Introduction to the Methods of Ecology−Geological Survey for Servicing Ecological Civilization: Example from Ecology−Supporting Sphere Survey
-
摘要:
服务生态文明是新时期赋予地质调查工作的新使命,广义上相关调查工作都可称之为生态地质调查。由于处于初期摸索阶段,缺少成熟的技术规范支撑,生态地质相关调查工作内容不是十分清晰。因此,梳理相关概念的内涵、厘清工作思路、明确调查内容对于实现任务目标具有重要的意义。笔者以表生地质过程对地表生态发育的制约作用为线索,从地球系统科学的角度探讨生态地质调查的任务与目标,并提出生态地质学属于“地质+”范畴。基于陆地生态系统不同地质−地貌单元的表生地质过程,以地表基质调查为例,从剥蚀区到沉积区将陆地生态系统划分为浅山−丘陵区、河流−湖泊−湿地区、平原−盆地区。根据不同调查单元的表生地质特征,分别阐述相关调查内容、调查手段及布署原则。在此基础上,探讨地表基质调查的成果表达方式与应用,以期为其他相关生态地质调查工作提供借鉴和参考。
Abstract:In the new era, serving ecological civilization is a new duty entrusted to China geological survey. In a broad sense, all related geological survey can be called the eco−geological survey. Due to lacking of technical standards to support the work in the initial exploration stage, in fact, the content of eco−geological survey work is still unclear. So, it is greatly significant for achieving the objectives to sort out the connotation of relevant concepts, clarify work ideas, and determine survey contents. In this case, tasks and objectives of eco−geological survey will be discussed on the basis of the theory of Earth system science, in which the clue between geology and ecology is the constraints of supergene geological process on the surficial ecological development. Therefore, it is proposed that ecological geology belongs to the category of "Geology +". Based on the surface geological processes of different geological and geomorphic units in terrestrial ecosystems, this study selects ecology−supporting sphere survey as an example, and divides the terrestrial ecosystem into three types from erosion area to sedimentary area, for example, shallow mountain−hill area, river−lake−wetland area, and plain−basin area. According to the geological characteristics of different survey units, detail explanations are stated respectively for the survey content, survey methods, and methods. Consequently, the expression of achievements and their applications are discussed, which will provide a reference for other related ecology−geological survey works.
-
青藏高原的形成与演化经历了多个洋盆的闭合以及陆陆碰撞过程,由此形成了高原上多个近EW向延伸的构造缝合带,将青藏高原划分为多个次级地块(Zhu et al., 2011; Kapp et al., 2019)。其中,班公湖–怒江缝合带(以下简称班–怒带)横亘于青藏高原中部,是中生代班公湖–怒江特提斯洋(以下简称班-怒洋)构造演化的残迹,其EW向延伸达2 000 km以上,构成了拉萨地块与羌塘地块之间的地质界线(图1a)。
图 1 青藏高原构造单元划分图(a)、南羌塘地块中—晚侏罗世侵入岩展布图(b)、卡易错地区地质简图(c)1.第四系;2.上三叠统日干配错组;3.古新统—始新统牛堡组;4.中—晚侏罗世花岗岩;5. 构造岩快;6. 断层;7. 角度不整合;8. 湖泊;9. 采样点;10. 锆石U-Pb年龄(本文);11. 锆石U-Pb年龄(引用);JSSZ.金沙江缝合带;LSSZ.龙木措–双湖缝合带;BNSZ.班公湖–怒江缝合带;IYZSZ.印度–雅鲁藏布缝合带;LT.拉萨地块;SQ.南羌塘地块;NQ.北羌塘地块;年龄数据引自Li等(2014)、Liu等(2014)、Wu等(2016)、Sun等(2020)、Yang等(2021)Figure 1. (a) Tectonic subdivision of the Tibetan Plateau, (b) distribution of Middle-Late Jurassic intrusive rocks within Southern Qiangtang block and (c) simplified geological map of the Kayico area, Tibet中生代以来,受班–怒洋俯冲闭合过程的影响,在班–怒带上及其两侧发育了大规模的火山岩浆活动,这些多期次岩浆岩记录了洋盆开合过程的信息,是反演区域构造–岩浆演化的关键,为揭示班–怒洋俯冲闭合过程提供了重要约束(李永飞等, 2005; Zhu et al., 2011, 2016; Pan et al., 2012; Wu et al., 2016, 2019a, 2019b; 刘海永等, 2019; 吴浩等, 2020)。然而,尽管国内外学者先后在青藏高原中部开展了大量的地质研究工作,但是关于区域上中生代多期次、多样性岩浆活动的成因与深部动力学过程尚存有较大的争议,是众多学者关注的热点(Kapp et al., 2007; Pan et al., 2012; Zhu et al., 2016; Fan et al., 2017)。近年来,越来越多的岩浆岩研究资料表明羌塘地块的南缘出露着大规模的中—晚侏罗世岩浆岩(图1b),并显示复杂的地球化学组成,仅在中酸性侵入岩中就先后识别了普通钙碱性I型花岗岩、高分异型花岗岩、富Na埃达克岩与富K埃达克岩等岩石类型(Li et al., 2014; Wu et al., 2018)。然而,羌塘地块南缘中—晚侏罗世多样性岩石类型之间究竟有何成因联系、形成于何种构造环境、反映了怎样的深部动力学过程尚不明确,亟待进一步研究。不仅如此,尽管关于班-怒洋的闭合时限仍存有争议(Kapp et al., 2007; Wu et al., 2019b; Fan et al., 2021),但是当前的研究普遍认为青藏高原中部中-晚侏罗世岩浆岩形成于洋壳俯冲背景,是班–怒洋洋壳俯冲消减引发的弧型岩浆活动(Li et al., 2014; Wu et al., 2016, 2018)。因此,查明羌塘地块南缘中—晚侏罗世岩浆作用过程,不仅对认识班–怒洋构造演化史具有重要的指示意义,同时对探讨俯冲带弧型岩浆起源与演化、壳幔物质循环与交换过程同样具有重要的约束。
藏北卡易错地区发育着大规模的晚侏罗世酸性侵入岩,为揭示班-怒洋俯冲过程、探讨俯冲带复杂的构造–岩浆活动提供了理想的研究对象(图1b)。本次在详细野外地质调查工作的基础上,对藏北卡易错地区出露的花岗闪长岩体进行了系统的岩石学、地质年代学、地球化学和同位素的研究工作,以此确定花岗闪长岩的形成时代与岩石成因,进一步对比区域岩浆岩研究资料,共同约束区域构造–岩浆过程,为揭示班–怒洋俯冲过程、探讨青藏高原早期形成与演化史提供新的约束。
1. 地质背景与岩石学特征
研究表明青藏高原自中生代以来经历了多个地块的闭合、碰撞过程,由此形成了青藏高原上近EW向延伸的多个构造缝合带,并将青藏高原从北至南划分为可可西里–松潘–甘孜地块、北羌塘地块、南羌塘地块、拉萨地块和喜马拉雅地块等多个次级地块(Zhu et al., 2011; Kapp et al., 2019)(图1a)。其中,班-怒带夹持于南羌塘地块和拉萨地块之间,大量的岩浆岩在南羌塘地块的南缘出露着大规模的中-晚侏罗世岩浆岩,该期岩浆岩以中酸性侵入岩为主,具有持续时间长、地球化学组分多样的特征,为探讨青藏高原早期形成与演化过程提供了理想的研究对象。
本次研究区卡易错地区位于日土县NE方向约45 km,大地构造位置处于班-怒带以北、南羌塘地块的南缘。区内构造–地层格架近NW–SE向展布,其研究区西南部主要以上三叠统日干配错组(T3r)灰岩夹砂岩和古新统—始新统牛堡组(E1-2n)砂、砾岩为主;而研究区东北部主要以酸性侵入岩为主。此外,受构造作用的影响,区内出露着大量的灰岩和砾岩的构造岩块(图1c)。前人已经对区内花岗岩体进行了初步的年代学和地球化学的研究工作,研究认为卡易错岩体形成于中—晚侏罗世(168~160 Ma),其地球化学组成指示岩石类型以高分异型花岗岩为主,是古老的变火成岩地壳部分熔融并经历广泛结晶分异作用的产物(Li et al., 2014; Liu et al., 2014)。
本次研究的花岗闪长岩(E 80°6′25″;N 33°28′20″)呈岩株状侵入于构造岩块之中(图2a),出露规模长约为10 m、宽约为3 m,岩石整体呈灰黑色,块状构造,中粗粒花岗结构(图2b),矿物组成以长石、角闪石、石英为主,粒度在0.5~2 mm之间,副矿物有锆石、磷灰石等(图2c、图2d)。
2. 分析方法
本次锆石U-Pb、全岩主微量地球化学与锆石Lu-Hf同位素测试分析工作均在武汉上谱分析科技有限责任公司完成。锆石U-Pb同位素定年和微量元素含量利用LA-ICP-MS同时分析完成,GeolasPro激光剥蚀系统由COMPexPro 102 ArF 193 nm准分子激光器和MicroLas光学系统组成,ICP-MS型号为Agilent 7700e,详细的仪器参数和分析流程见Zong等(2017)和李艳广等(2023)。分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正、元素含量及U-Pb同位素比值和年龄计算)采用软件ICPMSDataCal(Liu et al., 2008, 2010)完成。锆石样品的U-Pb年龄谐和图绘制和年龄加权平均计算采用Isoplot/Ex_ver3(Ludwig, 2003)完成。全岩主量元素含量利用日本理学PrimusⅡ X射线荧光光谱仪(XRF)分析完成,微量元素含量利用Agilent 7700e ICP-MS分析完成。原位微区锆石Lu-Hf同位素比值测试利用激光剥蚀多接收杯等离子体质谱(LA-MC-ICP-MS)完成。激光剥蚀系统为Geolas HD(Coherent,德国),MC-ICP-MS为Neptune Plus(Thermo Fisher Scientific,德国)。
3. 分析结果
3.1 锆石U-Pb定年与Lu-Hf同位素
花岗闪长岩锆石整体呈无色透明的长柱状,晶形完好,粒径为200~300 μm,长宽比为2∶1~3∶1(图3)。本次共对20颗锆石进行测试分析工作(表1),20颗锆石测点206Pb/238U年龄均集中在162~154 Ma之间。在谐和图上(图3),所有测点都落在谐和线上或附近区域,获得锆石206Pb/238U年龄加权平均值为(158.4±1.8)Ma(MSWD=0.15),这与前人在卡易错花岗岩体中获得的168~160 Ma的年龄信息基本一致,代表了花岗闪长岩的形成时代。
表 1 卡易错花岗闪长岩LA-ICP-MS锆石U-Pb定年分析结果Table 1. LA-ICP-MS U-Pb dating results for zircons of Kayico granodiorites点号 同位素比值(1σ) 年龄比值(Ma) 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 18T12-01 0.04954 0.00219 0.17017 0.00781 0.02491 0.00066 173 59 160 7 159 4 18T12-02 0.04929 0.00266 0.16824 0.00927 0.02475 0.00067 162 78 158 8 158 4 18T12-03 0.04965 0.00191 0.16944 0.00690 0.02475 0.00064 179 50 159 6 158 4 18T12-04 0.04989 0.00233 0.16974 0.00824 0.02467 0.00064 190 66 159 7 157 4 18T12-05 0.04939 0.00438 0.17064 0.01519 0.02505 0.00071 166 147 160 13 159 4 18T12-06 0.05092 0.00237 0.16985 0.00810 0.02419 0.00066 237 61 159 7 154 4 18T12-07 0.04885 0.00211 0.16623 0.00740 0.02467 0.00067 141 56 156 6 157 4 18T12-08 0.04955 0.00218 0.17037 0.00777 0.02493 0.00066 174 59 160 7 159 4 18T12-09 0.04888 0.00299 0.16655 0.01042 0.02471 0.00064 142 95 156 9 157 4 18T12-10 0.05012 0.00238 0.17289 0.00852 0.02501 0.00065 201 67 162 7 159 4 18T12-11 0.04908 0.00453 0.16867 0.01561 0.02492 0.00071 152 154 158 14 159 4 18T12-12 0.04889 0.00190 0.16671 0.00681 0.02472 0.00065 143 50 157 6 157 4 18T12-13 0.04940 0.00280 0.17026 0.00980 0.02499 0.00069 167 83 160 9 159 4 18T12-14 0.04970 0.00173 0.16964 0.00637 0.02475 0.00064 181 43 159 6 158 4 18T12-15 0.04905 0.00219 0.16888 0.00775 0.02496 0.00068 150 59 158 7 159 4 18T12-16 0.04950 0.00233 0.17051 0.00831 0.02498 0.00066 172 66 160 7 159 4 18T12-17 0.05017 0.00176 0.17246 0.00651 0.02492 0.00064 203 44 162 6 159 4 18T12-18 0.04892 0.00463 0.16803 0.01594 0.02490 0.00071 144 159 158 14 159 4 18T12-19 0.05000 0.00226 0.17212 0.00808 0.02496 0.00066 195 62 161 7 159 4 18T12-20 0.04862 0.00207 0.17018 0.00751 0.02538 0.00068 130 56 160 7 162 4 此外,对8颗获得谐和年龄的锆石进行原位Lu-Hf同位素测试(表2),8颗锆石测点的176Yb/177Hf在
0.012865 ~0.037412 之间,176Lu/177Hf在0.000427 ~0.001145 之间,表明所测锆石放射成因Hf的积累很少(吴福元等, 2007),测定的176Hf/177Hf(0.282602 ~0.282669 )值可以用来代替锆石的初始176Hf/177Hf值。8个测点Hf同位素地壳模式年龄TDMC为1090 ~1222 Ma,对应的εHf(t)值变化范围在−2.66~−0.27之间。表 2 卡易错花岗闪长岩锆石Lu-Hf同位素组成Table 2. Lu-Hf isotopes of zircons from the Kayico granodiorites.点号 年龄 (Ma) 176Hf/177Hf 1σ 176Lu/177Hf 1σ 176Yb/177Hf 1σ εHf(0) 1σ εHf(t) 1σ TDM1 TDMC fLu/Hf 18T12-01 159 0.282608 0.000008 0.000562 0.000003 0.017391 0.000117 −5.81 0.59 −2.38 0.60 901 1207 −0.98 18T12-02 158 0.282602 0.000009 0.000996 0.000005 0.031211 0.000271 −6.03 0.61 −2.66 0.62 921 1222 −0.97 18T12-03 158 0.282609 0.000010 0.000842 0.000026 0.026596 0.000831 −5.77 0.61 −2.39 0.62 907 1207 −0.97 18T12-04 154 0.282618 0.000010 0.000867 0.000013 0.027469 0.000376 −5.46 0.62 −2.17 0.63 895 1191 −0.97 18T12-05 159 0.282641 0.000009 0.000427 0.000002 0.012865 0.000067 −4.65 0.61 −1.20 0.62 853 1142 −0.99 18T12-06 157 0.282643 0.000009 0.000608 0.000005 0.019402 0.000131 −4.57 0.60 −1.18 0.61 854 1139 −0.98 18T12-07 159 0.282631 0.000008 0.000532 0.000001 0.016431 0.000077 −4.98 0.59 −1.55 0.60 868 1161 −0.98 18T12-08 159 0.282669 0.000009 0.001145 0.000043 0.037412 0.001346 −3.64 0.60 −0.27 0.61 829 1090 −0.97 3.2 地球化学
本次共采集4件花岗闪长岩样品进行全岩主微量元素地球化学分析工作,分析结果见表3。4件样品的地球化学组成相对均一,其SiO2含量为62.6%~65.2%,Al2O3含量为15.9%~16.6%,TiO2含量为0.68%~0.81%,TFe2O3含量为4.53%~5.37%,MgO含量为2.06%~2.34%,全碱(Na2O+K2O)含量为5.40%~5.56%,Na2O/K2O值为0.94~1.10,Mg#为50~52。在岩石类型判别图解中(图4a),样品均在花岗闪长岩区域;在K2O-SiO2图解中(图4b),样品显示中钾–高钾钙碱性的特征;在A/NK-A/CNK图解中(图3c),样品整体显示弱过铝质的特征(A/CNK=1.02~1.05)。以上主量元素地球化学组成表明样品整体显示弱过铝质中钾-高钾钙碱性花岗闪长岩的特征。
表 3 卡易错花岗闪长岩全岩主量(%)和微量(10−6)元素分析结果Table 3. Whole-rock major (%) and trace (10−6) element contents of Kayico granodiorites元素 T12h1 T12h2 T12h3 T12h4 元素 T12h1 T12h2 T12h3 T12h4 SiO2 63.6 65.2 64.5 62.6 Zr 248 230 244 245 TiO2 0.78 0.68 0.71 0.81 Nb 13.8 13.1 13.7 14.1 Al2O3 16.1 15.9 16.2 16.6 Sn 3.58 5.26 4.55 4.30 TFe2O3 5.37 4.53 4.82 5.12 Cs 17.5 21.1 14.6 20.0 MnO 0.08 0.06 0.07 0.07 Ba 457 383 401 428 MgO 2.34 2.06 2.07 2.33 La 29.8 32.7 32.1 30.2 CaO 4.48 4.44 4.38 4.83 Ce 66.7 68.5 63.0 61.6 Na2O 2.70 2.74 2.83 2.74 Pr 6.97 7.45 7.02 6.90 K2O 2.86 2.78 2.57 2.77 Nd 26.37 28.1 27.3 25.4 P2O5 0.15 0.13 0.14 0.15 Sm 5.26 5.68 5.75 5.24 LOI 0.99 1.11 1.30 1.30 Eu 1.11 1.05 1.14 1.16 SUM 99.5 99.7 99.5 99.3 Gd 5.08 4.65 4.55 4.66 Li 56.7 49.2 63.6 54.6 Tb 0.83 0.83 0.78 0.74 Be 1.97 2.31 2.18 2.07 Dy 4.95 5.01 4.54 4.49 Sc 14.9 12.7 13.8 14.8 Ho 1.00 1.01 0.91 0.92 V 74.0 61.3 67.1 74.1 Er 2.83 2.87 2.72 2.60 Cr 40.0 32.8 37.6 37.7 Tm 0.45 0.43 0.40 0.41 Co 15.4 11.5 12.9 12.8 Yb 2.70 2.78 2.46 2.42 Ni 16.6 14.3 15.2 15.5 Lu 0.41 0.44 0.37 0.37 Cu 104 45.7 44.1 45.7 Hf 6.64 6.24 6.79 6.29 Zn 56.6 43.1 45.7 51.6 Ta 1.02 1.10 1.05 0.98 Ga 19.2 18.8 19.1 19.5 Tl 1.33 1.40 1.13 1.34 Rb 170 185 169 178 Pb 8.40 9.57 7.76 10.2 Sr 188 181 194 203 Th 14.4 16.9 15.5 12.4 Y 28.2 28.0 26.8 24.8 U 2.18 2.88 2.52 2.23 图 4 卡易错花岗岩TAS图解(Middlemost, 1994)(a)、K2O-SiO2图解(Le Maitre et al., 1989; Rickwood, 1989)(b)和A/NK-A/CNK图解(c)(Shand, 1943)Figure 4. (a) TAS classification diagram, (b) K2O vs. SiO2 diagram and (c) A/NK vs. A/CNK diagram of Kayico granitic rocks在球粒陨石标准化稀土元素配分曲线中,样品呈轻稀土元素富集、重稀土元素亏损的右倾模式([La/Yb]N=7.90~9.34),同时具有不同程度的Eu负异常(Eu/Eu*=0.62~0.72)(图5a)。在原始地幔标准化蛛网图中,样品具有明显Nb、Ta等高场强元素以及Ba、Sr、Eu等大离子亲石元素的亏损(图5b)。
图 5 岩石球粒陨石标准化稀土元素模式图(a)和原始地幔标准化微量元素蛛网图(b)(标准化值引自Sun 等1989)Figure 5. (a) Chondrite-normalized rare earth element and (b) primitive-mantle–normalized multi-element patterns4. 讨论
4.1 中-晚侏罗世岩浆活动
近年来,国内外学者已经对青藏高原中部出露的岩浆岩开展了系统的研究工作,报道了大量的年代学和地球化学数据(Li et al., 2014; Liu et al., 2014; Wu et al., 2016; 刘海永等, 2022)。越来越多的研究表明在南羌塘地块南缘的卡易错、材玛、青草山、改则、荣玛、高保约一带存在一期大规模的中—晚侏罗世岩浆活动(约165~150 Ma),这些岩浆岩整体呈带状近平行于班–怒带出露,EW向延伸近上千千米,岩石类型整体以中酸性侵入岩为主,具有持续时间长、分布范围广的特征(图1b)。前人的研究在卡易错花岗岩体中获得了168~160 Ma的锆石U-Pb年龄信息(Liu et al., 2014; Li et al., 2014),本次锆石U-Pb定年工作在卡易错花岗闪长岩中获得了158 Ma的年龄,表明区内花岗岩形成于中—晚侏罗世之交,与南羌塘地块上大规模发育的中酸性侵入岩形成时代相近,应该是区域上同一期构造–岩浆活动的产物。
此外,Wu等(2018)对南羌塘地块上发育的中—晚侏罗世侵入岩进行了系统的地球化学对比研究,研究发现该期侵入岩整体显示复杂的地球化学特征,根据岩石的主、微量元素含量和同位素地球化学特征,可以划分为普通钙碱性I型花岗岩、高分异花岗岩、富Na埃达克岩与富K埃达克岩等不同的岩石类型,反应了区域上花岗质岩石复杂的岩浆源区与成岩过程。而根据现有地球化学资料,卡易错花岗岩可以划分为普通钙碱性I型花岗岩和高分异型花岗岩两类(Li et al., 2014; Liu et al., 2014),然而二者之间有何成因联系尚不明确。
4.2 构造背景
大量的岩浆岩研究资料表明青藏高原中部中生代岩浆作用整体沿班–怒带展布,主要发育在混杂带上及其两侧的南羌塘地块南缘和拉萨地块北缘,显示与与班–怒洋密切的时空联系,系统的研究工作已经初步建立中生代多期次岩浆作用与班–怒洋俯冲闭合过程之间的成因联系(Zhu et al., 2011, 2016; Kapp et al., 2019; Wu et al., 2019a, 2019b)。尽管对于班–怒洋的闭合时限一直存在争论,然而现有的争议均认为班–怒洋闭合与拉萨–羌塘地块陆陆碰撞应不早于白垩纪,而青藏高原中部侏罗纪构造演化主要受班–怒洋俯冲消减作用的影响(Liu et al., 2022)。此外,班–怒带上蛇绿混杂岩系统的年代学和地球化学的研究同样表明班–怒洋洋盆在中—晚侏罗世仍存有一定的规模(范建军等, 2019; 李志军等, 2019; 唐跃等, 2021)。
卡易错花岗闪长岩显著的Nb、Ta等元素亏损(图5),显示与俯冲成因的弧型岩浆岩相似的地球化学特征。近年来,不同学者对南羌塘地块上发育的中—晚侏罗世岩浆岩开展了大量的研究工作,陆续取得了众多的研究进展(Liu et al., 2014; Li et al., 2016; Wu et al., 2016)。其中,中酸性侵入岩整体显示陆缘弧的地球化学特征,而洋壳熔融成因的埃达克质花岗岩的识别则为深部俯冲洋壳的存在提供了最直接的岩石学证据(Li et al., 2016)。此外,区域上还陆续报道了中—晚侏罗世俯冲成因的钙碱性弧型安山岩与OIB型辉绿岩(李小波等, 2015; 董宇超等, 2016; Li et al., 2016),如此复杂多样的岩石组合反映了俯冲带上复杂的源区物质组成与循环过程。不仅如此,最近的研究提出班–怒洋的初始俯冲起始于晚三叠世末—早侏罗世(Qian et al., 2020; Liu et al., 2022),进一步表明班–怒洋中—晚侏罗世应处于洋壳俯冲背景。综上所述,南羌塘地块南缘出露的中—晚侏罗世岩浆岩应该形成于洋壳俯冲背景,是班-怒洋北向俯冲至南羌塘地块之下引发的弧型岩浆活动。
4.3 岩石类型与成因
花岗岩的类型划分与岩石成因长期以来一直以来是众多地质学家关注的热点研究问题,其中Chappell等(1974, 1992)根据花岗岩的岩浆源区物质组成和成岩构造环境的差异将花岗岩划分为I、S、M、A型4类,该分类方式已经被广泛运用于花岗岩成因与演化的研究工作(王亮等, 2022; 孙巍等, 2022)。Li等(2014)和Liu等(2014)对区内花岗岩岩石开展了年代学和地球化学的研究工作,识别了普通钙碱性I型和高分异型两类花岗岩。笔者在新获得的卡易错花岗闪长岩研究资料的基础上,进一步收集整理了前人已报道的卡易错花岗岩体的数据资料,以此准确约束卡易错地区花岗质岩石的岩石类型与成因。
卡易错花岗岩整体具有低的Zr+Ce+Nb+Y含量,然而根据其(Na2O+K2O)/CaO和FeOt/MgO值的不同,区内岩石可以划分为高分异与未分异两组(图6a、图6b )。不同于前人报道的高分异型花岗岩,本次采集的花岗闪长岩样品显示低的(Na2O+K2O)/CaO和FeOt/MgO值,具有未分异花岗岩的特征。在P2O5-SiO2和Th-Rb图解中,花岗闪长岩样品均显示出I型花岗岩的演化趋势(图6c、图6d)。结合花岗闪长岩弱过铝质的特征(图4c),卡易错花岗闪长岩应该属于普通钙碱性I型花岗岩。I型花岗岩一般认为起源于变火成岩下地壳部分熔融或者幔源物质对变沉积岩下地壳的改造(Petford et al., 1996; Chappell et al., 2001; Li et al., 2007),研究区内乃至整个南羌塘地块南缘均未发现大规模幔源岩浆活动成因的基性岩,结合花岗闪长岩相对均一的锆石原位Hf同位素组成(εHf(t)=−2.66~−0.27),卡易错花岗闪长岩难以解释为幔源物质与变沉积岩下地壳熔体混合的产物。同时,花岗闪长岩具有高的CaO/Na2O以及低的Al2O3/TiO2和Rb/Ba、Rb/Sr值,进一步指示着其起源于玄武质火成岩下地壳的部分熔融(图7a、 图7b)。此外,花岗闪长岩中不同程度的Eu、Sr、Ba等元素的负异常一般认为是成岩过程中存在着长石类矿物的结晶分异,而Nb、Ta等元素的亏损则和金红石/榍石的结晶分离相关。综上所述,卡易错花岗闪长岩应该是南羌塘地块之下古老的变火成岩下地壳熔体经历一定结晶分异作用的产物。
图 6 卡易错花岗岩(Na2O/K2O)/CaO-Zr+Ce+Nb+Y图解(a)、FeOt/MgO-Zr+Ce+Nb+Y图解(b)(Whalen et al., 1987)、P2O5-SiO2图解(c)和Th-Rb图解(d)(Li et al., 2007)Figure 6. Geochemical classification diagrams of Kayico granitic rocks: (a)(Na2O/K2O)/CaO vs. Zr+Ce+Nb+Y diagram, (b) FeOt/MgO vs. Zr+Ce+Nb+Y diagram, (c) P2O5 vs. SiO2diagram, (d) Th vs. Rb diagram of Kayico granitic rocks图 7 卡易错花岗岩CaO/Na2O-Al2O3/TiO2图解(a)、Rb/Ba-Rb/Sr图解(b)(Sylvester, 1998)、 Rb/Sr-Sr图解(c)、Ba-Sr图解(d)(Rollinson, 1993)Amp.闪石;Bi.黑云母;Kfs.钾长石;Pl.斜长石Figure 7. (a) CaO/Na2O vs. Al2O3/TiO2 diagram, (b) Rb/Ba vs. Rb/Sr diagram, (c) Rb/Sr vs. Sr diagram, (d) Ba vs. Sr diagram of Kayico granitic rocks卡易错高分异型花岗岩具有与钙碱性I型花岗岩形成时代一致,在空间上密切共生,并相似的锆石Hf同位素特征,表明二者具有相似的岩浆源区物质组成(Li et al., 2014; Liu et al., 2014)。然而,高分异型花岗岩显示强烈的亏损Eu、Sr、Ba等元素(图5),指示着岩浆在侵位过程中经历了强烈的结晶分异作用。在Rb/Sr-Sr和Ba-Sr图解中,卡易错两类花岗岩之间显示出明显的长石类矿物分离结晶趋势(图7c、图7d),进一步表明卡易错不同类型花岗岩地球化学的差异是后期岩浆侵位过程中经历不同演化过程的产物。近年来,晶粥体模型(MUSH)被广泛应用于解释同期共生花岗闪长岩与高分异型花岗岩之间的成因联系(Bachmann et al., 2004; Hildreth, 2004),该模型提出花岗质岩浆在浅层岩浆房中发生矿物结晶时,形成一种晶体与液体共存的晶粥体,其外围的物质结晶形成富含斑晶的花岗质岩石,而中心的残余岩浆则形成高分异的高硅花岗岩(Wu et al., 2017)。晶粥体模型无疑为卡易错地区空间上相伴生、时代上相一致的普通钙碱性I型花岗岩和高分异型花岗岩提供了合理的成因解释。因此,研究认为,在中—晚侏罗世班–怒洋持续北向俯冲过程中,底侵的幔源玄武质岩浆诱发南羌塘地块之下古老的变火成岩下地壳物质发生重熔,形成的熔体上升侵位、并在浅层岩浆房内发生显著低压结晶分异作用,其外围的晶粥体与内部的熔体分别冷凝形成了卡易错地区普通钙碱性I型和高分异型两类花岗质岩石(图8)。
5. 结论
(1)锆石U-Pb年龄表明,卡易错花岗闪长岩形成于158 Ma,与前人在卡易错岩体中获得的168~160 Ma的年龄相一致,是南羌塘地块南缘中—晚侏罗世构造-岩浆活动的产物。
(2)卡易错花岗闪长岩具有钙碱性I型花岗岩的地球化学特征,以及相对富集的锆石Hf同位素组成,是班-怒洋中-晚侏罗世北向俯冲背景下南羌塘地块古老的变火成岩下地壳熔融的产物。
(3)结合现有研究资料,晶粥体模式为卡易错地区钙碱性I型与高分异型两类花岗岩提供了合理的成因解释,二者是壳源熔体在浅层岩浆房内经历结晶分异后不同端元冷凝的产物。
致谢:野外工作得到西藏自治区地质调查院刘海永博士和吉林大学罗安波博士等人的帮助,审稿专家对稿件提出的宝贵意见对论文质量提高至关重要,在此一并致以衷心的感谢。
-
图 1 陆地生态系统中地表物质组成分布结构示意图(据朱永官等 ,2015修改)
Figure 1. Schematic diagram of composition and distribution structure of surface materials in terrestrial ecosystem
表 1 地表基质调查内容–要素指标体系表(据中国地质调查局“地表基质调查工程”提供修改)
Table 1 Surface substrate survey content–element index system of black soil (Provided by the surface matrix investigation project from the China Geological Survey)
调查内容 要 素 地质–地貌类型 获取手段 低山–丘陵区(基岩区) 山前过渡带 平原–盆地区 河流–湖泊–湿地 景观属性 地质景观 不同基质形成的地层单位、构造单元、沉积相等 收集资料
野外调查地理景观 地貌特征(高原、平原、盆地、山地、丘陵、荒漠、岩溶区等;低山、丘陵、漫川漫岗、平原、坳谷等);地形特征(陡坡、缓坡、平地等) 收集资料
遥感解译
野外调查时空结构 平面特征 二级分类、岩性、形成时代、风化特征等 二级分类、砾质类型、形成时代、成因类型、砾石含量、原岩成分等 二级分类、土壤质地、形成时代、土壤类型、土地利用类型等 二级分类、泥质类型、形成时代、成因类型等 收集资料
野外调查垂向特征 风化壳厚度 垂向分层、厚度、结构特征等 垂向结构特征、黑土层厚度、耕层厚度、有效土层厚度、障碍层深度及厚度、成土母质 垂向分层、厚度、结构特征等 最大调查
深度基岩顶面 50 m 50 m 水体以下2 m 野外调查 理化性质 物理特征 土壤物质组成与质地、岩石风化程度等 土壤的质地、成土母质物质组成与结构;胶结或松散程度、胶结物成分、持水能力等 土壤含水率、结构、质地、容重、孔隙度;成土母质的结构及物质组成等 颜色、
物质组成收集资料
野外调查
分析测试化学成分 主量元素、部分营养元素、有益元素 主量元素、部分营养元素、有益元素 土壤化学指标:pH、阳离子交换量、全盐量、有机碳、全碳、黏土矿物等
土壤养分指标:全氮、全磷、全钾、Se等
基质层元素指标:主量元素、部分营养元素、有益元素pH值、
有机质等收集资料
分析测试生态属性 表观生态 地表水类型、分布;植被类型、覆盖度;侵蚀类型、侵蚀程度等 收集资料 内部生态 地下水水位、水质 地下水水位、水质等 收集资料
野外调查
分析测试气候环境 气候带类型(热带雨林气,候、干燥气候、温带多雨气候等),年、月平均温度变化,年积温,年平均降雨量、蒸发量、年均风速等 收集资料 -
董和金. 关于城市生态地质环境研究[J]. 中国地质, 2000(05): 33-35 doi: 10.3969/j.issn.1000-3657.2000.05.012 DONG Hejin. Research on Urban Ecological Geological Environment [J]. Geology in China, 2000 (05): 33-35. doi: 10.3969/j.issn.1000-3657.2000.05.012
段星星, 邱德明, 白金. 浅析生态地质调查思路——以黄河源为例[J]. 地质评论, 2020, 66(SI1), 159-160 DUAN Xingxing, QIU Deming, BAI Jin: Thoughts on ecological geological survey: taking Yellow River headwaters as an example [J]. Geological Review, 2020, 66(SI1), 159-160.
葛良胜, 杨贵才. 自然资源调查监测工作新领域: 地表基质调查[J]. 中国国土资源经济, 2020, 33(09): 4-11+67 GE Shengliang, YANG Guicai. New Field of Natural Resources Survey and Monitoring: Ground Substrate Survey[J]. Natural Resource Economics of China, 2020, 33(09): 4-11+67.
顾承启. 俄罗斯地质生态制图概况[J]. 中国地质, 1994(08): 29-30 GU Chengqi. General Situation of Geological and Ecological Mapping in Russia[J]. Geology in China, 1994(08): 29-30.
何文娜, 朱长青, 李仰春, 等. 基于ArcGIS的智能地质图综合[J]. 地球物理学进展, 2020, 35(02): 728-734 doi: 10.6038/pg2020EE0023 HE Wenna, ZHU Changqing, LI Yangchun, et al. Intelligent geological map generalization based on ArcGIS[J]. Progress in Geophysics, 2020, 35(2): 728-734. doi: 10.6038/pg2020EE0023
侯红星, 张蜀冀, 鲁敏, 等. 自然资源地表基质层调查技术方法新经验——以保定地区地表基质层调查为例[J]. 西北地质, 2021, 54(03): 277-288 HOU Hongxing, ZHANG Shuji, LU Min, et al. Technology and Method of the Ground Substrate Layer Survey of Natural Resources: Taking Baoding Area as an Example[J]. Northwestern Geology, 2021, 54(03): 277-288.
贾磊, 刘洪, 欧阳渊, 等. 基于地质建造的南方山地-丘陵区地表基质填图单元划分方案—以珠江新会-台山山区为例[J]. 西北地质, 2022, 55(4): 140-157 JIA Lei, LIU Hong, OUYANG Yuan, et al. Division Scheme of Surface Substrate Mapping Units of Mountainous-Hilly Area in South China Based on Geological Formations Research: Example from Xinhui-Taishan Area in Pearl River Delta[J]. Northwestern Geology, 2022, 55(4): 140-157.
林景星, 张静, 史世云, 等. 生态环境地质学——21世纪新兴的地球学科[J]. 地质通报, 2003(07): 459-469 doi: 10.3969/j.issn.1671-2552.2003.07.001 LIN Jingxing, ZHANG Jing, SHI Shiyun, et al. Ecoenvironmental geology—a rising branch of earth science during the 21st century[J]. Geological Bulletin of China, 2003(07): 459-469. doi: 10.3969/j.issn.1671-2552.2003.07.001
刘建宇, 聂洪峰, 宋保芳, 等. 内蒙古阴山北麓的风蚀沙化作用及其生态地质效应[J/OL]. 中国地质: 1-16[2022-07-09]. http://kns.cnki.net/kcms/detail/11.1167.P.20211027.1953.002.html LIU Jianyu, NIE Hongfeng, SONG Baofang, et al. The Wind Erosion, Land Desertification and Ecogeological Effects in the Northern Piedmont of Yinshan Mountain in lnner Mongolia. [J/OL]. Geology in China: 1-16[2022-07-09].
李文明, 李健强, 徐永, 等. 西北生态地质调查研究进展与展望[J]. 西北地质, 2022, 55(3): 108-119 Ll Wenming, Ll Jianqiang, XU Yong, et al. Progress and Prospects of Ecological Geological Survey in Northwest China[J]. Northwestern Geology, 2022, 55(3): 108-119.
马腾, 沈帅, 邓娅敏, 等. 流域地球关键带调查理论方法: 以长江中游江汉平原为例[J]. 地球科学, 2020, 45(12): 4498-4511 Ma Teng, Shen Shuai, Deng Yamin, et al. Theoretical Approaches of Survey on Earth's Critical Zone in Basin: An Example from Jianghan Plain, Central Yangtze River. [J]. Earth Science, 2020, 45(12): 4498-4511.
马震, 夏雨波, 李海涛, 等. 雄安新区自然资源与环境-生态地质条件分析[J]. 中国地质, 2021, 48(03): 677-696 doi: 10.12029/gc20210301 MA Zhen, XIA Yubo, Ll Haitao, et al. Analysis of natural resources and environment eco-geological conditions in the Xiong'an New Area. [J]. Geology in China, 2021, 48(03): 677-696. doi: 10.12029/gc20210301
聂洪峰, 肖春蕾, 戴蒙, 等. 生态地质调查工程进展与主要成果[J]. 中国地质调查, 2021a, 8(01): 1-12 NIE Hongfeng, XIAO Chunlei, DAI Meng, et al. Progresses and main achievements of ecogeological survey project[J]. Geological Survey of China, 2021a, 8(01): 1-12.
聂洪峰, 肖春蕾, 任伟祥, 等. 生态地质研究进展与展望[J]. 中国地质调查, 2021b, 8(06): 1-8 NIE Hongfeng, XIAO Chunlei, REN Weixiang, et al. Progress and prospect of ecogeological research[J]. Geological Survey of China, 2021b, 8(06): 1-8.
彭建兵, 兰恒星. 略论生态地质学与生态地质环境系统. 地球科学与环境学报, 2022, 44(06), 877-893 PENG Jian-bing, LAN Heng-Xing. Ecological Geology and Eco-geological Environment System [J]. Journal of Earth Science and Environment. 2022, 44(06), 877-893.
王建恒. 寻山水林田湖草监测之道——新时代自然资源统一调查监测制度体系建设探究[J]. 资源导刊, 2020(02): 54-55 doi: 10.3969/j.issn.1674-053X.2020.02.055 WANG Jianheng. Seeking the Way of Monitoring Mountains, Rivers, Forests, Fields, Lakes and Grasses -- Exploring the Construction of the Unified Investigation and Monitoring System of Natural Resources in the New Era[J]. Resource Guide, 2020(02): 54-55. doi: 10.3969/j.issn.1674-053X.2020.02.055
王京彬, 卫晓锋, 张会琼, 等. 基于地质建造的生态地质调查方法——以河北省承德市国家生态文明示范区综合地质调查为例[J]. 中国地质, 2020, 47(06): 1611-1624 doi: 10.12029/gc20200601 WANG Jingbing, WEI Xiaofeng, ZHANG Huiqiong, et al. The eco-geological survey based on geological formation, exemplified by integrated geological survey of National Ecological Civilization Demonstration Area in Chengde City, Hebei Province[J]. Geology in China, 2020, 47(6): 1611-1624. doi: 10.12029/gc20200601
肖春蕾, 聂洪峰, 刘建宇, 等. 生态-地质作用模式: 诠释表生地质过程与生态特征的耦合[J]. 中国地质调查, 2021, 8(06): 9-24 XIAO Chunlei, NIE Hongfeng, LIU Jianyu, YUAN Guoli, eta al. Ecological and geological interaction model: The coupling of supergene geological processes and ecological characteristics [J]. Geological Survey of China, 2021, 8(06): 9-24.
徐冠华. 关于地球系统科学学科建设的几点意见[J]. 科学通报, 2017, 62(30): 3409-3412 XU Guanhua, On the development and education of the discipline of Earth system science[J]. Chinese Science Bulletin, 2017, 62(30): 3409-3412.
杨顺华, 张甘霖. 什么是地球关键带[J]. 科学, 2021, 73(5): 4 YANG Shunhua, ZHANG Ganlin. What is the Critical Zone? [J]. Science, 2021, 73(5): 4.
殷志强, 秦小光, 张蜀冀, 等. 地表基质分类及调查初步研究[J]. 水文地质工程地质, 2020, 47(06): 8-14 YIN Zhiqiang, QIN Xiaoguang, ZHANG Shuji, et al. Preliminary study on classification and investigation of surface substrate[J]. Hydrogeology & Engineering Geology, 2020, 47(06): 8-14.
袁国礼. 生态地质调查与生态修复机理诊断 (P358)[A].施俊法编. 新时代地质工作方略[M]. 北京: 地质出版社, 2022 赵平. 新时代生态地质勘查工作的基本内涵与架构[J]. 中国煤炭地质, 2018, 30(10), 1-5 doi: 10.3969/j.issn.1674-1803.2018.10.01 ZHAO Ping. Fundamental Connotation and Framework of Eco - geological Exploration in New Era [J]. Coal Geology of China, 2018, 30(10), 1-5. doi: 10.3969/j.issn.1674-1803.2018.10.01
周妍, 陈妍, 应凌霄, 等. 山水林田湖草生态保护修复技术框架研究[J]. 地学前缘, 2021, 28(04): 14-24 ZHOU Yan, CHEN Yan, YING Lingxiao, et al. A technical framework for ecosystem conservation and restoration[J]. Earth Science Frontiers, 2021, 28(4): 14-24.
朱永官, 李刚, 张甘霖, 等. 土壤安全: 从地球关键带到生态系统服务[J]. 地理学报, 2015, 70(12): 1859-1869 doi: 10.11821/dlxb201512001 ZHU Yongguan, LI Gang, ZHANG Ganlin, et al. Soil security: From Earth's critical zone to ecosystem services[J]. Acta Geographica Sinica, 2015, 70(12): 1859-1869. doi: 10.11821/dlxb201512001
Banwart S, Menon M, Bernasconi S M, et al. Soil processes and functions across an international network of Critical Zone Observatories: Introduction to experimental methods and initial results[J]. Comptes Rendus Geoscience, 2012, 344 (11-12): 758-772. doi: 10.1016/j.crte.2012.10.007
Gao B, Li M, Wang J, et al. Temporally or spatially? Causation inference in Earth System Sciences[J]. Science Bulletin, 2022, 67(3): 232-235. doi: 10.1016/j.scib.2021.10.002
National Research Council (NRC). Basic Research Opportunities in Earth Science[M]. Washington, D. C. : National Academies Press, 2001.
Trofimov VT, Ziling DG. Ecological geological in the program of “University of Russia”[Z]. Geoecologiya, 1994, 3, 119-120.
-
期刊类型引用(9)
1. 解铭威,周慧荻,陈耸,王向荣. 银川市生态系统服务价值评估及多情景模拟. 水土保持研究. 2025(01): 294-304 . 百度学术
2. 洪桦,张渝. 基于土地利用变化的生态系统服务价值演变研究——以福州滨海新城为例. 农业与技术. 2024(04): 107-112 . 百度学术
3. 龚芯磊 ,陈鸿申 ,胡世敏 ,李正荣 ,聂坤 ,梁龙 . 特定模型与GIS结合的生态系统服务功能评价及分区研究——以黔北芙蓉江流域绥正道地区为例. 贵州地质. 2024(03): 328-338 . 百度学术
4. 陈彦珍,张丽华,王亚军,宋学云,曾乐,郝爱华,贺甜田. 不同枸杞品种的区域差异性研究. 宁夏农林科技. 2024(07): 46-52 . 百度学术
5. 张永生,李建国,赵广臣. 农田回归用水引入鸣翠湖后水质改善的数值模拟研究. 水电能源科学. 2024(11): 51-54 . 百度学术
6. 朱青青,刘超,沈艳,马红彬,谭松伟,王国会,李燕,李千飞,李国强. 宁夏罗山草地生态系统服务价值的地形效应. 应用生态学报. 2024(12): 3267-3274 . 百度学术
7. 欧阳渊,刘洪,张景华,唐发伟,张腾蛟,黄勇,黄瀚霄,李富,陈敏华,宋雯洁. 西南山区生态地质调查技术方法研究. 西北地质. 2023(04): 218-242 . 本站查看
8. 江山,石绍山,郭常来,冯雨林,孙家全,孙秀波,周丽. 大凌河流域1998~2019年NDVI时空变化及其对气温和降水的响应. 西北地质. 2023(04): 254-262 . 本站查看
9. 高媛,李谦. 湿地生态系统服务价值评估研究现状及展望. 绿色科技. 2023(18): 62-68 . 百度学术
其他类型引用(1)