ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

新时期榆林煤矿区生态保护修复与综合治理策略及路径探索

冯立, 张鹏飞, 张茂省, 刘颢, 王耀

冯立, 张鹏飞, 张茂省, 等. 新时期榆林煤矿区生态保护修复与综合治理策略及路径探索[J]. 西北地质, 2023, 56(3): 19-29. DOI: 10.12401/j.nwg.2023087
引用本文: 冯立, 张鹏飞, 张茂省, 等. 新时期榆林煤矿区生态保护修复与综合治理策略及路径探索[J]. 西北地质, 2023, 56(3): 19-29. DOI: 10.12401/j.nwg.2023087
FENG Li, ZHANG Pengfei, ZHANG Maosheng, et al. Strategies and Practical Paths for Ecological Restoration and Comprehensive Management in Yulin Coal Mining Area in the New Era[J]. Northwestern Geology, 2023, 56(3): 19-29. DOI: 10.12401/j.nwg.2023087
Citation: FENG Li, ZHANG Pengfei, ZHANG Maosheng, et al. Strategies and Practical Paths for Ecological Restoration and Comprehensive Management in Yulin Coal Mining Area in the New Era[J]. Northwestern Geology, 2023, 56(3): 19-29. DOI: 10.12401/j.nwg.2023087

新时期榆林煤矿区生态保护修复与综合治理策略及路径探索

基金项目: 榆林市自然资源和规划局榆阳分局项目“榆阳区煤矿区生态保护修复与综合治理规划(20220179)”,国家自然科学基金青年项目(42107209)联合资助。
详细信息
    作者简介:

    冯立(1990−),男,博士,讲师,从事生态安全与灾害风险防控研究工作。E−mail:fengli726@xjtu.edu.cn

    通讯作者:

    张茂省(1962−),男,博士,教授,长期从事地质调查、灾害防治与生态修复研究工作。E−mail:xjtzms@xjtu.edu.cn

  • 中图分类号: P69;F205

Strategies and Practical Paths for Ecological Restoration and Comprehensive Management in Yulin Coal Mining Area in the New Era

  • 摘要:

    榆林作为陕北地区国家能源基地的重要组成部分,在过去30余年为中国经济社会发展作出了重要贡献。然而,煤炭资源开发不可避免地给当地生态环境带来了采空区塌陷、土地与水资源破坏、生态退化等诸多问题,且目前因煤炭规模开发的负面效应持续加剧着矿区水资源、土地资源的破坏以及生态系统韧性的下降,已然威胁到榆林经济社会的可持续发展及国家能源资源的长远安全。多年来,榆林煤矿区在地质环境治理方面形成了一批可复制、可推广的经验和模式,但目前仍然呈现出整体效果不显著、基金使用率低、实施阻力大、系统设计受限、顶层规划缺乏等“五个问题”的困境,多元化治理模式和相应的政策机制也尚未形成合力。为解决这一实际,本研究在剖析煤矿区生态问题现状及生态修复工作面临问题及原因的基础上,结合煤矿区治理现状及乡村高质量发展需求,创新形成了“1个目标、2个底线、3个空间、4种模式”的榆林市煤矿区综合治理系统性解决策略,建议了3项创新机制以及“三步走战略”的具体实践路径,总结了适用于榆林煤矿区生态修复+N的综合治理模式清单,最后从政策、技术、管理等方面提出了对策建议。研究结果有助于为下一步系统性、整体性指导榆林市各煤矿企业开展矿山生态保护修复工作提供借鉴,切实促进煤矿区生态保护修复走向多元化综合治理模式、走向社会–经济–生态协调的绿色发展新格局。

    Abstract:

    Yulin city, as an important part of the Northern Shaanxi National Energy and Chemical Industry Base, has made tremendous contributions to the economic and social development of China in the past thirty years. However, the exploitation of coal resources inevitably brought mined−out area collapse, land and water resources destruction, ecological degradation, and other problems to the local eco−environment. At present, the negative effects of coal scale development continue to aggravate the destruction of water and land resources in mining areas and the decline of ecosystem toughness, which has threatened the sustainable development of Yulin’s economy and society and the long−term security of national energy resources. Over the years, Yulin coal mine area has formed a number of replicable and popularizing experiences and patterns in geological environment governance, but it still presents "five problems" predicament, such as insignificant overall effect, low fund utilization rate, high implementation resistance, limited system design, lack of top−level planning, and the diversified governance modes and the corresponding policy mechanism have not yet formed a joint force. Following this case, combining the current governance situation of coal mining area and the needs of high−quality development in rural areas, this study innovatively formed a systematic solution strategy for comprehensive treatment of Yulin coal mining area, which includes "one goal, two lines, three spaces, four patterns", considering of analyzing the current situation of ecological problems in Yulin coal mining area and the predicament and reason of ecological restoration work. Then three innovation regulations and the concrete practice path of "three−step strategy" were proposed, and a list of comprehensive treatment modes (i.e., ecological restoration +N) applicable to Yulin coal mine area was summarized. Finally, countermeasures and suggestions were put forward from the aspects of policy, technology, and management. The outcome can provide reference for the next step of systematic and overall guidance for coal mining enterprises in Yulin to carry out mine ecological protection and restoration work, and effectively promote the ecological restoration of coal mining areas to a diversified comprehensive governance direction and to a new green development pattern of social, economic, and ecological coordination.

  • 研究区南临祁连造山带,北接中亚造山带,其所处构造环境的特殊性对区域构造演化及板块运动有着重大意义。该地区岩浆演化期次及构造背景研究较为薄弱且存在较大争议,前人通过对合黎山地区五坝和张家窑岩体锆石U-Pb年代学及同位素地球化学特征研究,其年龄介于432~397 Ma,为中志留世—早泥盆世,认为阿拉善地块西南缘早古生代很可能受控于祁连造山带的构造演化,处于后碰撞拉伸环境(王增振等,2020);通过对龙首山西山头窑地区三期岩体锆石U-Pb年代学研究,其年龄介于304.3~281.2 Ma,为晚石炭世—早二叠世,处于弧后洋盆闭合过程,是古亚洲洋向南俯冲的结果(董国强等,2022);而强利刚等(2019)认为龙首山地壳在晚古生代处于拉伸的稳定阶段。对合黎山地区岩浆岩形成时代及构造环境研究存在重要意义。龙首山成矿带区内侵入岩发育广泛,主要为酸性、中酸性岩石,主要岩性以花岗岩、花岗闪长岩、英云闪长岩等为主(张甲民等,2017),前人对龙首山成矿带的研究工作主要以东段为主,且主要集中在早古生代(牛宇奔等,2018刘文恒等,2019王增振等,2020)。而不同构造环境下的侵入岩具有不同的地球化学特征及同位素特征,能有效反映其岩浆源区及构造演化等重要信息。笔者在前人工作基础上对该区花岗闪长岩开展了锆石U-Pb年代学、岩石地球化学及Lu-Hf同位素特征的研究,确定该岩体形成时代并探讨这些黑云母花岗闪长岩的成因问题及龙首山成矿带西南缘构造环境特征。

    合黎山地处阿拉善地块龙首山成矿带西南缘,大地构造位置属于华北板块西南边缘(图1a)(谭文娟等,2012),北以龙首山北缘断裂与潮水中新生代断陷相邻(汤中立等,1999),南以南缘断裂与走廊过渡带分开。区内成矿条件有利(焦建刚等,2007)。龙首山成矿带是中国西北重要的铀成矿带(王承花,2010),同时中国著名的金川镍矿也位于该成矿带内(强利刚等,2019张照伟等,2023)。

    图  1  阿拉善地块大地构造简图(a)及罗城地区地质简图(b)
    Figure  1.  (a) Geostructural map of Alxa Block and (b) geological map of Luocheng Area

    区内地质构造复杂,次级构造发育,逆冲构造及伸展构造叠加,总体构造为NWW向(甘肃省地质局,1974),出露地层包括前震旦系龙首山群的角闪岩相–绿片岩相变质岩等中级区域变质岩系,其与上覆地层均为不整合接触;震旦系下统及中上统的云母石英片岩、变粒岩及变质砂岩、大理岩等为主的浅变质岩,其下统与中—上统之间多为断层接触;侏罗系青土井群的砂岩、砂砾岩等为主的陆源碎屑岩夹煤层,其与上覆地层及下伏地层均为不整合接触;白垩系以砂砾岩、泥岩等为主的碎屑岩;第三系以砾岩、含砾砂岩为主的沉积岩及第四系松散堆积物(图1b)。

    测区内岩浆岩发育广泛,主要为酸性、中酸性岩石为主,侵入活动主要是在加里东中期及华力西期,以华力西期侵入岩最为发育,主要岩性以花岗岩、花岗闪长岩、英云闪长岩等为主,其中以花岗闪长岩出露最为广泛,其次为英云闪长岩。罗城岩体主要为花岗闪长岩发育,其中可见花岗岩、闪长岩呈脉状发育。区内五坝和张家窑岩体锆石U-Pb年代学年龄介于432~397 Ma,为中志留世—早泥盆世(王增振等,2020);西山头窑地区岩体锆石U-Pb年代学年龄介于304.3~281.2 Ma,为晚石炭世—早二叠世。

    罗城岩体主要位于甘肃省高台县罗城镇北侧,其岩性主要为黑云母花岗闪长岩,野外岩体出露较为完整,笔者选取了合黎山地区高台县罗城幅的黑云母花岗闪长岩进行锆石U-Pb定年分析,共采集样品5件,其中岩石年龄同位素样品1件,并在岩石年龄同位素样品采集处配套采集岩石地球化学样品4件。样品采集地理坐标:E 99°43′39″,N 39°46′30″和E 99°41′43″,N 39°48′20″。为确保锆石数据准确性,样品均为未风化蚀变的新鲜岩石。

    岩石新鲜面为灰白色,具半自形粒状结构,块状构造(图2a)。主要矿物及含量:斜长石(45%),石英(20%),碱性长石(15%),普通角闪石(15%),黑云母(5%)。斜长石粒径约0.30~1.30 mm,呈半形粒状、板状,具聚片双晶,表面浑浊,微裂隙发育,次生绢云母化,均匀分布。碱性长石粒径约0.20~1.10,呈半自形板状,具卡式双晶,少量分布。石英粒径约0.10~2.00 mm,呈他形粒状,波状消光,沿长石粒间分布。普通角闪石粒径约0.20~1.60 mm,呈他形柱状,黄褐色,截面呈菱面体状,具角闪石式解理,绿泥石化,沿长英质粒间定向分布。黑云母粒径约0.15~2.25 mm,呈鳞片状、片状,褐黄色-红褐色,沿长英质粒间定向分布。副矿物有磷灰石、绿帘石(图2b、图2c、图2d)。

    图  2  黑云母花岗闪长岩手标本及镜下照片
    a.黑云母花岗闪长岩手标本; (b,d).正交偏光镜下特征; c.单偏光镜下特征;Qtz.石英; Bt.黑云母; P1.斜长石; Kfs.钾长石; Hbl.角闪石
    Figure  2.  Biotite granodiorite hand specimen and microscopic photograph

    样品的锆石挑选、制靶、CL照相由西安瑞石地质科技有限公司完成,采用标准重矿物分离技术分选出重矿物,随后在双目镜下挑选出锆石颗粒,将不同特征的锆石颗粒粘在双面胶上,并用无色透明的环氧树脂固定,待其固化之后将表面抛光至锆石内部暴露。然后拍摄阴极发光图像、透射光图像和反射光图像,选取分析点位。

    锆石U-Pb定年和Hf同位素组成分析在中国地质调查局西安地质调查中心岩浆作用成矿与找矿重点实验室完成。锆石U-Pb定年在LA-ICP-MS仪器上用标准测定程序进行,样品采用激光剥蚀等离子体质谱仪原位分析锆石微区的铀铅比值(206Pb/238U、207Pb/235U和207Pb/206Pb)(李艳广等,2015)并通过Glitter计算程序计算锆石的年龄及标准偏差;应用Isoplot(Ludwig, 2003)计算程序对锆石样品的206Pb/238U年龄和207Pb/235U年龄在谐和图上进行投图,并计算谐和年龄测点的加权平均值。

    锆石Hf同位素组成运用Neptune型多接收电感耦合等离子体质谱仪和GeolasPro型激光剥蚀系统联用的方法完成(袁洪林等,2007),所选测试位置均与锆石U-Pb测点位置相近,测试束斑直径为32 μm,采用国际标准锆石91500进行监控和样品外部校正。

    主量元素和微量元素分析测试在中国地质调查局西安矿产资源调查中心完成,主量元素采用X荧光光谱仪进行分析,稀土和微量元素采用等离子质谱仪进行分析,测试结果见表1

    表  1  罗城黑云母花岗闪长岩主量元素(%)、微量元素(10−6)、稀土元素(10−6)分析结果表
    Table  1.  Analysis results of major elements (%), trace elements (10−6) and rare earth elements (10−6) in Luocheng biotite granodiorite
    样品编号LCYT03LCYT04LCYT05LCYT06
    SiO2 59.84 58.75 58.52 59.09
    Al2O3 16.91 17.25 17.28 17.28
    Fe2O3 7.13 7.82 7.55 7.61
    CaO 6.33 6.70 6.93 6.68
    MgO 3.13 3.38 3.53 3.34
    K2O 1.87 1.49 1.49 1.54
    Na2O 2.52 2.60 2.55 2.60
    P2O5 0.13 0.15 0.15 0.15
    TiO2 0.68 0.74 0.77 0.75
    MnO 0.13 0.14 0.14 0.14
    LOI 1.03 0.74 0.85 0.60
    总和 99.70 99.76 99.75 99.79
    K2O+Na2O 4.40 4.09 4.04 4.15
    K2O/Na2O 0.74 0.57 0.59 0.59
    δ 1.15 1.06 1.05 1.07
    A/NK 2.74 2.93 2.98 2.9
    A/CNK 0.97 0.97 0.96 0.97
    Rb 61.1 49.2 40.6 46.9
    Th 3.37 4.58 5.70 8.46
    U 0.79 0.72 0.74 0.75
    Nb 4.48 4.76 4.64 4.64
    Sr 376 429 413 403
    Zr 84.3 112 88.6 118
    Hf 2.34 2.79 2.23 2.97
    F 454 320 663 360
    Sn <1.80 <1.80 <1.80 <1.80
    Cr 12.9 17.6 14.1 14.1
    Li 16.8 18.3 17.3 17.4
    Be 0.76 0.87 0.86 0.79
    V 166 186 180 174
    Co 15.3 16.2 15.6 15.3
    Ni 8.36 10.9 11.2 10.4
    Ga 16.6 17.7 16.3 16.4
    Cs 2.52 2.92 2.69 3.15
    Ta 0.33 0.35 0.34 0.35
    W 2.30 1.91 1.81 1.80
    Bi 0.073 0.070 <0.050 0.057
    La 12.0 14.3 12.5 12.5
    Ce 27.1 28.9 25.5 25.7
    Pr 3.60 3.59 3.32 3.21
    Nd 16.4 15.3 14.6 14.1
    Sm 3.91 3.37 3.28 3.14
    Eu 1.05 1.07 1.05 1.03
    Gd 4.14 3.54 3.49 3.41
    Tb 0.66 0.55 0.54 0.52
    Dy 4.04 3.28 3.24 3.15
    Ho 0.83 0.68 0.67 0.65
    Er 2.54 2.03 2.02 1.95
    Tm 0.36 0.29 0.29 0.28
    Yb 2.33 1.88 1.87 1.84
    Lu 0.36 0.30 0.30 0.29
    Y 21.3 17.2 16.9 16.4
    ΣREE 79.32 79.08 72.67 71.77
    LREE 64.06 66.53 60.25 59.68
    HREE 15.26 12.55 12.42 12.09
    LREE/HREE 4.20 5.30 4.85 4.94
    (La/Yb)N 3.69 5.46 4.79 4.87
    δEu 0.80 0.95 0.95 0.96
    δCe 1.01 0.99 0.97 0.99
    下载: 导出CSV 
    | 显示表格

    样品的锆石颗粒的CL图像(图3)显示所选的锆石为透明的自形晶体,为无色透明或浅黄色,大部分锆石结晶较好,短柱状晶形,阴极发光电子图像特征均显示出典型的岩浆结晶韵律环带结构。

    图  3  锆石样品测点CL照片
    Figure  3.  CL photograph of the zircon sample

    本次所选锆石样品25颗,均为有效样品,黑云母花岗闪长岩锆石U-Pb分析测试结果见表2,锆石Th含量为34.81×10−6~129.66×10−6,U含量为52.88×10−6~147.36×10−6,Th/U值为0.55~0.97,均大于0.4,说明锆石为岩浆成因(吴元保等,2004)。锆石微量元素测试结果见表3,其显示出重稀土富集,相对亏损轻稀土元素的特征,显示典型的岩浆锆石成因特征(Hoskin,2000)。锆石谐和图反映出锆石U-Pb年龄数据分布比较集中且谐和程度较好(图4a),所有数据协和度均符合要求,证明数据均有效。通过数据分析得到206Pb/238U加权平均年龄为(289±3)Ma,(MSWD=0.57),代表岩浆结晶年龄(图4b)。

    表  2  罗城花岗闪长岩(LCYT01)锆石LA-ICP-MS测年结果
    Table  2.  Zircon LA-ICP-MS dating results of Luocheng granodiorite (LCYT01)
    测点号含量(10−6Th/U同位素比值同位素年龄
    PbThU207Pb/206Pb±1δ207Pb/235U±1δ206Pb/238U±1δ208Pb/232Th±1δ207Pb/206Pb±1δ207Pb/235U±1δ206Pb/238U±1δ208Pb/232Th±1δ
    LCYT00115.9679.2881.670.970.051530.004230.320790.025510.045110.001020.014520.00048264.4177.81282.519.61284.56.28291.39.56
    LCYT00214.2547.2872.220.650.052020.00460.329390.028270.045890.001080.012690.00063286.1189.7289.121.59289.26.6825512.64
    LCYT00312.0434.8163.550.550.05240.006970.324630.042270.04490.001340.013750.00088302.7277.82285.532.4283.28.26276.117.48
    LCYT00419.9293.9998.060.960.049230.004980.317720.031380.046780.001140.014320.00059158.7220.85280.124.18294.77.05287.511.7
    LCYT00511.3741.9157.970.720.05170.007620.333650.048170.046780.001520.016110.00095272.2306.78292.436.67294.79.3932318.95
    LCYT00616.7980.9285.360.950.050210.004380.312610.026510.045130.001030.013450.00049204.9190.68276.220.51284.66.352709.73
    LCYT00727.09129.66147.360.880.054120.003560.3420.02160.045820.000960.013840.00042375.8141.54298.716.34288.85.93277.88.4
    LCYT00812.5145.5565.960.690.050290.00430.320150.02660.046160.001060.015350.00062208.3187.1628220.46290.96.51307.812.31
    LCYT00913.6945.6872.340.630.051530.004440.330810.027630.046560.001090.015190.00068264.4186.14290.221.08293.36.73304.713.59
    LCYT01012.6846.0266.650.690.051150.004720.330380.02970.046850.001110.014570.00063247.4199.46289.922.67295.16.83292.512.53
    LCYT01113.0949.9268.970.720.047920.005630.309370.035630.046820.001220.014730.0008794.2257.92273.727.632957.49295.617.3
    LCYT01212.5347.865.530.730.05210.004820.336830.030330.046890.001120.016060.00063289.7198294.823.04295.46.8732212.57
    LCYT01318.3192.7198.110.940.051780.00390.329560.023990.046180.0010.013620.00044275.6163.56289.218.322916.19273.38.78
    LCYT0141993.38105.350.890.053290.003980.32730.023580.044570.000990.014330.00046340.9160.32287.518.04281.16.09287.69.21
    LCYT01515.1651.5380.720.640.049480.004120.305210.024720.044760.000980.014240.00055170.8183.56270.519.23282.36.06285.711.06
    LCYT01614.0155.4376.330.730.05030.005370.308480.032080.044510.001180.012860.00065209229.9627324.9280.77.27258.212.91
    LCYT01711.345.8860.720.760.052390.004990.332310.030790.046040.001150.012880.0006302.4203.45291.323.47290.17.1258.611.9
    LCYT01816.3873.4288.240.830.053210.00370.32920.022010.04490.000960.014090.00044337.7149.5228916.81283.25.92282.78.81
    LCYT01915.8176.5880.920.950.051660.003780.328130.023170.04610.000990.014660.00044270.4159.18288.117.72290.66.07294.28.75
    LCYT02013.253.4268.410.780.050230.004230.315340.025820.045570.001030.01510.00054205.7184.61278.319.93287.36.36302.910.68
    LCYT02110.7736.8552.880.700.050950.00440.322250.027020.045920.001050.013670.00064238.6187.4283.620.75289.46.46274.312.67
    LCYT02213.9547.6168.780.690.052830.003880.343720.024360.047240.001020.013890.00055321.3157.9430018.41297.66.25278.810.94
    LCYT02323.03103.73117.270.880.052350.003130.336940.019260.046730.000940.014210.00041300.6130.55294.914.63294.45.77285.28.1
    LCYT02416.8156.8885.690.660.053870.003470.341950.021130.046090.000950.013370.00048365.6138.52298.615.99290.55.83268.49.65
    LCYT02514.867.0576.380.880.052030.003840.330110.023590.046080.000990.014190.00047286.8160.34289.718290.46.11284.89.33
    下载: 导出CSV 
    | 显示表格
    表  3  罗城花岗闪长岩锆石分析点位微量元素(10−6)测试结果
    Table  3.  Test results of trace elements (10−6) at zircon analysis points of Luocheng granodiorite
    测点号NbLaCePrNdSmEuGdTbDyHoErTmYbLuTa
    LCYT0011.100.068.230.050.230.491.2827.740.78107.2740.27181.1235.88339.1766.630.28
    LCYT0020.490.046.690.032.073.330.4011.138.8267.1426.56126.0227.32290.7857.980.24
    LCYT0030.610.006.260.020.492.640.297.434.6545.1617.3587.1319.02192.3638.240.27
    LCYT0040.630.069.250.080.440.691.1525.903.00112.8844.64196.4439.56377.0971.610.26
    LCYT0050.550.006.420.031.794.980.368.459.9940.5119.2787.5319.76189.5237.300.23
    LCYT0060.520.019.030.050.631.340.9124.923.67102.5838.80175.9835.30323.6465.730.28
    LCYT0070.460.0217.040.111.552.650.8524.046.96113.4945.17206.5843.34418.8482.250.41
    LCYT0081.370.007.310.031.493.080.4610.508.6950.8520.8697.3221.63218.5042.570.30
    LCYT0090.530.047.760.020.671.580.247.994.0643.0818.5685.8119.58193.5236.740.31
    LCYT0100.650.007.390.030.401.280.2411.383.4352.6720.9798.2122.28213.9442.280.26
    LCYT0110.670.017.650.050.442.140.4311.654.0854.2422.14101.0221.59221.8241.650.21
    LCYT0120.580.247.210.070.731.880.489.624.4351.7020.95100.7022.19222.3343.830.39
    LCYT0133.010.019.210.081.562.820.9524.933.94113.5645.37198.1541.36399.3271.970.38
    LCYT0140.660.019.650.071.793.631.1528.879.60117.6544.48198.8541.00392.0576.110.34
    LCYT0150.580.008.440.022.164.680.3310.509.8352.8820.95100.9822.47230.3244.420.31
    LCYT0160.740.007.730.040.491.290.4012.464.0861.4326.20120.9726.57261.9652.640.38
    LCYT0170.730.006.930.020.872.130.4312.065.0454.0723.41106.0523.33232.8844.250.33
    LCYT0180.840.018.090.060.571.820.8320.894.5892.5836.57172.3935.31347.5267.400.29
    LCYT0190.610.008.040.061.533.320.9726.287.25103.3341.09175.9336.48349.5666.290.23
    LCYT0200.470.007.310.021.725.060.3914.228.7863.2324.83115.4925.21238.9145.300.22
    LCYT0210.570.015.700.020.691.870.5310.945.1553.1621.38104.6222.91221.5645.690.30
    LCYT0220.530.046.600.030.271.730.4612.333.8967.2425.79122.8627.12273.0052.930.28
    LCYT0230.700.049.560.090.571.921.1827.415.00122.9649.00227.3746.39456.0789.130.38
    LCYT0241.140.048.630.021.854.190.289.3010.4948.6820.0695.2320.74214.1041.880.34
    LCYT0251.120.027.630.071.412.911.0422.234.0193.4736.23160.6534.00327.8865.050.25
    下载: 导出CSV 
    | 显示表格
    图  4  锆石样品U-Pb谐和图
    Figure  4.  U-Pb Concord diagram of zircon samples

    在LA-ICP-MS锆石U-Pb测年的基础上,对黑云母花岗闪长岩样品25颗锆石测点进行了锆石微区Hf同位素测定。测点的数据分析结果(表4)。176Yb/177Hf值介于0.0122223510.042050552176Lu/177Hf值介于0.000424710.001378472,均小于0.002,说明锆石在形成后具有很少的放射成因Hf的积累。因此,锆石 176Hf/177Hf值可能代表该锆石形成时的176Hf/177Hf值(吴福元等,2007),176Hf/177Hf值介于0.2827260480.282787588εHf(t)值均为正值,介于+4.37~+6.88,平均为+5.6,通过锆石Hf同位素εHf(t)-U-Pb年龄t(Ma)图解(图5a),测点均落在球粒陨石–亏损地幔之间,反映其源区为年轻的幔源组分或新生地壳,Hf同位素一阶段模式年龄T(DM1)分布范围为615.4~703.0 Ma,平均值为660.5 Ma,地壳模式年龄T(DMC)分布范围为808.6~952.5 Ma,平均值为882.8 Ma,地壳模式年龄T(DMC)较集中(图5b)。

    表  4  黑云母花岗闪长岩锆石Hf同位素分析结果
    Table  4.  Zircon Hf isotope analysis results of biotite granodiorite
    分析点t(Ma)176Yb/177Hf176Lu/177Hf176Hf/177Hf±2σHfiεHf (0εHf (t±1σT(DM1T(DMC±1σfLu/Hf
    LCYT01-01284.50.0185586530.0006254970.2827722620.00001941500.2827690.0799942726.141620.679525634.4846.80.06673-0.9583
    LCYT01-02289.20.0213508130.000729880.2827422290.00001733430.282738-0.9821200125.160500.606701676.8910.50.065471-0.95134
    LCYT01-03283.20.0185419030.00063320.2827615260.00001621770.282758-0.2996866935.732140.56762649.0871.00.062774-0.95779
    LCYT01-04294.70.0220882280.0007384730.2827875880.00001740890.2827840.6219991686.882540.609311615.4808.60.063449-0.95077
    LCYT01-05294.70.0164732050.0006104080.2827343750.00001781010.282731-1.2598643495.024450.623354685.4922.90.066228-0.95931
    LCYT01-06284.60.030878080.001030040.2827487010.00001693800.282743-0.7532266325.233860.59283673.2902.50.065308-0.93133
    LCYT01-07288.80.0197257310.0006696610.2827592090.00001664090.282756-0.3816205935.764270.582432652.8873.10.063558-0.95536
    LCYT01-08290.90.0257500310.0008673350.2827429880.00001806780.282738-0.9552588135.197570.632374678.1909.30.066791-0.94218
    LCYT01-09293.30.0218180770.000740690.2827526590.00001701880.282749-0.613269935.615880.595659662.8885.40.06456-0.95062
    LCYT01-10295.10.0318103150.0010723330.2827600720.00001852730.282754-0.351094865.852240.648455658.3872.00.067113-0.92851
    LCYT01-112950.0323206950.001060830.2827700290.00001875880.2827640.0010278596.204710.656558644.5850.30.066935-0.92928
    LCYT01-12295.40.0257539410.000840720.2827446190.00001950560.28274-0.8975709255.357100.682698675.5902.80.068675-0.94395
    LCYT01-132910.0420505520.0013784720.2827446020.00001883510.282737-0.8981748115.158400.659227684.9911.50.069048-0.9081
    LCYT01-14281.10.0259173880.0008951120.2827772580.00001732290.2827730.2566710656.194730.606302631.9840.90.064172-0.94033
    LCYT01-15282.30.0122223510.000424710.2827306610.00001858930.282728-1.3911864274.659460.650625687.1936.40.06705-0.97169
    LCYT01-16280.70.0260717950.000893780.2827260480.00001877770.282721-1.55432734.374300.65722701.7952.50.068661-0.94041
    LCYT01-17290.10.0263774940.0008923340.2827533610.00001776710.282749-0.5884351115.542650.621848664.4887.50.065933-0.94051
    LCYT01-18283.20.0249169180.0008804570.2827789380.00002032120.2827740.3160932876.301970.711244629.4835.90.068288-0.9413
    LCYT01-19290.60.0182103230.0006337710.2827818010.00001753640.2827780.4173397936.609510.613775621.6822.40.063668-0.95775
    LCYT01-20287.30.018020850.0006154230.2827727750.00001705720.2827690.0981199366.222220.597003633.5843.90.06338-0.95897
    LCYT01-21289.40.0203842770.0007181130.2827423720.00001847100.282738-0.97704095.172150.646485676.4909.90.067032-0.95213
    LCYT01-22297.60.025947460.0008813540.2827600120.00001615870.282755-0.3532357355.941050.565556655.2868.50.063322-0.94124
    LCYT01-23294.40.0294271320.0010148530.2827266720.00002064820.282721-1.5322865044.666560.722688703.0944.40.071574-0.93234
    LCYT01-24290.50.0185395080.0006411150.2827699110.00001629770.282766-0.0031621896.185170.570421637.8848.50.062508-0.95726
    LCYT01-25290.40.0218810360.0007494570.2827411580.00001557880.282737-1.0199706465.144730.545259678.6912.30.063102-0.95004
    下载: 导出CSV 
    | 显示表格
    图  5  罗城黑云母花岗闪长岩锆石εHft)-t(Ma)图解(a)(据李良等,2018)和地壳模式年龄T(DMC)统计直方图(b)
    Figure  5.  (a)Zircon εHf(t)-t (Ma) diagram (According to LI Liang et al., 2018) and (b) crustal model age T (DMC) statistical histogram (b) of Luocheng biotite granodiorite

    合黎山地区罗城黑云母花岗闪长岩的主量元素分析结果见表1,其SiO2含量介于58.52%~59.84%,Al2O3含量介于16.91%~17.28%。全碱含量Na2O+K2O介于4.04%~4.40%,相对富碱,Na2O含量介于2.52%~2.60%,K2O含量介于1.49%~1.87%,富钠贫钾。里特曼指数δ介于1.05~1.15。根据CIPW标准矿物计算(Le Maitre,1979),石英(Qtz)含量介于18.97%~20.69%,碱性长石(A)含量介于11.6%~14.66%,斜长石(Pl)含量介于47.86%~50.76%,在Q-A-P图解中(图6a),处在花岗闪长岩区域中。SiO2-(Na2O+K2O-CaO)图解(图6b)反应岩石属于钙性系列。SiO2-K2O图解(图6c)反映岩石主体属于钙碱性系列。铝饱和指数A/CNK比较集中,介于0.96~0.97,A/NK介于2.74~2.98,在A/CNK-A/NK图解中(图6d),处在准铝质范围内。

    图  6  罗城黑云母花岗闪长岩Q-A-P图解(a)(据Streckeisen, 1976)、SiO2-(Na2O+K2O-CaO)图解(b)(据Peccerillo et al., 1976)、SiO2-K2O图解(c)(据Peccerillo et al., 1976)及A/NK-A/CNK图解(d)(据Maniar et al.,1989
    Figure  6.  (a) Q-A-P diagram of Luocheng biotite granodiorite, (b) SiO2- (Na2O+K2O-CaO) diagram, (c) SiO2-K2O diagram and (d) A/NK-A/CNK diagrams

    合黎山地区罗城黑云母花岗闪长岩的稀土元素分析结果见表1,其稀土元素总量ΣREE在71.77×10−6~79.32×10−6之间,平均为75.71×10−6。LREE/HREE值在4.20~5.30之间,平均为4.82,相对富集轻稀土,亏损重稀土。(La/Yb)N在3.69~5.46之间,平均为4.70,稀土元素球粒陨石标准化配分曲线图(图4a)中显示稀土元素为右倾型配分模式。δEu值在0.80~0.96之间,平均值为0.91,Eu具轻度负异常,说明在岩浆演化过程中有少量的斜长石分离结晶作用。

    合黎山地区罗城黑云母花岗闪长岩的微量元素分析结果见表1,在微量元素原始地幔标准化蛛网图(图7b)上可见,岩石均相对富集Rb、Th、K等大离子亲石元素,亏损Nb、Ta、P、Ti等高场强元素。

    图  7  罗城黑云母花岗闪长岩的稀土元素球粒陨石标准化配分曲线图(a)(据Taylor et al., 1985)和微量元素原始地幔标准化蛛网图(b)(据Sun et al., 1989
    Figure  7.  (a) Normalized distribution curve of rare earth element chondrites and (b) Primitive mantle-normalized trace element diagrams of Luocheng biotite granodiorite

    合黎山地区罗城岩体锆石自形程度好,具有典型的岩浆结晶韵律环带结构(图5),且Th/U值均大于0.4,为典型的岩浆锆石(王新雨等,2023李平等,2024),其锆石数据谐和度较高,206Pb/238U加权平均年龄为(289±3) Ma ,可代表岩浆结晶年龄,因此,合黎山地区罗城岩体形成于早二叠世。

    合黎山地区罗城花岗闪长岩Ga含量为16.3×10−6~17.7×10−6,Al2O3含量为16.91%~17.28%,10000Ga/Al值为1.78~1.93,平均为1.84,小于A型花岗岩下限2.6(Whalen et al., 1987),在Zr-10000Ga/Al、Ce-10000Ga/Al、Y-10000Ga/Al图解(图8b、 图8c、图8d)中,罗城岩体均投影在I&S花岗岩区域,在K2O-Na2O图解(图8a)中,罗城岩体均处于I型花岗岩区域。根据岩石主量元素特征可知,罗城花岗闪长岩具有钙碱性、准铝质特征,其A/CNK比较集中,介于0.96~0.97,均小于1.1,与I型花岗岩一致(Chappell et al., 1992李宏卫等,2021),且P2O5含量与SiO2含量存在负线性关系,与I型花岗岩演化趋势一致(Wolf et al., 1994)。综合判断分析,罗城花岗闪长岩属于结晶分异I型花岗岩。

    图  8  罗城黑云母花岗闪长岩K2O-Na2O图解(a)及Zr、Ce、Y-10000Ga图解(b、c、d)(据Whalen et al.,1987
    Figure  8.  (a) K2O-Na2O and (b, c, d) Zr, Ce, Y-10000 Ga diagram of Luocheng biotite granodiorite

    I型花岗岩主要来源于板块边缘陆壳下部,可能与地壳岩石的部分熔融(徐克勤等,1982)、交代岩石圈地幔部分熔融(Jiang et al., 2006)等有关,罗城黑云母花岗闪长岩属于钙碱性系列,富集Rb、Th、K等大离子亲石元素和轻稀土元素,亏损Nb、Ta、P、Ti等高场强元素,指示岩体具有大陆地壳物质的参与,岩石Nb/Ta=13.25~13.65,平均值为13.52,接近大陆地壳Nb/Ta值(=10~14)。在判断源岩的C/MF-A/MF图解(图9a)中,显示岩体源岩可能为基性岩的部分熔融,岩石δEu值具轻度负异常,在0.80~0.96之间,平均值为0.91,说明在岩浆演化过程中有少量的斜长石分离结晶作用,在δEu-(La/Yb)N图解中(图9b),样品投点均落在了壳源与壳幔混合源花岗岩区域,La/Ta值为35.71~40.86,大于起源于岩石圈地幔或受其混染岩浆La/Ta值的下限25,指示其为幔源或者壳幔混合源(Lassiter et al., 1997)。

    图  9  罗城黑云母花岗闪长岩C/MF-A/MF图解(a)(据Alther et al., 2000)及δEu-(La/Yb)N图解(b)(据王钊飞等,2019
    Figure  9.  (a) C/MF-A/MF diagram and (b) δEu-(La/Yb)N diagram of Luocheng biotite granodiorite

    罗城黑云母花岗闪长岩锆石Hf二阶段模式年龄T(DMC)分布范围为808.6~952.5 Ma,εHf(t)值介于+4.37~+6.88,通过锆石εHf(t)-U-Pb年龄t(Ma)图解(图7a),测点均落在球粒陨石–亏损地幔之间,反映其源区为年轻的幔源组分或具有新生地壳演化趋势(李金超等,2021)。

    在野外工作中,在黑云母花岗闪长岩中发现暗色微细粒包体发育(图10),包体形态可见椭圆状、圆状、透镜状以及不规则状,大小差异较大,包体常具淬冷边,证明岩浆发生混合作用(王德滋等,2008张建军等,2012);Mg#值可以指示壳源岩浆作用是否有幔源物质的参与,在地幔组分参与时,才能导致熔体的Mg#值大于40(Rapp et al., 1995),岩石MgO含量介于3.13%~3.53%,Mg#值介于0.64~0.66,明显高于40,表明岩体源岩明显具幔源岩浆加入。

    图  10  罗城黑云母花岗闪长岩中暗色包体的形态
    a. 椭圆状包体; b. 圆状包体; c. 透镜状包体; d. 不规则状包体
    Figure  10.  Field photos showing morphology of Luocheng biotite granodiorite

    基于上述讨论,罗城花岗闪长岩为壳源岩浆与幔源岩浆发生混合作用的产物,这种作用是由于地壳深部存在强烈的地幔岩浆底侵作用,导致新生地壳部分熔融并混入底侵的幔源物质。幔源的高温基性岩浆底侵,为其提供了少量物质来源,使岩石地球化学特征上既表现出壳源特征,也表现出幔源物质的信息。

    罗城黑云母花岗闪长岩富集Rb、Th、K等大离子亲石元素和轻稀土元素,亏损Nb、Ta、P、Ti等高场强元素,具有典型的岛弧岩浆岩特征(王秉璋等,2021),其形成与大洋板片俯冲消减作用有关。通过对黑云母花岗闪长岩构造背景判别,在Rb-(Y+Nb)(图11a)、Nb-Y(图11b)及Hf-Rb/30-3Ta(图11c)图解中,样品均落在火山弧花岗岩区域;在R1-R2图11d)图解中,样品落在地幔分异花岗岩与碰撞前花岗岩交界区域。

    图  11  花岗闪长岩构造背景判别Rb-(Y+Nb)(a)、Nb-Y(b)(据Pearce et al., 1984)、Hf-Rb/30-3Ta(c)(据Harris et al., 1986)图解及R1-R2(d)(据Batchelor et al., 1985)图解
    ① 地幔分异花岗岩;② 破坏性活动板块边缘 (板块碰撞前) 花岗岩;③ 板块碰撞后隆起期花岗岩;④ 晚造期花岗岩;⑤ 非造山区花岗岩;⑥ 同碰撞花岗岩;⑦造山期花岗岩
    Figure  11.  Identification of granodiorite structural background (a) Rb-(Y+Nb), (b) Nb-Y, (c) Hf-Rb/30-3Ta and (d) R1-R2 diagram

    罗城岩体位于龙首山造山带的西南缘大陆边缘活动带和祁连裂谷的发育构成了龙首山成矿带特定的构造环境(王承花,2010)。龙首山地区地壳演化自早古生代至中新生代经历了活动-稳定-再活动-再稳定-又活动的发展阶段,其在晚古生代处于稳定的拉张环境(强利刚等,2019),早古生代祁连造山带经历了北祁连洋向南俯冲,俯冲受阻,转为向北俯冲,引起北祁连岛弧与阿拉善陆块的碰撞,从而形成了一系列火山弧I型花岗岩(夏林圻等,2003刘文恒等,2019王增振等,2020)。罗城二叠纪黑云母花岗闪长岩指示其形成环境为岩浆弧,且R1-R2判别图解指示其形成环境为碰撞前消减花岗岩环境,说明在晚古生代该区还存在一期俯冲碰撞活动,与前人对龙首山晚石炭世—早二叠世西山头窑地区岩体处于弧后洋盆闭合过程,是古亚洲洋向南俯冲的结果(董国强等,2022)相吻合,同时与前人认为的北山地区二叠纪时期仍发生的俯冲–增生造山过程延续可至三叠纪(宋东方等,2018)存在相关性,而并非处于拉张稳定发展期(强利刚等,2019)。

    (1)通过对罗城黑云母花岗闪长岩LA-ICP-MS锆石U-Pb测年得出,岩石锆石结晶年龄为(289±3) Ma ,属于早二叠世,指示了区域上华力西期的强烈构造岩浆事件。

    (2)通过罗城黑云母花岗闪长岩岩相学、岩石地球化学及Hf同位素特征,岩体富集Rb、Th、K等大离子亲石元素和轻稀土元素,亏损Ba、Nb、Ta、P等高场强元素,属于准铝质钙碱性I型花岗岩,是由新生地壳部分熔融并混入底侵幔源物质的产物,指示了地壳深部强烈的地幔岩浆底侵作用。

    (3)罗城黑云母花岗闪长岩地球化学特征指示其形成于碰撞前的消减花岗岩环境,结合龙首山地区构造演化历史,表明该区在晚古生代还存在一期俯冲碰撞,而并非一直处于拉张稳定发展期。

  • 图  1   榆林煤矿区矿山地质安全隐患图

    Figure  1.   Photos of geological hazards of coal mine area in Yulin

    图  2   榆林市生态系统综合退化评价图

    Figure  2.   Comprehensive assessment map of ecosystem degradation in Yulin City

    图  3   榆林市煤矿区生态保护修复与综合治理的总体策略图

    Figure  3.   Specific strategy of ecological restoration and comprehensive management in Yulin coal mine area

    图  4   榆林市煤矿区生态保护修复与综合治理的3项创新机制图

    Figure  4.   Three innovative patterns of ecological restoration and comprehensive management in Yulin coal mine area

    图  5   榆林煤矿区生态保护修复与综合治理的实践路径图

    Figure  5.   Practice paths of ecological restoration and comprehensive management in Yulin coal mine area

    表  1   榆林煤矿区清单式综合治理模式建议菜单表

    Table  1   The list–typed comprehensive management suggested patterns in Yulin coal mine area

    生态修复+N模式修复对象修复方式主要措施及工程建议
    生态修复+土地整治 采空塌陷区 因地制宜,以土地高效、高质量利用为目标,对未利用地、地表破坏区、盐碱地、碎片耕地、及村庄建设用地进行土地综合整改 1.消除采空塌陷区灾害隐患,将土地复垦为耕地、林地、园地等多类型用地2.通过小田并大田、宜种化和宜机化改造等措施,将碎片耕地整合连片 3.过排水、灌水洗盐、增施有机肥或土壤调理剂、深耕深松、客土压碱、合理种植等方式,改善盐碱地 4.整理低效用地和未利用地,提升土地利用效率5.将煤矸石重新利用为工程填料、能源发电、化工产品、农业有机肥等,并对煤矸石山植被进行恢复 6.对矿区内建设用地进行整合,采取集中安置方式,保障居民点建筑安全及用水安全,对腾挪出的建设用地重新复垦利用
    耕地碎片化
    土地盐碱化
    土地低效利用
    煤矸石堆放区
    采矿区建设用地
    生态修复+示范产业 采空塌陷区 选取土地环境、交通位置等具备潜力的地区,作为示范产业,如农业示范、畜牧示范、伙场经济示范、沙地光伏示范等 1.对于有条件的采空塌陷区,实施开发式治理方案,种植以蛋白桑、沙漠水稻、蔬菜大棚及光伏田园综合体等2.提升耕地效能,打造以种植为基础,集观光体验、加工、科普于一体的农业示范基地3.整合伙场盘子,改造利用为经济种植、生态养殖等示范项目,打造伙场经济4.有条件的土地沙化区采取光伏结合牧草种植的形式,形成产业治沙
    低效耕地
    伙场盘子
    土地沙化
    生态修复+文旅融合 文物、遗址地区 长城文化、红色文化旅游;废弃矿山文旅开发;特色乡村旅游休闲 1.文物、遗址地区生态修复应以保护文物、遗址为前提,并发扬其文化价值,打造成为旅游景点、研学基地等2.对有条件的废弃矿山,采取文旅开发的形式,重新活化利用,如建设为矿山主题公园、地质公园、游乐园、酒店等3.整治村庄环境,特色建筑、历史街区活化,增加村庄绿化和景观美化,完善村庄设施,美化人居环境
    特色废弃矿山
    特色村庄
    生态修复+绿色公园 废弃矿山绿地 矿山生态/湿地公园;重要交通线路防风固沙及景观美化;城镇绿地、乡村游园 1.交通条件差或本身特色不明显的废弃矿山采取复绿为主,打造生态型郊野公园 2.重要交通线路两侧,种植以防风固沙功能为主兼具景观美化的生态绿带,打造绿色通廊 3.城镇、村庄公共空间增加绿化,打造公园绿地和乡村游园,美化人居环境
    重要交通线路
    城镇、村庄空间
    下载: 导出CSV
  • 范立民, 张晓团, 向茂西, 等. 浅埋煤层高强度开采区地裂缝发育特征—以陕西榆神府矿区为例[J]. 煤炭学报, 2015, 40(6): 1442-1447

    FAN Limin, ZHANG Xiaotuan, XIANG Maoxi, et al. Characteristics of ground fracture development in high strength mining area of shallow coal seam-Taking Yushenfu mining area in Shaanxi Province as an example[J]. Journal of China Coal Society, 2015, 40(6): 1442-1447.

    冯靖仪, 李晓晖, 代欣召, 等. 资源型城市国土空间生态修复规划思路与方法研究—以榆林市为例[A]. 2020/2021中国城市规划年会暨2021中国城市规划学术季, 面向高质量发展的空间治理—2021中国城市规划年会论文集(08城市生态规划)[C]. 成都: 中国城市规划学会, 2021: 500–508

    FENG Jingyi, LI Xiaohui, DAI Xinzhao, et al. Research on planning ideas and methods of territorial ecological restoration in resource-based cities: A case study of Yulin City [A]. 2020/2021 China Urban Planning Annual Conference and 2021 China Urban Planning Academic Season, Spatial Governance for High-quality Development--Proceedings of 2021 China Urban Planning Annual Conference (08 Urban Ecological Planning)[C]. Chengdu: China Society for Urban Planning, 2021: 500-508.

    顾大钊, 张建民. 西部矿区现代煤炭开采对地下水赋存环境的影响[J]. 煤炭科学技术, 2012, 40(12): 114-117

    GU Dazhao, ZHANG Jianmin. The influence of modern coal mining on groundwater environment in western mining area [J]. Coal Science and Technology, 2012a, 40(12): 114-117.

    顾大钊. 能源“金三角”煤炭开发水资源保护与利用[M]. 北京: 科学出版社, 2012b, 205−208

    GU Dazhao. Energy "Golden Triangle" coal development water resources protection and utilization [M]. Beijing: Science Press, 2012b, 205−208

    观研报告网. 中国煤炭行业现状深度研究发展战略研究报告(2022-2029)[OL]. 观研天下, 2022, 14−17. https://www.chinabaogao.com/baogao/202207/604934.html

    Insight and Info. Research report of the in-depth status quo of China's coal industry development strategy (2022-2029) [OL]. View of the World, 2022, 14-17. https://www.chinabaogao.com/baogao/202207/604934.html

    康红普, 王国法, 王双明, 等. 煤炭行业高质量发展研究[J]. 中国工程科学, 2021, 23(05): 130-138

    KANG Hongpu, WWANG Guofa, WWANG Shuangming, et al. High-Quality Development of China’s Coal Industry[J]. Chinese Engineering Science, 2021, 23(05): 130-138.

    李成, 孙魁, 彭捷, 等. 矿山地质环境开发式治理模式研究[J]. 灾害学, 2020, 35(04): 77-84 doi: 10.3969/j.issn.1000-811X.2020.04.016

    LI Cheng, SUN Kui, PENG Jie, et al. Study on development governance model of mine geological environment [J]. Journal of Catastrophology, 2020, 35(04): 77-84. doi: 10.3969/j.issn.1000-811X.2020.04.016

    李爽, 贺超, 薛广哲. 以双重预防机制实现智能矿山愿景 用灾害综合防治系统保障智能矿山安全[J]. 智能矿山, 2022, 3(06): 87-92

    LI Shuang, HE Chao, XUE Guangzhe. Realizing the vision of intelligent mine with dual prevention mechanism, and Ensuring the safety of intelligent mine with integrated disaster prevention system [J]. Journal of Intelligent Mine, 2022, 3(06): 87-92.

    李妍林, 阮久莉, 王艺博, 等. 煤炭工业资源-环境-经济耦合协调分析—以榆林市为例[J]. 环境工程技术学报, 2022, 12(01): 260-266 doi: 10.12153/j.issn.1674-991X.20210126

    LI Yanlin, RUAN Jiuli, WANG Yibo, et al. Analysis on the coupling coordination of resource-environment-economy of coal industry: a case of Yulin City [J]. Journal of Environmental Engineering Technology, 2022, 12(1): 260-266. doi: 10.12153/j.issn.1674-991X.20210126

    马增辉. 全域土地综合整治的可行性分析—以榆林市金鸡滩镇项目为例[J]. 粮食科技与经济, 2020, 45(08): 55-57

    MA Zenghui. Feasibility analysis of comprehensive land consolidation-Taking Jinjitan Town Project of Yulin City as an example [J]. Grain science and technology and economy, 2020, 45(08): 55-57.

    穆兴民, 王万忠, 高鹏, 等. 黄河泥沙变化研究现状与问题[J]. 人民黄河, 2014, 36(12): 1-7 doi: 10.3969/j.issn.1000-1379.2014.12.046

    MU Xingmin, WANG Wanzhong, GAO Peng, et al. Progress and discussion on sediment load variation research of the Yellow River [J]. Yellow River, 2014, 36(12): 1-7. doi: 10.3969/j.issn.1000-1379.2014.12.046

    彭苏萍, 毕银丽. 黄河流域煤矿区生态环境修复关键技术与战略思考[J]. 煤炭学报, 2020, 45(4): 1211-1221

    PENG Suping, BI Yinli. Strategic consideration and core technology about environmental ecological restoration in coal mine areas in the Yellow River basin of China[J]. Journal of China Coal Society, 2020, 45(4): 1211-1221.

    彭苏萍. 神东矿区现代煤炭开采技术下对地下水资源和生态影响规律研究[R]. 中国矿业大学(北京), 神华集团有限责任公司研究报告, 2012, 78-81.
    冉大川, 左仲国, 上官周平. 黄河中游多沙粗沙区淤地坝拦减粗泥沙分析[J]. 水利学报, 2006, 37(04): 443-450 doi: 10.3321/j.issn:0559-9350.2006.04.010

    RAN Dachuan, ZUO Zhongguo, SHANGGUAN Zhouping. Effect of check dam on retaining and reducing coarse grain sediment in middle reaches of Yellow River [J]. Journal of Hydraulic Engineering, 2006, 37(04): 443-450. doi: 10.3321/j.issn:0559-9350.2006.04.010

    王双明, 黄庆享, 范立民, 等. 生态脆弱区煤炭开发与生态水位保护[M]. 北京: 科学出版社, 2010, 122−127

    WANG Shuangming, HUANG Qinxiang, FAN Limin, et al. Coal development and Ecological Water Level Protection in ecologically fragile areas [M]. Beijing: Science Press, 2010, 122–127.

    王双明. 对我国煤炭主体能源地位与绿色开采的思考[J]. 中国煤炭, 2020, 46(02): 11-16

    WANG Shuangming. Thoughts about the main energy status of coal and green mining in China[J]. China Coal, 2020, 46(02): 11-16.

    王雁林, 刘强, 张辉, 等. 关于构建陕西省国土空间生态修复工作体系的思考[J]. 国土资源情报, 2021, 247(07): 3−6+21

    WANG Yanlin, LIU Qiang, ZHANG Hui, et al. Thoughts on Constructing the Work System of Territorial Ecological Restoration in Shaanxi Province [J]. 2021, 247(07): 3−6+21.

    杨晶羽. 榆林市生态承载力现状分析与评价[J]. 环境与发展, 2020, 32(11): 19-20+22

    YANG Jingyu. Analysis and evaluation of the ecosystem carrying capacity in Yulin [J]. Environment and Development, 2020, 32(11): 19-20+22.

    尤文顺. 国家能源集团打造“1235”煤矿智能化建设模式 加快推进煤炭工业高质量发展[J]. 智能矿山, 2022, 3(02): 26-33

    YOU Wenshun. National Energy Group to create "1235" coal mine intelligent construction mode, and accelerate the high-quality development of coal industry [J]. Journal of Intelligent Mine, 2022, 3(02): 26-33.

    榆林市自然资源和规划局. 榆林市国土空间生态保护修复规划(2021-2035)[R]. 榆林: 榆林市自然资源和规划局, 2022b, 22−29.
    榆林市自然资源和规划局. 榆林市矿区生态保护修复规划(2021-2025)[R]. 榆林: 榆林市自然资源和规划局, 2022a, 12−17.
    张茂省, 党学亚. 干旱半干旱地区水资源及其环境问题—陕北榆林能源化工基地例析[M]. 北京: 科学出版社, 2014, 25−30

    ZHANG Maosheng, DANG Xueya. Water resources and Environmental Problems in arid and semi-arid Area-Case study of Yulin Energy and Chemical Industry Base in Northern Shaanxi [M]. Beijing: Science Press, 2014, 25−30.

    Feng Yu, Wang Jinman, Bai Zhongke, et al. Effects of surface coal mining and land reclamation on soil properties: A review[J]. Earth-Science Reviews, 2019, 191: 12–25.

    Luo Manya, Li Tuansheng. Spatial and temporal analysis of landscape ecological quality in Yulin[J]. Environ Technology Innovation, 2021, 23: 101700.

    Yang Liangyan, Shi Lei, Wei Jing, et al. Spatiotemporal evolution of ecological environment quality in arid areas based on the remote sensing ecological distance index: A case study of Yuyang district in Yulin city, China [J]. Open Geosciences, 2021, 13(1), 1701-1710. doi: 10.1515/geo-2020-0328

图(5)  /  表(1)
计量
  • 文章访问数:  538
  • HTML全文浏览量:  206
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-02
  • 修回日期:  2023-04-12
  • 网络出版日期:  2023-05-11
  • 刊出日期:  2023-06-19

目录

/

返回文章
返回