ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

西北省会城市地热中深层地埋管供热系统发展潜力及环境效益分析

刘文辉, 董英, 张新社, 王涛

刘文辉, 董英, 张新社, 等. 西北省会城市地热中深层地埋管供热系统发展潜力及环境效益分析[J]. 西北地质, 2023, 56(3): 186-195. DOI: 10.12401/j.nwg.2023078
引用本文: 刘文辉, 董英, 张新社, 等. 西北省会城市地热中深层地埋管供热系统发展潜力及环境效益分析[J]. 西北地质, 2023, 56(3): 186-195. DOI: 10.12401/j.nwg.2023078
LIU Wenhui, DONG Ying, ZHANG Xinshe, et al. Development Potential and Environmental Benefit Analysis of Geothermal Medium–Deep Buried Pipe Heating System in Capital Cities in Northwest China[J]. Northwestern Geology, 2023, 56(3): 186-195. DOI: 10.12401/j.nwg.2023078
Citation: LIU Wenhui, DONG Ying, ZHANG Xinshe, et al. Development Potential and Environmental Benefit Analysis of Geothermal Medium–Deep Buried Pipe Heating System in Capital Cities in Northwest China[J]. Northwestern Geology, 2023, 56(3): 186-195. DOI: 10.12401/j.nwg.2023078

西北省会城市地热中深层地埋管供热系统发展潜力及环境效益分析

基金项目: 中国地质调查局项目“西安市地质安全体检与风险评估示范”(DD20211317)资助
详细信息
    作者简介:

    刘文辉(1969−),女,硕士,正高级工程师,主要从事地热方面的研究。E–mail:448224720@qq.com

  • 中图分类号:  P642;P314.3

Development Potential and Environmental Benefit Analysis of Geothermal Medium–Deep Buried Pipe Heating System in Capital Cities in Northwest China

  • 摘要:

    笔者回顾并对比分析了西北省会城市供热现状及环境空气质量,指出传统采暖方式是影响该区环境空气质量的主要因素之一,而地热清洁能源的使用将有助于改善环境空气质量。传统热水井取热方式受地质条件制约较大,近年来一种取热不取水的新型地热开发利用技术——中深层地埋管供热系统应运而生,发展迅速。但是,以往的研究多集中于地面供热系统及管井换热能力的研究,对于地热资源储量及承载力的研究较少。在分析该技术适用范围的基础上,总结西北五省省会城市的地热资源条件,采用适当的方法结合城市建设范围估算地热可采资源量,分析在城市中推广使用中深层地埋管供热系统的前景及环境效益,并提出后续研究方向。

    Abstract:

    In this paper, the current situation of heating and ambient air quality in the capital city of Northwest China has been reviewed and comparatively analyzed. The results suggest that the traditional heating method is one of the main factors affecting the ambient air quality in the region, while the use of geothermal clean energy will help improve the ambient air quality. In recent years, a new type of geothermal development and utilization technology “medium–deep buried pipe heating system” has emerged and is developing rapidly. But most of the previous studies have focused on the research of surface heating system and heat transfer capacity of pipe wells, and less on the research of geothermal resource storage and bearing capacity. In this paper, on the basis of analyzing the scope of application of this technology, the geothermal resource conditions in the capital cities of five northwestern provinces has been summarized, an appropriate method has been adopted to estimate the recoverable resources of geothermal resources in combination with the scope of urban construction, the prospects and environmental benefits of promoting the use of medium–deep buried pipe heating systems in cities has been analyzed, and the direction of subsequent research has been proposed.

  • 中国生态地质调查起步于20世纪80年代,近年来国内学者在相关研究方面成果丰硕(王尧等,2019张茂省等,2019王京彬等,2020聂洪峰等,2021李文明等,2022)。南水北调中线工程是中国重要的跨流域调水工程,陕西省商洛市丹江源地区是南水北调中线工程重要水源涵养区(图1a),因地处秦岭保护区,又是全国生态环境建设重点试点示范区,具有重要的生态功能地位。同时,土地利用/覆被变化是导致生态格局演变和生态系统变化的重要因素(Veldkamp et al.,2004岳德鹏等,2007陈利顶等,20082013),景观指数可以体现景观结构组成和空间配置等特征,能高度浓缩景观格局信息,定量获取要素的空间分布特征,为生态格局动态变化研究提供基础信息(Robert,1997邬建国,2000Moser et al.,2002陈文波等,2002王天山等,2016)。张雁等(20162018)对商洛市水源地土地利用类型结构及生态环境效应进行分析,但多侧重于水生态评价研究。李文明等(2022)梳理了西北地区的生态地质调查进展并分析了生态安全屏障区存在的问题,尚未对研究区生态地质格局进行过深入调查。因此,摸清丹江源地区的生态地质本底,分析生态格局动态演变,以及科学合理利用配置土地资源意义重大。笔者依托丹江源地区生态地质调查项目,采用坡面调查方法,梳理不同地质建造上的典型生态关键带生态地质特征,利用ENVI 5.3、ArcGIS 10.2及Fragstats4.2软件,解译分析区内2000~2020年3期土地利用时空演变和景观格局演变特征,掌握全区地下—地表生态地质格局动态演变,为丹江源地区的生态地质环境治理、土地利用结构优化、生态系统保护及生态质量评价提供重要的数据支撑和科学依据,对充分发挥其生态服务功能具有重要现实意义。

    图  1  研究区地理位置(a)及丹江源地区水系分布图(b)
    Figure  1.  (a) Geographical location of the study area and (b) drainage distribution map of Danjiangyuan Area

    按照流域划分原则,在ArcGIS 10.2软件支持下,界定商洛市商州区内丹江及支流的流域面积为1 757 km2图1a)。研究区地形总体呈西北高、东南低,海拔为699~1 684 m,主要有中山区、低山丘陵区、河谷川塬区3种地貌单元,具有暖温带南缘过渡带季风性、半湿润性山地气候特点。区内多年平均降水量为699.44 mm,年际间降水量分布不均,受地形地貌影响,区域降水呈西多东少,南多北少的地域特征,总体表现为山地多,河谷阶地少。山区年均降雨量800 mm以上,年均气温为10~11 ℃,河谷川塬区年均降雨量在730 mm以下,年均气温在13 ℃以上(国家气象科学数据中心,1951~2020)。降水量随着高度增加而增多,表现为降水量的垂直差异性。区内水系发育,河网密度0.69~1.28 km/km2图1b),多年平均年径流深为230 mm,年径流量为4.48×108 m3,平均流量为8 m3/s,径流年内分配不均匀。

    研究区大地构造位置属华北板块,以商丹断裂为界,划分为华北陆块和商丹地壳对接带2个二级构造单元(图2)。基于时代+物质组成的划分方案,将区内地质建造划分为13类(图2a),前寒武纪砂泥质碎屑岩建造、侏罗纪—古近纪陆相砂泥质碎屑岩建造、前寒武纪酸性岩浆岩建造、寒武纪—奥陶纪海相碳酸盐岩建造等为主(图2b)。研究区内岩浆岩较发育,火山岩岩性为变玄武岩、变安山岩、凝灰岩等。侵入岩主要有新元古代混合片麻岩、志留纪辉长岩体等,另有少量三叠纪、侏罗纪花岗岩体。

    图  2  丹江源地区地质建造图(a)及不同地质建造面积分布图(b)
    1.第四纪陆相松散堆积建造;2.寒武纪海相碳酸盐岩建造;3.古生代中酸性岩浆岩建造;4.寒武纪基性火山岩建造;5.侏罗纪-古近纪陆相砂泥质碎屑岩建造;6.奥陶纪泥质碎屑岩建造;7.前寒武纪碳酸盐岩建造;8.三叠纪陆相砂泥质碎屑岩建造;9.古生代基性火山岩建造;10.前寒武纪砂泥质碎屑岩建造;11.三叠纪中酸性岩浆岩建造;12.古生代基性-超基性岩浆岩建造;13.前寒武纪酸性岩浆岩建造;14.实测剖面
    Figure  2.  (a) Geological construction map and (b) distribution map of different geological construction areas in Danjiangyuan area

    区内土壤类型有黄棕壤、紫色土、褐土、潮土、粗骨土和新积土(潘贤章等,2015)。丹江源地区植被空间分布明显,丹江源地区用材林和主要水源涵养林区主要分布在中山区(陕西省商洛地区地理志,1981);土壤较瘠簿的低山区主要分布有常绿阔叶树的落叶林带、栓皮栎林带、经济林、用材林和草场草坡;低山丘陵区森林覆盖率较低,以天然草地、人工林为主。区内产业结构以农业、林业为主导产业,经济基础较为薄弱。

    在初步查明生态地质背景的基础上,结合微地貌的影响因素,采用野外路线调查结合坡面调查的方法(王京彬等,2020聂洪峰等,2021),选取代表性的地段开展生态地质剖面测量解析,控制重要的生态地质类型,结合浅钻及垂向剖面等形式予以揭露,观察、测量生态地质现象,记录不同地质、地形地貌、生态、土壤等生态地质信息,绘制生态地质剖面,梳理区域生态地质条件现状及制约因素,垂向上查明不同地质建造上的典型生态关键带相关生态要素间的相互作用过程。

    文中遥感影像数据选择2000年Landsat TM5,2010年Landsat TM5,2020年Landsat OLI影像,时相以9~10月为主,分辨率为30 m,云量均3%以下,使用的数字高程模型下载自地理空间数据云官网(中国科学院计算机网络信息中心科学数据中心http://www.gscloud.cn)。运用ENVI 5.3对3期遥感航片进行解译。结合商州区土地利用现状,对研究区土地利用类型进行划分,并与GLOBELLAND30数据(Zhu et al.,2010Chen et al.,201120142016)进行比对,准确率达到84.6%以上,解译结果符合精度要求,在ArcGIS 10.2软件支持下,绘制3期土地利用分类图,分析区域土地利用时空演变。

    结合研究实际需求,笔者参考前人研究成果的基础上(李煜东等,2020张晓宁等,2020苏明伟等,2021张建等,2021张林等,2022),选取相关景观格局指数进行计算(表1),主要从斑块类型和景观水平层次开展研究。利用 ArcGIS 10.2的空间分析模块将土地利用类型图转换为Grid格式后,采用目前广泛使用的景观格局计算分析软件 Frastats 4.2进行丹江源地区2000~2020年3期各景观组分的相关景观指数计算。

    表  1  景观格局指数选取及指示意义
    Table  1.  Selection and indicative significance of landscape pattern index
    景观单元特征指数指标选取指示意义
    景观面积度量指标 斑块类型面积(CA) CA值的大小影响着斑块类型聚集地中的物种数量及丰度
    斑块类型比(PLAND) PLAND指某一斑块类型占整个景观面积的相对比例
    最大斑块指数(LPI) LPI主要表示某一景观类型最大斑块占整个景观面积的比例,决定了景观优劣斑块,反应景观变化受人类活动干扰程度
    景观面积(TA) TA定义景观幅度,是监测生态系统是否稳定的重要指标
    景观形状指标 景观形状指数(LSI) LSI反映景观和斑块形状的分散和规则程度,值越大说明景观形状越复杂
    景观邻近度指标 香农多样性指数(SHDI) SHDI表示景观类型的复杂程度,值越小斑块类型越少,值增大说明斑块类型增加或各斑块类型在景观中呈均衡化趋势分布
    景观聚集与分散度
    测量指标
    蔓延度指数(CONTAG) CONTAG反映景观类型的聚集程度和延展程度,高蔓延度值表明某种优势斑块类型具有良好的连通性
    散布与并列指数(IJI) IJI反映斑块类型的隔离分布情况
    聚集度指数(AI) AI是基于栅格数量来测度景观或者某种斑块类型的聚集程度
     注:各景观格局指数计算公式和详细意义可参阅相关文献(何鹏等,2009孙天成等,2019)。
    下载: 导出CSV 
    | 显示表格

    基于生态关键带基岩–成土母质–土壤–植被垂向调查思路(图3),笔者绘制区内基岩–成土母质–土壤–植被变化图(图4)和典型生态地质剖面(图5)。

    图  3  丹江源地区不同生态关键带基岩–成土母质–土壤–植被变化图
    Figure  3.  Changes of bedrock, parent material, soil and vegetation in different ecological key zones of Danjiangyuan area
    图  4  丹江源地区金陵寺镇–柿园街生态地质剖面
    Figure  4.  Eco–geological profile of Jinlingsi Town–Shizyuan Street in Danjiangyuan area
    图  5  丹江源地区杨峪河镇麻街岭–任家村生态地质剖面
    Figure  5.  Eco–geological profile of Majeiling–Renjia village in Yangyuhe town, Danjiangyuan area

    金陵寺镇–柿园街生态地质剖面显示(图2a图4),研究区南部的三叠纪中酸性侵入岩建造、古生代酸性侵入岩建造、前寒武纪酸性侵入岩建造的基岩节理发育,成土母质为中酸性岩类风化物,中酸性花岗岩的成土母质层和淀积层相对较薄(图3),在中山区形成的土壤类型为棕壤,质地为沙质土,结构疏松,透水性好,含水性、保水性差,上覆植被类型为针阔叶混交林,因土壤pH值呈酸性,针叶油松较发育(图3图4)。在低山丘陵区主要形成粗骨土,砂砾含量高,植被郁闭度稍低,植被类型为以阔叶为主的针阔混交林。南部的古生代基性火山岩、基性-超基性侵入岩建造和前寒武纪基性火山岩建造的基岩易风化解体,形成较厚的风化层,质地一般为壤质,保水性能强,呈中性或弱碱性,在中山区形成棕壤,在低山丘陵区形成淋溶褐土。

    杨峪河镇麻街岭–任家村生态地质剖面显示(图2a图5),区内中部的白垩纪—古近纪陆相砂泥质碎屑岩建造,其地层产状平缓,节理不发育或仅发育风化节理等,成土母质为白垩纪–古近纪砂泥岩类风化物,例如含砾砂岩风化形成的淀积层较厚(图3),在低山丘陵区和中山区均形成紫色土,土体浅薄,质地为沙质土,有机质含量低,保水性差,水土流失易发,植被覆盖类型主要为草本植物(图3图5)。研究区中部的前寒武纪碎屑岩建造的片理化和节理发育,泥质含量高,易风化,质地一般为壤质,在中山区形成棕壤,在低山丘陵区形成淋溶褐土。上覆植被郁闭度高,林型为以栓皮栎等阔叶林为主的针阔混交林(图3图5)。前寒武纪碳酸盐岩建造的岩石质地坚硬,不易风化,例如大理岩的成土母质层较厚(图3),在中山区和低山丘陵区形成淋溶褐土,在河谷川塬区形成石质土,多处出现裸露基岩,植被覆盖以草本为主,零星分布少量低矮灌木和油松(图5)。

    不同的地质建造,因为岩性不同、形成时代不同,受控于不同的构造地质背景和环境背景,导致形成不同的地形地貌、成土母质、土壤类型、水文类型、局部小气候类型,在以上立地条件的综合影响下,最终形成不同的植被覆盖类型和景观格局,以期为地方政府实施国土空间分区管控提供地学依据。

    借助ENVI 5.3提取研究区的土地利用类型、分布、规模等信息。依据《土地利用现状分类》标准,将研究区土地类型分为林地、草地、耕地、水域、建设用地及未利用土地6类。通过2000、2010、2020年3期土地利用类型的遥感解译,结合研究区年际土地变更成果数据进行土地利用类型监测,研究区土地利用现状整体表现为不同土地利用类型面积随时间变化存在差异。

    从土地利用类型数量结构(图6)来看,丹江源地区位于秦巴山地,气候温暖湿润,降水相对丰沛,是中国南水北调中线工程重要水源地,也是重要的生物多样性保护和水源涵养生态功能区,加之多山少田的地理特征,土地利用结构中林地比例占绝对优势;其次是耕地,林地和耕地占比约85%以上,其他用地类型比例偏低。研究区内的自然景观和人造景观之间转入转出频繁,自然景观转出面积大小排序为:草地>林地,林地基数大,变化不显著。人造景观耕地转出明显,建设用地、水域大幅转入,转入面积大小排序为:建设用地>水域,因研究区未利用土地多为利用度不高的裸地,其转入转出幅度变化不大。

    图  6  丹江源地区2000、2010、2020年不同土地利用类型数量结构
    Figure  6.  Quantitative structure of different land use types of Danjiangyuan area in 2000, 2010 and 2020

    土地利用动态度差异较明显(表2),建筑用地和水域变化最明显。建设用地动态表现为持续扩张趋势,2000~2020年建设用地动态增长度为11.70%,其中2000~2010年动态增长度为3.98%;2010~2020年增长速度较快,动态增长度为13.89%。这表明建设用地扩张主要发生在2010~2020年。2000~2020年水域动态增长度为8.51%,水域呈持续扩张趋势,其中2000~2010年的动态增长度为3.54%;2010~2020年的动态增长度为3.66%,在后期变化较大。林地基数大,2000~2020年动态增长度为0.01%,其中,2000~2010年增长度仅为0.1%,2010~2020年递减率为−0.09%。草地的动态变化不大,呈先增长后递减趋势,耕地呈持续递减趋势,未利用土地动态变化不明显。

    表  2  丹江源地区2000~2020年土地动态度变化
    Table  2.  Changes of land dynamic attitude from 2000 to 2020 in Danjiangyuan area

    土地利用类型
    土地动态度
    2000~2010年2010~2020年2000~2020年
    耕地
    林地
    草地
    水域
    建设用地
    未利用土地
    −0.32%
    0.10%
    −0.67%
    3.54%
    3.98%
    −0.08%
    −1.05%
    −0.09%
    0.20%
    3.66%
    13.89%
    0.07%
    −0.67%
    0.01%
    −0.24%
    8.51%
    11.70%
    −0.05%
    下载: 导出CSV 
    | 显示表格

    丹江源地区受地形条件,土地利用格局具有特殊性(图7)。林地占绝对优势,以天然林区为主,主要分布在杨斜镇、麻街镇、板桥镇、沙河子镇,草地主要分布在腰市镇、城关街道,耕地和建设用地分布规律明显,耕地主要分布在河谷川塬两岸及东北部的腰市镇、大荆镇,建设用地均分布于水系两岸,城区建设用地分布于丹江主河道两岸。不同土地利用类型时空转移特征明显,其中,耕地与林地之间的时空转移特征变化明显,且耕地向林地转移较明显,变化区域随时间变化先由中部向两侧扩散;耕地与建设用地之间的变化区域主要集中在商州城区、腰市镇和大荆镇,呈带状分布(图7),这与城市发展和经济发展有关。研究区未来的土地利用格局还以林地为主,但林地有退化趋势,且耕地后备资源不足,说明土地利用结构尚需进一步优化。

    图  7  丹江源地区2000、2010、2020年土地利用类型遥感解译变化图
    Figure  7.  Remote sensing interpretation changes of land use types of Danjiangyuan area in 2000, 2010 and 2020

    2000~2020年土地利用时空演变结果总体显示丹江源的生态趋势向好有所改善。早期,当地居民伐林开垦,大规模修建坡耕地。2006年,商洛市积极调整土地利用结构及方式,以生态清洁小流域为生态建设单元,经过多年的综合治理和发展,当地生态环境得到了极大的改善。2011年底,圆满完成陕西省丹江口库区及上游水土保持一期工程的建设。2012年,商洛市启动陕西省丹江口库区及上游水土保持二期工程,2014年已顺利实现“清水进京”的宏伟目标,自通水至今,丹江的监测断面水质全部达到功能区标准。在生态建设保护的政策引导下,丹江源地区的土地利用变化对生态环境扰动较少。林地和耕地将长期是水源地主要土地利用类型,直接影响着其生态环境效应。

    由于南水北调中线工程建设的需要,一方面,当地政府及民众对水源地和林地的保护意识不断增强,对公共资源的使用日趋合理,特别是对“山水林田湖草”生态文明建设的贯彻执行,进一步保障了研究区林地基数和水域面积的稳定增长,对可持续发展政策的实施有很大的正面效应。另一方面,由于调水工程及城市化进程建设以及保护水源地的移民搬迁,区内建设用地大幅度增加,存在草地退化和耕地减少现象。作为南水北调中线工程典型的山区水源地,今后应合理配置土地资源,优化土地利用结构,加强林地和耕地保护,将有利于丹江源地区社会经济和资源环境的可持续发展。受自然环境条件和社会经济水平限制,该区也是经济限制发展区。水源保护工作取得了一定成效,但还存在生态保护与经济发展矛盾突出、治污项目资金缺口大等困难和问题。

    结合土地利用变化的解译,利用Frastats 4.2软件,计算丹江源地区2000~2020年3期景观格局指数。在类型水平上(表3),各土地利用类型的景观指数呈现出不同的变化趋势。林地景观具有很强的优势性,以其为代表的自然景观斑块呈现破碎状态。从2000~2020年的斑块类型比PLAND数据来看,未发生太大变化,呈微弱的减少趋势。人造景观耕地则呈现先增加后减少的变化趋势,草地变化趋势相反,先减后增,表明区内景观生态过程较活跃。

    表  3  丹江源地区2010~2020年3期斑块类型水平的景观格局指数
    Table  3.  Landscape pattern indices of patch types in the Danjiangyuan area from 2010 to 2020
    斑块类型年份CA(km2PLAND(%)LPI(%)LSIIJIAI
    林地20001240.430076.030072.640017.457039.683198.0450
    20101253.270075.870072.460017.651034.324098.0204
    2020
    2000
    1242.2100
    321.1200
    75.1900
    20.8100
    71.490016.827137.679498.1100
    88.0625
    耕地20.210053.520453.9354
    2010310.870021.020020.470053.112747.025988.2095
    2020278.170020.810017.160057.316348.395787.2000
    草地2000171.99002.74000.190084.853128.333347.1916
    2010160.39002.53000.050085.827923.765644.2992
    2020163.64002.75000.050095.866019.975040.3615
    水域20002.68000.04000.03008.122071.113562.7075
    20103.63000.06000.04006.565262.662673.7705
    20204.96000.08000.07006.703772.204677.8098
    建设用地200020.18000.34000.100012.769947.873078.5033
    201028.22000.47000.140013.225642.946081.0820
    202067.41001.13000.800014.839849.561886.4070
    未利用土地20000.47000.04000.08002.193831.574338.8427
    20100.50000.05000.09002.747232.267439.3754
    20200.49000.04000.08002.358431.683238.7120
     注:由于各土地利用类型斑块类型面积统计存在四舍五入,面积总和与研究区总面积有略微出入。
    下载: 导出CSV 
    | 显示表格

    从景观形状指数LSI变化趋势可知,耕地、草地的景观形状指数较大且总体呈现上升趋势,反映了区内耕地、草地景观和斑块形状分散且不规则,说明二者的景观形状比较复杂。林地和水域的景观形状指数有所下降,建设用地的景观形状指数呈上升趋势。以建设用地为代表的人造景观斑块面积呈现增大趋势, 2000~2010年增长不明显;2010~2020年增长迅速,斑块呈现片状分布。合理的土地利用规划让建设用地聚集程度提高,边界规则化,特别是移民搬迁政策的执行,使得建设用地聚集程度高。水域斑块类型面积呈现增加的趋势,斑块类型比和最大斑块指数总体呈上升趋势,不断增加并趋于平稳,水域占研究区面积的比例持续上升,散布与并列指数减小,景观形状指数和聚集度指数与水域相邻的景观要素变少,连通性增强。

    景观水平的景观格局指数显示(表4),2000~2020年间丹江源地区的景观结构发生了变化,景观形状指数LSI呈现先有微弱减小后又增加趋势,总体呈增加,各类景观趋于离散,且形状趋于规则;蔓延度指数CONTAG在2000~2020年间先增加后减小,总体呈增大趋势,反映景观类型的聚集程度和延展程度,各景观之间连通性较好。散布与并列指数IJI呈减小趋势,反映了区内斑块类型的隔离分布情况,丰富度变低。香农多样性指数SHDI在2000~2020年间增加了0.031,说明区内的各斑块类型呈均衡趋势分布,土地利用类型越来越丰富,景观邻近度变好。聚集度指数AI在2000~2010年有上升,在2010~2020年有下降,先增加后减小。

    表  4  丹江源地区2000~2020年景观水平的景观格局指数
    Table  4.  Landscape pattern index of the Danjiangyuan area from 2000 to 2020
    年份TA(km2LSICONTAGIJISHDIAI
    20001757.000027.822973.295745.50260.655794.4950
    20101757.000027.772075.905839.21900.659694.5070
    20201757.000029.737874.704040.41320.696394.1028
     注:TA. 景观面积;LSl. 景观形状指数;CONTAG. 蔓延度指数;IJI. 散布与并列指数;SHDI. 香农多样性指数;Al. 聚集度指数。
    下载: 导出CSV 
    | 显示表格

    2000~2010年,水域面积、林地面积及建设用地增加,耕地和草地面积减少,南水北调中线工程的建设,及从保护和改善生态环境出发退耕还林政策的实施,保障了丹江源地区水域面积和林地面积的增长;另一方面是移民搬迁政策,使原本分散的聚居地转为城镇、移民新村等,整体上建设用地面积增加,聚集度提升。2010~2020年,水域、草地及建设用地增加,林地、耕地面积减少,当地政府加大生态文明建设,对水源地及特殊土地类型湿地的保护政策不断推进,保障了水域面积的稳定增长,尤其是湿地保护成效显著,但随着近十年城市发展建设的需求,建设用地增加幅度较大,人口增长和社会需求也加速了土地利用程度的变化。

    (1)各地质建造因构造地质背景差异导致上覆地形地貌、成土母质、土壤类型、水文类型、局部小气候类型,在以上立地条件的综合影响下形成了不同的生态地质格局。

    (2)丹江源地区林地比例占绝对优势,林地和耕地占比85%以上,其他土地类型比例偏低。2000~2020年土地利用类型变化显著,水域、耕地和建设用地面积变化较为剧烈。区内自然景观和人造景观之间转入转出频繁,但整体土地利用变化对生态环境扰动较少。林地和耕地将长期是水源地主要的土地利用类型,直接影响着其生态环境效应。

    (3)丹江源地区2000~2020年景观空间格局变化明显,尤其在2010~2020年景观生态过程较活跃。区内各斑块类型趋于规则呈均衡趋势分布,斑块类型间形成了良好的连接性,景观聚集程度逐渐提升,空间分布趋向集中。

    (4)南水北调中线工程建设进一步保障了研究区林地基数和水域面积的稳定增长,丹江源地区的生态趋势向好;调水工程及城市化进程建设及保护水源地的移民搬迁导致区内建设用地大幅度增加,存在草地退化和耕地减少现象。建议合理配置土地资源,优化土地利用结构,加强林地和耕地保护及生态补偿,将有利于丹江源地区社会经济和生态环境的可持续发展。

    致谢:在本文撰写过程中得到国际竹藤中心漆良华教授、博士生张建的帮助,商洛市自然资源局、商洛市林业局、商州区林业局等兄弟单位在资料收集方面给予了大力支持,在此一并致谢。

  • 图  1   西安市2021年度大气污染因子季度变化图

    Figure  1.   Seasonal variation of 2021 air pollution factors in Xi’an

    图  2   中深层地热地埋管开采模式示意图

    Figure  2.   Schematic diagram of mining model of deep geothermal buried pipe

    图  3   西安市地温梯度分布图

    Figure  3.   Distribution of geothermal gradient in Xi'an

    图  4   兰州市地温梯度等值线图

    地温梯度及地热资源类型图层数据来自谢娜(2020)

    Figure  4.   Isograms of geothermal gradient in Lanzhou

    图  5   西宁市地温梯度分布图

    Figure  5.   Distribution of geothermal gradient in Xining

    表  1   西北省会城市供热现状表

    Table  1   Heating status of capital cities in Northwest China

    城市供暖期供 热 现 状
    西安 4个月 城市中心区、城北、城东南、城东北、高陵建制区、草堂、泾渭工业园以及阎良航空产业基地为燃气锅炉集中供热,面积约为1.07亿m2;城西、高新开发区、沣东新城、大兴新区部分区域依托热电联产燃煤锅炉集中供热,供热面积约为0.32亿m2;西咸新区沣西区块主要以中深层地埋管地源热泵供热系统分散供热,全市中深层地埋管供热系统供暖面积达0.15亿m2,其他为散烧燃气锅炉供暖
    兰州 5个月 供热热源有煤及天然气,总供暖面积为1.07亿m2
    西宁 6个月 市区集中供热主要依靠热电联产燃煤锅炉,规划供热建筑面积约为0.13亿m2,实际集中供热面积为0.08亿m2,分散供热热源以天然气为主
    银川 6个月 主城区供热面积达1.2亿m2,热源以热电联产为主、分散燃气锅炉为辅,其中热电联产集中供热面积约为0.7亿m2
    乌鲁木齐 6个月 总供热面积为2.42亿m2,其中:燃气锅炉供热面积为1.18亿m2,热电联产供热面积为0.8亿m2,壁挂炉供热面积为0.34亿m2,电供暖总面积为0.06亿m2,农村地区散煤燃烧供热面积为0.04亿m2
    下载: 导出CSV

    表  2   各城市大气污染因子年均浓度值(μg/m3

    Table  2   Annual average concentration of air pollution factors in each city (μg/m3)

    城市污染因子20172018201920202021《环境空气质量标准》
    (GB 3095-2012)标准值
    西安PM10130122102918270
    PM2.5736358514135
    兰州PM1011110379767270
    PM2.5494736343235
    西宁PM101009159615870
    PM2.5394534353235
    银川PM10/10174726370
    PM2.5/3833362735
    乌鲁木齐PM10106/86836570
    PM2.5705450473935
     注:西安市2017、2019年数据来自《西安市大气污染特征及颗粒物来源分析》,其他数据均来自各市年度(月)环境质量报告。
    下载: 导出CSV

    表  3   不同地埋管影响半径内可获得的地热资源更新量(W)

    Table  3   Renewable amount of geothermal resources within the influence radius of different buried pipes

    地埋管影响半径(m)地温梯度(℃/100 m)
    2.533.54
    1017.8421.4124.9828.55
    2071.3785.6599.92114.20
    30160.59192.70224.82256.94
    下载: 导出CSV

    表  4   西安凹陷地层特征表

    Table  4   Stratigraphic characteristics of Xi’an depression

    地 层特 征
    新生界 第四系 全新统(Qh 现代河流冲积、洪积层和山前洪积坡积,岩性一般为砂、砂砾卵石、砂质黏土
    上更新统 (Qp3 秦岭山前洪积扇为洪积相沉积,岩性为砂质黏土及砾石、漂石等,分选极差,厚度为8~30 m;渭河及其较大支流的二级阶地下部为冲积相沉积,岩性为粘质砂土,砂质黏土及砂、砂砾卵石层,二级阶地以上各地貌单元上部覆盖有风积黄土
    中更新统 (Qp2 浅灰褐色较疏松无层理的黄土,夹多层红褐色古土壤
    下更新统 (Qp1 河湖相交替沉积,主要为黄色沉积泥质岩
    新近系 张家坡组( N2z 河湖相沉积,岩性为灰绿色泥岩、含砂泥岩夹疏松的砂泥岩,厚度为300~900 m
    蓝田灞河组(N2lb 河流相沉积,上段为黄棕、浅灰绿色泥岩,中段为紫褐、黄棕色砂质泥岩与砂砾岩互层,下段为浅紫褐色泥岩、浅棕黄色砂岩,厚度为100~900 m
    寇家村组( N1k 为湿热条件下的河湖相沉积,岩性以棕红、桔黄色泥岩、砂质泥岩为主,夹灰白色、棕黄色砂岩,底部发育砾岩或砂砾岩。厚度为0~142 m
    冷水沟组( N1ls 为湿热条件下的河湖相沉积,棕红色砂质泥岩与灰黄、灰绿色砂岩互层及底部砾岩夹杂色泥岩,厚度为1 342 m
    古近系 白鹿塬组( E3b 河流相沉积,以灰白色块状砂岩为主,夹(或互)紫红色泥岩,底部发育砂砾岩或含砾粗砂岩,厚度为500 m
    红河组( E2h 湖泊、河流相沉积,以大套紫红色泥岩为主,夹灰黄色和灰绿色砂岩、粉砂岩,厚度为2 100~2 800 m
    下载: 导出CSV

    表  5   西安市地热可采资源量估算表

    Table  5   Estimate of recoverable geothermal resources in Xi’an

    地温梯度
    分区
    (℃/100 m)
    单位面积
    可采资源量
    (1013 kcal/km2
    分区
    面积
    (km2
    分区可采
    资源量
    (1016 kcal)
    相当于
    标煤
    (108 t)
    2.5~31.03540.060.79
    3~3.53.0910293.1845.42
    3.5-45.152501.2818.36
    合计13334.5264.56
    下载: 导出CSV

    表  6   兰州盆地地层特征表(杨俊仓,2011

    Table  6   Stratigraphic characteristics of Lanzhou Basin

    地 层特 征
    新生界 第四系 全新统(Q4 近代冲洪积层,主要分布在黄河河漫滩及一二级阶地
    上更新统(Q3 马兰黄土及冲洪积砂砾卵石层
    中更新统(Q2 离石黄土及冲洪积砂土夹砾卵石层,在兰州分布较广
    下更新统(Q1 出露于雷坛河、五泉山一带及南北两山地区的高阶地上,为山前洪积相堆积
    新近系 临夏组(N2l 河流相碎屑岩、泥岩互层,厚度约为300 m
    咸水河组(N1x 河湖相、山麓相砂质泥岩、砂岩、泥岩、黏土岩,厚度大于782 m
    古近系 野狐城组(E3y 湖相泥岩夹石膏,厚度为434 m
    西柳沟组(E1-2x 山麓相橘红色碎屑岩,下部为厚层砾岩,中上部为砂岩及砂砾岩,厚度为953 m
    中生界 白垩系 河口组(K1 河湖相红色碎屑岩。该群的岩性和厚度变化较大,厚度为600~1 600 m,盆地边缘岩石粗厚度薄,盆地中心岩石变细,厚度增加,岩性多为黏土岩、砂岩及砾岩
    侏罗系 享堂组(J3x 河湖相碎屑岩,厚度为122 m
    窑街群(J1-2yj 河湖—沼泽相的含煤沉积,厚度为166 m
    古生界 奥陶系 雾宿山群(O2-3WX 浅海相中—基性火山岩、碎屑岩和硅质岩,岩石普遍遭受低级或轻度变质,与中生界呈断层或不整合接触,厚度大于1 090 m
    元古界 皋兰群(Chgl 海相泥、砂质沉积地层,经受了多起区域变质和岩浆活动及构造复合作用,岩石变质程度较深,破碎严重,总厚度大于7 713 m
    兴隆山群(Chx 海相火山硅质岩,岩层总厚度大于3 759 m,与马衔山群呈断层接触
    马衔山群(Ptm 浅海陆源沉积建造,岩层总厚度大于2 416 m
    下载: 导出CSV

    表  7   兰州市地热可采资源量估算表

    Table  7   Estimation of recoverable geothermal resources in Lanzhou

    地温梯度
    分区
    (℃/100 m)
    单位面积
    可采资源量
    (1013 kcal/km2
    面积
    (km2
    分区可采
    资源量
    (1016 kcal)
    相当于
    标煤
    (108 t)
    2.5~31.031080.111.59
    3~3.53.091280.405.66
    3.5~45.152061.0615.11
    >42.062270.476.69
    合计6692.0329.05
    下载: 导出CSV

    表  8   西宁市地热可采资源量估算表

    Table  8   Estimate of recoverable geothermal resources in Xining

    地温梯度
    分区
    (℃/100 m)
    单位面积
    可采资源量
    (1012 kcal/km2
    面积
    (km2
    分区可采
    资源量
    (1014 kcal)
    相当于
    标煤
    (107 t)
    2.5~31.08620.670.96
    3~3.53.24220.711.02
    3.5~45.40211.131.62
    4~4.57.56251.892.70
    >4.59.72222.143.05
    合计1526.549.35
    下载: 导出CSV

    表  9   城市建筑供暖形式分析表

    Table  9   Analysis table of urban building heating

    城市城市
    人口
    (万人)
    估算建
    筑面积
    (108 m2
    集中供
    热面积
    (108 m2
    估算分散
    供热面积
    (108 m2
    年供热总
    热耗相当
    于耗标煤
    (104 t)
    西安9283.491.521.971 326
    兰州438.431.651.070.58937
    西宁119.830.450.130.32256
    下载: 导出CSV

    表  10   每10万m2供暖面积采暖期减排污染物量

    Table  10   Emission reduction during heating period per 100 000 m2 heating area

    城市 替代热源 减排污染物(t)
    粉尘 SO2 NO2 CO2
    西安 燃气锅炉 1.2 3 12 4482
    兰州 燃气锅炉 1.8 4.5 18.1 6776
    西宁 燃气锅炉 2.4 6.1 24.4 9109
    下载: 导出CSV

    表  11   地热供暖不同替代率下减碳降污总量表

    Table  11   Total table of carbon reduction and pollution reduction under different substitution rates of geothermal heating

    城市 15%替代率 35%替代率 75%替代率 100%替代率
    粉尘(t) CO2(104 t) 粉尘(t) CO2(104 t) 粉尘(t) CO2(104 t) 粉尘(t) CO2(104 t)
    西安 628 235 1465 547 3140 1173 4187 1564
    兰州 445 168 1039 391 2225 838 2967 1117
    西宁 162 62 378 144 / / / /
    下载: 导出CSV
  • 冯兴军. 西安地热能开发利用的几点思考[J]. 陕西煤炭, 2017, 第4期: 8-12

    FENG Xingjun. Some thoughts on the development and utilization of geothermal energy in Xi’an. Shaanxi Coal. 2017. Fouth: 8-12.

    计文化, 王永和, 杨博, 等. 西北地区地质、资源、环境与社会经济概貌[J]. 西北地质, 2022, 55(3): 15-27 doi: 10.19751/j.cnki.61-1149/p.2022.03.002

    JI Wenhua, WANG Yonghe, YANG Bo, et al. Overview of Geology, Resources, Environment and Economy in Northwest China[J]. Northwestern Geology, 2022, 55(3): 15-27. doi: 10.19751/j.cnki.61-1149/p.2022.03.002

    柯婷婷, 余如洋, 许威, 等. 西安交通大学西咸校区中深层地热资源潜力评估[A]. 中国地球物理学会,中国地震学会,全国岩石学与地球动力学研讨会组委会,中国地质学会构造地质学与地球动力学专业委员会,中国地质学会区域地质与成矿专业委员会.2018年中国地球科学联合学术年会论文集(二十九)——专题59: 计算地球物理方法和应用、专题60: 地热资源成因新理论与综合探测新技术[C].中国和平音像电子出版社,2018:44−46.
    李成英, 韩积斌, 黄鑫, 等. 西宁市海湖新区地下热水形成的机理[J]. 盐湖研究, 2017, 25(2): 13-20

    Li Chengying, Han Jibing, Huang Xin, et al. Formation Mechanism of Groundwater Hot Water in Haihu New District of Xining City[J]. Journal of Salt Lake Researth, 2017, 25(2): 13-20.

    穆根胥, 李锋, 闫文中, 等. 关中盆地地热资源赋存规律及开发利用关键技术[M]. 北京: 地质出版社, 2016

    MU Genxu, LI Feng, YAN Wenzhong, et al. The Geothermal Resource Occrrence Rulesand Key Technologies for Development and Utilization in the Guanzhong Basin[M]. Beijing: Geological Publishing House, 2016

    秦大军, 庞忠和, Jeffrey V. Turner, 等. 西安地区地热水和渭北岩溶水同位素特征及相互关系. 2005.21(5): 1489-1500

    Qin D J, Pang Z H, Turner J V, et al. Isotopes of geothermal water in Xi’an area and implications on its relation to karstie groundwater in North Mountains. Acta Petrologica Sinica. 2005.21(5): 1489-1500.

    王贵玲, 杨轩, 马凌, 等. 地热能供热技术的应用现状及发展趋势. 华电技术[J]. 2021.43(11): 15-24

    Wang Guiling, Yang Xuan, Ma Ling, et al. Status quo and prospects of geothermal energy in heat supply. Huadian Technology. 2021.43(11): 15-24

    谢娜, 喻生波, 丁宏伟, 张明泉. 甘肃省地热资源赋存特征及潜力评价[J]. 中国地质, 2020.47(6): 1804-1812

    Xie Na, Yu Shengbo, Ding Hongwei, et al. Occurrence Features of Geothermal Potential Assessment in Gansu Province[J]. Geology in China. 2020.47(6): 1804-1812

    杨俊仓, 贾贵义, 魏洁. 兰州盆地地热资源及其潜力分析[J]. 甘肃科技, 2011.27(24): 49-51

    Yang Juncang, Jia Guiyi, Wei Jie. Geothermal resources and their potential analysis in Lanzhou Basin. Gansu science and technology. 2011.27(24): 49-51.

    余秋生, 周文生. 宁夏地热资源现状评价与区划成果报告[R]. 宁夏回族自治区地质调查院, 2015.
    袁丽发, 谢宁, 徐海龙. 乌鲁木齐市甘泉堡-古海温泉区地热地质特征分析[J]. 地下水, 2021, 43(2): 59-66

    Yuan Lifa, Xie Ning, Xu Hailong. Ganquanbao-Guhai Hot Spring Zone in Urumqi Analysis of geothermal geological characteristics[J]. Groundwater, 2021, 43(2): 59-66.

    张丰雄, 杨家凯, 刘淑英, 等. 西宁地区地热资源分布规律探讨[J]. 科技资讯, 2006, 21: 138-139 doi: 10.3969/j.issn.1672-3791.2006.26.112

    Zheng Fengxiong, Yang Jiakai, Liu Shuying, et al. Discussion on distribution law of geothermal resources in Xining area[J]. Science&Technology Information, 2006, 21: 138-139. doi: 10.3969/j.issn.1672-3791.2006.26.112

    张森琦, 李长辉, 孙王勇, 等. 西宁盆地热储构造概念模型的建立. 地质通报. 2008.27(1): 126-136.

    Zhang S Q, Li C H, Sun W Y, et al. Construction of the conceptual model of thermal reservoir structure of the Xining basin, China. Geological Bulletin of China, 2008, 27(1): 126- 136

    赵振, 于漂罗, 陈惠娟, 等. 青海省西宁地热田成因分析及资源评价[J]. 中国地质, 2015, 42(3): 803-810 doi: 10.3969/j.issn.1000-3657.2015.03.029

    Zhao Zhen, Yu Piaoluo, Chen Huijuan, et al. Genetic analysis and resource evaluation of the Xining geothermal field in Qinghai Province[J]. Geology in China, 2015, 42(3): 803-810. doi: 10.3969/j.issn.1000-3657.2015.03.029

    周斌. 甘肃省主要城市地热资源特征及开发保护建议[J]. 地下水, 2011.33(1): 54-57 doi: 10.3969/j.issn.1004-1184.2011.01.021

    Zhou Bin. Characteristics of geothermal resources in major cities of Gansu Province and suggestions for development and protection [J]. Groundwater, 2011, 33(1): 54-57. doi: 10.3969/j.issn.1004-1184.2011.01.021

    祖浙江. 乌鲁木齐水磨沟地热资源类型及勘查方法[J]. 新疆地质, 2007, 25(3): 320-322 doi: 10.3969/j.issn.1000-8845.2007.03.020

    Zu Zhejiang. Types and exploration methods of geothermal resources in Shuimogou, Urumqi[J]. Xinjiang Geology, 2007, 25(3): 320-322. doi: 10.3969/j.issn.1000-8845.2007.03.020

    Du Dingshan, Li Yongqiang, Wang Kaipeng, et al. Experimengtal and numerical simulation research on heat tranfer performance of coaxial casing heat exchanger in 3500m-deep geothermal well in Weihe Basin[J]. Geothermics, 2023, 109: 102658

    HeYuting, Jia Min, Li Xiaogang, et al. Performance analysis of coaxial heat exchanger and heat-carrier fluid in medium-deep geothermal energy development[J]. Renewable Energy, 2021, 168: 938-959.

  • 期刊类型引用(4)

    1. 付柯锦. 生态环境保护背景下南水北调中线工程水源区生态旅游发展的路径选择. 地域研究与开发. 2025(01): 137-142+150 . 百度学术
    2. 袁江龙,刘晓煌,李洪宇,邢莉圆,雒新萍,王然,王超,赵宏慧. 1990—2050年黄河中游伊洛河流域不同土地利用类型碳储量时空分异特征. 现代地质. 2024(03): 559-573 . 百度学术
    3. 刘小玉,李士杰,何海洋,秦昊洋,王思琪,孙旭. 基于InVEST和PLUS模型下的土地利用变化及生境质量演变分析:以汉中盆地为例. 西北地质. 2024(04): 271-284 . 本站查看
    4. 欧阳渊,刘洪,张景华,唐发伟,张腾蛟,黄勇,黄瀚霄,李富,陈敏华,宋雯洁. 西南山区生态地质调查技术方法研究. 西北地质. 2023(04): 218-242 . 本站查看

    其他类型引用(2)

图(5)  /  表(11)
计量
  • 文章访问数:  110
  • HTML全文浏览量:  22
  • PDF下载量:  29
  • 被引次数: 6
出版历程
  • 收稿日期:  2023-02-12
  • 修回日期:  2023-04-24
  • 网络出版日期:  2023-05-08
  • 刊出日期:  2023-06-19

目录

/

返回文章
返回