological map of the West Junggar

    图  2   西准噶尔达尔布特蛇绿岩带简图(据李行等,1987

    Figure  2.   Spatial distribution map for the Darbut ophiolite from West Junggar

    图  3   地球地幔中金刚石和铬铁矿的形成和深部物质循环模式(据Yang et al.,2021

    Figure  3.   The formation of diamond and chromitite in Earth's mantle and recycle of deep subducted crust

  • 敖松坚, 肖文交, 韩春明, 等. 中亚造山带南缘蛇绿岩研究现状与展望[J]. 地球科学, 2022, 47(9): 3107-3126 doi: 10.3321/j.issn.1000-2383.2022.9.dqkx202209002

    AO Songjian, XIAO Wenjiao, HAN Chunming, et al. Status and prospect of research on ophiolites in the southern margin of the Central Asian Orogenic Belt[J]. Earth Science, 2022, 47(9): 3107-3126. doi: 10.3321/j.issn.1000-2383.2022.9.dqkx202209002

    鲍佩声, 王希斌, 郝梓国, 等. 对富铝型豆荚状铬铁矿矿床成因的新认识——以新疆萨尔托海铬铁矿矿床为例[J]. 矿床地质, 1990, 9(2): 3-17.

    BAO Peisheng, WANG Xibin, HAO Ziguo, et al. A new idea about the genesis of the aluminium rich podiform chromite deposit—with theSartuohai chromite deposit of Xinjiang as an example[J]. Mineral Deposits, 1990, 9(2): 97-111.

    鲍佩声, 王希斌, 彭根永, 等. 新疆西准噶尔重点含铬岩体成矿条件及找矿方向的研究[A]. 中国地质科学院地质研究所文集[C]. 1992, 24: 1−177

    BAO Peisheng, WANG Xibin, PENG Genyong, et al. Study on mineralization constraints and assessment of ore potential of main chrome-bearing rock bodies in western Junggar[A]. Bulletin of the Institute of Geology Chinese Academy of Geological Sciences[C]. 1992, 24: 1−177.

    鲍佩声. 再论蛇绿岩中豆荚状铬铁矿的成因——质疑岩石/熔体反应成矿说[J]. 地质通报, 2009, 28(12): 1741-1761 doi: 10.3969/j.issn.1671-2552.2009.12.008

    BAO Peisheng. Further discussion on the genesis of the podiform chromite deposits in the ophiolites—questioning about the rock/melt interaction metallogeny[J]. Chinese Journal of Geology, 2009, 28(12): 1741-1761. doi: 10.3969/j.issn.1671-2552.2009.12.008

    高俊, 江拓, 王信水, 等. 准噶尔—天山—北山蛇绿岩: 对中亚造山带西南缘洋陆格局演化的制约[J]. 地质科学, 2022, 57(1): 1-42 doi: 10.12017/dzkx.2022.001

    GAO Jun, JIANG Tuo, WANG Xinshui, et al. The Junggar, Tianshan and Beishan ophiolites: Constraint on the evolution of oceanic and continental framework along the southwestern margin of the Central-Asian Orogenic Belt[J]. Chinese Journal of Geology, 2022, 57(1): 1-42. doi: 10.12017/dzkx.2022.001

    辜平阳, 李永军, 张兵, 等. 西准达尔布特蛇绿岩中辉长岩LA-ICP-MS锆石U-Pb测年[J]. 岩石学报, 25(6): 1364-1372

    GU Pingyang, LI Yongjun, ZHANG Bing, et al. LA-ICP-MS zircon U-Pb dating of gabbro in the Darbut ophiolite, western Junggar, China[J]. Acta Petrologica Sinica, 2009, 25: 1364-1372.

    郝梓国, 王希斌, 鲍佩声. 造山带中富集型上地幔的成因——以萨尔托海蛇绿岩块为例[J]. 中国地质科学院院报, 1991(01): 159-166

    HAO Ziguo, WANG Xibin, BAO Peisheng. Genesis of enriched upper mantle in orogenic zone—a case stufy of the Saertuohai ophiolitic block[J]. Bulletin of the Chinese Academy of Geological Sciences, 1991(01): 159-166.

    李海, 李永军, 徐学义, 等. 西准噶尔达尔布特蛇绿岩带萨尔托海岩体深部结构、构造特征: 地质与地球物理证据[J]. 大地构造与成矿学, 2021, 45(4): 634-650

    LI Hai, LI Yongjun, XU Xueyi, et al. Deep structure and tectonic of Sartohay ophiolite in West Junggar, Xinjiang: New geological and geophysical evidence[J]. Geotectonica et Metallogenia, 2021, 45(4): 634-650.

    雷敏, 赵志丹, 侯青叶, 等. 新疆达拉布特蛇绿岩带玄武岩地球化学特征: 古亚洲洋与特提斯洋的对比[J]. 岩石学报, 2008, 24(4): 661-672

    LEI Min, ZHAO Zhidan, HOU Qinye, et al. Geochemical and Sr-Nd-Pb isotopic characteristics of the dalabute ophiolite, Xinjiang: Comparison between the paleo-Asian ocean and the Tethyan mantle domains[J]. Acta Petrologica Sinica, 2008, 24(4): 661-672.

    李行, 巩志超, 董显扬, 等. 新疆西准噶尔地区基性超基性岩生成地质背景及区域成矿特征[J]. 中国地质科学院西安地质矿产研究所所刊, 1987, 8(4): 3-140

    LI Hang, GONG Zhichao, DONG Xianyang, et al. On the geological setting of basic and ultrabasic rocks and the characteristics of regional metallization (mainly chromite) in the West Junggar of Xinjiang, China[J]. Bulletin of Xi`an Institute of Geology, Chinese Academy of Geological Sciences, 1987, 8(4): 3-140.

    刘希军, 许继峰, 王树庆, 等. 新疆西准噶尔达拉布特蛇绿岩E-MORB型镁铁质岩的地球化学、年代学及其地质意义[J]. 岩石学报, 2009, 25(6): 1373-1389

    LIU Xijun, XU Jifeng, WANG Shuqing, et al. Geochemistry and dating of E-MORB type rocks from Darbute ophiolite in West Junggar, Xinjiang and geological implications[J]. Acta Petrologica Sinca, 2009, 25(6): 1373-1389.

    马中平, 夏林圻, 夏祖春, 等. 蛇绿岩年代学研究方法及应注意的问题[J]. 西北地质, 2004, 37(3): 103−108.

    MA Zhongping, XIA Linqi, XIA Zuchun, et al. Method of ophiolite geochronology study and the related problems[J]. Northwestern Geology, 2004, 37(3): 103−108.

    史仁灯. 蛇绿岩研究进展、存在问题及思考[J]. 地质论评, 2005, 51(6): 681-693 doi: 10.3321/j.issn:0371-5736.2005.06.010

    SHI Rendeng. Comment on the progress in and problems on ophiolite study[J]. Geological Review, 2005, 51(6): 681-693. doi: 10.3321/j.issn:0371-5736.2005.06.010

    田亚洲, 杨经绥, 杨华燊, 等. 新疆萨尔托海铬铁矿中铂族矿物及硫化物特征[J]. 地质学报, 2019, 93(10): 2639-2655 doi: 10.3969/j.issn.0001-5717.2019.10.016

    TIAN Yazhou, YANG Jingsui, YANG Huashen, et al. The characteristics of PGE and BMS in Sartohay chromitites, Xinjiang[J]. Acta Geologica Sinica, 2019, 93(10): 2639-2655. doi: 10.3969/j.issn.0001-5717.2019.10.016

    田亚洲, 杨经绥, 张仲明, 等. 新疆萨尔托海高铝铬铁矿中异常矿物群的发现及意义[J]. 岩石学报, 2015(12): 3650-3662

    TIAN Yazhou, YANG Jingsui, ZHANG Zhongming, et al. Discovery and implication of unusual mineral group from Sarthay high-Al chromitites, Xinjiang[J]. Acta Petrologica Sinica, 2015, 31(12): 3650-3662.

    田亚洲, 杨经绥. 萨尔托海铬铁矿中的矿物包体研究[J]. 地质学报, 2016(11): 3114-3128

    TIAN Yazhou, YANG Jingsui. Study on the mineral Inclusions in Sartohay chromitites[J]. Acta Geologica Sinica, 90(11): 3114-3128.

    王国灿, 张攀. 蛇绿混杂岩就位机制及其大地构造意义新解: 基于残余洋盆型蛇绿混杂岩构造解析的启示[J]. 地球科学, 2019, 44(5): 1688-1704

    WANG Guocan, ZHANG Pan. A new understanding on the emplacement of ophiolitic mélanges and its tectonic significance: Insights from the structural analysis of the remnant oceanic basin-type ophiolitic mélanges[J]. Earth Science, 2019, 44(5): 1688-1704.

    吴福元, 刘传周, 张亮亮, 等. 雅鲁藏布蛇绿岩——事实与臆想[J]. 岩石学报, 2014, 30(2): 293-325

    WU Fuyuan, LIU Chuanzhou, ZHANG Liangliang, et al. Yarlung Zangbo ophiolite: A critical updated view[J]. Acta Petrologica Sinica, 2014, 30(2): 293-325.

    肖序常. 从扩张速率试论蛇绿岩的类型划分[J]. 岩石学报, 1995, 11(增刊): 10-23 doi: 10.3321/j.issn:1000-0569.1995.z1.002

    XIAO Xuchang. Discussion on the classification of ophiolite by spreadding rate[J]. Acta Petrologica Sinica, 1995, 11(suppl. ): 10-23. doi: 10.3321/j.issn:1000-0569.1995.z1.002

    杨经绥, 徐向珍, 张仲明, 等. 蛇绿岩型金刚石和铬铁矿深部成因[J]. 地球学报, 2013, 34(6): 643-653. ,

    YANG Jingsui, XU Xaingzhen, ZHANG Zhongming, et al. Ophiolite-type diamond and deep genesis of chromitite[J]. Acta Geoscientica Sinica, 2013, 34(6): 643-653.

    杨经绥, 徐向珍, 白文吉, 等. 蛇绿岩型金刚石的特征[J]. 岩石学报, 2014, 30(8): 2113-2124

    YANG JingSui, XU XiangZhen, BAI WenJi, et al. Features of diamond in ophiolite[J]. Acta Petrologica Sinica, 2014, 30(8): 2113-2124.

    杨经绥, 连东洋, 吴魏伟, 等. 俯冲物质深地幔循环——地球动力学研究的一个新方向[J]. 地质学报, 2021, 95(1): 42-63 doi: 10.19762/j.cnki.dizhixuebao.2021038

    YANG Jingsui, LIAN Dongyang, WU Weiwei, et al. Recycling of subducted crust in deep mantle: a new research orientation to earth dynamics[J]. Acta Geologica Sinica, 2021, 95(1): 42-63. doi: 10.19762/j.cnki.dizhixuebao.2021038

    杨经绥, 连东洋, 吴魏伟, 等. 蛇绿岩中铬铁矿研究的问题与思考[J]. 地质学报, 2022, 96(5): 1608-1634 doi: 10.3969/j.issn.0001-5717.2022.05.007

    YANG Jingsui, LIAN Dongyang, WU Weiwei, et al. Chromitites in ophiolites: questions and thoughts[J]. Acta Geologica Sinica, 2022, 96(5): 1608-1634. doi: 10.3969/j.issn.0001-5717.2022.05.007

    臧遇时, 杨高学, 赵金凤. 蛇绿岩的定义、分类及其发展[J]. 西北地质, 2013, 46(2): 12−17.

    ZANG Yushi, YANG Gaoxue, ZHAO Jinfeng. The Definition, Classification and Development of Ophiolites[J]. Northwestern Geology, 2013, 46(2): 12−17.

    翟庆国, 高俊, 宋述光. 中国蛇绿岩与造山带大地构造研究: 前言[J]. 岩石学报, 2019, 35(10): 2943-2947 doi: 10.18654/1000-0569/2019.10.01

    ZHAI QingGuo, GAO Jun, SONG ShuGuang. New progress in ophiolite and tectonics of China: Preface[J]. Acta Petrologica Sinica, 2019, 35(10): 2943-2947. doi: 10.18654/1000-0569/2019.10.01

    张进, 邓晋福, 肖庆辉, 等. 蛇绿岩研究的最新进展[J]. 地质通报, 2012, 31(1): 1-12 doi: 10.3969/j.issn.1671-2552.2012.01.001

    ZHANG Jin, DENG Jinfu, XIAO Qinghui, et al. New advances in the study of ophiolites[J]. Geological Bulletin of China, 2012, 31(1): 1-12. doi: 10.3969/j.issn.1671-2552.2012.01.001

    张继恩, 陈艺超, 肖文交, 等. 蛇绿岩与蛇绿混杂带结构[J]. 地质科学, 2021, 56(2): 560-595 doi: 10.12017/dzkx.2021.029

    ZHANG Ji'en, CHEN Yichao, XIAO Wenjiao, et al. Architecture of ophiolite and ophiolitic mélange[J]. Chinese Journal of Geology, 2021, 56(2): 560-595. doi: 10.12017/dzkx.2021.029

    张向飞, 陈莉, 曹华文, 等. 中国新疆–中亚大地构造单元划分及演化简述[J]. 西北地质, 2023, 56(4): 1−39.

    ZHANG Xiangfei, CHEN Li, CAO Huawen, et al. Division of Tectonic Units and Their Evolutions within Xinjiang, China to Central Asia[J]. Northwestern Geology, 2023, 56(4): 1−39.

    朱弟成, 莫宣学, 王立全, 等. 新特提斯演化的热点与洋脊相互作用: 西藏南部晚侏罗世—早白垩世岩浆作用推论[J]. 岩石学报, 2008, 24(2): 225-237.

    ZHU Dicheng, MO Xuanxue, WANG Liquan, et al. Hotspot-ridge interaction for the evolution of Neo-Tethys: insights from the Late Jurassic-Early Cretaceous magmatism in southern Tibet[J]. Acta Petrologica Sinica, 2008, 24(2): 225-237

    Arai S, Miura M. Formation and modification of chromitites in the mantle[J]. Lithos, 2016, 264: 277-295. doi: 10.1016/j.lithos.2016.08.039

    Bai W J, Zhou M F, Robinson P T. Possibly diamond-bearing mantle peridotites and podiform chromitites in the Luobusa and Donqiao ophiolites, Tibet[J]. Canadian Journal of Earth Sciences, 1993, 30(8): 1650-1659. doi: 10.1139/e93-143

    Buchs D M, Arculus R J, Baumgartner P O, et al. Oceanic intraplate volcanoes exposed: example from seamounts accreted in Panama[J]. Geology, 2011, 39: 335-338.

    Buckman S, Aitchison J C. Tectonic evolution of Paleozoic terranes in West Junggar, Xinjiang, NW China[C]. Aspects of the Tectonic Evolution of China. Geological Society of London Special Publication, 2004, 226: 101-129.

    Chen S, Pe-Piper G, Piper D J W, et al. Ophiolitic mélanges in crustal-scale fault zones: Implications for the Late Palaeozoic tectonic evolution in West Junggar, China[J]. Tectonics, 2014, 33: 2419-2443. doi: 10.1002/2013TC003488

    Choulet F, Faure M, Cluzel D, et al. From oblique accretion to transpression in the evolution of the Altaid collage: New insights from West Junggar, northwestern China[J]. Gondwana Research, 2012, 21: 530-547. doi: 10.1016/j.gr.2011.07.015

    Coleman R G. Ophiolites[M]. Springer, Berlin, Heidelberg, New York, 1977, 1-220.

    Dai J G, Wang C S, Polat A, et al. Rapid forearc spreading between 130 and 120 Ma: Evidence from geochronology and geochemistry of the Xigaze ophiolite, southern Tibet[J]. Lithos, 2013, 172-173: 1-16. doi: 10.1016/j.lithos.2013.03.011

    Dickey J S. A hypothesis of origin for podiform chromite deposits[J]. Geochimica et Cosmochimica Acta, 1975, 39(6): 1061-1074.

    Dilek Y, Furnes H. Structure and geochemistry of Tethyan ophiolites and their petrogenesis in subduction rollback systems[J]. Lithos, 2009, 113: 1-20. doi: 10.1016/j.lithos.2009.04.022

    Dilek Y, Furnes H. Ophiolite genesis and global tectonics: geochemical and tectonic fingerprinting of ancient oceanic lithosphere[J]. Geological Society of America Bulletin, 2011, 123: 387-411. doi: 10.1130/B30446.1

    Dilek Y, Furnes H. Ophiolites and their origins[J]. Elements, 2014, 10: 93-100. doi: 10.2113/gselements.10.2.93

    Du H Y, Chen J F, Ma X, et al. Origin and tectonic significance of the Hoboksar ophiolitic mélange in northern West Junggar (NW China)[J]. Lithos, 2019, 336-337: 293-309. doi: 10.1016/j.lithos.2019.04.010

    Duncan R A, Keller R A. Radiometric ages for basement rocks from the Emperor Seamounts, ODP Leg 197[J]. Geochemistry, Geophysics, Geosystems, 2004, 5(8): 1-13.

    Feng Y M, Coleman R G, Tilton G R, et al. Tectonic evolution of the West Junggar region, Xinjiang, China[J]. Tectonics, 1989, 8: 729-752. doi: 10.1029/TC008i004p00729

    Hofmann A, Jochum K. Source characteristics derived from very incompatible trace elements in Mauna Loa and Mauna Kea basalts, Hawaii Scientific Drilling Project[J]. Journal of Geophysical Research, 1996, 101: 831-839.

    Huang H, Wang T, Tong Y, et al. Rejuvenation of ancient micro-continents during accretionary orogenesis: insights from the Yili Block and adjacent regions of the SW Central Asian Orogenic Belt[J]. Earth-Science Reviews, 2020, 208: 103-255.

    Huang Z, Yang J S, Zhu Y W, et al. The study of deep mineral association in chromitites of the Hegenshan ophiolite, Inner Mongolia, China[J]. Acta Geologica Sinica, 2015, 89(z2): 30-31.

    Ishizuka O, Tani K, Reagan M K, et al. The timescales of subduction initiation and subsequent evolution of an oceanic island arc[J]. Earth and Planetary Science Letters, 2011, 306: 229-240. doi: 10.1016/j.jpgl.2011.04.006

    Jahn B M, Wu F Y, Chen B. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic[J]. Transactions of the Royal Society of Edinburgh, 2000, 91: 181-193. doi: 10.1017/S0263593300007367

    Li H, Li Y J, Yang G X, et al. Prospecting for ophiolite-type chromite deposit in Sartohay, West Junggar (NW China): Constraints from geological and geophysical data[J]. Ore GeologyReviews, 2023, 156: 105379. doi: 10.1016/j.oregeorev.2023.105379

    Li H Y, Zhao R P, Li J, et al. Molybdenum isotopes unmask slab dehydration and melting beneath the Mariana arc [J]. Nature Communications, 2021, 12(1): 6015. doi: 10.1038/s41467-021-26322-8

    Lian D Y, Yang J S. Ophiolite-hosted diamond: a new window for probing carbon cycling in the deep mantle[J]. Engineering, 2019, 5: 406-420. doi: 10.1016/j.eng.2019.02.006

    Liu Y J, Xiao W J, Ma Y F, et al. Oroclines in the Central Asian Orogenic Belt[J]. National Science Review, 2023, 10: nwac243. doi: 10.1093/nsr/nwac243

    Morgan W J. 1971. Convection plumes in the lower mantle[J]. Nature, 1971, 230: 42-43. doi: 10.1038/230042a0

    Nicolas A, Boudier F. Where ophiolites come from and what they tell us[J]. Geological Society of America Special Papers, 2003, 373: 137-152.

    O'Connor J M, Duncan R A. Evolution of the Walvis Ridge-Rio Grande Rise Hot Spot System: Implications for African and South American Plate motions over plumes[J]. Journal of Geophysical Research, 1990, 95(B11): 17475-17502 doi: 10.1029/JB095iB11p17475

    O'Neill C, Müller D, Steinberger B. Geodynamic implications of moving Indian Ocean hotspots[J]. Earth and Planetary Science Letters, 2003, 215: 151-168. doi: 10.1016/S0012-821X(03)00368-6

    Pearce J A, Lippard S J, Roberts S. Characteristics and tectonic significance of supra-subduction zone ophiolites[A]. Marginal basin geology[C]. London: Blackwell Scientific Publications, 1984: 77−94.

    Qiu T, Zhu Y F. Listwaenite in the Sartohay ophiolitic mélange (Xinjiang, China): A genetic model based on petrology, U-Pb chronology and trace element geochemistry[J]. Lithos, 2018, 302-303: 427-446. doi: 10.1016/j.lithos.2018.01.029

    Reagan M K, Ishizuka O, Stern R J, et al. Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(3): Q03X12.

    Reagan M K, Mcclelland W C, Girard G, et al. The geology of the southern Mariana Fore-Arc crust: implications for the scale of Eocene volcanism in the Western Pacific[J]. Earth and Planetary Science Letters, 2013, 380: 41-51. doi: 10.1016/j.jpgl.2013.08.013

    Rui H C, Yang J S, Lian D Y, et al. Deep origin of mantle peridotites from the Aladağ ophiolite, Turkey: Implication from trace element geochemistry of pyroxenes and mineralogy of ophiolitic diamonds[J]. Journal of Asian Earth Sciences, 2022, 228: 105153. doi: 10.1016/j.jseaes.2022.105153

    Safonova I Y, Santosh M. Accretionary complexes in the Asia-Pacific region: Tracing archives of ocean plate stratigraphy and tracking mantle plumes[J]. Gondwana Research, 2014, 25: 126-158. doi: 10.1016/j.gr.2012.10.008

    Sengör A M C, Natal’in B A, Burtman V S. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia[J]. Nature, 1993, 364: 299-307. doi: 10.1038/364299a0

    Shen P, Pan H D, Cao C, et al. The formation of the Suyunhe large porphyry Mo deposit in the West Junggar terrain, NW China: zircon U-Pb age, geochemistry and Sr-Nd-Hf isotopic results[J]. Ore Geology Reviews, 2017, 81: 808-828. doi: 10.1016/j.oregeorev.2016.02.015

    Shervais J W, Reagan M K, Haugen E, et al. Magmatic response to subduction initiation: part 1. fore-arc basalts of the Izu-Bonin arc from IODP Expedition 352[J]. Geochemistry, Geophysics, Geosystems, 2019, 20: 314-338. doi: 10.1029/2018GC007731

    Shervais J W, Reagan M K, Godard M, et al. Magmatic response to subduction initiation, Part II: boninites and related rocks of the Izu-Bonin arc from IODP expedition 352[J]. Geochemistry, Geophysics, Geosystems, 2021, 22(1): e2020GC009093.

    Shi R D, Griffin W L, O`Reilly S Y, et al. Archean mantle contributes to the genesis of chromitite in the Palaeozoic Sartohay ophiolite, Asiatic Orogenic Belt, northwestern China[J]. Precambrian Research, 2012, 1: 87-94.

    Taylor R N, Nesbitt R W, Vidal P, et al. Mineralogy, chemistry, and genesis of the boninite series volcanics, chichijima, bonin islands, Japan[J]. Journal of Petrology, 1994, 35: 577-617. doi: 10.1093/petrology/35.3.577

    Tian Y Z, Yang J S, Robinson P T, et al. Diamond discovered in high-al chromitites of the Sartohay ophiolite, Xinjiang Province, China[J]. Acta Geologica Sinica, 2015, 89(2): 332-340. doi: 10.1111/1755-6724.12433

    Wakabayashi J, Dilek Y. What constitutes‘emplacement’of an ophiolite?: Mechanisms and relationship to subduction initiation and formation of metamorphic soles[J]. Geological Society, London, Special Publications, 2003, 218: 427⁃447.

    Wang T, Tong Y, Xiao W J, et al. Rollback, scissor-like closure of the Mongol-Okhotsk Ocean and formation of an orocline: magmatic migration based on a large archive of age data[J]. National Science Review, 2022, 9: nwab210. doi: 10.1093/nsr/nwab210

    Wang T, Tong Y, Huang H, et al. Granitic record of the assembly of the Asian continent[J]. Earth-Science Reviews, 2023a, 237: 104298. doi: 10.1016/j.earscirev.2022.104298

    Wang T, Huang H, Zhang J J, et al. Voluminous continental growth of the Altaids and its control on metallogeny[J]. National Science Review, 2023b, 10: nwac283. doi: 10.1093/nsr/nwac283

    Wang Z H, Sun S, Li J L, et al. , Petrogenesis of tholeiite associations in Kudi ophiolite (western Kunlun Mountains, northwestern China): implications for the evolution of back-arc basins[J]. Contributions to Mineralogy and Petrology, 2002, 143: 471-483. doi: 10.1007/s00410-002-0358-5

    Windley B F, Alexeiev D, Xiao W J, et al. Tectonic models for accretion of the Central Asian Orogenic belt[J]. Journal of the Geological Society, 2007, 164: 31-47. doi: 10.1144/0016-76492006-022

    Xiao W J, Windley B F, Sun S, et al. A tale of amalgamation of three collage systems in the permian-middle Triassic in Central Asia: oroclines, sutures and terminal accretion[J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 477-507. doi: 10.1146/annurev-earth-060614-105254

    Xiao W J, Windley B F, Han C M, et al. Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia[J]. Earth-Science Reviews, 2018, 186: 94-128. doi: 10.1016/j.earscirev.2017.09.020

    Xiao W J, Song D F, Windley B F, et al. Research progresses of the accretionary processes and metallogenesis of the Central Asian Orogenic Belt[J]. Science China Earth Sciences, 2020, 63: 329-361. doi: 10.1007/s11430-019-9524-6

    Xiong F H, Yang J S, Robinson P T, et al. Diamonds discovered from high–Cr podiform chromitites of Bulqiza, eastern Mirdita ophiolite, Albania[J]. Acta Geologica Sinica, 2017, 91(2): 455-468. doi: 10.1111/1755-6724.13111

    Xu X Z, Yang J S, Robinson P T, et al. Origin of ultrahigh pressure and highly reduced minerals in podiform chromitites and associated mantle peridotites of the Luobusa ophiolite, Tibet[J]. Gondwana Research, 2015, 27: 686-700. doi: 10.1016/j.gr.2014.05.010

    Yan Q S, Castillo P, Shi X F, et al. Geochemistry and petrogenesis of volcanic rocks from Daimao Seamount (South China Sea) and their tectonic implications[J]. Lithos, 2015, 218-219: 117-126. doi: 10.1016/j.lithos.2014.12.023

    Yang G X. Subduction initiation triggered by collision: A review based on examples and models[J]. Earth-Science Reviews, 2022, 232: 104129. doi: 10.1016/j.earscirev.2022.104129

    Yang G X, Li Y J, Santosh M, et al. A Neoproterozoic seamount in the Paleoasian Ocean: evidence from zircon U-Pb geochronology and geochemistry of the Mayile ophiolitic mélange in West Junggar, NW China[J]. Lithos, 2012a, 140-141: 53-65. doi: 10.1016/j.lithos.2012.01.026

    Yang G X, Li Y J, Gu P Y, et al. Geochronological and geochemical study of the Darbut Ophiolitic complex in the West Junggar (NW China): implications for petrogenesis and tectonic evolution[J]. Gondwana Research, 2012b, 21: 1037-1049. doi: 10.1016/j.gr.2011.07.029

    Yang G X, Li Y J, Santosh M, et al. Geochronology and geochemistry of basaltic rocks from the Sartuohai ophiolitic mélange, NW China: Implications for a Devonian mantle plume within the Junggar Ocean[J]. Journal of Asian Earth Sciences, 2012c, 59: 141-155. doi: 10.1016/j.jseaes.2012.07.020

    Yang G X, Li Y J, Santosh M, et al. Geochronology and Geochemistry of Basalts from the Karamay Ophiolitic Mélange in West Junggar (NW China): Implications for Devonian-Carboniferous Intra-oceanic Accretionary Tectonics of the Southern Altaids[J]. Geological Society of America Bulletin, 2013, 125: 401-419. doi: 10.1130/B30650.1

    Yang G X, Li Y J, Xiao W J, et al. OIB-type rocks within West Junggar ophiolitic mélanges: evidence for the accretion of seamounts[J]. Earth-Science Reviews, 2015a, 150: 477-496. doi: 10.1016/j.earscirev.2015.09.002

    Yang G X, Li Y J, Tong L L, et al. An overview of oceanic island basalts in accretionary complexes and seamounts accretion in the western Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 2019, 179: 385-398. doi: 10.1016/j.jseaes.2019.04.011

    Yang G X, Li Y J, Tong L L, et al. An Early Cambrian plume-induced subduction initiation event within the Junggar Ocean: Insights from ophiolitic mélanges, arc magmatism, and metamorphic rocks[J]. Gondwana Research, 2020b, 88: 45-66. doi: 10.1016/j.gr.2020.07.002

    Yang G X, Li Y J, Tong L L, et al. Natural observations of subduction initiation: Implications for the geodynamic evolution of the Paleo-Asian Ocean[J]. Geosystems and geoenvironment, 2022, 1: 100009. doi: 10.1016/j.geogeo.2021.10.004

    Yang J S, Meng F C, Xu X Z, et al. Diamonds, native elements and metal alloys from chromitites of the Ray-Iz ophiolite of the Polar Urals[J]. Gondwana Research, 2015b, 27: 459-485. doi: 10.1016/j.gr.2014.07.004

    Yang J S, Wu W W, Lian D Y, et al. Peridotites, chromitites and diamonds in ophiolites[J]. Nature Reviews Earth & Environment, 2021, 2: 198-212.

    Yang Y Q, Zhao L, Zheng R G, et al. An early Ordovician fossil seamount of the Hongguleleng-Balkybey Ocean in the Northern West Junggar terrane (NW China) and its implications for the ocean evolution[J]. Journal of Asian Earth Sciences, 2020a, 194: 10406.

    Yao J L, Cawood P A, Zhao G C. Mariana-type ophiolites constrain the establishment of modern plate tectonic regime during Gondwana assembly[J]. Nature Communications, 2021, 12: 4189. doi: 10.1038/s41467-021-24422-z

    Zhang C, Zhai M G, Allen B, et al. Implications of Paleozoic ophiolites from Western Junggar, NW China, for the tectonics of Central Asia[J]. Journal of Geological Society, 1993, 150: 551-561. doi: 10.1144/gsjgs.150.3.0551

    Zhang J E, Chen Y C, Xiao W J, et al. Architecture of ophiolitic mélanges in the Junggar region, NW China[J]. Geosystems and Geoenvironment, 2022b, https://doi.org/10.1016/j.geogeo.2022.100175.

    Zhang P, Wang G C, Polat A, et al. Geochemistry of mafic rocks and cherts in the Darbut and Karamay ophiolitic mélanges in West Junggar, northwest China: Evidence for a Late Silurian to Devonian back-arc basin system[J]. Tectonophysics, 2018, 745: 395-411. doi: 10.1016/j.tecto.2018.08.018

    Zhou M F, Robinson P T, Malpas J, et al. Melt/mantle interaction and melt evolution in the Sartohay high-Al chromite deposits of the Dalabute ophiolite (NW China)[J]. Journal of Asian Earth Sciences, 2001, 19: 517-534. doi: 10.1016/S1367-9120(00)00048-1

    Zhou M F, RobinsonP T, Su B X, et al. Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits: The role of slab contamination of asthenospheric melts in suprasubduction zone environments[J]. Gondwana Research, 2014, 26(1): 262-283. doi: 10.1016/j.gr.2013.12.011

    Zhou M F, Robinson P T, Malpas J, et al. Podiform chromitites in the Luobusa ophiolite (southern Tibet): implications for melt-rock interaction and chromite segregation in the upper mantle[J]. Journal of Petrology, 1996, 37(1): 3-21. doi: 10.1093/petrology/37.1.3

    Zhu Q M, Zhu Y F. Platinum-group minerals and Fe–Ni minerals in the Sartohay podiform chromitite (west Junggar, China): Implications for T–pH–fO2–fS2 conditions during hydrothermal alteration[J]. Ore Geology Reviews, 2019, 112: 103020. doi: 10.1016/j.oregeorev.2019.103020

    Zhu Q M, Zhu Y F. Petrology and geochemistry of ultramafic and mafic rocks in the late Silurian-early Devonian darbut ophiolitic mélange of west Junggar (NORTHWESTERN CHINA): implications for petrogenesis and tectonic evolution[J]. International Geology Review, 2022, 64: 2601-2625. doi: 10.1080/00206814.2021.1995788

  • 期刊类型引用(5)

    1. 王璐晨,韩海辉,张俊,黄姣,顾小凡,常亮,董佳秋,龙睿,王倩,杨炳超. 塔里木河流域土地利用及人类活动强度的时空演化特征研究. 中国地质. 2024(01): 203-220 . 百度学术
    2. 黄艳,刘晓曼,袁静芳,付卓,乔青. 2000—2020年华北干旱半干旱区碳储量变化特征及影响因素. 环境科学研究. 2024(04): 849-861 . 百度学术
    3. 盖兆雪,郑文璐,王洪彦,杜国明. 气候变化下黑土区陆地生态系统碳储量时空格局与模拟. 农业机械学报. 2024(06): 303-316 . 百度学术
    4. 王洪彦,郑文璐,盖兆雪. 基于InVEST模型的黑土区碳储量时空分异特征. 环境科学学报. 2024(07): 473-481 . 百度学术
    5. 郭佳晖,刘晓煌,李洪宇,邢莉圆,杨朝磊,雒新萍,王然,王超,赵宏慧. 2000—2030年云贵高原碳储量和生境质量时空格局演变. 地质通报. 2024(09): 1485-1497 . 百度学术

    其他类型引用(1)

图(3)
计量
  • 文章访问数:  487
  • HTML全文浏览量:  85
  • PDF下载量:  189
  • 被引次数: 6
出版历程
  • 收稿日期:  2023-03-05
  • 修回日期:  2023-08-06
  • 录用日期:  2023-08-10
  • 网络出版日期:  2023-04-13

目录

/

返回文章
返回