ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

坦桑尼亚乌本迪带内基性–酸性岩类的锆石U-Pb年龄、地球化学特征及地质意义

许康康, 谢薇, 刘晓阳, 赵晓博, 顾延景

许康康,谢薇,刘晓阳,等. 坦桑尼亚乌本迪带内基性–酸性岩类的锆石U-Pb年龄、地球化学特征及地质意义[J]. 西北地质,2024,57(3):209−222. doi: 10.12401/j.nwg.2023147
引用本文: 许康康,谢薇,刘晓阳,等. 坦桑尼亚乌本迪带内基性–酸性岩类的锆石U-Pb年龄、地球化学特征及地质意义[J]. 西北地质,2024,57(3):209−222. doi: 10.12401/j.nwg.2023147
XU Kangkang,XIE Wei,LIU Xiaoyang,et al. Zircon U-Pb Age, Geochemistry and Geological Significance of the Basic-Acidic Rocks in the Ubendian Belt, Tanzania[J]. Northwestern Geology,2024,57(3):209−222. doi: 10.12401/j.nwg.2023147
Citation: XU Kangkang,XIE Wei,LIU Xiaoyang,et al. Zircon U-Pb Age, Geochemistry and Geological Significance of the Basic-Acidic Rocks in the Ubendian Belt, Tanzania[J]. Northwestern Geology,2024,57(3):209−222. doi: 10.12401/j.nwg.2023147

坦桑尼亚乌本迪带内基性–酸性岩类的锆石U-Pb年龄、地球化学特征及地质意义

基金项目: 国家重点研发计划课题“辽东/胶东矿集区深部矿产勘查与增储示范”(2018YFC0603805)和中国地质调查局项目(DD20160108;DD20190439;DD20551801)联合资助。
详细信息
    作者简介:

    许康康(1986–),男,高级工程师,主要从事地质矿产勘查与研究工作。E–mail:xukang06@163.com

    通讯作者:

    谢薇(1987–),女,高级工程师,主要从事环境地球化学研究。E–mail:Chinav2012@163.com

  • 中图分类号: P584;P597

Zircon U-Pb Age, Geochemistry and Geological Significance of the Basic-Acidic Rocks in the Ubendian Belt, Tanzania

  • 摘要:

    乌本迪带位于坦桑尼亚西南缘,具有多阶段的构造演化历史。相比其他演化阶段,有关中元古代的岩浆作用研究相对较少,从而制约了乌本迪带中元古代构造演化历史的研究。基于此,笔者选择坦桑尼亚姆贝亚(Mbeya)地区发现的中元古代辉长岩和正长花岗岩进行岩石学、地质年代学和地球化学研究。结果表明,辉长岩和正长花岗岩的锆石结晶年龄分别为(1433±9)Ma和(1428±11)Ma,为中元古代岩浆活动的产物。辉长岩具有高的TiO2含量(最高可达2.6%)和Ti/Y值(最高可达601),轻稀土元素(LREE)富集,(La/Yb)N值为4.85;Eu具轻微正异常,δEu值为1.02;富集大离子亲石元素(LILEs,如Rb、Ba、Sr、K),亏损高场强元素(HFSEs,如Nb、Ta、Zr),其微量元素组成与大陆溢流玄武岩(CFB)类似,推测为富集大陆岩石圈地幔发生低程度部分熔融的产物。正长花岗岩具高的SiO2含量(71.59%~75.08%)和Ga/Al值(Ga/Al×104值为2.98~3.11),Zr+Nb+Ce+Y远大于350×10−6;LREE富集,(La/Yb)N值为22.86~28.51;Eu具明显负异常,δEu值为0.12~0.34,显示A型花岗岩特征,较低的Mg#值(6~10)和Sr/Y值(0.17~0.65),表明其可能为中–下地壳基性岩石部分熔融的产物。辉长岩和正长花岗岩的构造环境研究显示,两者均形成于板内拉张环境,与全球该时期构造演化体制相吻合,为Columbia超大陆裂解事件的岩浆产物。

    Abstract:

    The Ubendian Belt, which is situated on Tanzania’s southwest border, has undergone a multi-stage tectonic evolution history. Compared with other stages, there has been comparatively little research on the Mesoproterozoic Mag Matism, which restricts the study on the Mesoproterozoic tectonic evolution history of Ubendian Belt. Based on this, the Mesoproterozoic gabbro and syenite are selected for petrological, geochronology and geochemistry studies. The results show that the crystallization ages of the gabbro and syenogranite are (1433±9) Ma and (1428±11) Ma, respectively, indicating they are Mesoproterozoic. The gabbro is characterized by high content of TiO2(2.6%) and Ti/Y ratio (601), enriched in LREE with (La/Yb)N of 4.85, and slightly positive Eu ano Malies (δEu=1.02). The LILEs (Rb, Ba, Sr, K) are enriched and HFSEs (Nb, Ta, Zr) are depleted, the geochemical features of the gabbro are consistent with continental flood basalts (CFB), indicating that it May be the production of a low degree partial melting of the enriched continental lithospheric Mantle. The syenites have high contents of SiO2 (71.59%~75.08%), they are characterized by enrichment in LREE with (La/Yb)N of 22.86~28.51, significant negative Eu ano Malies (δEu=0.12~0.34). Their values of Ga/Al are high (Ga/Al×104=2.98~3.11) and the content of Zr+Nb+Ce+Y is much larger than 350×10−6, indicating that they are A-type granites. The lower Mg# values (6~10) and Sr/Y ratios (0.17~0.65), indicating that they are the production of partial melting of basaltic rocks in the middle-lower crust. Both of the gabbro and syenite originated within an intra-plate rifting enviroment, which is consistent with the global tectonic regime of the Columbia Supercontinent rifting event.

  • 天山–北山地区横跨新、甘、蒙三省,是中亚造山带南缘镁铁–超镁铁岩体的集中分布区,产出有多处岩浆型铜镍硫化物矿床,代表性矿床如菁布拉克、黄山、黄山南、图拉尔根、坡北、黑山等(王小红等,2023)。上述典型含矿岩体除西天山菁布拉克形成于早古生代,东天山和北山多数岩体均形成于晚古生代。天山–北山地区含矿岩体在各构造单元中的分布都大致平行于区域性大断裂或板块缝合线(Song et al.,20092011Qin et al.,2011)。众多学者对区域铜镍硫化物矿床成矿地质背景、矿床成因及成矿潜力开展了大量的研究工作(姜常义等,2006孙赫等,2007苏本勋等,20092010Ao et al.,2010凌锦兰等,2011Su et al.,2012秦克章等,2012夏昭德等,2012)。东天山地区镁铁–超镁铁岩体矿化类型多,组合复杂,形成时期主要集中在274~300 Ma,其产出构造环境主要有造山带伸展、地幔柱以及地幔柱对造山带的叠置等多种不同认识。新疆北山地区镁铁–超镁铁质岩体呈现多期侵入体复合与同期侵入体岩相分带相叠置的复杂结构,形成时期主要集中在260~289 Ma,岩体形成的构造背景及地幔动力学机制亦存在不同的认识,如岛弧环境(Ao et al.,2010颉炜等,2011)、碰撞造山后伸展环境(李华芹等,20062009)及地幔柱作用(Qin et al.,2011)。甘肃北山地区岩体形成时期主要集中在358~398 Ma(杨建国,2012a2016谢燮,2015),相对而言,岩体产出构造环境研究较为薄弱。长期以来,大多数研究者认为甘肃北山地区镁铁-超镁铁岩形成于一种伸展地球动力学背景(汤中立,1995李文渊,1996白云来等,2002杨合群等,2008)。也有学者认为甘肃北山地区镁铁–超镁铁岩带与新疆北山、东天山地区镁铁–超镁铁岩带是同期相同构造环境的产物(李华芹等,2009)。Xie等(2012)通过对黑山岩体的研究认为,该地区泥盆纪—石炭纪火山岩组合具有活动大陆边缘火山岩特征,其可能形成于与俯冲相关的构造背景机制中。甘肃北山地区与镁铁–超镁铁岩有关的铜镍矿成岩成矿地质背景、岩石成因、成矿机制等研究相对滞后,制约了区域铜镍找矿工作进展。

    铭杨岩体为甘肃北山地区新近发现的一处铜镍矿化镁铁-超镁铁岩体,位于甘肃北山南带古堡泉–红柳园断裂北侧,产出位置和形成时代明显不同于区域其他已发现含铜镍矿岩体。笔者通过开展铭杨岩体的岩石地球化学、锆石U–Pb年代学等方面的研究,与区内其他含矿岩体进行对比,为该地区镁铁–超镁铁岩体研究及进一步评价岩体含矿性提供基础资料和理论依据,其对甘肃北山地区的铜镍找矿工作具有重要意义。

    铭杨岩体地处柳园西约为20 km的骆驼山一带,大地构造位置位于古堡泉–红柳园断裂北侧(图1)。区内出露地层主要为晚太古代—古元古代敦煌岩群强变形中-深变质岩,岩石组合为大理岩、云母石英片岩、片麻岩、斜长角闪(片)岩、玄武岩等。中酸性及基性、超基性岩体发育,多呈小岩枝、岩株及岩脉产出。含铜镍镁铁-超镁铁岩体出露范围约为1 km2,侵位于斜长角闪片岩、黑云石英片岩之中,呈SW-NE向展布,岩体整体剥蚀较浅,有较多地层残留顶盖。岩性主要由辉长岩、橄榄辉长岩、二辉橄榄岩、辉橄岩、蛇纹岩等组成。岩体侵位至少可分为4期:早期为细粒辉长辉绿岩,分布最广,一般无金属硫化物;第二期为中细粒蚀变辉长岩,在岩体中西部见有钒钛磁铁矿化露头;第三期为球形风化中粗粒辉长岩、橄榄辉长岩,分布较广;晚期为超基性岩,仅见于岩体中部低洼处,岩性有辉橄岩、二辉橄榄岩、蛇纹岩等。铜镍矿化主要见于橄榄辉长岩相、辉橄岩相中。

    图  1  铭杨镁铁-超镁铁岩体地质简图
    1.第四系; 2.绿泥石英片岩; 3.斜长角闪岩; 4.云母石英片岩; 5.变粒岩; 6.花岗片麻岩; 7.花岗闪长岩; 8.辉长岩; 9.橄榄辉长岩; 10.超基性岩; 11.黑云长英质角岩; 12.花岗岩脉; 13.英安斑岩脉; 14.闪长岩脉; 15.辉绿岩脉; 16.石英脉; 17.实测断层; 18.推测断层; 19.研究区位置; 20.同位素测年采样位置及编号
    Figure  1.  Geological sketch of the Mingyang intrusion

    岩石中主要造岩矿物有橄榄石、单斜辉石、斜方辉石、斜长石、角闪石、金云母等。多呈块状构造,常见包橄结构、含长结构、交代残留结构等特征。各类岩石均发生了不同程度的蚀变作用,主要有辉石闪石化、绿泥石化、滑石化,斜长石钠黝帘石化、绢云母化,橄榄石蛇纹石化、伊丁石化等。金属硫化物以磁黄铁矿、黄铜矿、镍黄铁矿、黄铁矿等为主,多呈星点状、细脉状、斑块状及浸染状产出(图2)。岩体中各类岩石岩相特征如下:

    图  2  铭杨镁铁-超镁铁岩体矿物特征图
    a.橄榄辉长岩岩心中金属硫化物;b.辉橄岩中金属硫化物;c.橄榄辉长岩(包橄结构、含长结构);d.辉橄岩(橄榄石蛇纹石化);e.橄榄辉长岩(包橄结构);f.辉长岩(辉石纤闪石化);g.橄榄辉长岩(含长结构);h.橄榄辉长岩(橄榄石辉石反应边);Po.磁黄铁矿;Cp.黄铜矿;Pn.镍黄铁矿;Ol.橄榄石;Px.辉石;Pl.斜长石;Srp.蛇纹石;Url.纤闪石
    Figure  2.  Mineral characteristics of Mingyang intrusion

    辉长岩:块状构造,中-粗粒,矿物成分主要由斜长石、辉石组成,岩石次生蚀变较为强烈,斜长石矿物晶体呈粒状,大部分晶体发生钠黝帘石化、绢云母化,有少量斜长石残留;辉石晶体被纤闪石、褐色角闪石、绿泥石、金云母等矿物交代。

    橄榄辉长岩:块状构造,粒状结构,矿物成分主要由斜长石、辉石、橄榄石、尖晶石等组成;斜长石含量约为45%,矿物晶体呈粒状,粒径大小一般为0.5~4 mm;辉石含量约为35%,以斜方系列紫苏辉石为主,少量单斜辉石,矿物晶体呈不规则粒状,粒径大小为0.3~5.5 mm,晶体中常包裹橄榄石小晶体,形成包橄结构,有时也包裹斜长石小晶体,形成含长结构,辉石晶体常被褐色角闪石交代,有时也沿解理被滑石、闪石交代;橄榄石含量约为15%,矿物晶体呈粒状,粒径大小为0.3~1.6 mm。

    辉橄岩:块状构造,矿物成分主要由橄榄石、辉石等组成;橄榄石含量约为45%,矿物晶体呈粒状,多数晶体被纤维蛇纹石交代,呈变余网环状结构,部分晶体残留,呈交代残留结构,少数橄榄石被伊丁石交代;辉石晶体多被纤维闪石交代,呈交代假象结构,晶体中常见橄榄石包裹体,呈变余包橄结构;岩石中次生矿物还见有金云母,矿物晶体呈片状,粒径较粗,达1.2~2.5 mm。

    二辉橄榄岩:块状构造,矿物成分主要由橄榄石和辉石组成;橄榄石含量约为65%,矿物晶体呈粒状,多被纤维蛇纹石交代,少量被胶蛇纹石交代,呈变余网环状结构;辉石种属为斜方系列顽火辉石与单斜系列普通辉石两类,晶体多被角闪石交代,见少量残留,呈交代残留结构,此外辉石晶体中常见橄榄石包裹体,呈包橄结构或变余包橄结构,少量辉石晶体被金云母交代。

    蛇纹岩:块状构造,矿物成分主要由蛇纹石组成,含量达90%,其次为绿泥石,少量滑石。蛇纹石种属以胶蛇纹石为主,呈胶状变晶结构,其次为纤维蛇纹石,呈纤状变晶结构,岩石在蛇纹石化过程中析出较多铁质,说明橄榄石种属含铁量较高,可能为贵橄榄石;绿泥石集合体呈辉石假象或零星分布;滑石呈细小鳞片状、或不规则状集合体局部出现,蚀变矿物种类含量、结构表明原岩为纯橄岩类。

    主量元素和微量元素分析测试工作在中国地质科学院国家地质实验测试中心完成。全岩主元素分析方法为X荧光光谱分析(XRF),精度优于5%;稀土、微量元素分析采用电感耦合等离子质谱仪(ICP–MS)测定,相对标准偏差优于5%。

    锆石的分选在河北省区域地质矿产调查研究所实验室完成。对样品进行清洗后,粉碎至80~100目,采用重液法和电磁法进行分选,在双目镜下精选、剔除杂质,尽量挑选无包裹体、无裂纹和透明度高、晶形完好的锆石颗粒作为测定对象,然后将其与标准锆石一起制成环氧树脂样品靶,打磨抛光并使其露出中心部位,通过扫描电镜进行阴极荧光(CL)成像观察和照相,以确定单颗粒锆石晶体的形态、结构特征以及标定测年点。锆石CL图像在西北大学大陆动力学国家重点实验室电子探针仪加载的阴极发光仪上完成。

    锆石U–Pb定年测试在自然资源部岩浆作用成矿与找矿重点实验室完成,所用仪器为德国Coherent公司生产的GeoLas Pro型ARF2准分子激光剥蚀系统及与之配套的美国Agilent公司生产的Agilent 7700x四极杆等离子质谱仪。锆石定年激光剥蚀所用斑束直径为25 μm,频率为10Hz,能量密度约为2.5 J/cm2,以He为载气。激光剥蚀采用单点方式,每个测点总分析时间为60 s,其中背景信号10 s,样品信号40 s,吹扫信号10 s。锆石U–Pb定年以锆石GJ-1为外标,U、Th含量以锆石M127(U=923×10−6;Th=439×10−6;Th/U=0.475)(Nasdala et al.,2008)为外标进行校正,测试过程中在每测定5个样品前后重复测定两个锆石GJ1对样品进行校正(李艳广等,2023),并测量一个锆石Plesovice,观察仪器的状态和测试的重现性,锆石标准的重现性在1%(2σ)左右,数据处理采用ICPMSDataCal程序(Liu et al.,2008),锆石年龄谐和图用Isoplot3.0程序获得,表达式中所列单个数据点的误差均为1σ,加权平均年龄具95%的置信度。

    本次共采集岩石样品9件。样品中SiO2含量为42.95%~45.06%,整体具有高镁(MgO含量为13.51%~29.57%)、低碱(Na2O+K2O含量为0.5%~2.24%)、低钛(TiO2含量为0.15%~0.44%)的特征(表1),与东天山岩体相似。氧化物质量分数有较大的变化范围,与岩相学特征相对应;辉长岩类MgO(13.51%~17.31%)含量较低,Al2O3(14.66%~19.55%)、CaO(8.68%~11.87%)、Na2O(0.71%~1.32%)含量较高;辉橄岩具有较高的MgO(29.57%)含量,较低的Al2O3(2.32%)、CaO(2.88%)、Na2O(0.19%)含量。岩体m/f 值介于3.28~4.29,属于铁质超基性岩,各类岩石均具有较高的Mg#值(0.77~0.81),这可能与早期橄榄石堆晶作用有关。

    表  1  铭杨岩体主量元素分析结果表(%)
    Table  1.  Major element content of Mingyang intrusion (%)
    样品号岩石类型SiO2Al2O3Fe2O3FeOCaOMgOK2ONa2OTiO2P2O5MnONiOCr2O3LOITotalm/fMg#
    MZK001-Q2角闪辉长岩45.0619.551.046.2611.3413.510.211.070.370.050.120.030.041.41100.063.290.77
    MZK001-Q3橄榄辉长岩43.4118.090.877.169.7315.010.251.050.170.010.140.030.033.799.653.310.77
    MZK001-Q4橄榄辉长岩44.1218.341.346.5610.4614.520.2110.320.040.130.040.032.6299.733.280.77
    MZK001-Q5辉长岩42.9517.030.877.319.8215.530.320.710.40.020.120.040.044.1499.33.370.77
    MZK001-Q6橄榄辉长岩44.3716.570.757.5210.0915.870.260.890.440.040.130.030.052.1299.133.400.78
    17MYQ1橄榄辉长岩43.2114.661.677.338.6817.310.340.870.430.040.140.050.074.2599.053.440.78
    17MYQ2辉长岩44.217.061.36.548.7214.820.921.320.280.070.130.040.063.8799.333.370.77
    4402-Q2辉橄岩44.572.322.639.762.8829.570.310.190.150.020.160.050.55.4698.574.290.81
    LT-Q1橄榄辉长岩44.1617.360.756.7911.8714.80.130.830.240.020.120.040.051.84993.480.78
    下载: 导出CSV 
    | 显示表格

    各类岩石稀土总量较低,ΣREE为16.17×10−6~29.17×10−6,轻稀土富集,LREE为13.00×10−6~23.63×10−6,HREE为2.46×10−6~5.54×10−6,稀土元素分馏程度较弱,LREE/HREE为4.01~7.42,LaN/YbN为3.48~7.77,δEu为0.6~1.45,δCe为0.91~1.01(表2)。球粒陨石标准化REE分布曲线较为一致,轻重稀土分异明显,轻稀土分布曲线右倾,重稀土分布曲线相对平坦,大部分样品具有明显正铕异常,δ(Eu)正异常可能由斜长石堆晶引起。与东天山岩体相比稀土元素总和配分形式基本一致,但明显不同于新疆北山岩体的LREE亏损–平坦型球粒陨石标准化配分曲线(图3a)。

    表  2  铭杨岩体稀土元素分析结果表(10−6
    Table  2.  REE element content of Mingyang intrusion (10−6)
    样品号MZK001-Q2MZK001-Q3MZK001-Q4MZK001-Q5MZK001-Q617MYQ117MYQ24402-Q2LT-Q1
    样品名角闪辉长岩橄榄辉长岩橄榄辉长岩辉长岩橄榄辉长岩橄榄辉长岩辉长岩辉橄岩橄榄辉长岩
    La4.074.153.713.694.054.255.153.92.28
    Ce8.877.888.168.39.388.89.657.955.21
    Pr1.170.921.081.111.261.271.231.090.68
    Nd5.84.235.455.66.965.334.63.65
    Sm1.250.731.091.181.521.41.1610.83
    Eu0.450.340.410.440.520.520.50.190.35
    Gd1.250.681.11.151.581.581.190.90.86
    Tb0.20.110.180.190.260.260.180.120.14
    Dy1.250.671.081.141.581.551.120.720.89
    Ho0.220.120.20.210.290.310.220.120.17
    Er0.660.370.60.610.820.820.630.350.5
    Tm0.10.060.090.090.120.120.090.060.07
    Yb0.620.390.570.580.780.780.610.360.47
    Lu0.090.060.090.090.110.120.10.060.07
    Y7.624.156.716.638.818.356.393.334.61
    ΣREE26.0020.7123.8124.3829.1727.7827.1621.4216.17
    LREE21.6118.2519.9020.3223.6322.2423.0218.7313.00
    HREE4.392.463.914.065.545.544.142.693.17
    LREE/HREE4.927.425.095.004.274.015.566.964.10
    LaN/YbN4.717.634.674.563.723.916.067.773.48
    δEu1.091.451.131.141.021.061.290.601.26
    δCe0.980.950.991.001.010.920.910.931.01
    下载: 导出CSV 
    | 显示表格
    图  3  铭扬岩体稀土元素球粒陨石标准化配分曲线图(a)和微量元素原始地幔标准化蛛网图(b)
    球粒陨石和原始地幔标准化数据据Sun等(1989);东天山岩体数据据孙赫(2006)夏明哲(2009);新疆北山岩体数据据凌锦兰(2011)夏昭德(2012
    Figure  3.  (a) Chondrite-normalized REE patterns and primitive mantle normalized spider diagram of trace elements in Mingyang intrusion

    各类岩石微量元素原始地幔配分曲线较为一致,配分曲线右倾,强不相容元素分布曲线整体呈不规则波动。大离子亲石元素Rb、Ba、Sr、K相对富集,但富集程度明显不同,高场强元素Th、U、Nb、Ta、Zr、Hf相对亏损(表3),并显示出P、Ti的负异常特征。辉长岩、橄榄辉长岩样品具有明显的Sr正异常,表明岩浆演化过程中有斜长石的堆晶作用发生。与东天山和新疆北山地区岩体对比,相对富集大离子亲石元素,亏损高场强元素,具有相似明显的Nb、Ta负异常的特征(图3b)。

    表  3  铭杨岩体微量元素分析结果表(10−6
    Table  3.  Trace elements content of Mingyang intrusion (10−6)
    样品号MZK001-Q2MZK001-Q3MZK001-Q4MZK001-Q5MZK001-Q617MYQ117MYQ24402-Q2LT-Q1
    岩石类型角闪辉长岩橄榄辉长岩橄榄辉长岩辉长岩橄榄辉长岩橄榄辉长岩辉长岩辉橄岩橄榄辉长岩
    Cu27.818.317.486.132.262.724.315735.5
    Ni235.74235.74314.32314.32235.74392.9314.32392.9314.32
    Pb2.473.6812.73.632.724.614.971.862.15
    Zn49.163.861.954.355.468.671.475.446
    Co52.363.158.765.164.677.465.514057.1
    Li4.4812.33.163.996.834.425.33.974.08
    Rb4.967.564.829.16.379.8232.813.42.82
    Cs0.461.080.891.111.442.671.932.290.44
    Sr40241640339135123127214.5332
    Ba81.364.675.569.871.759.122869.646.6
    V80.638.66471.499.690.86416871.3
    Sc14.59.7213.414.218.916.414.820.420.5
    Nb1.921.51.991.871.941.942.010.770.81
    Ta0.140.120.130.130.140.170.160.090.08
    Zr21.817.627.317.919.530.641.41311.8
    Hf0.70.570.750.640.750.991.160.490.45
    Be0.260.270.230.250.260.350.380.250.14
    Ga16.113.214.212.713.212.313.63.3812.1
    U0.140.170.140.10.120.170.30.220.07
    Th0.50.640.470.390.450.881.11.311.08
    下载: 导出CSV 
    | 显示表格

    锆石同位素测年样品采自地表探槽揭露的橄榄辉长岩(17MY-TW1)和辉长岩(17MY-TW2)。橄榄辉长岩呈深灰绿色,块状构造,中细粒状结构;辉长岩呈浅灰绿色,块状构造,变余粒状结构,次生蚀变较强,其中斜长石晶体普遍发生钠黝帘石化、绢云母化,辉石被纤闪石、角闪石、绿泥石、金云母等矿物交代。两个样品相对新鲜干净,分别重约为30 kg。

    橄榄辉长岩锆石颗粒粒径为50~200 μm,多呈自形-半自形粒状或短柱状,各锆石的内部结构相似,大多数锆石内部发育岩浆韵律环带。根据阴极发光图像(图4)和锆石镜下特征,选取晶形完整,自形程度较好,颗粒较大的30颗锆石进行测试,Th/U值为0.23~4.58,除一个样品外,均大于0.4,具有典型的基性岩浆成因锆石的特征。个别分析点由于U含量或普通Pb含量较高,和谐度较低,其余16个测点较为集中的分布在谐和线上,显示出良好的谐和性(图5),表明锆石在形成其U–Pb 体系一直保持在封闭状态,基本没有Pb 的丢失,数据给出的锆石206Pb/238U 年龄为(448.3±10.71)~(460.3±6.59)Ma(表4),加权平均值为(452.9±2.4)Ma,代表了橄榄辉长岩的岩浆结晶年龄。

    图  4  铭扬岩体橄榄辉长岩锆石阴极发光(CL)图像
    Figure  4.  CL images of zircon form olivine-gabbro of Mingyang intrusion
    图  5  铭杨岩体橄榄辉长岩锆石U–Pb 谐和图(a)和206Pb/238U年龄加权图(b)
    Figure  5.  (a) U-Pb concordia diagram and (b) Weighted average 206Pb/238U age of zircon form olivine-gabbro of Mingyang intrusion
    表  4  铭扬岩体橄榄辉长岩LA–ICP–MS U–Pb锆石年龄分析结果表
    Table  4.  LA–ICP–MS zircon U–Pb isotopic data of olivine-gabbro form Mingyang intrusion
    测点号含量(10−6Th/U比值年龄(Ma)
    PbThU207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb207Pb/235U206Pb/238U
    1670.8773.6328.72.350.0540.0010.5520.1210.0730.001383.451.8446.679.0453.24.2
    2399.0435.7301.01.450.0540.0020.5370.0670.0720.001353.850.9436.544.3449.44.4
    3411.6433.9346.81.250.0540.0030.5490.0610.0740.001368.6111.1444.540.1457.34.3
    4507.4593.0472.51.260.0590.0030.5880.0450.0720.001572.392.6469.528.9450.96.0
    4451.0517.0371.61.390.0560.0020.5650.0240.0730.001472.382.4455.115.7451.86.0
    6386.9387.2262.01.480.0690.0030.6870.0300.0730.001901.9100.0531.018.3451.74.9
    7834.7945.0463.52.040.0560.0010.5660.0140.0720.001477.838.0455.38.8450.34.6
    8421.9470.5368.01.280.0540.0020.5520.0200.0740.001388.981.5446.313.1458.64.2
    9162.7156.6661.80.240.0570.0020.5820.0300.0720.001505.685.2465.819.1449.75.1
    10631.7757.4543.91.390.0570.0020.5690.0310.0720.002479.790.7457.420.1448.310.7
    11184.5188.2153.91.220.0610.0050.6250.0510.0740.001642.6160.2493.331.8460.36.6
    12504.2596.1355.11.680.0560.0030.5630.0360.0730.001455.6124.1453.423.1454.06.0
    13956.01270.0444.82.860.0590.0030.6020.0310.0730.001588.998.1478.319.7456.86.1
    14549.9664.6308.92.150.0590.0020.6000.0280.0720.001588.975.9477.418.0451.14.1
    15692.9930.8497.01.870.0570.0020.5720.0280.0720.001476.086.1459.518.1450.54.6
    161509.62332.8509.74.580.0610.0020.6150.0260.0730.001627.853.7486.616.5452.04.6
    下载: 导出CSV 
    | 显示表格

    辉长岩中锆石颗粒粒径为40~100 μm,多呈自形–半自形粒状或短柱状,各锆石的内部结构相似,具有岩浆韵律环带特征。根据阴极发光图像(图6)和锆石镜下特征,选取晶形完整,自形程度较好,颗粒较大的36颗锆石进行测试,Th/U值为0.35~1.80,除一个样品外,均大于0.4,具有典型的基性岩浆成因锆石的特征(王梓桐等,2022熊万宇康等,2023)。个别分析点由于U含量或普通Pb含量较高,和谐度较低,其余28个测点较为集中的分布在谐和线上,显示出良好的谐和性(图7),表明锆石在形成其U–Pb体系一直保持在封闭状态,基本没有Pb 的丢失,数据给出的锆石206Pb/238U年龄介于(448.4±6.96)~(461.9±5.98) Ma(表5),加权平均值为(457.7±2.1) Ma,代表了辉长岩的岩浆结晶年龄。

    图  6  铭扬岩体辉长岩锆石阴极发光(CL)图像
    Figure  6.  CL images of zircon form gabbro of Mingyang intrusion
    图  7  铭杨岩体辉长岩锆石U-Pb 谐和图(a)和206Pb/238U年龄加权图(b)
    Figure  7.  (a) U-Pb concordia diagram and (b) Weighted average 206Pb/238U age of zircon form gabbro of Mingyang intrusion
    表  5  铭扬岩体辉长岩LA–ICP–MS U–Pb锆石年龄分析结果表
    Table  5.  LA-ICP-MS zircon U-Pb isotopic data of gabbro form Mingyang intrusion
    测点号含量(10−6Th/U比值年龄(Ma)
    PbThU207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb207Pb/235U206Pb/238U
    140.0214.4186.61.150.0620.0150.6110.1440.0740.001661.1558.1483.991.1459.26.6
    289.9428.6374.01.150.0530.0010.5350.0160.0740.001309.355.6435.210.4459.05.4
    3132.1771.2564.91.370.0530.0010.5390.0170.0740.001316.755.6438.011.2460.65.8
    4123.3678.6672.41.010.0540.0010.5530.0150.0740.001364.971.3446.79.5461.24.6
    566.2315.0246.61.280.0520.0020.5310.0230.0740.001279.788.9432.615.2461.96.0
    637.8224.1226.30.990.0570.0020.5850.0310.0740.001483.4100.9467.920.1461.56.9
    772.4400.2371.01.080.0550.0010.5680.0230.0740.001427.859.3456.814.7459.55.2
    8212.11585.6911.51.740.0500.0010.5090.0190.0740.002198.236.1417.612.7458.09.2
    940.0168.8340.10.500.0590.0040.6010.0440.0740.001550.0140.7477.627.7460.95.7
    1090.0503.3407.21.240.0560.0020.5700.0260.0740.001453.881.5457.817.1458.54.1
    1176.8462.2372.41.240.0550.0020.5610.0260.0740.001409.367.6452.217.0460.45.0
    12190.41116.2618.71.800.0500.0010.5130.0200.0740.001209.325.0420.713.6459.05.2
    1353.0322.6251.01.290.0570.0040.5910.0470.0740.001509.3137.9471.230.3457.58.0
    1490.7454.6353.71.290.0550.0020.5620.0240.0740.001433.460.2452.915.8459.15.4
    1530.0159.0240.40.660.0540.0020.5410.0290.0720.001368.6106.5439.219.1451.05.6
    16109.1591.5438.71.350.0590.0050.6010.0540.0740.001561.1187.9478.134.1458.64.4
    1755.4295.4311.00.950.0580.0030.6050.0360.0740.001542.6108.2480.422.8460.45.5
    1898.5517.6370.11.400.0600.0020.6150.0250.0740.001611.177.8486.915.6460.85.9
    1944.4363.1302.51.200.0620.0030.6470.0410.0740.001664.8100.9506.325.2460.67.2
    20143.5518.61470.30.350.0600.0010.6120.0200.0740.002594.535.2484.612.7458.310.3
    2162.3296.2271.41.090.0570.0030.5820.0320.0740.001509.3119.4465.920.7458.05.6
    2292.0464.2383.31.210.0530.0110.5460.1200.0740.001331.5407.4442.279.0458.26.1
    2387.6364.5674.90.540.0600.0010.6110.0180.0740.001587.146.3483.911.1459.04.6
    24186.3994.0753.61.320.0580.0030.6030.0540.0730.001516.7124.1479.234.4455.28.0
    2563.3358.1287.41.250.0540.0030.5350.0280.0720.001361.2111.1434.818.8449.46.0
    2628.2189.7184.51.030.0550.0040.5450.0430.0720.001433.4165.7441.428.1448.47.0
    2766.5352.9272.41.300.0590.0060.5900.0570.0730.001564.9211.1471.036.1452.24.8
    28123.6701.3456.91.540.0560.0010.5640.0210.0720.001472.357.4454.213.8449.24.5
    下载: 导出CSV 
    | 显示表格

    岩石矿物组合变化显示分离结晶矿物为橄榄石、辉石和斜长石,岩石中橄榄石常被辉石矿物晶体包裹形成包橄结构,部分斜长石晶体被辉石晶体包裹形成含长结构(图2),由此表明辉石结晶晚于橄榄石及部分斜长石。SiO2与MgO 质量分数呈负相关,Ni与MgO 质量分数呈正相关(图8a、图8b),表明岩浆演化过程中发生了橄榄石的分离结晶; Al2O3、CaO、Na2O与MgO质量分数均呈负相关(图8c、图8d、图8e),多数岩石样品显示出正的Eu异常和Sr异常,说明岩浆演化过程中有斜长石的堆晶作用发生; TFe与MgO质量分数呈正相关,δEu与CaO质量分数呈正相关(图8f、图8g),显示出有单斜辉石的分离结晶。岩石地球化学数据分析结果表现出与矿物分离结晶作用相一致的特征,岩浆演化过程中主要发生了橄榄石、斜长石、辉石等矿物的分离结晶作用,并且对岩石的化学成分产生了不同程度的影响。在(Mg+Fe)/Ti–Si/Ti图解上(图8h),样品大部分落在单斜辉石和斜方辉石控制线之间,表明单斜辉石和斜方辉石是主要的分离结晶相,其次伴有少量橄榄石的分离结晶。

    图  8  铭杨岩体分离结晶作用判别图
    Ol.橄榄石;Opx.斜方辉石;Cpx.单斜辉石;Pl.斜长石
    Figure  8.  Discrimination diagrams for fractional crystallization processes of Mingyang intrusion

    样品的 Th/Zr-Ce/Pb、Th/Yb-Ta/Yb、Th/Y-Nb/Y、Nb/Ta-K2O/P2O5局部具有一定的相关性,整体相关性不强(图9),表明岩浆演化过程中同化混染作用较弱。洋中脊玄武岩和洋岛玄武岩的Nb/U =47±10,原始地幔中Nb/U=34,大陆地壳的Nb/U=9~12,典型地幔的Ce/Pb=25±5,地壳Ce/Pb<15(Hofmann.,1988Sun et al.,1989)。铭杨岩体的Ce/Pb值为0.64~4.27、Nb/U值为3.5~18.7,明显不同于典型地幔的相应值,而与地壳具有亲和性。岩体的Th/Yb值(0.58~3.64,平均1.49)和Nb/Yb值(1.72~3.85,平均2.87)与洋岛玄武岩相比(分别为1.9和22.2)较低,岩体大离子亲石元素具不同程度的富集,显著亏损Nb、Ta,并具有Zr、Hf、P、Ti负异常,以上特征显示出岩浆源区可能受到地壳物质混染。

    图  9  铭杨岩体同化混染作用判别图
    Figure  9.  Discrimination diagrams for crustal contamination of the Mingyang intrusion

    北山地区构造演化经历了前大陆地壳基底演化,超大陆裂解和洋陆演化,碰撞期后板内伸展和陆内叠覆造山等4个重要时期(徐学义等,2008)。古生代北山及其邻区主要经历了古陆裂解及洋盆扩张、板块俯冲及碰撞造山和陆内裂谷3个构造演化阶段(杨合群等,2008)。

    早古生代是北山地壳演化的转折点,红柳河–牛圈子–洗肠井蛇绿岩带的年代学研究表明,北山洋盆存续时间集中于早寒武世—晚奥陶世,现今表现为早古生代代表洋壳残余的蛇绿岩(王国强等,2021)。早寒武世北山地区古陆开始裂解,区域上沉积了一套含磷、矾、铀、锰等的陆源碎屑岩、碳酸盐岩及少量硅质岩,与下伏震旦纪冰碛岩呈过渡关系(何世平,2002杨合群等,2008)。奥陶纪古陆进一步裂解及洋盆扩张,岩石建造复杂多变,沉积作用类型丰富,从浅水环境到深水环境均有发育。在研究区北部的花牛山地区发育有浅海碎屑岩–碳酸盐岩系,夹硅质岩、少量火山岩,沉积岩中夹有生物透镜体,产小型腕足及三叶虫化石(左国朝等,2011),拉张环境下产出有亚碱性拉板玄武岩系列的花牛山群火山岩(余吉远等,2015),区域上花牛山群原岩自上而下为深海相砂泥质建造、半深海硅质岩建造、浅海相硅泥质与含镁碳酸盐岩建造,沉积环境表现为一个完整的裂谷沉积旋回,中酸性火山岩总体上表现为典型的裂谷型双峰式碱性–钙碱性火山活动特征。志留纪期间洋盆发生大规模俯冲作用,红柳园地区三个井组和墩墩山群记录了北山古生代洋盆演化过程中洋–陆转化痕迹(夏林圻,2007徐学义,2008杨合群,2010)。晚志留世,北山古生代洋盆已经消亡,形成以三个井组为标志的前陆盆地沉积序列,三个井组砾岩的硅质岩砾石中发现有奥陶纪—志留纪放射虫。晚泥盆世,北山及邻区已进入晚古生代碰撞后板内伸展阶段,沿墩墩山一带形成墩墩山组陆相火山–沉积岩系底部的退积型盆地沉积充填序列(何世平,2004李向民,2011梁积伟,2020)。

    岩浆铜镍矿床的形成具有其独特的成矿地质背景和岩浆岩成矿专属性,甘肃北山地区已发现的铜镍矿化岩体多位于区域古老地块边缘,受控制于分隔微地块或裂谷带的深大断裂,不同时期边缘深大断裂成为区内铜镍矿化基性-超基性岩形成的主要导岩、导矿构造。锆石U-Pb同位素测年数据显示,区域已发现的含铜镍岩体形成多集中于中—晚泥盆世,主要为多期次侵入的铁质系列基性-超基性杂岩体,岩体规模小–中等,面积为10~30 km2,铜镍矿化岩体主要形成于板内伸展作用阶段(杨建国,2012b谢燮,2016)。本次对位于甘肃北山南带的铭杨岩体开展LA–ICP–MS锆石U–Pb测年工作,获得橄榄辉长岩和辉长岩的结晶年龄分别为(452.9±2.4)Ma和(457.7±2.1)Ma,属晚奥陶世,与区域上花牛山群玄武岩为同时代产物,结合北山地区构造演化认识,铭杨岩体可能形成于早古生代陆缘裂谷伸展环境下。其形成时代不同于天山–北山地区以往已发现的大多数岩浆型铜镍硫化物矿床,早古生代含铜镍镁铁–超镁铁岩体的发现对进一步深入认识北山地区构造演化具有重要意义,在今后的铜镍找矿工作中值得关注。

    近年来,甘肃北山地区勘查评价或新发现的含铜镍镁铁–超镁铁岩体,主要位于大山头–黑山一带,岩体侵位于布特–黄草滩微地块及其南北两侧的裂谷裂陷带中,多受庙庙井–西双鹰山及其次级断裂控制,由西至东依次出露有红柳沟、三个井、黑山、怪石山、拾金滩等岩体。铭杨岩体位于南侧的明舒井–低山头微陆块内,产出位置不同于区内其他已知含铜镍矿岩体。

    大山头–黑山一带镁铁–超镁铁岩体主要由橄榄岩、辉石岩、橄长岩、辉长岩等组成,岩类组合复杂多样,岩相十分发育,具有明显的分异特征,岩体具多期次侵位特点,超基性岩相和辉长岩相之间呈明显的侵人接触关系。岩石中常见辉长结构、包橄结构等,成矿岩体岩石普遍发生了不同程度的蛇纹石化、纤闪石化、绿泥石化等蚀变作用;各类岩石以斜长石为特征,普遍含有较多的褐色普通角闪石、金云母等富水矿物。岩体整体都具有高Mg、低碱、低Ca、低Ti特征,大离子亲石元素相对富集,高场强元素(Nb、Zr、Hf)的相对亏损(谢燮,20132016)。

    铭杨岩体与区内含矿岩体在地质特征、岩相特征、岩石地球化学特征等方面均具有相似性。岩体岩石类型丰富,从辉长岩相到橄榄辉长岩相,再到橄榄岩相均有出现,且分离结晶在岩浆演化过程中占主导地位,说明岩浆分异充分,有利于成矿物质的富集。岩石中大量的橄榄石具有辉石反应边,Ce/Pb–Th/Zr、Ta/Yb–Th/Yb、Nb/Y–Th/Y、K2O/P2O5–Nb/Ta具有较好的相关性,岩体Ce/Pb、Nb/U值更接近于地壳值,大离子亲石元素具不同程度的富集,显著亏损Nb,并具有弱的Zr、Hf负异常等特征,均证明岩浆经历了一定程度的同化混染作用。地壳混染作用会导致岩浆中SiO2浓度的增加、温度的降低以及氧逸度的升高,从而有利于硫的溶解,其是形成Cu–Ni–PGE矿床的必要因素(Zhang et al.,2009Naldrett,2010)。

    1∶5万水系沉积物测量显示,铭扬岩体出露区域具有Ni、Cu、Co、V综合异常,其中有6个单元素异常,Ni为主要成矿元素,异常强度极大值为238×10−6,具2级浓度分带;Cu、Co、V3元素均为低缓异常,Ni、Cu、Co、V4种元素套合较好。异常区内发育有3个近等轴状1∶5万航磁异常,磁异常强度100~200 nT,磁异常中心对应有斑块状羟基蚀变异常,具一、二、三级分带。1∶1万激电中梯测量和磁法测量显示岩体不仅具有磁场强度值高达1200 nT的明显磁异常,而且磁异常与1∶1万重力异常相套合,地表铜镍矿化岩体表现出高极化率、中–低电阻率的异常组合特征;激电测深剖面显示深部具有低阻高极化异常。通过地表槽探揭露和钻探深部验证初步圈定镍矿(化)体12条(图10),Cu平均品位为0.16%,Ni平均品位为0.29%。该含矿岩体不仅地表已有强的铜镍矿化,而且浅深部磁异常、重力异常和激电异常特征十分明显,是个有可能形成工业矿床的靶区岩体。

    图  10  铭杨44勘探线剖面简图
    Figure  10.  Geological section map of 44 in Mingyang

    甘肃北山地区的找矿实践证明,该地区是东天山铜镍成矿带向东寻求突破的重要铜镍找矿靶区,区域内已发现的铜镍矿化岩体,无论从构造地质背景,还是地、物、化、遥特征方面均显示出了较好的铜镍成矿条件,岩体整体剥蚀较浅,深部具有进一步找矿潜力。区域上沿红柳园–大奇山–天仓,广泛发育有基性–超基性岩,是甘肃北山南部地区一条重要的基性–超基性岩浆岩带(杨建国,2012a)。中等强度航磁和地磁异常(200~1000 nT)为寻找基性–超基性岩体提供了主要信息依据,岩体通常在地表已经强烈蚀变,常具有羟基或铁染遥感蚀变异常,Cr、Ni、Cu、Co等高值区、综合地球化学异常或浓集区是含矿岩体可能存在的间接标志,高极化、中低电阻率激电异常区反映出含矿岩体的地球物理场信息,通过“构造背景+杂岩体+蚀变+异常”的找矿思路可有效地指导区内岩浆型铜镍矿找矿工作。

    (1)铭杨镁铁–超镁铁岩体主要由辉橄岩、二辉橄榄岩、橄榄辉长岩、辉长岩等组成。岩体属于铁质基性–超基性岩,具多期侵位、分异较好的特点。全岩成分以低碱、低钛为特征,岩浆演化过程中发生了橄榄石、辉石和斜长石的分离结晶作用,经历了一定程度的地壳混染。

    (2)通过LA–ICP–MS锆石U–Pb测年,首次获得铭杨岩体中橄榄辉长岩形成年龄为(452.9±2.4) Ma,辉长岩形成时间为(457.7±2.1) Ma。岩体地质、岩相学、岩石地球化学等特征,与区域含矿岩体具有较强的相似性,但成岩时代具有明显的差异性。该岩体具有较好的铜镍成矿潜力,其发现进一步证明甘肃北山地区具有较大的铜镍找矿空间。

  • 图  1   坦桑尼亚姆贝亚地区地质简图(a)及乌本迪带地质简图(b)(据Boniface et al., 2014

    Figure  1.   (a) Simplified geological maps of Mbeya, Tanzania and (b) the Ubendian Belt

    图  2   乌本迪带内辉长岩(a)和正长花岗岩(b)显微照片

    Pl.斜长石;Di.透辉石;Kf.钾长石;Q.石英

    Figure  2.   (a) Microscope photographs of the gabbro and (b) syenogranite in Ubendian Belt

    图  3   辉长岩和正长花岗岩代表性锆石CL图像(a, c)和锆石U-Pb年龄谐和图(b, d)

    Figure  3.   (a, c) Cathodoluminescence (CL) images and (b, d) U-Pb concordia diagrams for representative zircons from gabbro and syenogranite

    图  4   乌本迪带内不同岩体的TAS图解(据Wilson, 1989

    Figure  4.   TAS classification diagram for the different rocks in the Ubendian Belt

    图  5   乌本迪带内不同岩体的球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b)

    OIB数据引自Sun等(1989);大陆溢流玄武岩数据引自Elburg等(2000)Kampunzu等(2003)

    Figure  5.   (a) Chondrite-normalized REE patterns and (b) primitive mantle-normalized trace element spider diagram for different rocks in the Ubendian Belt

    图  6   乌本迪带内基性岩Nb/Yb-Th/Yb (a)和Zr/Y-(La/Sm)N (b)图解(据Pearce, 2014

    库鲁克塔格地区基性岩数据引自Wang等(2018)张健等(2018)

    Figure  6.   (a) Nb/Yb vs. Th/Yb and (b) Zr/Y vs. (La/Sm)N diagrams for the mafic rocks in the Ubendian Belt

    图  7   乌本迪带辉长岩和正长花岗岩的Ti/100-Zr-3Y(a)、2Nb-Zr/4-Y(b)、Yb/Ta-Y/Nb(c)和Sc/Nb-Y/Nb(d)构造判别图解(据Eby, 1992; Chusi et al., 2015

    图(a)中:A.岛弧拉板玄武岩;B.MORB、岛弧拉板玄武岩和钙碱性玄武岩;C.岛弧钙碱性玄武岩;D.板内玄武岩;图(b)中:AⅠ.板内碱性玄武岩;AⅡ.板内碱性玄武岩和板内拉板玄武岩;B.E-MORB;C.板内拉板玄武岩和火山弧玄武岩;D.火山弧玄武岩和 N-MORB;图(c、d)中:A1.非造山A型花岗岩;A2.造山后A型花岗岩;库鲁克塔格地区基性岩数据引自张健等(2018);大陆溢流玄武岩(CFB)数据引自Elburg等(2000)Kampunzu等(2003)Wang等(2018)

    Figure  7.   (a) Ti/100-Zr-3Y, (b) 2Nb-Zr/4-Y , (c) Yb/Ta-Y/Nb and (d) Sc/Nb-Y/Nb tectonic discrimination diagrams for the gabbro and syenogranites in the Ubendian Belt

    表  1   乌本迪带地质体特征(据Daly, 1988; Boniface et al., 2017

    Table  1   Geological characteristics of the Ubendian terranes

    地体
    名称
    地质年龄(Ma)岩性线理
    走向
    岩浆作用变质作用
    Ubende 1890~1860 Ma(榴辉岩U-Pb锆石) 角闪岩、榴辉岩、片麻岩和变质基性岩 ENE—WSW
    1170 Ma (变质泥岩U-Th-Pb独居石)
    600 Ma (变质泥岩U-Th-Pb独居石)
    Wakole 1170~1000 Ma (变质泥岩U-Pb 锆石) 富铝硅酸岩质片岩 NW—SE
    Katuma 2650 Ma (变质基性岩U-Pb锆石) 1960 Ma (变质泥岩U-Th-Pb独居石) 变质基性岩 NW—SE
    1940 Ma (变质泥岩U-Th-Pb独居石)
    Ufipa (1847 ± 37) Ma(花岗岩U-Pb 锆石) 590~520 Ma (榴辉岩U-Pb锆石) 花岗质片麻岩 NW—SE
    (1864 ± 32) Ma (花岗岩U-Pb 锆石)
    Mbozi (2084 ± 8) Ma (片麻岩U-Pb锆石) 片麻岩、混合岩、石英岩±麻粒岩±变质基性岩 NW—SE
    Lupa 2760 Ma (花岗岩U-Pb金红石) 变质火山岩、花岗岩和花岗质片麻岩 NW—-SE
    (1943 ± 32) Ma
    (玄武质安山岩U-Pb锆石)
    (1878 ± 15) Ma (花岗岩U-Pb 锆石)
    Upangwa (2084 ± 86) Ma (花岗岩U-Pb 锆石) (1045 ± 25) Ma (片麻岩U-Pb锆石) 变质斜长岩 NW—SE
    1880~1850 Ma
    (石英闪长岩U-Pb 锆石)
    (724 ± 6) Ma (花岗岩U-Pb 锆石)
    Nyika 1990~1930 Ma (花岗岩U-Pb 锆石) (1813 ± 13) Ma; (947 ± 7) Ma; (560 ± 6) Ma(变质泥岩U-Th-Pb独居石) 堇青石麻粒岩 E—W
    (1010 ± 22) Ma (榴辉岩U-Pb锆石) 1930~1969 Ma(变质泥岩Pb-Pb锆石)
    下载: 导出CSV

    表  2   乌本迪带内不同岩体的LA-MC-ICP-MS锆石U-Pb测年数据

    Table  2   LA-MC-ICP-MS Zircons U-Pb isotopic data from different rocks in the Ubendian Belt

    样品
    编号
    元素含量(10−6Th/U同位素比值年龄(Ma)
    PbUTh206Pb/238U207Pb/235U207Pb/206Pb206Pb/238U207Pb/235U207Pb/206Pb
    变质辉长岩(D6214)
    1 81 256 311 1.21 0.2449 0.0028 3.1028 0.0439 0.0919 0.0010 1412 16 1433 20 1465 21
    2 33 98 146 1.49 0.2452 0.0026 3.1168 0.0436 0.0922 0.0011 1414 15 1437 20 1471 23
    3 27 85 95 1.11 0.2471 0.0028 3.0677 0.0451 0.0900 0.0011 1423 16 1425 21 1426 23
    4 51 155 237 1.53 0.2434 0.0026 3.0831 0.0433 0.0919 0.0011 1404 15 1429 20 1465 22
    5 60 191 225 1.18 0.2459 0.0026 3.0710 0.0419 0.0906 0.0010 1417 15 1425 19 1438 22
    6 55 190 163 0.86 0.2446 0.0026 3.0973 0.0433 0.0919 0.0011 1410 15 1432 20 1464 22
    7 66 212 250 1.18 0.2462 0.0026 3.0653 0.0412 0.0903 0.0010 1419 15 1424 19 1432 22
    8 28 92 117 1.27 0.2444 0.0024 3.0474 0.0489 0.0904 0.0014 1409 14 1420 23 1435 29
    9 81 262 337 1.29 0.2445 0.0024 3.0482 0.0394 0.0904 0.0010 1410 14 1420 18 1434 21
    10 45 158 136 0.86 0.2439 0.0025 3.0336 0.0413 0.0902 0.0011 1407 14 1416 19 1430 22
    11 57 193 204 1.06 0.2483 0.0025 3.0826 0.0406 0.0900 0.0010 1430 14 1428 19 1426 22
    12 38 116 167 1.44 0.2470 0.0026 3.0634 0.0418 0.0900 0.0010 1423 15 1424 19 1424 22
    13 41 120 205 1.71 0.2475 0.0024 3.0561 0.0408 0.0895 0.0010 1426 14 1422 19 1416 22
    14 33 119 84 0.71 0.2478 0.0025 3.0698 0.0417 0.0898 0.0010 1427 15 1425 19 1422 22
    15 19 76 88 1.15 0.1984 0.0021 2.4408 0.0416 0.0892 0.0014 1167 12 1255 21 1409 31
    16 8 31 30 0.97 0.2078 0.0021 2.5473 0.0514 0.0889 0.0017 1217 12 1286 26 1402 36
    17 37 113 178 1.57 0.2478 0.0026 3.0450 0.0417 0.0891 0.0010 1427 15 1419 19 1407 22
    18 49 154 238 1.54 0.2461 0.0024 3.0114 0.0395 0.0888 0.0010 1418 14 1411 18 1399 22
    19 62 196 280 1.43 0.2452 0.0026 3.0551 0.0415 0.0904 0.0010 1414 15 1422 19 1433 22
    20 32 178 82 0.46 0.1688 0.0017 2.0587 0.0277 0.0885 0.0010 1005 10 1135 15 1392 23
    21 42 145 208 1.44 0.2175 0.0023 2.7131 0.0363 0.0905 0.0010 1269 13 1332 18 1435 22
    22 170 518 792 1.53 0.2464 0.0027 3.0674 0.0420 0.0903 0.0010 1420 16 1425 20 1432 21
    23 54 199 123 0.62 0.2448 0.0024 3.0399 0.0397 0.0901 0.0010 1411 14 1418 19 1427 21
    24 43 146 155 1.06 0.2447 0.0025 3.0466 0.0415 0.0903 0.0010 1411 14 1419 19 1432 22
    25 30 100 123 1.23 0.2451 0.0026 3.0616 0.0424 0.0906 0.0011 1413 15 1423 20 1438 22
    26 30 92 144 1.56 0.2439 0.0025 3.0525 0.0426 0.0908 0.0011 1407 14 1421 20 1442 23
    27 28 84 136 1.63 0.2449 0.0025 3.0651 0.0425 0.0908 0.0011 1412 15 1424 20 1442 23
    28 55 164 282 1.72 0.2426 0.0026 3.0312 0.0409 0.0906 0.0010 1400 15 1416 19 1438 22
    29 50 156 238 1.53 0.2445 0.0024 3.0347 0.0399 0.0900 0.0010 1410 14 1416 19 1426 22
    30 32 102 143 1.4 0.2450 0.0026 3.0167 0.0442 0.0893 0.0011 1413 15 1412 21 1411 24
    31 41 150 149 1 0.2293 0.0023 2.8626 0.0382 0.0906 0.0010 1331 13 1372 18 1437 22
    正长花岗岩(D6218)
    1 21 70 80 1.14 0.2447 0.0024 3.0566 0.0440 0.0906 0.0012 1411 14 1422 20 1438 25
    2 48 171 138 0.8 0.2455 0.0025 3.0741 0.0403 0.0908 0.0010 1415 14 1426 19 1443 22
    3 48 181 152 0.84 0.2469 0.0025 3.0251 0.0403 0.0889 0.0010 1422 14 1414 19 1401 22
    4 16 56 50 0.89 0.2369 0.0023 3.7693 0.0582 0.1154 0.0016 1371 14 1586 24 1886 24
    5 19 71 97 1.36 0.2093 0.0022 2.5915 0.0502 0.0898 0.0016 1225 13 1298 25 1421 34
    6 11 47 47 1 0.1944 0.0024 2.3910 0.0522 0.0892 0.0019 1145 14 1240 27 1408 42
    7 13 41 66 1.61 0.2443 0.0026 3.0670 0.0549 0.0911 0.0015 1409 15 1424 26 1448 31
    8 38 141 104 0.74 0.2453 0.0024 3.0311 0.0414 0.0896 0.0011 1414 14 1415 19 1417 23
    9 46 154 164 1.06 0.2465 0.0026 3.0549 0.0419 0.0899 0.0010 1420 15 1421 19 1423 22
    10 18 58 57 0.98 0.2466 0.0026 3.6642 0.0586 0.1078 0.0015 1421 15 1564 25 1762 25
    11 40 133 154 1.16 0.2451 0.0025 3.0328 0.0407 0.0898 0.0010 1413 15 1416 19 1420 22
    12 52 185 152 0.82 0.2449 0.0026 3.0415 0.0413 0.0901 0.0010 1412 15 1418 19 1427 22
    13 46 140 224 1.6 0.2453 0.0026 3.0277 0.0397 0.0895 0.0010 1414 15 1415 19 1416 22
    14 69 256 148 0.58 0.2453 0.0025 3.0404 0.0395 0.0899 0.0010 1414 14 1418 18 1424 21
    15 44 135 231 1.71 0.2437 0.0025 3.0466 0.0456 0.0907 0.0012 1406 15 1419 21 1440 25
    16 104 392 206 0.52 0.2461 0.0026 3.0597 0.0409 0.0902 0.0010 1418 15 1423 19 1429 21
    17 48 176 163 0.93 0.2216 0.0023 2.7455 0.0402 0.0899 0.0011 1290 14 1341 20 1422 24
    18 14 45 53 1.17 0.2445 0.0025 3.0407 0.0560 0.0902 0.0015 1410 14 1418 26 1430 32
    19 24 80 96 1.2 0.2284 0.0023 3.3401 0.0513 0.1061 0.0014 1326 14 1490 23 1733 25
    20 29 89 133 1.5 0.2432 0.0024 3.0648 0.0434 0.0914 0.0011 1404 14 1424 20 1455 23
    21 18 55 88 1.61 0.2460 0.0028 3.0551 0.0505 0.0901 0.0013 1418 16 1422 24 1427 28
    22 30 124 53 0.42 0.2305 0.0022 2.9343 0.0382 0.0923 0.0011 1337 13 1391 18 1474 22
    23 33 116 102 0.87 0.2447 0.0024 3.0376 0.0412 0.0900 0.0011 1411 14 1417 19 1426 22
    下载: 导出CSV

    表  3   乌本迪带不同岩体的主量元素(%)和微量元素(10−6)分析结果

    Table  3   Major element (%) and trace element compositions (10−6) for different rocks in the Ubendian Belt

    样品号SiO2Al2O3Fe2O3FeOCaOMgOK2ONa2OTiO2P2O5MnO灼失Cu
    D620575.0812.331.011.370.460.145.283.280.250.0190.030.612.16
    D621871.5913.132.221.40.780.135.793.750.380.0340.090.544.14
    D621447.2715.784.328.739.224.411.673.052.60.230.191.55109
    样品号PbZnCrNiCoRbSrBaVScNbTaZr
    D62059.7438.732.921.40.8421211.52890.941.5471.34.22463
    D621831.11334.052.260.641474910301.292.5150.52.4864
    D62143.5312169.235.842.254.750059546242.59.540.65143
    样品号HfBeGaUThLaCePrNdSmEuGdTb
    D620515.44.420.33.3546.825538645.115924.90.9621.43.05
    D621823.42.2120.72.229.725937045.416125.12.722.33.25
    D62144.110.8223.70.291.8218.431.85.61255.711.945.850.94
    样品号DyHoErTmYbLuY∑REE(La/Yb)NδEuMF指数
    D6205152.717.050.966.030.8967.3928.0528.510.1294.44
    D621816.93.28.531.177.631.2475.9927.4222.890.3496.53
    D62145.391.022.720.392.560.3825.9107.714.851.0274.74
     注:MF=100*(FeO+Fe2O3)/(FeO+ Fe2O3+MgO)
    下载: 导出CSV
  • 陈雪峰, 刘希军, 许继峰, 等. 桂西那坡基性岩地球化学: 峨眉山地幔柱与古特提斯俯冲相互作用的证据[J]. 大地构造与成矿学, 2016, 40(3): 545-562

    CHEN Xuefeng, LIU Xijun, XU Jifeng, et al. Geochemistry of Mafic Rocks in the Napo Area, Western Guangxi, South China: Evidence for Interaction Between the Emeishan Mantle Plume and Paleotethyan Subduction[J]. Geotectonica et Metallogenia, 2016, 40(3): 545-562.

    孙凯, 刘晓阳, 何胜飞, 等.坦桑尼亚水系沉积物地球化学特征及金资源前景[J]. 地质通报, 2023, 42(8): 1258−1275.

    SUN Kai, LIU Xiaoyang, HE Shengfei, et al. Geochemical characteristics of stream sediment in Tanzania and prospective analysis of gold resources[J]. Geological Bulletin of China, 2023, 42(8): 1258−1275.

    王杰, 刘晓阳, 任军平, 等. 坦桑尼亚前寒武纪成矿作用[J]. 华北地质, 2022, 45(1): 101-110

    WANG Jie, LIU Xiaoyang, REN Junping, et al. Precambrian mineralization in Tanzania[J]. North China Geology, 2022, 45(1): 101-110.

    吴元保, 郑永飞. 锆石成因矿物学研究及其对 U-Pb 年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1604 doi: 10.3321/j.issn:0023-074X.2004.16.002

    WU Yuanbao, ZHENG Yongfei. Genetic mineralogy of zircons and its constraints to the age of U-Pb geochronology[J]. Chinese Science Bulletin, 2004, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002

    徐义刚, 王焰, 位荀, 等. 与地幔柱有关的成矿作用及其主控因素[J]. 岩石学报, 2013, 29(10): 3307-3322

    XU Yigang, WANG Yan, WEI Xun, et al. Mantle plume-related mineralization and their principal controlling factors[J]. Acta Petrologica Sinica, 2013, 29(10): 3307-3322.

    张健, 李怀坤, 张传林, 等. 塔里木克拉通东北缘 Columbia 超大陆裂解事件: 库鲁克塔格地区辉绿岩床的地球化学, 锆石 U-Pb 年代学和 Hf-O 同位素证据[J]. 地学前缘, 2018, 25(6): 106-123

    ZHANG Jian, LI Huaikun, ZHANG Chuanlin, et al. New evidence for the breakup of the Columbia supercontinent from the northeastern margin of Tarim Craton: rock geochemistry, zircon U-Pb geochronology and Hf-O isotopic compositions of the ca. 1.55 Ga diabase sills in the Kuruktag area[J]. Earth Science Frontier, 2018, 25(6): 106-123.

    张招崇, 王福生, 范蔚茗, 等. 峨眉山玄武岩研究中的一些问题的讨论[J]. 岩石矿物学杂志, 2001, 20(3): 239-246 doi: 10.3969/j.issn.1000-6524.2001.03.005

    ZHANG Zhaochong, WANG Fusheng, FAN Weiming, et al. A Discussion on Some Problems Concerning the Study of the Emeishan Basalts[J]. Acta Petrologica ET Mineralogica, 2001, 20(3): 239-246. doi: 10.3969/j.issn.1000-6524.2001.03.005

    周佐民, 李勇, 刘晓阳, 等. 苏丹红海州新元古代A型花岗岩的地球化学特征及构造意义[J]. 华北地质, 2023, 46(1): 71-86

    ZHOU Zuomin, LI Yong, LIU Xiaoyang, et al. Geochemical characteristics and tectonic implications of the Neoproterozoic A-type granites in Red Sea State, Sudan[J]. North China Geology, 2023, 46(1): 71-86.

    Barnes S J, Naldrett A J, Gorton M P. The origin of the fractionation of platinum-group elements in terrestrial magmas[J]. Chemical Geology, 1985, 53(3-4): 303-323. doi: 10.1016/0009-2541(85)90076-2

    Belousova E, Griffin W L, O'Reilly S Y, et al. Igneous zircon: trace element composition as an indicator of source rock type[J]. Contributions to mineralogy and petrology, 2002, 143(5): 602-622. doi: 10.1007/s00410-002-0364-7

    Biyashev M, Pentelkov V, Emelyanov S, et al. Sitalike: Geological Map Quarter Degree Sheet 170[M]. Geological Survey of Tanzania, Dodoma, 1977.

    Boniface N, Schenk V, Appel P. Paleoproterozoic eclogites of MORB-type chemistry and three Proterozoic orogenic cycles in the Ubendian Belt (Tanzania): Evidence from monazite and zircon geochronology, and geochemistry[J]. Precambrian Research, 2012, 192: 16-33.

    Boniface N, Schenk V. Neoproterozoic eclogites in the PaleoproterozoicUbendian Belt of Tanzania: evidence for a Pan-African suture between the Bang-weulu Block and the Tanzania Craton[J]. Precambrian Research, 2012, 208: 72-89.

    Boniface N, Schenk V, Appel P. Mesoproterozoic high-grade metamorphism in pelitic rocks of the northwestern Ubendian Belt: Implication for the extension of the Kibaran intra-continental basins to Tanzania[J]. Precambrian Research, 2014, 249: 215-228. doi: 10.1016/j.precamres.2014.05.010

    Boniface N, Appel P. Stenian-Tonian and Ediacaran metamorphic imprints in the southern Paleoproterozoic Ubendian Belt, Tanzania: Constraints from in situ monazite ages[J]. Journal of African Earth Sciences, 2017, 133: 25-35. doi: 10.1016/j.jafrearsci.2017.05.005

    Boven A, Theunissen K, Skylarov E, et al. Timing of exhumation of a high-pressure mafic granulite terrane of the Paleoproterozoic Ubende belt (West Tanzania)[J]. Precambrian Research, 1999, 93: 119-137. doi: 10.1016/S0301-9268(98)00101-6

    Cai Y, Wang Y, Cawood P A, et al. Neoproterozoic crustal growth of the Southern Yangtze Block: Geochemical and zircon U-Pb geochronological and Lu-Hf isotopic evidence of Neoproterozoic diorite from the Ailaoshan zone[J]. Precambrian Research, 2015, 266: 137-149. doi: 10.1016/j.precamres.2015.05.008

    Chusi L, Nicholas T A, Tang Q Y, et al. Trace element indiscrimination diagrams[J]. Lithos, 2015, 232: 76-83. doi: 10.1016/j.lithos.2015.06.022

    Daly M C, Klerkx J, Nanyaro J T. Early Proterozoic terranes and strike-slip accretion in the Ubendian Belt of southwest Tanzania[J]. Terra Cognita, 1985, 5: 257.

    Daly M C. Crustal shear zones in Central Africa: a kinematic approach toProterozoic Tectonics[J]. Episodes, 1988, 11(1): 5-11. doi: 10.18814/epiiugs/1988/v11i1/003

    DePaolo D J, Daley E E. Neodymium isotopes in basalts of the southwest basin and range and lithospheric thinning during continental extension[J]. Chemical Geology, 2000, 169(1-2): 157-185. doi: 10.1016/S0009-2541(00)00261-8

    Dilek Y, Furnes H. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere[J]. Bulletin, 2011, 123(3-4): 387-411.

    Eby G N. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications[J]. Geology, 1992, 20, 641–644.

    Elburg M, Goldberg A. Age and geochemistry of Karoo dolerite dykes from northeast Botswana[J]. Journal of African Earth Sciences, 2000, 31(3-4): 539-554. doi: 10.1016/S0899-5362(00)80006-8

    Frost B R, Barnes C G, Collins W J, et al. A geochemical classification for granitic rocks[J]. Journal of petrology, 2001, 42(11): 2033-2048. doi: 10.1093/petrology/42.11.2033

    Griffiths R W, Campbell I H. Stirring and structure in mantle starting plumes[J]. Earth and Planetary Science Letters, 1990, 99(1-2): 66-78. doi: 10.1016/0012-821X(90)90071-5

    Hoffman P F. United plates of America, the birth of a craton: Early Proterozoic assembly and growth of Laurentia. Annual Review of Earth and Planetary Sciences, 1988, 16(1): 543-603.

    Huppert H E, Sparks R S J. The generation of granitic magmas by intrusion of basalt into continental crust[J]. Jour Petrol, 1988, 29(3): 599-624. doi: 10.1093/petrology/29.3.599

    Kampunzu A B, Tombale A R, Zhai M, et al. Major and trace element geochemistry of plutonic rocks from Francistown, NE Botswana: evidence for a Neoarchaean continental active margin in the Zimbabwe craton[J]. Lithos, 2003, 71(2-4): 431-460. doi: 10.1016/S0024-4937(03)00125-7

    Kazimoto E O, Schenk V, Berndt J. Neoarchean and Paleoproterozoic crust formation in the Ubendian Belt of Tanzania: Insights from zircon geochronology and geochemistry[J]. Precambrian Research, 2014, 252: 119-144. doi: 10.1016/j.precamres.2014.06.020

    King P L, White A J R, Chappell B W, et al. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, southeastern Australia[J]. Journal of Petrology. 1997, 38, 371–391.

    Klerkx J, Liégeois J P, Lavreau J, et al. Crustal evolution of the northern Kibaran Belt, eastern and central Africa. Proterozic Lithospheric Evolution, 1987, 17: 217-233.

    Kokonyangi J, Kampunzu, A B, Poujol M, et al. Petrology and geochronology of Mesoproterozoic mafic-intermediate plutonic rocks from Mitwaba (DR Congo): implications for the evolution of the Kibaran Belt in central Africa[J]. Geological Magazine, 2005, 142(1): 109~130. doi: 10.1017/S0016756804009951

    Lawley C J M, Selby D, Condon D J, et al. Lithogeochemistry, geochronology and geodynamic setting of the Lupa Terrane, Tanzania: implications for the extent of the Archean Tanzanian Craton[J]. Precambrian Research, 2013, 231: 174-193. doi: 10.1016/j.precamres.2013.02.012

    Lenoir J L, Liégeois J P, Theunissen K, et al. The Palaeoproterozoic Ubendian shear belt in Tanzania: geochronology and structure[J]. Journal of African Earth Sciences, 1994, 19(3): 169-184. doi: 10.1016/0899-5362(94)90059-0

    Liu S, Hu R Z, Gao S, et al. U-Pb zircon age, geochemical and Sr-Nd-Pb-Hf isotopic constraints on age and origin of alkaline intrusions and associated mafic dikes from Sulu orogenic belt, Eastern China[J]. Lithos, 2008, 106, 365-379. doi: 10.1016/j.lithos.2008.09.004

    Loiselle M C, Wones D R. Characteristics and origin of anorogenic granites[J]. Geological Society of America Abstracts with Programs, 1979, 11(7): 468.

    Ludwig K R. User's Manual for Isoplot 3.00, a Geochronological Toolkit for Microsoft Excel[M]. Geochronological Center, Special Publication No. 4, Berkeley, 2003, 25-32.

    Manya S, Kobayashi K, Maboko M A H, et al. Ion microprobe zircon U–Pb dating of the late Archaean metavolcanics and associated granites of the Musoma-Mara Greenstone Belt, Northeast Tanzania: Implications for the geological evolution of the Tanzania Craton[J]. Journal of African Earth Sciences, 2006, 45(3): 355-366. doi: 10.1016/j.jafrearsci.2006.03.004

    Mcconnell R B. Outline of the geology of Ufipa and Ubende[M]. Tanganyika Geological Survey, Dodoma, 1950, 1-62.

    Morgan W J. Convection plumes in the lower mantle[J]. Nature, 1971, 230(5288): 42-43. doi: 10.1038/230042a0

    Niu Y, O'Hara M J. Origin of ocean island basalts: A new perspective from petrology, geochemistry, and mineral physics considerations[J]. Journal of Geophysical Research, 2003, 108(B4): 1-18.

    Niu Y L. The origin of alkaline lavas[J]. Science, 2008, 320(5878): 883-884. doi: 10.1126/science.1158378

    Patiño Douce A E, Beard J S. Dehydration-melting of Biotite Gneiss and Quartz Amphibolite from 3 to 15 kbar. Journal of Petrology, 1995, 36, 707-738.

    Pearce J A. Immobile element fingerprinting of ophiolites[J]. Elements, 2014, 10(2): 101-108. doi: 10.2113/gselements.10.2.101

    Rapp R P, Watson E B. Dehydration melting of metabasalt at 8-32 kbar: implications for continental growth and crust-mantle recycling[J]. Journal of Petrology, 1995, 36(4): 891-931. doi: 10.1093/petrology/36.4.891

    Ring U, Kröner A, Toulkeridis T. Palaeoproterozoic granulite-facies metamorphism and granitoid intrusions in the Ubendian-Usagaran Orogen of northern Malawi, east-central Africa[J]. Precambrian Research, 1997, 85(1-2): 27-51. doi: 10.1016/S0301-9268(97)00028-4

    Rogers J J W, Santosh M, Yoshida A M. Mesoproterozoic Supercontinent (Call f or papers)[J]. Gondwana Research, 2000, (4): 590~591.

    Smirnov V, Pentelkov V, Tolochko V, et al. Geology and Minerals of the Central Part of the Wstern Resource Division, Dodoma, Tanzania[R]. Unpublished report of the geological mapping, 1973, 1-333.

    Stendal H, Frei R, Muhongo S, et al. Gold potential of the Mpanda Mineral Field, SW Tanzania: evaluation based on geological, lead isotopic and aeromagnetic data[J]. Journal of African Earth Sciences, 2004, 38(5): 437-447. doi: 10.1016/j.jafrearsci.2004.04.005

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    Sutton J, Watson J, James T C. A study of the metamorphic rocks of Karema and Kungwe Bay, Western Tanganyika[M]. Tanganyika Geological Survey , Bulletin, 1954, 22.

    Sylvester P J. Post-collisional alkaline granites[J]. The Journal of Geology, 1989, 97, 261-280. doi: 10.1086/629302

    Tack L, Wingate M T D, De Waele B, et al. The 1375Ma “Kibaran event” in Central Africa: Prominent emplacement of bimodal magmatism under extensional regime. Precambrian Research, 2010, 180(1-2): 63-84.

    Theunissen K, Lenoir J L, Liégois J P, et al. Major Pan-African imprint in the Ubendian Belt of SW Tanzania: U-Pb zircon geochronology and structural context[J]. Comptes-rendus del Académie des Sciences de Paris, 1992, 314, 1355-1362.

    Thomas R, Jacobs J, Aelburg M, et al. New U-Pb-Hf zircon isotope data for the Paleoproterozoic Ubendian belt in the Chimala area, SW Tanzania[J]. Geoscience Frontiers, 2019, 10(6), 1993-2006. doi: 10.1016/j.gsf.2018.05.010

    Tulibonywa T, Manya S, Torssander P, et al. Geochemistry of the Palaeoproterozoic volcanic and associated potassic granitic rocks of the Ngualla area of the Ubendian Belt, SW Tanzania[J]. Journal of African Earth Sciences, 2017, 129: 291-306. doi: 10.1016/j.jafrearsci.2017.01.022

    Wang X, Lv X, Cao X, et al. Palaeo-Mesoproterozoic magmatic and metamorphic events from the Kuluketage block, northeast Tarim Craton: geochronology, geochemistry and implications for evolution of Columbia[J]. Geological Journal, 2018, 53(1): 120-138. doi: 10.1002/gj.2881

    Wang Y J, Zhang A M, Fan W M, et al. Origin of paleosubduction-modifified mantle for Silurian gabbro in the Cathaysia block: geochronological and geochemical evidence[J]. Lithos, 2013, 160, 37-54.

    Watkins J, Clemens J, Treloar P. Archaean TTGs as sources of younger granitic magmas: melting of sodic metatonalites at 0.6-1.2 GPa. Contributions to Mineralogy and Petrology, 2007, 154, 91-110.

    Whalen J B, Currie K L, Chappell B W. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to mineralogy and petrology, 1987, 95(4): 407-419. doi: 10.1007/BF00402202

    Wilson M. Igneous Petrogenesis[M]. Springer Netherlands, London, 1989, 22.

    Wu C Z, Santosh M, Chen Y J, et al. Geochronology and geochemistry of Early Mesoproterozoic meta-diabase sills from Quruqtagh in the northeastern Tarim Craton: implications for breakup of the Columbia supercontinent[J]. Precambrian Research, 2014, 241: 29-43. doi: 10.1016/j.precamres.2013.11.007

    Wu F Y, Sun D Y, Li H M, et al. A-type granites in northeastern China: age and geochemical constraints on their petrogenesis[J]. Chemical Geology, 2002, 187, 143–173. doi: 10.1016/S0009-2541(02)00018-9

    Xu Y, Chung S L, Jahn B, M, et al. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China[J]. Lithos, 2001, 58(3-4): 145-168.

    Zhou M F, Zhao J H, Qi L, et al. Zircon U-Pb geochronology and elemental and Sr–Nd isotope geochemistry of Permian mafic rocks in the Funing area, SW China[J]. Contributions to Mineralogy and Petrology, 2006, 151(1): 1-19. doi: 10.1007/s00410-005-0030-y

  • 期刊类型引用(1)

    1. 赵飞,韩宝,钟磊,潘越扬,马尚伟,许海红,韩小锋,郭望,魏东涛. 准噶尔盆地中拐地区致密砂岩气成藏特征及富集规律. 西北地质. 2024(05): 142-155 . 本站查看

    其他类型引用(1)

图(7)  /  表(3)
计量
  • 文章访问数:  80
  • HTML全文浏览量:  12
  • PDF下载量:  21
  • 被引次数: 2
出版历程
  • 收稿日期:  2023-04-02
  • 修回日期:  2023-07-23
  • 录用日期:  2023-07-23
  • 网络出版日期:  2024-03-27

目录

/

返回文章
返回