ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

巴基斯坦新特提斯构造–岩浆演化与重要金属成矿作用

洪俊, 张辉善, 吕鹏瑞, Tahseenullah Khan, Yasir Shaheen Khalil, 王志华, 张海迪

洪俊,张辉善,吕鹏瑞,等. 巴基斯坦新特提斯构造–岩浆演化与重要金属成矿作用[J]. 西北地质,2024,57(3):154−176. doi: 10.12401/j.nwg.2023117
引用本文: 洪俊,张辉善,吕鹏瑞,等. 巴基斯坦新特提斯构造–岩浆演化与重要金属成矿作用[J]. 西北地质,2024,57(3):154−176. doi: 10.12401/j.nwg.2023117
HONG Jun,ZHANG Huishan,LÜ Pengrui,et al. Tectono–Magmatic Evolution of the Neo–Tethys Belt in Pakistan and Related Mineralization of Major Metal Mineral Deposits [J]. Northwestern Geology,2024,57(3):154−176. doi: 10.12401/j.nwg.2023117
Citation: HONG Jun,ZHANG Huishan,LÜ Pengrui,et al. Tectono–Magmatic Evolution of the Neo–Tethys Belt in Pakistan and Related Mineralization of Major Metal Mineral Deposits [J]. Northwestern Geology,2024,57(3):154−176. doi: 10.12401/j.nwg.2023117

巴基斯坦新特提斯构造–岩浆演化与重要金属成矿作用

基金项目: 国家自然科学基金项目(92055314、U2244204、42372115),陕西省创新能力支撑计划项目(2022KJXX-91),中国地质调查局项目“ 巴基斯坦– 土耳其铜铬资源调查”(DD20201159)和“中亚西亚地质调查国际合作”(DD20221804)联合资助。
详细信息
    作者简介:

    洪俊(1985–),男,博士,高级工程师,主要从事中亚西亚境外地质调查和资源潜力评价、岩浆作用与区域成矿规律研究工作。E–mail:hongjunmail2013@163.com

  • 中图分类号: P612

Tectono–Magmatic Evolution of the Neo–Tethys Belt in Pakistan and Related Mineralization of Major Metal Mineral Deposits

  • 摘要:

    巴基斯坦在大地构造位置上处于印度、欧亚和阿拉伯三大板块的汇聚带,正同时发生着大陆碰撞和大洋俯冲作用,是研究地球系统深部圈层相互作用与成矿效应的绝佳天然实验室。但是,目前对于巴基斯坦构造演化与成矿作用的研究还不系统,对于巴基斯坦的大型–超大型矿床形成的背景和机制仍不清楚。笔者针对巴基斯坦不同类型的优势矿种开展了深入解剖和对比研究,系统梳理最新研究进展,围绕巴基斯坦新特提斯构造–岩浆演化与成矿作用响应的关键科学问题,分析铜矿、铬铁矿、铅锌矿以及碳酸岩有关的稀土矿床等重要金属成矿类型形成的构造环境以及与区域重大地质事件的耦合关系,总结巴基斯坦区域成矿规律,为资源潜力分析和境内外找矿勘查提供依据。

    Abstract:

    Pakistan is located in the convergent zone of the India, Eurasian and Arabian plates, an important part of the Tethys tectonic domain. It is an excellent natural laboratory for the study of deep earth system interactions and mineralization effects, as both continental collision and oceanic subduction occur in Pakistan. However, the study of tectonic evolution and mineralization in Pakistan is still not systematic, and the background and mechanism of formation of some large and super–large ore deposits in Pakistan are still unclear. The authors and collaborating team have conducted in–depth anatomical and comparative studies on different types of dominant mineral deposits in Pakistan. In this paper, the resent research progress are summarized systematically. Focusing on the key scientific issues of tectonic-magmatic evolution and mineralization response in the Neo–Tethys belt, we have analyzed the tectonic setting of the formation of major metal mineralization types such as copper, chromite, lead-zinc and carbonatite–related REE deposits and the coupling relationship with major regional geological events. The study of regional mineralization regularities in Pakistan will provide a basis for resource potential analysis and mineral exploration both domestic and abroad.

  • 近些年,准噶尔盆地玛湖凹陷在二叠系风城组取得油气勘探的重大突破(何文军等,20212023),其原因在于大量扎实的基础研究,尤其是前人针对风城组储层沉积背景(秦志军等,2016何衍鑫等,2018张志杰等,2018李威等,2020)、岩石学(曹剑等,2015江懋才等,2016汪梦诗,2017汪梦诗等,2018)、矿物学(江懋才等,2016余宽宏等,2016赵研等,2020)以及控制因素(陈磊等,2012阿布力米提等,2015张鸾沣等,2015孙乐等,2016)等方面做了详实的分析,为风城组油气的持续勘探开发奠定坚实基础。除玛湖凹陷外,近两年在沙湾凹陷斜坡区部署的ST002井以及CP24井均在风城组获得工业油流。相较于玛湖凹陷风城组储层丰富研究成果,沙湾凹陷斜坡区风城组储层相关研究几乎为空白,不利于该区风城组油气的进一步勘探开发。因此,为给研究区风城组油气勘探开发提供有效理论指导,同时为有利储层发育区带的预测提供依据,本次研究利用岩心观察、薄片分析、高压压汞、扫描电镜、电子探针以及物性分析等多项测试资料,针对研究区风城组储层特征及控制因素进行详实分析。

    沙湾凹陷位于准噶尔盆地中央坳陷西部,是盆地内重要的富烃凹陷(路玉等,2018杜金虎,等,2019付瑜等,2020余海涛等,2020关新等,2021于景维等,2021a2021b),第四次油气资源评价认为凹陷西部石油总地质资源量近2×108 t(梁宇生等,2018),油气勘探潜力相对较大。随着现代油气勘探重点区域已由凸起转型为凹陷周围斜坡区(于景维等,2022),沙湾凹陷斜坡区发育走向近北西−南东向鼻状构造带,整体可划分为两大凹槽区(图1),具有较为有利的成藏条件,成为油气勘探的重点区域。

    图  1  研究区位置图(a)及风城组厚度图(b)
    Figure  1.  (a) Location of study area and (b) thickness chart of Fengcheng Formation

    斜坡区整体为西高东低,面积大约为3000 km2,受古构造运动影响,区内发育多个正断层控制的箕状断陷,断面上陡下缓,平面上有较远的延伸,纵向上断深较大,最大断深可达石炭系,同时断裂沟通多套油源,为油气大范围运移提供有利帮助。区内发育地层较为齐全,自下而上发育的地层依次为石炭系;二叠系风城组、佳木河组、上乌尔禾组;三叠系百口泉组、克下组、克上组、白碱滩组;侏罗系八道湾组、三工河组、头屯河组、齐古组;白垩系吐谷鲁群。风城组沉积时期火山活动减弱,构造活动相对稳定,地层起伏变化较小、且厚度相对均一。受二叠纪至三叠纪构造抬升运动影响,风城组遭受一定程度剥蚀,特别在中拐凸起的主部位上,风城组剥蚀殆尽,整体呈现西薄东厚的特征。研究区共6口井钻遇风城组,其中1口未钻穿,4口井处于南部凹槽。风城组平均埋深在4200 m以下,平均厚度约为300 m,自下而上可分为风一段、风二段和风三段。储层岩性主要为大套砂砾岩,普遍存在异常高压。目前,研究认为区内风城组发育扇三角洲沉积,6口钻井的风城组均以扇三角洲平原亚相为主。

    研究区风城组储层为扇三角洲平原分流河道沉积,岩石类型多样。按照砂质体积分数可划分为砂岩类(指岩石中砂质体积分数至少为50%,包括细砂岩、细中砂岩、砾质中粗砂岩)和砾岩类岩石(指砂质体积分数小于50%,包括砾岩、砂砾岩、含砂砾岩及砂质砾岩),以砾岩类岩石为主。砂岩类岩石主要为红色的岩屑砂岩(图2),碎屑成分中石英相对体积分数为3%~15%,平均为8%,以单晶石英为主;长石相对体积分数为3%~25%,平均为12%,以斜长石为主;岩屑相对体积分数为65%~91%,平均为80%,岩屑成分以火成岩为主,少见变质岩及沉积岩。填隙物以胶结物为主,常见浊沸石和伊蒙混层、绿蒙混层。砂岩成分成熟度较低。颗粒分选中等–好,磨圆次棱角–次圆,结构成熟度相对较好。

    图  2  研究区风城组岩石学特征图
    a. Sp3井,4718.29 m,灰褐色细砂岩;b. Sp3井,4718.27 m,中砂岩;c. 砂岩分类三角图;d. Cp24,4609.92 m,棕红色砂砾岩;e. Sp4井,4336.27 m,含砂砾岩; f. Sp5井,4781.41 m,含砂砾岩
    Figure  2.  Petrology characteristics of Fengcheng reservoirs in study area

    砾岩类岩石以红色砂砾岩为主(图2),石英相对体积分数为1%~9%,平均为4.8%,以多晶石英为主;长石相对体积分数为3%~9%,平均为5.2%,以斜长石为主;岩屑相对体积分数为85%~94%,平均为90%。砾石成分以凝灰岩为主,其次为安山岩,少见霏细岩和花岗岩。砾岩类岩石中杂基主要为细砂岩,局部为泥岩,体积分数平均为6%,砾石颗粒边缘常见红色浊沸石胶结物。砾石磨圆程度差异较大,棱角状–次圆状都有,分选较差,砾石颗粒最大可达10 cm,结构成熟度较低。

    通过50余张铸体薄片观察,发现风城组储层内储集空间类型多样,包括原生粒间孔、粒间和粒内溶孔以及微裂缝,以微裂缝为主(图3)。原生粒间孔主要存在于砂岩类储层中,虽然岩石颗粒分选及磨圆相对砾岩类较好,有利于原生孔隙的保存,由于岩石成分成熟度极低,在较大埋深条件下原生粒间孔所占储集空间的比例最低,占所有孔隙类型的3%。粒间溶孔和粒内溶孔在薄片中较为常见(图3),占所有孔隙类型的16%。粒间溶孔主要为长石、岩屑以及粒间胶结物(沸石类矿物以及方解石)的溶解,其形态差异较大,长石溶蚀表现为沿解理进行大面积溶蚀,溶蚀形态相对规则;岩屑溶蚀表现为沿着颗粒边缘进行溶蚀,呈现港湾状形态;胶结物的溶蚀形态往往呈条带状。粒内溶孔主要表现为长石和岩屑的溶蚀,占所有孔隙类型的11%。长石颗粒内溶蚀沿解理溶蚀,岩屑溶蚀表现为粒内易溶组分溶蚀。

    图  3  研究区风城组储集空间特征图
    a. 储层孔隙类型及占比;b. Cp24井,4604.87 m,粒间溶孔;c. Cp24井,4605.14 m,粒内溶孔; d. Sp5井,4659.98 m,微裂缝;e. Sp5井,4781.07 m,片状及弯片状喉道;f. 储层喉道类型及占比
    Figure  3.  Reserve space characters of Fengcheng Formation in study area

    风城组储层微裂缝最为发育,占所有孔隙类型的70%,储层主要为裂缝型储层。根据前人对于微裂缝类型的划分(闫伟鹏等,2002汪虎等,2019吕文雅等,2020),研究区风城组储层微裂缝包括构造缝、贴粒缝和溶蚀缝(图3),以构造缝和贴粒缝最为常见。研究区断裂构造普遍发育,构造应力释放会造成岩心上存在较多高角度裂缝,在镜下表现为颗粒的破碎或者颗粒被切穿,多数微裂缝未完全充填,少数裂缝间充填石英。该类型裂缝延伸较远,缝宽差异较大,最大可达1000 μm。研究区目的储层内贴粒缝常为沿砾石颗粒界面形成的裂缝,少见石英颗粒边界的裂缝。产生贴粒缝的砾石成分以凝灰岩为主,硬度较大,磨圆较好。贴粒缝的形成可能受到异常压力或者岩石颗粒脱水作用的影响,同构造–成岩缝相似(汪虎等,2019)。该类裂缝有较明显的弧度,缝宽最大约为80 μm,在贴粒缝边缘存在一定的溶蚀作用,会造成裂缝延伸至颗粒内部,但延伸距离较短。研究区成岩缝所占比例较低,主要存在于长石、岩屑以及易溶胶结物内部,该类裂缝无固定方向,可沿矿物解理或者易溶组分方向延伸,延伸距离最短,缝宽约为2~10 μm。

    在风城组储层中,不同孔隙类型常以组合形式出现,通过扫描电镜及铸体薄片的进一步观察,粒间溶孔+粒内溶孔+微裂缝组合最为常见。由于微裂缝能为岩石中流体交换提供通道,有利于颗粒间易溶物质的溶蚀,偶见原生粒间孔+粒内溶孔组合(图3)。

    喉道为连接孔隙之间的通道,对于储层渗透性起到重要的控制作用(张龙海等,2006刘文锋等,2021)。研究区风城组喉道类型包括点状喉道、片弯状喉道以及管束状喉道,以片弯状以及管束状喉道为主。微裂缝也可作为片弯状喉道连接孔隙(图3),对于增强岩石渗流性能较为有利。

    孔隙结构研究内容主要为孔喉的分布、连通以及配置情况,它控制孔隙的物性特征。前人对于孔隙结构的分析常见的是利用高压压汞资料,针对压汞曲线的形态以及压汞参数对孔隙结构进行定性–半定量研究(胡作维等,2014于景维等,2018刘文锋等,2021)。

    通过风城组储层压汞曲线形态观察(图4a),发现压汞曲线中进汞饱和度最高可达79%左右,平缓段较短,位置靠上,细歪度,孔喉分选较差,整体反映孔隙结构较为复杂。

    图  4  研究区风城组储层孔喉分形维数特征及其同物性参数的关系图
    a. 储层压汞曲线特征; b. Cp24井,4604.87 m,储层孔喉半径分布曲线; c. Cp24井,4604.87 m,储层孔喉分性特征曲线;d. 储层孔隙度和渗透率关系图; e. 分形维数同孔隙度的关系; f. 分形维数同渗透率的关系
    Figure  4.  Characteristics of fractal dimension and its relations with parameters of physical property in reservoirs

    对研究区5口井内样品进行压汞实验所获基础参数进行分析,发现风城组储层分选系数为1.38~3.09,平均为2.31;峰态为1.17~5.71,平均为2.65;变异系数为0.11~0.29,平均为0.20;中值压力为1.51~18.06 Mpa,平均为6.37 Mpa;最大孔喉半径为0.59~10.32 μm,平均为5.18 μm;排驱压力为0.07~1.24 Mpa,平均为0.37 Mpa;平均毛管半径为0.14~2.69 μm,平均为1.24 μm;孔喉比为0.75~5.28,平均为2.13。整体反映储层排驱压力不高,孔隙和喉道分布不集中,孔隙结构非均质性较强。

    选取部分参数以表征孔隙结构,虽然也是对孔隙结构进行定量化分析,但是参数较多,存在盲点,不易普遍应用(于景维等,2018刘文锋等,2021)。由于致密储层内孔隙结构存在分形特征,可用分形理论对于储层孔隙结构的非均质性进行更为精细表征(彭军等,2018),其过程主要利用压汞参数计算相应的分形维数,通过分形维数判断储层孔隙结构的非均质性。多孔岩石的分形维数多为2~3,分形维数越小,表明储层孔喉分布越均匀,均质性越强(胡作维等,2014彭军等,2018于景维等,2018刘文锋等,2021)。研究区风城组储层分形维数的计算基于Brook–Corey模型,通过16块样品分形曲线特征的绘制(图4b图4c),发现研究区储层孔隙结构分形系数范围为2.71~2.92,表明储层孔隙结构非均质性很强。由于分形维数接近3,表明储层孔隙结构整体较差。

    储层物性是储层储集性能的直接体现,通过6口取心井50块样品的常规物性测试分析,发现研究区风城组孔隙度分布为1.1%~16.2%,平均孔隙度为6.78%。通过进一步细分孔隙度区间,发现65%的样品孔隙度小于10%;储层渗透率为0.011×10−3~145×10−3 μm2,平均为4.17×10−3 μm2。通过进一步细分渗透率区间,发现75.7%的样品渗透率小于5×10−3 μm2,18.9%的样品渗透率为5×10−3~50×10−3 μm2,5.4%的样品渗透率为50×10−3 μm2以上。基于前述岩性分类,发现砂岩类储层孔隙度要好于砾岩类储层孔隙度。参照《油气储层评价方法》(Y/T 6285-2011)行业标准(国家能源局,2011),风城组储层主要属于特低孔特低渗储层。

    通过对研究区风城组孔隙度和渗透率进行交会分析,发现二者呈现一定的正相关,相关程度较好,结合上述储层孔隙类型的分析,发现裂缝对于储层物性具有重要的影响。为明确裂缝对于孔隙度和渗透率的影响,将裂缝发育程度不同样品的分形维数同储层物性进行交会(图4d),发现分形维数同储层孔隙度呈反比,反映随着样品内裂缝逐渐发育,孔隙结构越复杂,分形维数逐渐增大,储层孔隙度越差。分形同渗透率关系比较复杂,小于2.83的分形维同渗透率呈反比,反映随着样品内裂缝逐渐发育,孔隙结构越复杂,分形维数逐渐增大,储层渗透率越好;大于2.83的分形维同渗透率呈正比,反应孔隙结构越复杂,分形维数逐渐增大,储层渗透率越差。整体表现出裂缝对于储层渗透率的改善较为明显,对于孔隙度的增加影响相对较小(图4e图4f)。

    构造作用对于储层物性变化起到重要控制作用,主要表现在断裂发育、古地貌以及异常高压对于储层物性不同程度的影响。

    通过上述已知研究区风城组主要为裂缝型储层,微裂缝的发育对储层物性影响最为关键,而微裂缝的形成同构造断裂的发育演化十分密切。达尔布特洋在晚石炭世逐渐闭合,沙湾凹陷在该时期发育多个正断层,断距较大。受华力西运动以及印支运动影响,早期断裂逐渐被激活,研究区形成多个褶皱转折端以及断裂带(图5a)。尤其在南部凹陷带中,有较大规模断裂集中发育,导致风城组储层产生大量微裂缝。由于大部分断层断穿多套生烃层系,烃源岩生烃过程中会伴生酸性流体,会沿着微裂缝对长石、沸石以及方解石等易溶矿物进行溶蚀,极大改善储集层物性。同时由于构造抬升,风城组暴露地表遭受一定程度的风化剥蚀,大气水通过裂缝进入储层内进一步加剧溶蚀作用,有利储层物性的提高。

    图  5  研究区ST1~ST2构造剖面(a)及异常压力分布图(b)
    Figure  5.  (a) Structural profile between ST1~ST2 and (b) abnormal pressure in Fengcheng Formation

    在前人研究基础上(况军等,2006隋风贵,2015),利用残余厚度法对风城组古地貌进行恢复,发现受构造运动影响,风城组时期研究区主要发育南北两大凹槽(图1)。南部凹槽坡度较陡,而北部凹槽坡度较缓,导致南部凹槽内风城组以大套砂砾岩为主(图6),粒度曲线所反映的水动力条件倾向于重力流特征,砂质含量占比较低,GR值相对较高,DEN值相对较大,储层内泥质含量较大,原始物性相对较差;北部凹陷内风城组砂岩呈互层状发育(图6),砂质含量占比较高,粒度曲线所反映的水动力条件明显倾向于牵引流特征,GR值相对较低,DEN值相对较小,储层内泥质含量较小,原始物性相对较好。从现场岩心物性分析以及试油结果来看,北部凹槽内风城组储层物性较好,油气高产井多分布于该区。

    图  6  研究区Sp5~Cp5风城组连井剖面图
    Figure  6.  Profile between well Sp5~Cp5 of Fengcheng Formation in the study area

    通过DST实测资料,发现研究区风城组存在异常高压(图5b),实测压力系数为1.2~1.7。异常高压的形成主要受印支运动影响,研究区二叠系—三叠系处于强烈挤压的构造背景,导致区内所形成的褶皱以及断裂带周围流体压力分配不均匀。异常高压能在一定程度上增加储层的抗压实能力,阻碍流体的运移,减缓胶结物的胶结,对于储层孔隙有较好的保护作用(杜栩等,1995于景维等,2015)。前人将研究区压力系数同孔隙度增加量进行相交性分析,发现孔隙被保护较为明显时压力系数大于1.4(于景维等,2018),因此压力系数大于1.4的区域储层物性会较好。图5b显示,风城组压力系数高达1.6,为储层物性提供较好的保护。同时,在砂体冲刷界面以及断裂活动区域,流体流动性较好,较高压力易于释放,有利于微裂缝的发育。

    通过岩心及薄片观察,研究区风城组发育短水系扇三角洲沉积。由于距离物源较近,风城组储集岩成分成熟度较低,以凝灰岩为主的岩屑相对含量超过80%,虽然降低储集岩石的抗压实能力,但也为后期溶蚀作用的发育提供物质基础(于景维等,2014)。

    从水动力条件角度,发现研究区风城组主要发育扇三角洲平原沉积,分流河道沉积包括扇面内的河道以及靠近物源的辫状河流(图6),扇面内的河道以牵引流为主,储集砂体受河道迁移而复合叠置,单期次河道厚度约为5 m,分布面积广,填隙物含量较低,储层的储集性能较好,孔隙度平均为8.93%,渗透率平均为41.53×10−3 μm2;靠近物源的辫状河流受地貌影响,在局部也表现为重力流沉积,单期次河道厚度多超过10 m,填隙物的含量相对较高,储层的储集性能较差,孔隙度平均为5.36%,渗透率平均为2.998×10−3 μm2

    从岩石粒度来看,砂岩类储层岩屑含量相对砾岩类储层含量较低,分选较好,抗压实能力较强,原始孔隙度保存较好,后期微裂缝的发育和原本较好的渗流性能为溶蚀流体提供通道,造成储层物性得到明显的改善;砾岩类储层分选较差,原始孔隙度保存较差,由于微裂缝的发育导致储层受到溶蚀作用影响较大,孔隙度改善不明显,但渗透率明显增加。同时受南北凹槽不同坡度差异影响,南部凹槽内风城组岩石颗粒磨圆主要为棱角–次棱角状,北部凹槽内岩石颗粒磨圆为次棱角状–次圆状,通过岩石薄片观察,发现微裂缝往往发育在颗粒磨圆较好的边缘。由于岩石成分和结构成熟度较低,储层在深埋藏条件下受到压实作用较强,颗粒之间以线接触为主,磨圆较差的颗粒在该背景下咬合力要好于磨圆较好的颗粒(图7),在同等应力释放条件下,磨圆较好颗粒边缘容易松动(潘远阳,2020),形成微裂缝(图7)。

    图  7  研究区风城组岩石学特征图
    a. Sp4,4336.27 m,含砂砾岩,岩心中可观察到较好磨圆的砾石边缘易形成微裂缝; b. Sp4,4361.99 m,含砂砾岩,薄片中反映颗粒磨圆较差,微裂缝发育不明显; c. Cp24,4604.89 m,砂砾岩,薄片中反映磨圆较好的砾石边缘易形成微裂缝
    Figure  7.  Lithological characters in Fengcheng Formation of study area

    成岩作用决定深埋藏条件下储层孔隙结构的演化(罗静兰等,2006郑荣才等,2007丁晓琪等,2011于景维等,2021b),对储层最终的物性有着直接的控制作用。研究区对储层物性具有主要影响的成岩作用包括压实、胶结和溶蚀作用。

    目前研究区风城组普遍埋深在4 200 m以下,岩石中塑性颗粒占比较大,因此储层受到强烈的压实作用。通过大量岩石及铸体薄片的观察,发现颗粒之间接触关系普遍为线接触(图8a图8c),部分为凹凸接触,偶见缝合接触,面孔率几乎为0。岩屑颗粒常见被压变形(图8b),长石颗粒会沿着薄弱区域(解理、双晶面等)进行分裂,石英颗粒被压碎。将储层孔隙度和渗透率同深度进行相关性分析,发现随着随着埋深的增加,储层物性明显降低(图8d图8e)。利用Houseknecht(1987)针对压实过程和胶结过程中孔隙度减少所做图版(图8f),发现压实作用对于孔隙度的破坏程度基本大于40%,最高可达70%。

    图  8  研究区风城组成岩作用特征
    a. Sp3,4718.27 m,颗粒多为线接触; b. Sp4,4361.99 m,岩屑受压变形; c. Cp24,4604.89 m,砂砾岩,薄片中反映磨圆较好的砾石边缘易形成微裂缝; d. 孔隙度同深度关系; e. 渗透率同深度关系; f. 评估压实和胶结过程造成孔隙度降低程度
    Figure  8.  Diagenetic characters in Fengcheng Formation of the study area

    通过图版可发现研究区储层胶结作用对于孔隙度的破坏平均在20%以上,对储层物性影响较大。储集岩石颗粒间胶结物常见浊沸石(图9a),其在岩心中常常附在砾石边缘,在微裂缝间尤为发育。在单偏光镜下浊沸石具有2组完全解理和不平整断口,扫描电镜照片呈现短柱状,常见其与叶片状–绒球状绿泥石、片状绿–蒙混层矿物及石英共生(图9b),少见同伊-蒙混层矿物共生,一般通过探针更容易识别(图9c图9d)。浊沸石往往形成于中-碱性水化学环境中,同火山物质蚀变、黏土矿物转化以及钙长石的钠长石化有关形成(Hall,1998)。通过扫描电镜特征,认为沸石形成于弱碱性的还原环境,其形成同火山物质溶蚀后形成的蒙脱石,然后蒙脱石发生绿泥石化有关,反映浊沸石的形成与砂砾岩中富含火山碎屑(特别是凝灰岩)有关。在封闭成岩环境中,溶蚀矿物会局部重组形成等效体积的胶结物,溶蚀作用对于孔隙度增加并无实际意义,只有在开放成岩体系中,溶蚀组分能够通过一定规模的流体流动被搬运出该系统,溶蚀作用对于储层物性的改善才有意义(Hall,1998杨海军等,2012)。研究区风城组储层主要属于裂缝型储层,颗粒及胶结物的溶蚀程度受微裂缝发育而增强,相当于开放成岩体系,溶蚀作用对储层物性改善有实质性意义。由于储集岩石内火山岩岩屑发育,为溶蚀提供大量物质基础,常见岩屑颗粒局部溶解,偶见铸模孔,胶结物主要是浊沸石的溶蚀(图9b图9c)。前人将溶蚀流体的来源大致分为两类(杨海军等,2012李国蓉等,2014吴和源等,2017),一类是表生成岩作用阶段,大气淡水的回流对于长石和岩屑颗粒的溶蚀;另一类是中成岩阶段超压快速损失带或烃类形成有关的富CO2流体对于颗粒以及胶结物的溶蚀。根据储层内储集空间类型、颗粒溶蚀形态、胶结物溶蚀机理以及裂缝发育程度,认为研究区风城组储层最终物性改善受大气淡水回流影响较小,溶蚀流体主要为烃类形成有关的富CO2流体,该流体多期次通过微裂缝对储层颗粒以及胶结物进行溶蚀,结合压实和胶结作用对于储层孔隙度的定量影响,认为溶蚀作用使孔隙度平均增加10.6%,是储层物性改善的关键因素。

    图  9  研究区风城组沸石胶结物特征图
    a. Sp3,4693.3 m,砾石间充填浊沸石; b. Cp24,4605.14 m,见不规则片状绿泥石,粒间充填沸石类矿物,见溶蚀孔, 4608.02 m;c、d. Cp24,浊沸石能谱图
    Figure  9.  Zeolite characters in Fengcheng Formation of the study area

    整体来看,储层物性受控于构造、沉积和成岩的综合影响,北部凹槽内断裂带附近的风城组砂岩类储层为下一步勘探的重点目标,其次为砾岩类储层(图1)。

    (1)研究区风城组储层岩石以砂砾岩为主,成分成熟度和结构成熟度较低。储集空间以微裂缝为主,其次为粒间和粒内溶孔,储层为裂缝型储层,微裂缝类型主要为构造缝。喉道以片弯状以及管束状喉道为主。压汞资料和分形维数综合反映储层孔隙结构非均质性较强,整体较差;储层孔隙度平均为6.78%,渗透率平均为4.17×10−3 μm2,属于特低孔特低渗储层。微裂缝对于渗透率的正向影响最大,对于孔隙度的增加影响相对较小。

    (2)研究区风城组储层最终物性受控于构造、沉积和成岩的综合影响,构造和沉积作用的耦合效应控制储层的原始物性。古构造运动造成研究区大量断裂的发育以及异常高压的形成,为储层内微裂缝的形成奠定基础,扇面内的河道砂体储集物性要好于靠近物源的辫状河流砂体储集物性,岩石内可溶组分含量高也为后期溶蚀提供物质基础。区内形成南北2个凹槽,受凹槽内坡度影响,水动力条件、沉积物颗粒大小以及磨圆的差别导致南部凹槽内储层物性要差于北部凹槽。成岩作用为储层物性演化的直接因素,压实和胶结作用导致储层物性变差,受控于微裂缝发育程度的溶蚀作用对储层物性有明显的改善。北部凹槽内断裂带附近的风城组砂岩类储层为下一步勘探的重点目标。

    致谢:感谢审稿专家提出的宝贵意见,在此感谢!

  • 图  1   特提斯构造域主要缝合带分布及巴基斯坦所处位置示意图(据吴福元等,2020修)

    Figure  1.   Distribution of major suture zones in the Tethys belt, showing the location of Pakistan

    图  2   巴基斯坦大地构造简图(A)及典型矿床矿床分布图(B)(据Kazmi et al.,1982吕鹏瑞等,2016修)

    Figure  2.   (A) Tectonic units subdivision map and (B) distribution of typical mineral deposits in Pakistan.

    图  3   查盖地区主要斑岩型矿床(点)分布及年代学(据Perelló et al.,2008修)

    Figure  3.   Spatial distribution and ages of the main porphyry Cu deposits in Chagai belt.

    图  4   查盖火山岩浆岩带主要岩浆事件及成矿时代(据Perelló et al.,2008修)

    Figure  4.   Summary chart of the distribution of the major magmatic and uplift events, porphyry Cu mineralization along the Chagai belt, western Pakistan

    图  5   Reko Diq和Saindak矿床的成岩–成矿年代学

    Figure  5.   Formation ages of host rocks and mineralization of Reko Diq and Saindak porphyry Cu–(Au) deposits

    图  6   巴基斯坦地质简图及主要镁铁质–超镁铁质岩体分布

    MKT. 主喀喇昆仑断裂;MMT. 主地幔逆冲断裂;MBT. 主边界断裂;MFT. 主前缘断裂;CM. 杰曼断裂;1. 奇拉斯岩体;2. 吉佳尔岩体;3. 尚拉–明戈拉岩体;4. 德尔盖岩体;5. 瓦济里斯坦岩体;6. 穆斯林巴赫岩体;7. 贝拉岩体

    Figure  6.   Geological sketch map of Pakistan and the distribution of major mafic–ultramafic rocks

    图  7   穆斯林巴赫铬铁矿床和吉佳尔铬铁矿中铬尖晶石三价离子所占比率图(A)和Cr#–Mg#图解(B)(罗布莎铬铁矿床数据引自洪俊,2011

    Figure  7.   (A) Trivalent ions proportion and (B) Cr#–Mg# diagram in chrome spinels from the Muslim Bagh and Jijal chromite deposit

    图  8   巴基斯坦胡兹达尔–拉斯贝拉地质简图(据Song et al.,2019修)

    Figure  8.   Simplified geological map of Khuzdar–Lasbela, Pakistan

    图  9   胡兹达尔–拉斯贝拉地区铅锌硫化物矿床成矿构造示意图(据Large,1980; Ahsanet al.,1999张辉善,2021

    Figure  9.   Schematic diagram of mineralization structure of Pb–Zn deposits in Khuzdar–Lasbela area

    图  10   白沙瓦平原碱性火成岩省大地构造位置(A)和区域地质图(B)

    Figure  10.   (A) Tectonic map and (B) Geological map of the ccurrences of carbonatite complexes in Peshawar Plain alkaline igneous province (PPAIP)

    图  11   巴基斯坦西北部白沙瓦碱性火成岩省Sillai Patti碳酸岩代表性显微照片

    A. 粗粒碳酸岩中方解石和黑云母颗粒,方解石解理发育,黑云母在方解石粒间充填;B. 岩石发生蚀变,方解石局部出溶菱铁矿;C. 碳酸岩中半自形的霓辉石颗粒,与黑云母、方解石共生;D. 棕色的角闪石颗粒呈棱柱状,穿插早期的方解石颗粒;E. 碳酸岩中磷灰石含量较高,呈蓝色,与钠铁闪石共生;F. 方解石颗粒中呈自行晶的磷灰石;G.细粒钠长石颗粒与自形的细粒方解石;H.钠长石呈矿物包裹体形式出现,内部包含方解石,边部为细粒黑云母;I. 细粒钠长石组成矿物包裹体,与方解石界线截然;Ab.钠长石;Agt.霓辉石;Ap.磷灰石;Bt.黑云母;Cal.方解石;Sd.菱铁矿

    Figure  11.   Representative photomicrographs of rocks from the studied carbonatite complexes of the Sillai Patti area, NW Pakistan

    图  12   巴基斯坦西北部碳酸岩以及世界范围内碳酸岩的全岩Sr–Nd同位素图解

    Figure  12.   Whole–rock Sr–Nd isotopic compositions of carbonatite from NW Pakistan and carbonatites from around the world

    图  13   巴基斯坦主要构造事件与矿床时空结构分布示意图

    Figure  13.   Tectonic events and main mineral deposits spatiotemporal distribution of Pakistan

    图  14   巴基斯坦不同阶段构造–岩浆演化与成矿模式图

    A. 新特提斯洋消减阶段,俯冲板片脱水加速地幔部分熔融,产生的玻安质熔体与亏损的地幔橄榄岩相互反应形成铬铁矿;B. 55~50 Ma,印度–欧亚大陆发生碰撞,在后碰撞构造体制下,局部岩石圈拆沉作用触发岩石圈地幔部分熔融产生碳酸质岩浆和碱性岩浆;C. 巴基斯坦西南部的莫克兰–查盖地区,北印度洋洋壳持续向北俯冲,形成俯冲型斑岩铜矿床;D. 巴基斯坦构造位置和不同构造体制相对位置示意图

    Figure  14.   Tectono-magmatic evolution and mineralization model of Pakistan

  • 白文吉, 杨经绥, 方青松, 等. 西藏罗布莎蛇绿岩的Os-Ir-Ru合金及其中玻安岩质包体的研究[J]. 地质学报, 2005, 79(6): 814-822 doi: 10.3321/j.issn:0001-5717.2005.06.010

    BAI Wenji, YANG Jingsui, FANG Qingsong, et al. A Study on Os-Ir-Ru Alloy and Boninitic Inclusion in the Luobusa Ophiolite, Tibet[J]. Acta Geologica Sinica, 2005, 79(6): 814-822. doi: 10.3321/j.issn:0001-5717.2005.06.010

    鲍佩声. 再论蛇绿岩中豆荚状铬铁矿的成因-质疑岩石/熔体反应成矿说[J]. 地质通报, 2009, 28 (12): 1742-1761

    BAO Peisheng. Further discussion on the genesis of the podiform chromite deposits in the ophiolites: questioning about the rock/melt interaction metallogeny[J]. Geologcal Bulletin of China, 2009, 28 (12): 1742-1761.

    洪俊, 姚文光, 张晶, 等. 新特提斯缝合带中段豆荚状铬铁矿成矿规律对比研究[J]. 地质学报, 2015a, 89(9): 11618-1628.

    HONG Jun, YAO Wenguang, ZHANG Jing, et al. Comparative Study of Metallogenic Regularities of Chromite Deposits in the Middle of the Neotethys Suture Zone[J]. Acta Geologica Sinica, 2015a, 89(9): 1618-1628.

    洪俊, 姚文光, 计文化, 等. 巴基斯坦基性-超基性岩铬尖晶石矿物化学及铬铁矿找矿潜力分析[J]. 新疆地质, 2015b, 33(2): 251-257

    HONG Jun, YAO Wenguang, JI Wenhua, et al. Mineral Chemistry of picotites from mafic-ultramafic complexes of Pakistan and the prospecting potential[J]. Xinjiang Geology, 2015b, 33(2): 251-257.

    洪俊. 巴基斯坦构造-岩浆演化与金属成矿作用研究[D]. 北京. 中国地质科学院, 2021.

    HONG Jun. Study on the tectono-magmatic evolution and related mineralization of Pakistan [D]. Beijing: Chinese Academy of Geological Sciences, 2021.

    洪俊. 西藏罗布莎铬铁矿床铬尖晶石对比研究及成矿演化探讨[D]. 北京: 中国地质大学(北京), 2011.

    HONG Jun. Chromium spinel contrast research and metallogenic evolution of the Luobusha chromite depist, Tibet[D]. Beijing: China University of Geosciences (Beijing), 2011.

    吕鹏瑞, 姚文光, 张海迪, 等. 巴基斯坦贾盖火山岩浆岩带斑岩型铜-金矿床地质特征、成矿作用及找矿潜力[J]. 地质学报, 2015, 89(9): 1629-1642 doi: 10.3969/j.issn.0001-5717.2015.09.007

    LÜ Pengrui, YAO Wenguang, ZHANG Haidi, et al. Geological Features, Mineralization and Ore-Prospecting Potential of Porphyry Cu-Au Deposits in the Chagai Volcanoplutonic Belt, Pakistan[J]. Acta Geologica Sinica, 2015, 89(9): 1629-1642. doi: 10.3969/j.issn.0001-5717.2015.09.007

    吕鹏瑞, 姚文光, 张辉善, 等. 特提斯成矿域中新世斑岩铜矿岩石成因、源区、构造演化及其成矿作用过程[J]. 地质学报, 2020, 94(8): 2291-2310 doi: 10.19762/j.cnki.dizhixuebao.2020044

    LÜ Pengrui, YAO Wenguang, ZHANG Huishan, et al. Petrogenesis, source, tectonic evolution and mineralization process of the Miocene porphyry Cu deposits in the Tethyan metallogenic domain[J]. Acta Geologica Sinica, 2020, 94(8): 2291-2310. doi: 10.19762/j.cnki.dizhixuebao.2020044

    吕鹏瑞, 姚文光, 张海迪, 等. 巴基斯坦成矿地质背景、主要金属矿产类型及其特征[J]. 地质科技情报, 2016, 35(04): 150-157

    LÜ Pengrui, YAO Wenguang, ZHANG Haidi, et al. Metallogenic setting, genetic types and geological features of main metallic deposits in Pakistan[J]. Bulletin of Geological Science and Technology, 2016, 35(04): 150-157.

    吕鹏瑞, 姚文光, 张辉善, 等. 巴基斯坦及中国邻区构造单元划分及其演化[J]. 西北地质, 2017, 50(3): 126-139 doi: 10.3969/j.issn.1009-6248.2017.03.014

    LÜ Pengrui, YAO Wenguang, ZHANG Huishan, et al. Tectonic Unit Division and Geological Evolution of Pakistan and Its Adjacent Regions[J]. Northwestern Geology, 2017, 50(3): 126-139. doi: 10.3969/j.issn.1009-6248.2017.03.014

    王希斌, 周详, 郝梓国. 西藏罗布莎铬铁矿床的进一步找矿意见和建议[J]. 地质通报, 2010, 29(1): 105-114 doi: 10.3969/j.issn.1671-2552.2010.01.013

    WANG Xibin, ZHOU Xiang, HAO Ziguo. Some opinions on further exploration for chromite deposits in the Luobusha area, Tibet, China [J]. Geologcal Bulletin of China, 2010, 29(1): 105-114. doi: 10.3969/j.issn.1671-2552.2010.01.013

    王瑞, 朱弟成, 王青, 等. 特提斯造山带斑岩成矿作用[J]. 中国科学: 地球科学, 2020, 50(12): 1919-1946

    WANG Rui, ZHU Dicheng, WANG Qing, et al. Porphyry mineralization in the Tethyan orogen[J]. Science China Earth Sciences, 2020, 50(12): 1919-1946.

    吴福元, 万博, 赵亮, 等. 特提斯地球动力学[J]. 岩石学报, 2020, 36(6): 1627–1674.

    WU Fuyuan, WAN Bo, ZHAO Liang, et al. Tethyan geodynamics[J]. Acta Petrologica Sinica, 2020, 36(6): 1627– 1674.

    熊发挥, 杨经绥, 巴登珠, 等. 西藏罗布莎不同类型铬铁矿的特征及成因模式讨论[J]. 岩石学报, 2014, 30(8): 2137-2163

    XIONG Fahui, YANG Jingsui, BA Dengzhu, et al. Different type of chromitite and genetic model from Luobusa ophiolite, Tibet[J]. Acta Petrologica Sinica, 2014, 30(8): 2137-2163.

    熊发挥, 杨经绥, 刘钊. 豆荚状铬铁矿多阶段形成过程的讨论[J]. 中国地质, 2013, 40(3): 820-840.

    XIONG Fahui, YANG Jingsui, LIU Zhao. Multi-satge formation of the podiform chromitite[J]. Geology in China, 2013, 40(3): 820-839.

    杨经绥, 徐向珍, 李源, 等. 西藏雅鲁藏布江缝合带的普兰地幔橄榄岩中发现金刚石: 蛇绿岩型金刚石分类的提出[J]. 岩石学报, 2011, 27(11): 3171-3178

    YANG Jingsui, XU Xiangzhen, LI Yuan, et al. Diamonds recovered from peridotite of the Purang ophiolite in the Yarlung-Zangbo suture of Tibet: A proposal for a new type of diamond occurrence [J]. Acta Petrologica Sinica, 2011, 27(11): 3171-3178.

    张洪瑞, 侯增谦.大陆碰撞带成矿作用: 年轻碰撞造山带对比研究[J].中国科学: 地球科学, 2018, 48(12): 1629–1654.

    ZHANG Hongrui, HOU Zengqian. Metallogenesis within continental sollision zones: comparisons of modern collisional orogens[J]. Scientia Sinica (Terrae), 2018, 48(12): 1629–1654.

    张洪瑞, 侯增谦, 杨志明, 等. 特提斯成矿域主要金属矿床类型与成矿过程[J]. 矿床地质, 2010, 29: 113-133 doi: 10.3969/j.issn.0258-7106.2010.01.011

    ZHANG Hongrui, HOU Zengqian, YANG Zhiming, et al. Metallogenesis and geodynamics of Tethyan metallogenic domain: A review[J]. Mineral Deposits, 2010, 29(1): 113-133 doi: 10.3969/j.issn.0258-7106.2010.01.011

    张洪瑞, 侯增谦, 贾敬伍, 等. 巴基斯坦穆斯林巴赫铬铁矿矿床[J]. 矿床地质, 2013, 32 (5): 1072-1074 doi: 10.16111/j.0258-7106.2013.05.019

    ZHANG Hongrui, HOU Zengqian, JIA Jingwu, et al. Muslim Bagh Chromite Deposit in Pakistan [J]. Mineral Deposits, 2013, 32 (5): 1072-1074. doi: 10.16111/j.0258-7106.2013.05.019

    张辉善. 新特提斯构造域中东段沉积岩容矿铅锌成矿作用: 以青海多才玛和巴基斯坦杜达矿床为例[D]. 合肥. 中国科学技术大学, 2021.

    ZHANG Huishan. Mineralization of Sediment-hosted Lead-Zinc Deposits in the Middle-East Segment of the Neo-Tethys Tectonic Domain: Examples from the Duocaima Deposit in Qinghai, China and the Duddar Deposit in Pakistan [D].Hefei: University of Science and Technology of China, 2021.

    Agard P, Omrani J, Jolivet L. Zagros orogeny: a subduction-dominated process [J]. Geological Magazine, 2011, 148: 692-725.

    Aghazadeh M, Hou Z Q, Badrzadeh Z, et al. Temporal–spatial distribution and tectonic setting of porphyry copper deposits in Iran: constraints from zircon U–Pb and molybdenite Re–Os geochronology [J]. Ore Geology Reviews, 2015, 70: 385-406. doi: 10.1016/j.oregeorev.2015.03.003

    Ahmad I, Hamidullah S, Jehan N. Petrology of the Shewa–Shahbaz Garhi complex, Mardan North Pakistan [J]. Geological Bulletin University of Peshawar, 1990, 23: 135-159.

    Ahmad I, Khan S, Lapen T, et al. Isotopic ages for alkaline igneous rocks, including a 26 Ma ignimbrite, from the Peshawar plain of northern Pakistan and their tectonic implications[J]. Journal of Asian Earth Sciences, 2013, 62: 414-424. doi: 10.1016/j.jseaes.2012.10.025

    Ahsan S N, Mallick K A. Geology and genesis of barite Deposits of Lasbela and Khuzdar districts, Balochistan, Pakistan [J]. Resource Geology, 1999, 49(2): 105-111. doi: 10.1111/j.1751-3928.1999.tb00036.x

    Ahsan S, Qureshi I. Mineral/rock resources of Lasbela and Khuzdar Districts [J]. Geological Bulletin University of Peshawar, 1997, 30: 41-51.

    Arai S, Abe N. Podiform chromitite in the arc mantle: Chromitite xenoliths from the Takashima alkali basalt Southwest Japan arc [J]. Mineral Deposit, 1994, 29: 434-438. doi: 10.1007/BF01886963

    Arif M, Qasim J. Petrotectonic significance of the chemistry of chromite in the ultramafic-mafic complexes of Pakistan [J]. Journal of Asian Sciences, 2006, 27(5): 628-646.

    Bell K, Simonetti A. Source of parental melts to carbonatites–critical isotopic constraints [J]. Mineralogy & Petrology, 2010, 98(1): 77–89.

    Bortolotti V, Principi G. Tethyan ophiolites and Pangea break- up [J]. Island Arc, 2005, 14: 442–470. doi: 10.1111/j.1440-1738.2005.00478.x

    Burg J P. Geology of the onshore Makran accretionary wedge: Synthesis and tectonic interpretation [J]. Earth-Sciences Reviews, 2018, 22: 197–215.

    Butt K A, Arif A Z, Ahmed J, et al. Chemistry and petrography of the Sillai Patti carbonatite complex, North Pakistan [J]. Geological Bulletin University of Peshawar, 1989, 22: 197–215.

    Coward M P, Butler R W H, Khan M A, et al. The tectonic history and its implications for Himalayan structure [J]. Journal of the Geological Society, London, 1987, 144: 377–391. doi: 10.1144/gsjgs.144.3.0377

    Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere [J]. Nature, 1990, 347: 662–665. doi: 10.1038/347662a0

    Dick H J B, Bullen T. Chromain spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas [J]. Contributions to Mineralogy and Petrology, 1984, 86, 54-76. doi: 10.1007/BF00373711

    Ding N, Qasim M, Jadoon I A K, et al. The India–Asia collision in north Pakistan: Insight from the U–Pb detrital zircon provenance of Cenozoic foreland basin [J]. Earth and Planetary Science Letters, 2016, 455: 49–61. doi: 10.1016/j.jpgl.2016.09.003

    DiPietro J A, Pogue K R. Tectonostratigraphic subdivisions of the Himalaya: a view from the West [J]. Tectonics, 2004, 23, TC5001.

    Feng M, Song W L, Kynicky J, et al. Primary rare earth element enrichment in carbonatites: Evidence from melt inclusions in Ulgii Khiid carbonatite, Mongolia [J]. Ore Geology Reviews, 2020, 117, 103294. doi: 10.1016/j.oregeorev.2019.103294

    Fu F Q, McInnes B I A, Evans N J, et al. Thermal and exhumation history of the Parra Koh porphyry Cu-Au deposit, Pakistan: Thermochronology and inverse numerical modeling[C]. Geological Society of America-Society of Economic Geologists Joint Annual Meeting (Salt Lake City, 2005), 2006, CD-ROM:1

    Gweltaz M, Herve B, Stephane G. The south Ladakh ophiolites (NW Himalaya, India): an intra-oceanic tholeiitic arc origin with implication for the closure of the Neo-Tethys [J]. Chemical Geology, 2004, 203(3-4): 207-303.

    Hong J, Ji W H, Yang X Y, et al. Origin of a Miocene alkaline–carbonatite complex in the Dunkeldik area of Pamir, Tajikistan: Petrology, geochemistry, LA–ICP–MS zircon U–Pb dating, and Hf isotope analysis [J]. Ore Geology Reviews, 2019, 107: 820-837. doi: 10.1016/j.oregeorev.2019.03.009

    Hong J, Tahseenullah K, Li W Y, et al. SHRIMP U–Pb ages, mineralogy, and geochemistry of carbonatite–alkaline complexes of the Sillai Patti and Koga areas, NW Pakistan: Implications for petrogenesis and REE mineralization [J]. Ore Geology Reviews, 2021, S0169-1368(21)00573-4.

    Hoskin P, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis [J]. Reviews in Mineralogy and Geochemistry, 2003, 53: 27–62. doi: 10.2113/0530027

    Hou Z Q, Tian S H, Yuan Z X, et al. The Himalayan collision zone carbonatites in western Sichuan, SW China: petrogenesis, mantle source and tectonic implication [J]. Earth and Planetary Science Letters, 2006, 244: 234–250. doi: 10.1016/j.jpgl.2006.01.052

    Hou Z Q, Tian S H, Xie Y L, et al. The Himalayan Mianning–Dechang REE belt associated with carbonatite–alkaline complexes, eastern Indo-Asian collision zone, SW China [J]. Ore Geology Reviews, 2009, 36: 65–89. doi: 10.1016/j.oregeorev.2009.03.001

    Hou Z, Zhang H, Pan X, et al. Porphyry Cu (–Mo–Au) deposits related to melting of thickened mafic lower crust: examples from the eastern Tethyan metallogenic domain[J]. Ore Geology Reviews, 2011, 39 (1), 21–45.

    Hou Z Q, Yang Z M, Lu Y J, et al. A genetic linkage between subduction and collision-related porphyry Cu deposits in continental collision zones [J]. Geology, 2015, 43(3): 247–250

    Hou Z Q, Liu Y, Tian S H, et al. Formation of carbonatite related giant rare-earth-element deposits by the recycling of marine sediments [J]. Scientific Reports, 2015, 5: 10231. doi: 10.1038/srep10231

    Hou Z Q, Zhang H R. Geodynamics and metallogeny of the eastern Tethyan metallogenic domain [J]. Ore Geology Reviews, 2015, 70: 346-384. doi: 10.1016/j.oregeorev.2014.10.026

    Hussain A, Mughal M N, Haq I, et al. Geological Map of the Garhi Hibibullah Area, District Mansehra and Parts of Muzaffarabad District, AJK (sheet no. 43 F/7) [M]. Quetta: Geological Survey of Pakistan, 2004.

    Husain V, Khan H, Germann K. et al. Geochemical investigations of stratabound gunga barite deposits of khuzdar (balochistan), Pakistan [J]. Resource Geology, 2002, 52(1): 49-58. doi: 10.1111/j.1751-3928.2002.tb00116.x

    Hussain A, Zhao K D, Arif M, et al. Geochronology, mineral chemistry and genesis of REE mineralization in alkaline rocks from the Kohistan Island Arc, Pakistan [J]. Ore Geology Reviews, 2020, 126: 103749 doi: 10.1016/j.oregeorev.2020.103749

    Jia Y H, Liu Y. Factors controlling the generation and diversity of giant carbonatite-related rare earth element deposits: Insights from the Mianning–Dechang belt [J]. Ore Geology Reviews, 2020, 121: 103472. doi: 10.1016/j.oregeorev.2020.103472

    Kakar M I, Andrew C K, Khalid M, et al. Petrology of the mantle rocks from the Muslim Bagh Ophiolite, Balochistan, Pakistan [J]. Journal of Himalayan Earth Sciences, 2013, 46(2), 101-112.

    Kakar M I, Andrew C K, Khalid M, et al. Supra-subduction zone tectonic setting of the Muslim Bagh Ophiolite, northwestern Pakistan: Insights from geochemistry and petrology [J]. Lithos, 2014, 202-203: 190 -206. doi: 10.1016/j.lithos.2014.05.029

    Kanazawa Y, Kamitani M. Rear earth minerals and resources in the world [J]. Journal of Alloys and Compounds, 2006, 408-412: 1339-1343. doi: 10.1016/j.jallcom.2005.04.033

    Kazmi A H, Rana R A. Tectonic map of Pakistan[M]. Quetta: Geological Survey of Pakistan, 1982.

    Kempe D R C, Jan M Q. An alkaline igneous province in the North-West Frontier Province, West Pakistan[J]. Geological Magazine, 1970, 107: 395–398. doi: 10.1017/S0016756800056260

    Kempe D R C, Jan M Q. The Peshawar plain alkaline igneous province, NW Pakistan [J]. Geological Bulletin University of Peshawar, 1980, 13: 71–77.

    Khattak N U, Akram M, Ali N, et al. Recognition of the time and level of emplacement of the Sillai Patti carbonatite complex, Malakand Division, Northwest Pakistan: Constraints from fission-track dating[J]. Russian Geology and Geophysics, 2012, 53(8), 736–744.

    Large D E. Geological parameters associated with sediment-hosted submarine exhalative Pb-Zn deposits: an empirical model for mineral exploration [J]. Geologisches Jahrbueh, 1980, 40: 59-129.

    Lydon J W. Report on an examination of Zn-Pb-Ba deposits of the Lasbela-Khuzdar belt, Balochistan, Pakistan[R]. United Nations Development Programme, 1989.

    Le Bas M J, Mian I, Rex D C. Age and nature of carbonatites emplacement in North Pakistan [J]. Geologische Rundschau, 1987, 76 (2): 317–323. doi: 10.1007/BF01821077

    Ling M X, Liu Y L, Williams I S, et al. Formation of the world’s largest REE deposit through protracted fluxing of carbonatite by subduction-derived fluids [J]. Scientific Reports, 2013, 3: 1–8.

    Liu Y, Hou Z Q. A synthesis of mineralization styles with an integrated genetic model of carbonatite-syenite-hosted REE deposits in the Cenozoic Mianning-Dechang REE metallogenic belt, the eastern Tibetan Plateau, southwestern China [J]. Journal of Asian Earth Sciences, 2017, 137: 35–79. doi: 10.1016/j.jseaes.2017.01.010

    Mehrab K, Andrew C K, Khalid M. Formation and tectonic evolution of the Cretaceous-Jurassic Muslim Bagh ophiolitic tectonic setting of ophiolites [J]. Journal of Earth Sciences, 2007, 31: 112-127.

    Metcalfe I. Gondwanaland dispersion, Asian accretion and evolution of eastern Tethys [J]. Australian Journal of Earth Sciences, 1996, 43: 605–623. doi: 10.1080/08120099608728282

    Metcalfe I. Gondwana dispersion and Asian accretion: tectonic and palaeogeo-graphic evolution of eastern Tethys [J]. Journal of Asian Earth Sciences, 2013, 66: 1–33. doi: 10.1016/j.jseaes.2012.12.020

    Mian I, Le Bas M J. Feldspar solid solution series in fenites from Loe–Shilman carbonatite complex, NW Pakistan [J]. Geological Bulletin University of Peshawar, 1988, 21: 71–83.

    Mouthereau F, Lacombe O, Verges J. Building the Zagros collisional orogen: timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence [J]. Tectonophysics, 2012, 532: 27-60.

    Negredo A M, Replumaz A, Villaseñor A, et al. Modeling the evolution of continental subduction processes in the Pamir–Hindu Kush region [J]. Earth and Planetary Science Letters, 2007, 259(1–2): 212–225.

    Nelson D R, Chivas A R, Chappell B W. Geochemical and isotopic systematics in carbonatite and implications for the evolution of ocean-island sources [J]. Geochimica et Cosmochimica Acta, 1988, 52: 1–17. doi: 10.1016/0016-7037(88)90051-8

    Nicholson K N, Khan M, Mahmood K. Geochemistry of the Chagai–Raskoh arc, Pakistan: Complex arc dynamics spanning the Cretaceous to the Quaternary [J]. Lithos, 2010, 118 (3–4): 338-348.

    Palin R M, Treloar P J, Searle M P, et al. U-Pb monazite ages from the Pakistan Himalaya record pre-Himalayan Ordovician orogeny and Permian continental breakup [J]. GSA Bulletin, 2018, 130 (11-12): 2047–2061.

    Pearce J A, Lippard S J, Roberts S. Characteristics and tectonic significance of supra-subduction zone ophiolites[J]. Geological Society, London, Special Publications, 1984, 16: 77-94. doi: 10.1144/GSL.SP.1984.016.01.06

    Perelló J, Razique A, Schloderer J, et al. The Chagai porphyry copper belt, Baluchistan province, Pakistan [J]. Economic Geology, 2008, 103(8): 1583–1612. doi: 10.2113/gsecongeo.103.8.1583

    Powell C M A. Speculative tectonic history of Pakistan and surroundings[J]. In: Farah A, Dejong K A, eds. Geodynamics of Pakistan [M]. Quetta: Geological Survey of Pakistan, 1979, 5-24.

    Ravikant V, Tanpan P, Dipankar D. Chromites from the Nidar ophiolite and Karzok complex, Transhimalaya, eastern Ladakh: their magmatic evolution [J]. Journal of Asian Earth Sciences, 2004, 24: 177-184. doi: 10.1016/j.jseaes.2003.10.005

    Rehman H U, Seno T, Yamamoto H, et al. Timing of collision of the Kohistan-Ladakh Arc with India and Asia: Debate [J]. Island Arc, 2011, 20 (3): 308-328. doi: 10.1111/j.1440-1738.2011.00774.x

    Richards J P, Şengör A M C. Did Paleo-Tethyan anoxia kill arc magma fertility for porphyry copper formation?[J]. Geology, 2017, 45(7): 591–594.

    Richards J P, Spell T, Remeh E, et al. High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu-Mo-Au potential: an example from the Tethyan arcs of Central and Eastern Iran and Western Pakistan [J]. Economic Geology, 2012, 107: 295-332. doi: 10.2113/econgeo.107.2.295

    Richards J P. Tectonic, magmatic, and metallogenic evolution of the tethyan orogen: From subduction to collision [J]. Ore Geology Reviews, 2015, 70: 323–345. doi: 10.1016/j.oregeorev.2014.11.009

    Rollinson H, Adetunji J. The geochemistry and oxidation state of podiform chromitites from the mantle section of the Oman ophiolite: A review[J]. Gondwana Research. 2015, 27(2): 543–554.

    Sengör A.M.C., Natal’in B.A., Paleotectonics of Asia: Fragments of a synthesis, In: The Tectonic Evolution of Asia[M]. Cambridge: Cambridge University Press, 1996.

    Siddiqui R H, Khan M A, Jan M Q. Geochemistry and petrogenesis of the Miocene alkaline and sub-alkaline volcanic rocks from the Chagai arc, Baluchistan, Pakistan: implications for porphyry Cu-Mo-Au deposits [J]. Journal of Himalayan Earth Sciences, 2007, 40: 1-23.

    Sillitoe R H. Porphyry copper systems[J]. Economic Geology, 2010, 105(1): 3–41. doi: 10.2113/gsecongeo.105.1.3

    Simonetti A, Bell K, Viladkar S G. Isotopic data from the Amba Dongar carbonatite complex, west–central India: evidence for an enriched mantle source [J]. Chemical Geology, 1995, 122: 185-198. doi: 10.1016/0009-2541(95)00004-6

    Song Y C, Liu Y C, Hou Z Q, et al. Sediment-hosted Pb–Zn deposits in the Tethyan domain from China to Iran: Characteristics, tectonic setting, and ore controls [J]. Gondwana Research, 2019, 75: 249-281. doi: 10.1016/j.gr.2019.05.005

    Sorkhabi R, Heydari E. Asia out of Tethys: Foreword preface[J]. Tectonophysics, 2008, 451(1~ 4): 171-3178.

    Thayer T P. Chromite segregation as petrogenetic indicators[J]. Geological Society of South Africa Special Publication, 1970, 1: 380~390.

    Thorkelson D J, Breitsprecher K. Partial melting of slab window margins: Genesis of adakitic and non-adakitic magmas [J]. Lithos, 2005, 79: 25–41. doi: 10.1016/j.lithos.2004.04.049

    Wilke F D H, O’Brien P J, Gerdes A. The multistage exhumation history of the Kaghan Valley UHP series, NW Himalaya, Pakistan, from U-Pb and 40Ar/39Ar ages [J]. European Journal of Mineralogy, 2010, 22: 703–719 doi: 10.1127/0935-1221/2010/0022-2051

    Woolley A R, Kjarsgaard B A. Paragenetic types of carbonatite as indicated by the diversity and relative abundances of associated silicate rocks: evidence from a global database [J]. Canadian Mineralogist, 2008, 46: 741–752. doi: 10.3749/canmin.46.4.741

    Xiong Y Q. Emplacement of Bela and Musilm Bagh ophiolites and significance of India-Asia collision in western Pakistan [D]. Houston: University of Houston, 2011: 1-175.

    Xu C, Kynicky J, Chakhmouradian A R, et al. Trace-element modeling of the magmatic evolution of rare earth-rich carbonatite from the Miaoya deposit, central China [J]. Lithos, 2010, 118: 145–155. doi: 10.1016/j.lithos.2010.04.003

    Yang K F, Fan H R, Franco P, et al. The Bayan Obo (China) giant REE accumulation conundrum elucidated by intense magmatic differentiation of carbonatite [J]. Geology, 2019, 47(12): 1198-1202. doi: 10.1130/G46674.1

    Yang X Y, Lai X D, Pirajno F, et al. Genesis of the Bayan Obo Fe-REE-Nb formation in Inner Mongolia, north China craton: a perspective review [J]. Precambrian Research, 2016, 288: 39–71.

    Yang X Y, Sun W D, Zhang Y X, et al. Geochemical constraints on the genesis of the Bayan Obo Fe-Nb-REE deposit in Inner Mongolia, China [J]. Geochimica et Cosmochimica Acta, 2009, 73: 1417–1435. doi: 10.1016/j.gca.2008.12.003

    Yang Z M, Goldfarb R, Chang Z S. Generation of postcollisional porphyry copper deposits in southern Tibet triggered by subduction of the Indian continental plate [J]. Economic Geology, 2016, S19, 279–300.

    Zhou M F, Robinson P T, Malpas J, et al. Podiform chromitites in the Luobusa ophiolite (Southern Tibet): implications for mantle–melt interaction and chromite segregation [J]. Journal of Petrology, 1996, 37, 3-21. doi: 10.1093/petrology/37.1.3

    Zhou M F, Robinson P T. Origin and tectonic environment of podiform chromite deposits [J]. Economic Geology, 1997, 92: 259-262. doi: 10.2113/gsecongeo.92.2.259

    Zhou M F, Robinson P T, Malpas J, et al. REE and PGE geochemical constraints on the formation of dunites in the Luobusa ophiolite, southern Tibet [J]. Journal of Petrology, 2005, 46 (3) : 615-639.

  • 期刊类型引用(5)

    1. 张新远,李永军,刘凯,王锋,彭南赫,付浩. 克拉玛依油田K82井区上乌尔禾组油气成藏特征研究. 西北地质. 2024(02): 14-23 . 本站查看
    2. 熊婷,刘宇,陈文利,仲伟军,贾春明,姜涛,尚春. 准噶尔盆地沙湾凹陷西斜坡上乌尔禾组油藏成藏模式新认识. 新疆石油地质. 2024(02): 151-162 . 百度学术
    3. 赵春晨,刘护创,畅斌,王宁. 鄂尔多斯盆地陕北斜坡储层岩石学特征及油气勘探指示——以油房庄北部长6油层组为例. 地质与资源. 2024(03): 331-338+309 . 百度学术
    4. 赵飞,韩宝,钟磊,潘越扬,马尚伟,许海红,韩小锋,郭望,魏东涛. 准噶尔盆地中拐地区致密砂岩气成藏特征及富集规律. 西北地质. 2024(05): 142-155 . 本站查看
    5. 张小奇,赵小春,马涛,双立娜,齐博,冯全宏,张文奕,高胜利. 吴起油田楼坊坪油区储层特征研究及评价. 非常规油气. 2023(06): 53-60 . 百度学术

    其他类型引用(2)

图(14)
计量
  • 文章访问数:  206
  • HTML全文浏览量:  30
  • PDF下载量:  94
  • 被引次数: 7
出版历程
  • 收稿日期:  2023-04-08
  • 修回日期:  2023-08-12
  • 录用日期:  2023-08-12
  • 网络出版日期:  2023-06-27

目录

/

返回文章
返回