Zircon U-Pb Dating, Geochemical Characteristics and Geological Significance of the Quartz Diorite Porphyrite from the Boluogaxiong Gold Deposit in East Kunlun
-
摘要:
波洛尕熊金矿区位于青海东昆仑东段,矿区内石英闪长玢岩脉与金矿化带在空间上伴生产出。笔者通过锆石LA-ICP-MS U-Pb定年及地球化学研究,探讨了波洛尕熊石英闪长玢岩的岩浆源区和岩石成因、大地构造意义、形成时代与找矿意义。岩石地球化学研究表明,石英闪长玢岩属准铝质钙碱性-高钾钙碱性系列岩石,富集大离子亲石元素、轻稀土元素和Pb,相对亏损高场强元素,基本不显示铕异常。Rb/Sr、Nb/Ta、Zr/Hf等特征反映闪长玢岩具有壳幔混合的源区特征。石英闪长玢岩LA−ICP−MS锆石U−Pb年龄为(226.6±1.6) Ma(MSWD =0.41),形成时代为印支期晚三叠世,为东昆仑造山带古特提斯构造岩浆演化的产物。综合东昆仑地区前人年代学数据及区域构造演化,认为波洛尕熊石英闪长玢岩为后碰撞伸展阶段地壳重熔的产物,东昆仑在约228 Ma就已全面进入后碰撞演化阶段。印支期中基性岩脉尤其是闪长玢岩脉经常与东昆仑地区金矿化在时空分布及成因上关系密切,在今后金矿找矿勘查中应高度重视。
Abstract:The quartz diorite porphyrite in the Boluogaxiong gold deposit, located in the eastern section of East Kunlun metallogenic belt, is closely associated with gold mineralization in the space. Based on the studies of zircon LA-ICP-MS U-Pb age and geochemistry, this paper mainly discusses the source, petrogenesis, tectonic setting, age and prospecting significance of the porphyrite. Detailed lithogeochemical studies show that the Boluogaxiong quartz diorite porphyrite belongs to metaluminous calc–alkaline to high–K calc–alkaline series. The diorite porphyrite is enriched in LILE, LREE and Pb, relatively depleting in HFSE, with no obvious Eu anomaly. Rb/Sr, Nb/Ta and Zr/Hf reflect the characteristics of crust-mantle mixing magma origin. LA-ICP-MS zircon U-Pb dating shows that the Boluogaxiong quartz diorite porphyrite was formed at (226.6±1.6) Ma(MSWD=0.41), in the Late Triassic, Indosinian period, corresponding to the Paleo-Tethys tectonic-magmatic cycle in eastern Kunlun orogenic belt. Based on a combined study of previous geochronology and evolution of regional structures, the authors consider that the diorite porphyrite is the product of crust remelting in post–collisional extention stage of the orogen, which suggests the Eastern Kunlun orogeny had begun its post-collisional stage in the Late Triassic, 228 Ma. Indosinian mafic–intermediate dykes, especially diorite porphyrites always have close spatiotemporal and genetic relationship with gold mineralization in East Kunlun, and we should pay sufficient attention to Indosinian mafic–intermediate dykes in further ore-prospecting work.
-
东昆仑造山带处于青藏高原东北缘,柴达木盆地南缘(王鸿祯等,1990;孔会磊等,2021),是中国秦祁昆构造带的重要组成部分,区内中生代蚀变岩型金矿、斑岩型–矽卡岩型铜多金属矿等成矿作用显著,一直为研究的热门地区。东昆仑广泛出露奥陶纪—泥盆纪和二叠纪—三叠纪中酸性岩浆岩,分别是原特提斯和古特提斯的构造岩浆演化的产物(莫宣学等,2007;Xiong et al., 2014;孔会磊等,2019)。东昆仑成矿带是中国著名的金腰带,目前已发现阿斯哈、按纳格、果洛龙洼、瓦勒尕、五龙沟、大场、瑙木浑、巴隆、大水沟、白日其利等一系列金矿床(点)(李金超等,2015a;孙非非等,2023),其中,阿斯哈、瓦勒尕、大水沟等金矿床(点)均赋存于中酸性侵入岩中(李金超等,2014,2015b;Chen et al., 2017;陈加杰,2018)。近几年来,在东昆仑相继发现哈图、石灰沟、阿斯哈、按纳格、五龙沟、西藏大沟等多个金矿床(点)金矿化与煌斑岩、闪长玢岩类等脉岩的密切时空关系(钱壮志等,1999;李碧乐等,2012;孔会磊等,2014;Zhang et al., 2017;李金超等,2018)。金矿区出露的中基性脉岩对于矿区的地质构造演化及成矿作用具有重要意义。
波洛尕熊金矿区位于青海东昆仑东段香日德镇以南,沟里金矿田的西北侧,是2014年青海省有色地矿局八队(现为青海省有色第三地质勘查院)进行水系沉积物异常检查时发现的。目前前人仅针对波洛尕熊金矿区进行过地质特征与找矿标志的研究(冶玉娟等,2017;肖积福等,2018),其他研究还处于空白,对其矿床成因及形成时代的认识严重不足,制约了区带上金矿找矿的新突破。笔者在野外典型矿床调研时发现,矿区出露广泛的石英闪长玢岩脉与金矿化带在空间上关系密切,然而对其岩石源区、大地构造背景、形成时代等还缺乏系统研究。因而,笔者首次对波洛尕熊金矿区石英闪长玢岩脉进行了系统的岩石学、岩石地球化学及锆石U−Pb年代学研究,探讨其岩浆源区、岩石成因、大地构造意义、形成时代与找矿意义,为东昆仑区域构造–岩浆演化和金矿找矿勘查提供新的依据。
1. 地质背景和矿区地质
东昆仑大地构造位置处于柴达木盆地与阿尼玛卿结合带之间(图1a),是中国著名的巨型构造–岩浆岩带(莫宣学等,2007;孔会磊等,2015,2021)。东昆仑构造带由阿尔金走滑断裂向东延伸至温泉断裂,长可达
1500 km(Dai et al., 2013;张明东等,2018;孔会磊等,2019;田龙等,2023),经历了寒武纪—泥盆纪原特提斯与泥盆纪—侏罗纪古特提斯两期洋陆演化旋回(许志琴等,2007;Yu et al., 2020),是一个典型的增生造山带(许志琴等,2013;Dong et al., 2018)。东昆仑造山带从北往南依次发育东昆北、东昆中、东昆南3条岩石圈大断裂,以此为界可将东昆仑划分为昆北、昆中、昆南3个构造单元(Xia et al., 2017;Dong et al., 2018;韩建军等,2023)(图1a)。区域上古元古界金水口岩群变质岩及印支期中酸性侵入岩发育,已发现多处大中型金多金属矿床。波洛尕熊金矿区位于东昆仑造山带东段,处于昆中断裂北侧,属东昆中构造带(图1a)。矿区内地层不发育,仅有第四系沉积物发育,全区主要为大规模三叠纪花岗闪长岩出露(图1b),为香日德花岗闪长岩基的一部分。另外在矿区南部,还有少量闪长岩呈岩株状出露。断裂构造主要出露于矿区中南部,受昆中断裂影响制约,多呈近EW向、NEE向,其中EW向构造在区内出露规模相对较大,具延伸远、延续时间长、多期活动的特点,其性质多为压扭性(冶玉娟等,2017;肖积福等,2018)。岩脉主要发育石英闪长玢岩脉,多以透镜状或岩墙产出(图2a、图2b),宽0.3~5 m,延伸10~100 m。花岗闪长岩中还可见暗色包体(图2d),岩性为石英闪长玢岩,呈近圆状,直径3~50 cm不等。矿床类型为构造蚀变岩型,矿区共发现构造破碎蚀变带8条,其中含矿破碎蚀变带4条,金矿体3条(肖积福等,2018)。构造破碎蚀变带均产于三叠纪花岗闪长岩内,蚀变带长80~
2200 m。金矿体主要产在构造破碎蚀变带与石英闪长玢岩脉同时出露地段(图2a),主要蚀变类型有硅化、碳酸盐化、高岭土化等,找矿标志明显,具有较好的找矿远景(冶玉娟等,2017;肖积福等,2018)。硅化普遍呈脉状分布于构造破碎带中,常与硫化物形成含金硫化石英脉。矿区最重要的矿石为含黄铁矿的构造蚀变岩,呈灰白色,氧化面呈黄褐色,脉内黄铁矿呈团块状(肖积福等,2018)。2. 岩相学特征及样品描述
岩石地球化学及年龄样品均采自东昆仑波洛尕熊金矿区北部PfⅠ号矿化蚀变破碎带南侧的石英闪长玢岩中(图2a),尽量采集新鲜岩石,GPS坐标:N 35°57′07″,E 97°49′46″。石英闪长玢岩与金成矿关系密切,金矿体主要产在花岗闪长岩体与石英闪长玢岩接触部位的蚀变破碎带中,与石英闪长玢岩平行展布(图1b)。
岩石颜色呈深灰色,块状构造,斑状结构。岩石中斑晶主要为斜长石(图2c),含量约占20%,少量石英。斜长石斑晶多为半自形板状,粒径大小为1~4 mm,晶体中环带结构普遍发育(图2e),斜长石类型为中长石。石英斑晶呈熔蚀状(图2f),粒径小于1 mm,零星分布。基质为显微粒状–细粒结构,主要由斜长石组成,有少量石英。斜长石为半自形板状,粒径大小为0.15~0.5 mm。石英晶体少量,呈细小粒状,粒径小于0.2 mm。岩石次生蚀变较强,基质普遍产生较强的阳起石化,也可称为青磐岩化(图2e、图2f)。
3. 测试分析方法
锆石的分选在河北省区域地质矿产调查研究所(现为河北省区域地质调查院)实验室完成。锆石制靶、反射光、透射光、阴极发光照相在西北大学大陆动力学国家重点实验室完成。在双目镜下仔细挑选表面平整光洁且具不同长宽比例、不同柱锥面特征、不同颜色的锆石颗粒,再将这些锆石粘在双面胶上,用无色透明环氧树脂固定,待环氧树脂固化之后对其表面抛光至锆石中心。在锆石打点之前,通过反射光和CL图像详细观察锆石的晶体形态和内部结构特征,选择无明显裂痕及包裹体的锆石进行测年。LA-ICP-MS锆石U-Pb测年在自然资源部岩浆作用成矿与找矿重点实验室完成,采用193 nm ArF准分子(excimer)激光器的Geo Las200M剥蚀系统,ICP−MS为Agilent7700,激光束斑直径24 μm,以
91500 为年龄标定标样,GJ−1为同位素监控标样,NIST610为元素含量标样进行校正,普通铅校正依据实测204Pb进行校正,所得锆石同位素比值和年龄数据采用Glitter(ver4·0, Mac QuarieUniversity)程序进行计算处理,加权平均年龄图及谐和图的绘制采用Ludwig(2003)编写的Isoplot 程序。岩石主量元素、微量元素、稀土元素分析在中国地质调查局西安地质调查中心实验测试中心完成,其中主元素采用荷兰帕纳科公司Axios 4.0kW顺序式X射线荧光光谱仪(XRF)进行分析,分析精度优于5%;微量和稀土元素利用美国热电公司Series Ⅱ型SX50型电感耦合等离子质谱仪(ICP–MS)进行测定,分析精度优于5%~10%。
4. 测试结果
4.1 锆石LA-ICP-MS U-Pb 年代学
石英闪长玢岩样品(14BLUPb01)中锆石多为长柱状及短柱状(长150~350 μm),长宽比为1∶1~3∶1。锆石晶形较好,发育岩浆结晶锆石具有的震荡环带(图3)。27个有效分析点的结果显示Th含量为18.1×10−6~338.9×10−6,U含量为23.3×10−6~645.6×10−6,Th/U值为0.34~1.78(表1),也显示了岩浆成因特征。27个锆石206Pb/238U年龄范围为222.2~235.4 Ma,加权平均年龄(226.6±1.6) Ma(MSWD=0.41);谐和年龄值(225.0±2.9) Ma(MSWD=0.36),二者在误差范围内一致(图4)。(226.6±1.6) Ma的加权平均年龄代表了石英闪长玢岩的结晶年龄。
表 1 波洛尕熊石英闪长玢岩锆石LA-ICP-MS测年结果Table 1. LA-ICP-MS isotopic data of zircon from Boluogaxiong quartz diorite porphyrite样品
编号含量(10−6) Th/U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U Pb* Th U 比值 1σ 比值 1σ 比值 1σ 年龄
(Ma)1σ 年龄
(Ma)1σ 年龄(Ma) 1σ 1 9.9 84.6 232.2 0.36 0.0512 0.0014 0.2534 0.0069 0.0359 0.0006 250.6 62.2 229.3 5.6 227.2 3.7 2 7.4 76.6 169.3 0.45 0.0525 0.0015 0.2592 0.0073 0.0358 0.0006 307.6 64.7 234.0 5.9 226.7 3.9 3 5.1 52.2 103.5 0.50 0.0502 0.0019 0.2483 0.0088 0.0359 0.0007 203.7 84.4 225.2 7.2 227.2 4.4 4 11.9 116.9 260.1 0.45 0.0555 0.0012 0.2844 0.0062 0.0372 0.0006 430.1 46.8 254.1 4.9 235.4 3.6 5 2.5 18.1 45.5 0.40 0.0517 0.0022 0.2547 0.0104 0.0357 0.0008 274.0 95.9 230.4 8.4 226.1 4.9 6 15.0 138.1 328.4 0.42 0.0521 0.0023 0.2580 0.0107 0.0359 0.0008 288.1 98.1 233.1 8.7 227.6 5.1 8 13.7 113.5 235.3 0.48 0.0526 0.0022 0.2611 0.0101 0.0360 0.0008 313.3 91.3 235.5 8.2 227.8 4.9 9 11.2 116.2 249.6 0.47 0.0516 0.0012 0.2570 0.0060 0.0361 0.0006 269.7 53.0 232.3 4.9 228.6 3.6 10 4.9 83.9 100.0 0.84 0.0529 0.0021 0.2603 0.0096 0.0357 0.0007 324.1 86.1 234.9 7.7 226.0 4.6 11 7.6 72.7 172.5 0.42 0.0527 0.0015 0.2596 0.0072 0.0357 0.0006 315.6 62.8 234.4 5.8 226.3 3.8 12 6.2 68.2 145.0 0.47 0.0559 0.0031 0.2745 0.0141 0.0356 0.0010 448.7 119.2 246.3 11.2 225.5 6.1 13 9.7 97.3 231.2 0.42 0.0508 0.0026 0.2509 0.0122 0.0358 0.0009 230.3 115.3 227.3 9.9 227.0 5.5 14 11.2 101.0 253.2 0.40 0.0549 0.0017 0.2723 0.0079 0.0360 0.0006 409.1 65.2 244.6 6.3 227.7 4.0 15 17.5 171.2 412.6 0.42 0.0531 0.0014 0.2644 0.0069 0.0361 0.0006 333.0 59.6 238.2 5.6 228.7 3.8 16 14.6 120.5 353.1 0.34 0.0528 0.0014 0.2604 0.0069 0.0358 0.0006 317.8 60.0 235.0 5.5 226.8 3.8 17 1.3 41.5 23.3 1.78 0.0520 0.0075 0.2540 0.0344 0.0354 0.0020 285.5 300.7 229.8 27.8 224.4 12.4 18 8.2 93.1 202.3 0.46 0.0523 0.0025 0.2574 0.0114 0.0357 0.0009 296.5 104.7 232.5 9.2 226.2 5.3 19 12.3 139.3 284.8 0.49 0.0505 0.0012 0.2475 0.0059 0.0355 0.0006 219.9 53.8 224.6 4.8 225.0 3.5 20 29.1 338.9 645.6 0.52 0.0541 0.0010 0.2641 0.0052 0.0354 0.0005 375.0 42.2 238.0 4.2 224.3 3.3 21 1.2 26.1 24.8 1.05 0.0504 0.0057 0.2481 0.0266 0.0357 0.0015 212.1 243.5 225.1 21.7 226.3 9.4 22 5.5 57.9 150.9 0.38 0.0510 0.0020 0.2506 0.0094 0.0356 0.0007 241.3 89.3 227.1 7.7 225.7 4.6 23 10.8 148.9 244.1 0.61 0.0519 0.0015 0.2534 0.0071 0.0354 0.0006 281.0 64.0 229.3 5.7 224.3 3.8 24 8.9 116.1 170.0 0.68 0.0531 0.0027 0.2568 0.0120 0.0351 0.0009 330.8 109.4 232.1 9.7 222.4 5.4 25 10.5 92.7 222.5 0.42 0.0534 0.0013 0.2581 0.0064 0.0351 0.0006 344.7 55.4 233.1 5.1 222.2 3.5 26 8.2 95.0 192.9 0.49 0.0513 0.0021 0.2512 0.0098 0.0355 0.0007 253.4 92.0 227.6 8.0 225.1 4.6 27 5.8 63.5 164.5 0.39 0.0525 0.0030 0.2637 0.0140 0.0364 0.0010 308.9 124.9 237.6 11.3 230.5 6.2 29 8.9 101.2 191.6 0.53 0.0533 0.0024 0.2620 0.0109 0.0357 0.0008 339.5 96.7 236.3 8.7 226.0 5.0 4.2 地球化学
4.2.1 主量元素
波洛尕熊石英闪长玢岩主量元素中(表2),样品的SiO2含量为55.68%~56.26%,属于中性-中偏基性岩石。MgO含量为5.23%~5.39%,Mg#为58.95~60.46。在硅-碱图(图5a)中,样品点全部位于亚碱性范围的闪长岩内,靠近辉长闪长岩边界。岩石的全碱含量为4.40%~5.70%,平均为4.88%。K2O/Na2O=0.40~0.87,属于钠质。在SiO2-K2O图(图5b)上,样品点均位于钙碱性–高钾钙碱性系列范围。岩石Al2O3含量为16.86%~17.17%,A/CNK为0.87~0.90,平均为0.89,A/NK为2.14~2.63,指示为准铝质岩石。
表 2 波洛尕熊石英闪长玢岩主量元素(%)和微量元素含量(10−6)Table 2. Contents of major elements (%) and trace elements (10−6) of Boluogaxiong quartz diorite porphyrite样品号 14BLH04 14BLH05 14BLH06 14BLH07 14BLH08 SiO2 56.03 56.24 56.26 55.70 55.68 TiO2 0.96 0.86 0.88 0.92 0.90 Al2O3 17.17 17.14 17.10 16.86 16.87 Fe2O3 1.64 1.49 1.46 1.73 1.75 FeO 5.08 4.96 5.03 5.02 4.97 MnO 0.17 0.12 0.12 0.13 0.13 MgO 5.23 5.33 5.39 5.36 5.28 CaO 7.14 6.98 6.76 5.98 6.58 Na2O 3.28 3.12 3.12 3.05 3.04 K2O 1.32 1.28 1.46 2.65 2.10 P2O5 0.24 0.22 0.21 0.21 0.24 LOI 1.71 2.18 2.17 2.36 2.43 H2O+ 0.79 1.34 1.33 1.40 1.29 Total 99.97 99.92 99.96 99.97 99.97 A/CNK 0.87 0.89 0.90 0.90 0.88 Mg# 58.95 60.36 60.46 59.47 59.22 Sc 18.9 17.2 18.7 18.1 17.6 V 149 137 142 146 144 Cr 217 202 228 230 226 Ni 73.4 77.1 80.0 73.3 71.3 Co 25.0 25.8 25.7 23.8 24.7 Rb 79.2 69.0 87.5 181.0 140.0 Ba 540 517 627 796 727 Th 4.45 3.97 4.09 4.11 4.06 U 1.13 1.05 1.06 1.39 1.34 Ta 0.76 0.67 0.72 0.76 0.71 Nb 9.95 9.14 9.31 9.61 9.18 Pb 8.79 6.19 7.87 8.27 9.30 Sr 654 638 666 598 619 Zr 138 133 130 132 137 Hf 3.96 3.76 3.89 3.81 3.88 Y 13.8 13.0 13.2 13.8 13.6 La 19.7 22.2 22.2 25.1 22.6 Ce 40.3 47.4 45.0 49.2 46.1 Pr 5.06 5.52 5.59 5.78 5.57 Nd 19.90 20.50 22.50 21.30 21.60 Sm 4.27 4.32 4.40 4.38 4.40 Eu 1.16 1.27 1.36 1.40 1.37 Gd 3.98 3.79 3.98 3.99 4.06 Tb 0.58 0.56 0.60 0.62 0.60 Dy 2.95 2.84 2.91 3.01 3.07 Ho 0.56 0.54 0.54 0.57 0.58 Er 1.50 1.44 1.45 1.48 1.55 Tm 0.22 0.21 0.21 0.22 0.22 Yb 1.44 1.31 1.32 1.39 1.32 Lu 0.21 0.19 0.20 0.21 0.19 ΣREE 101.83 112.09 112.26 118.65 113.23 LREE/HREE 7.90 9.30 9.01 9.33 8.77 (La/Yb)N 9.81 12.16 12.06 12.95 12.28 δEu 0.86 0.96 0.99 1.02 0.99 δCe 0.99 1.05 0.99 1.00 1.01 (La/Sm)N 2.98 3.32 3.26 3.70 3.32 (Gd/Yb)N 2.29 2.39 2.49 2.37 2.54 注:Mg#=100MgO/(MgO+FeO+Fe2O3)。 图 5 波洛尕熊石英闪长玢岩的(K2O+Na2O)- SiO2(a)(据Middlemost,1994)和K2O- SiO2图解(b)(实线据Peccerillo et al., 1976;虚线据Middlemost, 1985))Figure 5. (a) (K2O+Na2O)- SiO2 and (b) K2O- SiO2 plots for the Boluogaxiong quartz diorite porphyrite4.2.2 微量元素
原始地幔标准化微量元素蛛网图(图6a)显示,石英闪长玢岩样品的微量元素配分模式近一致。相比原始地幔,岩石明显富集大离子亲石元素、轻稀土和Pb;相对亏损高场强元素。Rb/Sr=0.108~0.303,Nb/Ta为12.64~13.64。
图 6 波洛尕熊石英闪长玢岩的微量元素原始地幔标准化蛛网图(a)及稀土元素球粒陨石标准化配分模式图(b)(标准化数值据Sun et al., 1989)Figure 6. (a) Primitive mantle-normalized trace element patterns and (b) chondrite-normalized REE patternsfor the Boluogaxiong quartz diorite porphyrite样品稀土总量ΣREE为101.83×10−6~118.65×10−6,平均为111.61×10−6。在稀土元素球粒陨石标准化配分图上,各样品配分曲线几近一致(图6b),显示了同源岩浆演化的特征。轻重稀土比值LREE/HREE为7.90~9.33,平均为8.86,轻重稀土明显分异,(La/Yb)N为9.81~12.95,平均值为11.85,显示了轻稀土元素LREE强烈富集的右倾式稀土配分型式。(La/Sm)N为2.98~3.70,平均值为3.31,(Gd/Yb)N为2.29~2.54,平均值为2.42,说明轻稀土之间分异较强,而重稀土之间分异不明显,曲线相对平坦。δEu为0.86~1.02,平均值0.97,基本不显示Eu异常。
5. 讨论
5.1 岩浆源区和岩石成因
波洛尕熊石英闪长玢岩具有较低的SiO2含量(55.68%~56.26%)、较高的Mg#值(58.95~60.46)和Cr含量(Cr=202×10−6~230×10−6),显示出一定程度幔源岩浆的源区特点,可排除下地壳镁铁质物质直接部分熔融形成。但样品的Sr含量为598×10−6~666×10−6,平均值635×10−6,显著高于地幔平均值(17.8×10−6,据Taylor et al.,1985),指示其原始岩浆也不太可能单一来源于地幔。样品的Nb/Ta值为(12.64~13.64),介于地壳平均值8.3(Rudnick et al.,2003)和地幔平均值17.5(Sun et al.,1989)之间;Rb/Sr值(0.108~0.303),介于地幔值0.034和地壳值0.35(Taylor et al.,1995)之间,因此,认为石英闪长玢岩的岩浆是由地壳和地幔物质混合形成的。另外,Zr/Hf值(33.42~35.37),介于上地幔(30.74)与地壳(44.68)之间,更接近于地幔平均值(Taylor et al.,1985),也反映出壳幔岩浆混合的特点。
结合东昆仑区域上研究,东昆仑地区在晚二叠世—晚三叠世发生了大规模的幔源岩浆底侵作用和壳幔混合作用,尤其是东昆仑香日德–香加–加鲁河一带广泛发育富含暗色微粒包体的花岗闪长岩类(谌宏伟等,2005;莫宣学等,2007;Xia et al.,2014;Xiong et al.,2014;陈国超等,2017,2018;秦拯纬等,2018)。同时野外可看到波洛尕熊地区大片的花岗闪长岩中发育暗色微粒包体,岩性与本次研究的石英闪长玢岩一致。综上所述,认为波洛尕熊石英闪长玢岩为壳幔岩浆混合的产物。
5.2 大地构造意义
波洛尕熊石英闪长玢岩亏损高场强元素,富集大离子亲石元素,显示出明显的弧岩浆岩特点。样品的TiO2含量为0.86%~0.96%,与岛弧型玄武岩的含量0.98%非常接近(Pearce,1982);样品的微量元素比值La/Ta=25.92~33.13(>15),Nb/La=0.38~0.51(<1),Th/Nb=0.43~0.45(>0.07),Zr/Y=9.57~10.43(4~12),Th/Yb=2.96~3.10(>0.1),也显示出岛弧或大陆边缘弧的特征(Condie,1989)。在FeOT−MgO−Al2O3图解(图7a)中,样品均落在岛弧及活动大陆边缘范围;在R1−R2判别图(图7b)中,样品均落在板块碰撞前的俯冲消减区域。
在后碰撞阶段会产生大量具有壳幔混合特征的中酸性岩浆岩。由于后碰撞花岗岩的源区主要为早期洋壳俯冲形成的地壳物质,使得它们与岛弧岩浆岩具有十分相近的地球化学特征(孔会磊等,2019)。故而简单地运用微量元素图解来判别构造环境可能得到错误的结论,故结合区域构造演化来探讨其形成的构造背景十分必要(孔会磊等,2015)。
与俯冲−碰撞相关的中酸性岩浆岩在东昆仑分布广泛,也是不同学者研究的热点。然而,对于古特提斯洋闭合的时限一直存在争议。多数研究者认为古特提斯洋在晚二叠世开始俯冲,闭合于中三叠世,260~238 Ma为俯冲阶段,237~230 Ma为同碰撞阶段(Zhang et al., 2012;李瑞保等,2012; Xiong et al., 2012,2013;罗明非等,2015;孔会磊等,2015,2019;陈国超等,2020)。近年来,众多研究者相继发现了俯冲晚期阶段的岩浆岩记录,形成时代介于245~238 Ma(熊富浩,2014;Li et al.,2015a;Xia et al.,2015a;李金超等,2015b;栗亚芝等,2015;陈功等,2016;国显正等,2016;邓文兵等,2016;董亮琼等,2016;张玉等,2017;菅坤坤等,2017;李积清等,2021;曾闰灵等,2021;王巍等,2021;吴树宽等,2023)。还有一些学者认为古特提斯俯冲作用一直持续至晚三叠世,所有的三叠纪中酸性侵入岩都是俯冲阶段的产物(Yuan et al.,2009;Wang et al.,2011;Ding et al.,2014)。
李瑞保等(2012)从沉积学的角度探讨了东昆仑古特提斯的构造演化,认为阿尼玛卿古特提斯洋晚二叠世开始向北俯冲,中三叠世晚期—晚三叠世早期为东昆仑陆(弧)陆全面碰撞造山阶段。Xia等(2014)通过小诺木洪花岗闪长岩及其中的暗色微粒包体研究,认为东昆仑240~232 Ma为陆陆碰撞与板片断离阶段,232~220 Ma为后碰撞下地壳增厚阶段。Xiong等(2014)获得巴隆地区三道湾似斑状花岗闪长岩及其中的暗色微粒包体结晶年龄分别为(223.6±1.1) Ma和(225.4±1.3) Ma,认为东昆仑古特提斯洋230~223 Ma为后碰撞下地壳增厚阶段。228~204 Ma部分岩浆岩具A型花岗岩和埃达克质岩浆岩特征也反映了东昆仑地区已处于加厚下地壳拆沉导致的伸展构造背景(陈国超等,2013;Xiong et al.,2014;Xia et al.,2014;Hu et al.,2016)。综上,笔者认为东昆仑成矿带在晚三叠世约228 Ma已开始进入后碰撞构造演化阶段。
本研究获得波洛尕熊石英闪长玢岩的加权平均年龄为(226.6±1.6) Ma(MSWD=0.41),表明岩体形成时代为晚三叠世,已处于后碰撞伸展阶段。东昆仑区域上与波洛尕熊石英闪长玢岩同时代约227 Ma岩浆岩出露众多,前人均认为形成于后碰撞伸展阶段(表3)。后碰撞阶段地壳增厚使下地壳物质部分熔融,“相对松弛”的应力背景使下地壳发生拆沉。下地壳物质熔融形成了大量的花岗质岩浆,同时有地幔物质的混染,最终形成了波洛尕熊石英闪长玢岩。
表 3 东昆仑~227 Ma岩浆岩的高精度同位素年龄Table 3. Isotopic dating results of the intrusions and volcanic rocks about 227 Ma in the East Kunlun序号 位置 岩石名称 测试方法 年龄(Ma) 资料来源 1 小尖山 辉长岩 锆石LA-MC-ICP-MS 227.8±0.9 奥琮等,2015 2 热水 流纹斑岩 锆石LA-ICP-MS 227.5±1.5 Hu et al.,2016 3 卡而却卡 似斑状二长花岗岩 锆石SHRIMP 227.3±1.8 丰成友等,2012 4 双庆 斜长花岗岩 锆石LA-ICP-MS 227.2±1.0 Xia et al.,2015b 5 加当根 花岗闪长斑岩 锆石LA-ICP-MS 227.0±1.0 Li et al.,2015b 6 拉陵高里沟脑 似斑状花岗闪长岩 锆石LA-ICP-MS 226.9±2.3 王秉璋等,2014 7 波洛尕熊 石英闪长玢岩 锆石LA-ICP-MS 226.6±1.6 本文数据 8 双庆 斜长花岗岩 锆石LA-ICP-MS 226.54±0.97 Xia et al.,2015b 9 冰沟 富闪深成岩脉 锆石LA-ICP-MS 226.4±3.5 Liu et al.,2017 10 冰沟 富闪深成岩脉 锆石SHRIMP 226.1±1.9 Liu et al.,2017 11 野马泉 花岗闪长岩 锆石LA-ICP-MS 226±2 宋忠宝等,2016 12 和勒冈希里克特 花岗闪长岩 锆石LA-ICP-MS 225±5 陈国超等,2013 13 和勒冈希里克特 闪长质包体 锆石LA-ICP-MS 224.9±4.1 陈国超等,2013 5.3 形成时代与找矿意义
东昆仑古特提斯构造域内目前已发现瓦勒尕、阿斯哈、五龙沟、大场、瑙木浑等一系列金矿床(点)(李金超等,2015a,2017),区域上金成矿作用及相关中酸性侵入岩时代多集中于印支期。张德全等(2005)获得五龙沟黄铁绢英岩化糜棱岩金矿石的绢云母Ar-Ar坪年龄为(236.5±0.8) Ma。陈柏林(2019)获得五龙沟金矿石英流体包裹体的Rb-Sr等时线年龄为(237±3) Ma。陈加杰(2018)获得阿斯哈金矿绢云母Ar-Ar坪年龄为(234.63±1.22) Ma。另外,前人获得阿斯哈金矿与成矿有关的石英闪长岩锆石U-Pb年龄为232.6~242 Ma(李金超等,2014;Chen et al., 2017;岳维好等,2019)。李金超等(2017)获得瑙木浑金矿区绢云母Ar-Ar坪年龄为(227.84±1.13) Ma,获得与金成矿关系密切的石英闪长岩锆石U–Pb年龄为(235.8±0.8) Ma。Zhang等(2017)通过对五龙沟地区水闸东沟–黄龙沟金矿成岩成矿年代学研究,厘定出237 Ma、231 Ma、220 Ma三期金矿化事件。李金超等(2018)获得西藏大沟金矿与金成矿关系密切的花岗闪长斑岩锆石U–Pb年龄为(225.0±1.2) Ma。
在热液型金矿分布区,往往有煌斑岩、辉绿岩、辉绿玢岩、闪长岩或闪长玢岩等暗色脉岩相伴产出(钱壮志等,1999)。在东昆仑中带,已发现的阿斯哈、按纳格、哈图、石灰沟等多个金矿床(点)中,一般都显示了金矿化与煌斑岩、闪长玢岩类等脉岩的密切时空关系(钱壮志等,1999;李碧乐等,2012;孔会磊等,2014)。钱壮志等(1999)获得石灰沟金矿床闪长玢岩脉成岩与金矿化年龄十分接近,根据闪长玢岩脉Au的高含量背景、相近的S同位素组成及稀土含量变化特征,揭示了闪长玢岩脉与金矿化具有密切的成因联系。Zhang等(2017)获得五龙沟地区水闸东沟–黄龙沟金矿金成矿关系密切的石英闪长玢岩锆石U–Pb年龄为(219.6±3.5) Ma,这与波洛尕熊石英闪长玢岩年龄接近。波洛尕熊金矿体主要产在花岗闪长岩体内构造破碎带与石英闪长玢岩接触部位,已成为明显的找矿标志,体现出密切的时空联系(肖积福等,2018)。
文中获得波洛尕熊金矿区与矿化带密切相关的石英闪长玢岩脉锆石U-Pb年龄为(226.6±1.6) Ma,形成于晚三叠世,为印支期东昆仑大规模岩浆活动的产物。进一步证明东昆仑金成矿作用集中形成于印支期,为古特提斯构造岩浆演化的产物。金矿区出露的印支期中基性岩脉尤其是闪长玢岩脉经常与金矿化关系密切,在今后金矿找矿勘查中应高度重视。
6. 结论
(1)波洛尕熊矿区石英闪长玢岩为准铝质钙碱性-高钾钙碱性系列岩石,富集大离子亲石元素和轻稀土,亏损高场强元素。Rb/Sr、Nb/Ta、Zr/Hf等特征反映出岩石为壳幔混合成因。
(2)笔者首次获得波洛尕熊金矿区与成矿关系密切的石英闪长玢岩锆石LA−ICP−MS U−Pb年龄为(226.6±1.6) Ma,形成时代为晚三叠世,为东昆仑古特提斯构造岩浆演化的产物。
(3)通过探讨东昆仑区域构造岩浆演化过程,认为波洛尕熊石英闪长玢岩为后碰撞伸展阶段地壳重熔的产物,东昆仑造山带在约228 Ma开始进入后碰撞阶段。
(4)印支期中基性岩脉尤其是闪长玢岩脉经常与东昆仑地区金矿化具有密切的时空和成因关系,在今后金矿找矿勘查中应高度重视。
致谢:野外工作得到青海有色地矿局八队波洛尕熊项目组的大力支持,锆石U-Pb年龄测试及数据处理得到自然资源部岩浆作用成矿与找矿重点实验室李艳广高级工程师、汪双双高级工程师的热心帮助,文稿修改过程中审稿专家提出了宝贵的修改意见,在此一并致以衷心的感谢。
-
图 5 波洛尕熊石英闪长玢岩的(K2O+Na2O)- SiO2(a)(据Middlemost,1994)和K2O- SiO2图解(b)(实线据Peccerillo et al., 1976;虚线据Middlemost, 1985))
Figure 5. (a) (K2O+Na2O)- SiO2 and (b) K2O- SiO2 plots for the Boluogaxiong quartz diorite porphyrite
图 6 波洛尕熊石英闪长玢岩的微量元素原始地幔标准化蛛网图(a)及稀土元素球粒陨石标准化配分模式图(b)(标准化数值据Sun et al., 1989)
Figure 6. (a) Primitive mantle-normalized trace element patterns and (b) chondrite-normalized REE patternsfor the Boluogaxiong quartz diorite porphyrite
图 7 波洛尕熊石英闪长玢岩构造环境判别图解(a据Pearce et al., 1977;b据Batchelor et al., 1985)
Figure 7. Tectonic discrimination diagrams for Boluogaxiong quartz diorite porphyrite
表 1 波洛尕熊石英闪长玢岩锆石LA-ICP-MS测年结果
Table 1 LA-ICP-MS isotopic data of zircon from Boluogaxiong quartz diorite porphyrite
样品
编号含量(10−6) Th/U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U Pb* Th U 比值 1σ 比值 1σ 比值 1σ 年龄
(Ma)1σ 年龄
(Ma)1σ 年龄(Ma) 1σ 1 9.9 84.6 232.2 0.36 0.0512 0.0014 0.2534 0.0069 0.0359 0.0006 250.6 62.2 229.3 5.6 227.2 3.7 2 7.4 76.6 169.3 0.45 0.0525 0.0015 0.2592 0.0073 0.0358 0.0006 307.6 64.7 234.0 5.9 226.7 3.9 3 5.1 52.2 103.5 0.50 0.0502 0.0019 0.2483 0.0088 0.0359 0.0007 203.7 84.4 225.2 7.2 227.2 4.4 4 11.9 116.9 260.1 0.45 0.0555 0.0012 0.2844 0.0062 0.0372 0.0006 430.1 46.8 254.1 4.9 235.4 3.6 5 2.5 18.1 45.5 0.40 0.0517 0.0022 0.2547 0.0104 0.0357 0.0008 274.0 95.9 230.4 8.4 226.1 4.9 6 15.0 138.1 328.4 0.42 0.0521 0.0023 0.2580 0.0107 0.0359 0.0008 288.1 98.1 233.1 8.7 227.6 5.1 8 13.7 113.5 235.3 0.48 0.0526 0.0022 0.2611 0.0101 0.0360 0.0008 313.3 91.3 235.5 8.2 227.8 4.9 9 11.2 116.2 249.6 0.47 0.0516 0.0012 0.2570 0.0060 0.0361 0.0006 269.7 53.0 232.3 4.9 228.6 3.6 10 4.9 83.9 100.0 0.84 0.0529 0.0021 0.2603 0.0096 0.0357 0.0007 324.1 86.1 234.9 7.7 226.0 4.6 11 7.6 72.7 172.5 0.42 0.0527 0.0015 0.2596 0.0072 0.0357 0.0006 315.6 62.8 234.4 5.8 226.3 3.8 12 6.2 68.2 145.0 0.47 0.0559 0.0031 0.2745 0.0141 0.0356 0.0010 448.7 119.2 246.3 11.2 225.5 6.1 13 9.7 97.3 231.2 0.42 0.0508 0.0026 0.2509 0.0122 0.0358 0.0009 230.3 115.3 227.3 9.9 227.0 5.5 14 11.2 101.0 253.2 0.40 0.0549 0.0017 0.2723 0.0079 0.0360 0.0006 409.1 65.2 244.6 6.3 227.7 4.0 15 17.5 171.2 412.6 0.42 0.0531 0.0014 0.2644 0.0069 0.0361 0.0006 333.0 59.6 238.2 5.6 228.7 3.8 16 14.6 120.5 353.1 0.34 0.0528 0.0014 0.2604 0.0069 0.0358 0.0006 317.8 60.0 235.0 5.5 226.8 3.8 17 1.3 41.5 23.3 1.78 0.0520 0.0075 0.2540 0.0344 0.0354 0.0020 285.5 300.7 229.8 27.8 224.4 12.4 18 8.2 93.1 202.3 0.46 0.0523 0.0025 0.2574 0.0114 0.0357 0.0009 296.5 104.7 232.5 9.2 226.2 5.3 19 12.3 139.3 284.8 0.49 0.0505 0.0012 0.2475 0.0059 0.0355 0.0006 219.9 53.8 224.6 4.8 225.0 3.5 20 29.1 338.9 645.6 0.52 0.0541 0.0010 0.2641 0.0052 0.0354 0.0005 375.0 42.2 238.0 4.2 224.3 3.3 21 1.2 26.1 24.8 1.05 0.0504 0.0057 0.2481 0.0266 0.0357 0.0015 212.1 243.5 225.1 21.7 226.3 9.4 22 5.5 57.9 150.9 0.38 0.0510 0.0020 0.2506 0.0094 0.0356 0.0007 241.3 89.3 227.1 7.7 225.7 4.6 23 10.8 148.9 244.1 0.61 0.0519 0.0015 0.2534 0.0071 0.0354 0.0006 281.0 64.0 229.3 5.7 224.3 3.8 24 8.9 116.1 170.0 0.68 0.0531 0.0027 0.2568 0.0120 0.0351 0.0009 330.8 109.4 232.1 9.7 222.4 5.4 25 10.5 92.7 222.5 0.42 0.0534 0.0013 0.2581 0.0064 0.0351 0.0006 344.7 55.4 233.1 5.1 222.2 3.5 26 8.2 95.0 192.9 0.49 0.0513 0.0021 0.2512 0.0098 0.0355 0.0007 253.4 92.0 227.6 8.0 225.1 4.6 27 5.8 63.5 164.5 0.39 0.0525 0.0030 0.2637 0.0140 0.0364 0.0010 308.9 124.9 237.6 11.3 230.5 6.2 29 8.9 101.2 191.6 0.53 0.0533 0.0024 0.2620 0.0109 0.0357 0.0008 339.5 96.7 236.3 8.7 226.0 5.0 表 2 波洛尕熊石英闪长玢岩主量元素(%)和微量元素含量(10−6)
Table 2 Contents of major elements (%) and trace elements (10−6) of Boluogaxiong quartz diorite porphyrite
样品号 14BLH04 14BLH05 14BLH06 14BLH07 14BLH08 SiO2 56.03 56.24 56.26 55.70 55.68 TiO2 0.96 0.86 0.88 0.92 0.90 Al2O3 17.17 17.14 17.10 16.86 16.87 Fe2O3 1.64 1.49 1.46 1.73 1.75 FeO 5.08 4.96 5.03 5.02 4.97 MnO 0.17 0.12 0.12 0.13 0.13 MgO 5.23 5.33 5.39 5.36 5.28 CaO 7.14 6.98 6.76 5.98 6.58 Na2O 3.28 3.12 3.12 3.05 3.04 K2O 1.32 1.28 1.46 2.65 2.10 P2O5 0.24 0.22 0.21 0.21 0.24 LOI 1.71 2.18 2.17 2.36 2.43 H2O+ 0.79 1.34 1.33 1.40 1.29 Total 99.97 99.92 99.96 99.97 99.97 A/CNK 0.87 0.89 0.90 0.90 0.88 Mg# 58.95 60.36 60.46 59.47 59.22 Sc 18.9 17.2 18.7 18.1 17.6 V 149 137 142 146 144 Cr 217 202 228 230 226 Ni 73.4 77.1 80.0 73.3 71.3 Co 25.0 25.8 25.7 23.8 24.7 Rb 79.2 69.0 87.5 181.0 140.0 Ba 540 517 627 796 727 Th 4.45 3.97 4.09 4.11 4.06 U 1.13 1.05 1.06 1.39 1.34 Ta 0.76 0.67 0.72 0.76 0.71 Nb 9.95 9.14 9.31 9.61 9.18 Pb 8.79 6.19 7.87 8.27 9.30 Sr 654 638 666 598 619 Zr 138 133 130 132 137 Hf 3.96 3.76 3.89 3.81 3.88 Y 13.8 13.0 13.2 13.8 13.6 La 19.7 22.2 22.2 25.1 22.6 Ce 40.3 47.4 45.0 49.2 46.1 Pr 5.06 5.52 5.59 5.78 5.57 Nd 19.90 20.50 22.50 21.30 21.60 Sm 4.27 4.32 4.40 4.38 4.40 Eu 1.16 1.27 1.36 1.40 1.37 Gd 3.98 3.79 3.98 3.99 4.06 Tb 0.58 0.56 0.60 0.62 0.60 Dy 2.95 2.84 2.91 3.01 3.07 Ho 0.56 0.54 0.54 0.57 0.58 Er 1.50 1.44 1.45 1.48 1.55 Tm 0.22 0.21 0.21 0.22 0.22 Yb 1.44 1.31 1.32 1.39 1.32 Lu 0.21 0.19 0.20 0.21 0.19 ΣREE 101.83 112.09 112.26 118.65 113.23 LREE/HREE 7.90 9.30 9.01 9.33 8.77 (La/Yb)N 9.81 12.16 12.06 12.95 12.28 δEu 0.86 0.96 0.99 1.02 0.99 δCe 0.99 1.05 0.99 1.00 1.01 (La/Sm)N 2.98 3.32 3.26 3.70 3.32 (Gd/Yb)N 2.29 2.39 2.49 2.37 2.54 注:Mg#=100MgO/(MgO+FeO+Fe2O3)。 表 3 东昆仑~227 Ma岩浆岩的高精度同位素年龄
Table 3 Isotopic dating results of the intrusions and volcanic rocks about 227 Ma in the East Kunlun
序号 位置 岩石名称 测试方法 年龄(Ma) 资料来源 1 小尖山 辉长岩 锆石LA-MC-ICP-MS 227.8±0.9 奥琮等,2015 2 热水 流纹斑岩 锆石LA-ICP-MS 227.5±1.5 Hu et al.,2016 3 卡而却卡 似斑状二长花岗岩 锆石SHRIMP 227.3±1.8 丰成友等,2012 4 双庆 斜长花岗岩 锆石LA-ICP-MS 227.2±1.0 Xia et al.,2015b 5 加当根 花岗闪长斑岩 锆石LA-ICP-MS 227.0±1.0 Li et al.,2015b 6 拉陵高里沟脑 似斑状花岗闪长岩 锆石LA-ICP-MS 226.9±2.3 王秉璋等,2014 7 波洛尕熊 石英闪长玢岩 锆石LA-ICP-MS 226.6±1.6 本文数据 8 双庆 斜长花岗岩 锆石LA-ICP-MS 226.54±0.97 Xia et al.,2015b 9 冰沟 富闪深成岩脉 锆石LA-ICP-MS 226.4±3.5 Liu et al.,2017 10 冰沟 富闪深成岩脉 锆石SHRIMP 226.1±1.9 Liu et al.,2017 11 野马泉 花岗闪长岩 锆石LA-ICP-MS 226±2 宋忠宝等,2016 12 和勒冈希里克特 花岗闪长岩 锆石LA-ICP-MS 225±5 陈国超等,2013 13 和勒冈希里克特 闪长质包体 锆石LA-ICP-MS 224.9±4.1 陈国超等,2013 -
奥琮, 孙丰月, 李碧乐, 等. 东昆仑祁漫塔格地区小尖山辉长岩地球化学特征、U−Pb年代学及其构造意义[J]. 大地构造与成矿学, 2015, 39(6): 1176−1184. AO Cong, SUN Fengyue, LI Bile, et al. U–Pb dating, geochemistry and tectonic implication of Xiaojianshan gabbro in Qimantage Mountain, Eastern Kunlun oregenic belt[J]. Geotectonica et Metallogenia,2015,39(6):1176−1184.
陈柏林. 东昆仑五龙沟金矿田地质特征与成矿地质体厘定[J]. 地质学报, 2019, 93(1): 179−196. doi: 10.3969/j.issn.0001-5717.2019.01.011 CHEN Bailin. Geological characteristics of the Wulonggou gold ore field and determination of metallogenic geological bodies in East Kunlun Mountains[J]. Acta Geologica Sinica,2019,93(1):179−196. doi: 10.3969/j.issn.0001-5717.2019.01.011
陈功, 裴先治, 李佐臣, 等. 东昆仑东段巴隆地区朝火鹿陶勒盖花岗闪长岩体锆石U-Pb年龄、地球化学及其地质意义[J]. 地质通报, 2016, 35(12): 1990−2005. doi: 10.3969/j.issn.1671-2552.2016.12.007 CHEN Gong, PEI Xianzhi, LI Zuochen, et al. Zircon U-Pb geochronology, geochemical characteristics and geological significance of Chaohuolutaolegai granodiorite in Balong area, East Kunlun Mountains[J]. Geological Bulletin of China,2016,35(12):1990−2005. doi: 10.3969/j.issn.1671-2552.2016.12.007
陈国超, 裴先治, 李瑞保, 等. 东昆仑造山带东段晚古生代−早中生代构造岩浆演化与成矿作用[J]. 地学前缘, 2020, 27(4): 33−48. CHEN Guochao, PEI Xianzhi, LI Ruibao, et al. Late Paleozoic-Early Mesozoic tectonic-magmatic evolution and mineralization in the eastern section of the East Kunlun Orogenic Belt[J]. Earth Science Frontiers,2020,27(4):33−48.
陈国超, 裴先治, 李瑞保, 等. 东昆仑东段三叠纪岩浆混合作用: 以香加南山花岗岩基为例[J]. 岩石学报, 2018, 34(8): 2441−2480. CHEN Guochao, PEI Xianzhi, LI Ruibao, et al. Triassic magma mixing and mingling at the the eastern section of Eastern Kunlun: A case study from Xiangjiananshan granitic batholith[J]. Acta Petrologica Sinica,2018,34(8):2441−2480.
陈国超, 裴先治, 李瑞保, 等. 东昆仑东段香加南山花岗岩基中加鲁河中基性岩体形成时代、成因及其地质意义[J]. 大地构造与成矿学, 2017, 41(6): 1097−1115. CHEN Guochao, PEI Xianzhi, LI Ruibao, et al. Age and Petrogenesis of Jialuhe Basic-Intermediate Pluton in Xiangjia’nanshan Granite Batholith in the Eastern Part of East Kunlun Orogenic Belt, and its Geological Significance[J]. Geotectonica et Metallogenia,2017,41(6):1097−1115.
陈国超, 裴先治, 李瑞保, 等. 东昆仑造山带晚三叠世岩浆混合作用: 以和勒冈希里克特花岗闪长岩体为例[J]. 中国地质, 2013, 40(4): 1044−1065. doi: 10.3969/j.issn.1000-3657.2013.04.005 CHEN Guochao, PEI Xianzhi, LI Ruibao, et al. Late Triassic magma mixing in the East Kunlun orogenic belt: A case study of Helegang Xilikete granodiorites[J]. Geology in China,2013,40(4):1044−1065. doi: 10.3969/j.issn.1000-3657.2013.04.005
陈加杰. 东昆仑造山带东端沟里地区构造岩浆演化与金成矿[D]. 武汉: 中国地质大学, 2018. CHEN Jiajie. Paleozoic-Mesozoic tectono-magmatic evolution and gold mineralization in Gouli Area, east end of East Kunlun Orogen[D]. Wuhan: China University of Geosciences, 2018.
谌宏伟, 罗照华, 莫宣学, 等. 东昆仑造山带三叠纪岩浆混合成因花岗岩的岩浆底侵作用机制[J]. 中国地质, 2005, 32(3): 386−395. doi: 10.3969/j.issn.1000-3657.2005.03.006 CHEN Hongwei, LUO Zhaohua, MO Xuanxue, et al. Underplating mechanism of Triassic granite of magma mixing origin in the East Kunlun orogenic belt[J]. Geology in China,2005,32(3):386−395. doi: 10.3969/j.issn.1000-3657.2005.03.006
邓文兵, 裴先治, 刘成军, 等. 东昆仑东段香日德地区察汗陶勒盖正长花岗岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 地质通报, 2016, 35(5): 687−699. DENG Wenbing, PEI Xianzhi, LIU Chengjun, et al. LA-ICP-MS zircon U-Pb dating of the Chahantaolegai syenogranites in Xiangride area of East Kunlun and its geological significance[J]. Geological Bulletin of China,2016,35(5):687−699.
董亮琼, 董国臣, 黄慧, 等. 东昆仑土鲁音花岗岩的地球化学、锆石U-Pb年龄及地质意义[J]. 中国地质, 2016, 43(5): 1737−1749. DONG Liangqiong, DONG Guochen, HUANG Hui, et al. Geochemical and zircon U-Pb dating characteristics and significance of the Tuluyin granites in the east of East Kunlun orogenic belt[J]. Geology in China,2016,43(5):1737−1749.
丰成友, 王松, 李国臣, 等. 青海祁漫塔格中晚三叠世花岗岩: 年代学、地球化学及成矿意义[J]. 岩石学报, 2012, 28(2): 665−678. FENG Chengyou, WANG Song, LI Guochen, et al. Middle to Late Triassic granitoids in the Qimantage area, Qinghai Province, China: Chronology, geochemistry and metallogenic significances[J]. Acta Petrologica Sinica,2012,28(2):665−678.
国显正, 贾群子, 孔会磊, 等. 东昆仑东段哈日扎石英闪长岩时代、成因及其地质意义[J]. 地质科技情报, 2016, 35(5): 18−26. GUO Xianzheng, JIA Qunzi, KONG Huilei, et al. Zircon U-Pb geochronology and Geochemistry of Harizha quartz diorite in the eastern section from East Kunlun[J]. Geological Science and Technology Information,2016,35(5):18−26.
菅坤坤, 朱云海, 王利伟, 等. 东昆仑中灶火地区中三叠世花岗岩LA-ICP-MS锆石U-Pb定年、岩石成因及构造意义[J]. 地质论评, 2017, 63(3): 659−676. JIAN Kunkun, ZHU Yunhai, WANG Liwei, et al. Zircon LA-ICP-MS age dating, petrogenesis and tectonic implications of the middle Triassic granites from the Zhongzaohuo area, East Kunlun[J]. Geological Review,2017,63(3):659−676.
韩建军, 李红刚, 何俊, 等. 东昆仑东段到木提岩体成因及构造意义: 来自年代学及地球化学的约束[J]. 西北地质, 2023, 56(6): 140−154. HAN Jianjun, LI Honggang, HE Jun, et al. Petrogenesis and Tectonic Implications of Daomuti Intrusive Rocks in East Kunlun Orogen: Constraints from the Geochronology and Geochemistry[J]. Northwestern Geology,2023,56(6):140−154.
孔会磊, 李金超, 黄军, 等. 东昆仑小圆山铁多金属矿区斜长花岗斑岩锆石U-Pb测年、岩石地球化学及找矿意义[J]. 中国地质, 2015, 42(3): 521−532. doi: 10.3969/j.issn.1000-3657.2015.03.010 KONG Huilei, LI Jinchao, HUANG Jun, et al. Zircon U-Pb dating and geochemical characteristics of the plagiogranite porphyry from the Xiaoyuanshan iron-polymetallic ore district in East Kunlun Mountains[J]. Geology in China,2015,42(3):521−532. doi: 10.3969/j.issn.1000-3657.2015.03.010
孔会磊, 李金超, 贾群子, 等. 青海东昆仑拉浪麦钨多金属矿区英云闪长岩锆石U-Pb测年、岩石地球化学及找矿意义[J]. 地质科学, 2019, 54(2): 590−607. KONG Huilei, LI Jinchao, JIA Qunzi, et al. Zircon U-Pb dating and geochemistry of the tonalite from Lalangmai tungsten-polymetallic ore district in East Kunlun, Qinghai Province, with implications for prospecting[J]. Chinese Journal of Geology,2019,54(2):590−607.
孔会磊, 李金超, 栗亚芝, 等. 青海东昆仑东段按纳格闪长岩地球化学及锆石U-Pb年代学研究[J]. 地质科技情报, 2014, 33(6): 11−17. KONG Huilei, LI Jinchao, LI Yazhi, et al. Geochemistry and zircon U-Pb geochronology of Annage diorite in the eastern section from East Kunlun in Qinghai province[J]. Geological Science and Technology Information,2014,33(6):11−17.
孔会磊, 栗亚芝, 李金超, 等. 东昆仑希望沟橄榄辉长岩的岩石成因: 地球化学、锆石U−Pb年龄与Hf 同位素制约[J]. 中国地质, 2021, 48(1): 173−188. KONG Huilei, LI Yazhi, LI Jinchao, et al. Petrogenesis of Xiwanggou olivine gabbro in East Kunlun Mountains: Constraints from geochemistry, zircon U-Pb dating and Hf isotopes[J]. Geology in China,2021,48(1):173−188.
李碧乐, 沈鑫, 陈广俊, 等. 青海东昆仑阿斯哈金矿Ⅰ号脉成矿流体地球化学特征和矿床成因[J]. 吉林大学学报(地球科学版), 2012, 42(6): 1676−1687. LI Bile, SHEN Xin, CHEN Guangjun, et al. Geochemical features of ore-forming fluids and metallogenesis of veinⅠin Asiha gold ore deposit, Eastern Kunlun, Qinghai Province[J]. Journal of Jilin University(Earth Science Edition),2012,42(6):1676−1687.
李积清, 张鑫利, 王涛, 等. 东昆仑战红山地区花岗斑岩LA-ICP-MS锆石U-Pb测年及岩石地球化学特征[J]. 西北地质, 2021, 54(1): 30−40. LI Jiqing, ZHANG Xinli, WANG Tao, et al. Zircon U-Pb dating and geochemical characteristics of granite porphyry in Zhanhongshan area, Eastern Kunlun[J]. Northwestern Geology,2021,54(1):30−40.
李金超, 杜玮, 成永生, 等. 青海省东昆仑成矿带主要金矿床特征及关键控矿因素分析[J]. 地质与勘探, 2015a, 51(6): 1079−1088. LI Jinchao, DU Wei, CHENG Yongsheng, et al. The key ore-controlling factors and characteristics of the main gold deposits in the East Kunlun belt, Qinghai Province[J]. Geology and Exploration,2015a,51(6):1079−1088.
李金超, 杜玮, 孔会磊, 等. 青海省东昆仑大水沟金矿英云闪长岩锆石U-Pb测年、岩石地球化学及其找矿意义[J]. 中国地质, 2015b, 42(3): 509−520. LI Jinchao, DU Wei, KONG Huilei, et al. Zircon U-Pb dating and geochemical characteristics of the tonalite in the Dashuigou gold deposit of Eastern Kunlun Mountains, Qinghai Province[J]. Geology in China,2015b,42(3):509−520.
李金超, 贾群子, 杜玮, 等. 东昆仑东段阿斯哈矿床石英闪长岩LA-ICP-MS锆石U-Pb定年及岩石地球化学特征[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1188−1199. LI Jinchao, JIA Qunzi, DU Wei, et al. Geochemical characteristics of Asiha quartz diorite in east segment of the eastern Kunlun and their geological implications[J]. Journal of Jilin University (Earth Science Edition),2014,44(4):1188−1199.
李金超, 孔会磊, 栗亚芝, 等. 青海东昆仑西藏大沟金矿床花岗闪长斑岩锆石U-Pb年龄、地球化学及其成矿意义[J]. 地质力学学报, 2018, 24(2): 188−198. LI Jinchao, KONG Huilei, LI Yazhi, et al. Zircon U-Pb dating, geochemical characteristics and metallogenic significance of granodiorite porphyry from the Xizangdagou gold deposit in East Kunlun, Qinghai Province[J]. Journal of Geomechanics,2018,24(2):188−198.
李金超, 孔会磊, 栗亚芝, 等. 青海东昆仑瑙木浑金矿蚀变绢云母Ar-Ar年龄、石英闪长岩锆石U-Pb年龄和岩石地球化学特征[J]. 地质学报, 2017, 91(5): 979−991. LI Jinchao, KONG Huilei, LI Yazhi, et al. Ar-Ar age of altered sericite, zircon U-Pb age of quartz diorite and geochemistry of the Naomuhun gold deposit, East Kunlun[J]. Acta Geologica Sinica,2017,91(5):979−991.
李瑞保, 裴先治, 李佐臣, 等. 东昆仑东段晚古生代-中生代若干不整合面特征及其对重大构造事件的响应[J]. 地学前缘, 2012, 19(5): 244−254. LI Ruibao, PEI Xianzhi, LI Zuochen, et al. Geological characteristics of Late Paleozoic-Mesozoic unconformities and their response to some significant tectonic events in eastern part of Eastern Kunlun[J]. Earth Science Frontiers,2012,19(5):244−254.
栗亚芝, 孔会磊, 李金超, 等. 青海五龙沟矿区月亮湾斜长花岗岩地球化学特征及U-Pb年代学研究[J]. 矿物岩石地球化学通报, 2015, 34(2): 401−409. LI Yazhi, KONG Huilei, LI Jinchao, et al. Geochemistry and zircon U-Pb geochronology of the Yueliangwan plagiogranite in the Wulonggou gold deposit, Qinghai Province[J]. Bulletin of Mineralogy, Petrology and Geochemistry,2015,34(2):401−409.
罗明非, 莫宣学, 喻学惠, 等. 东昆仑五龙沟晚二叠世花岗闪长岩LA−ICP−MS锆石U−Pb定年、岩石成因及意义[J]. 地学前缘, 2015, 22(5): 182−195. LUO Mingfei, MO Xuanxue, YU Xuehui, et al. Zircon U−Pb geochronology, petrogenesis and implications of the Later Permian granodiorite from the Wulonggou area in East Kunlun, Qinghai Province[J]. Earth Science Frontiers,2015,22(5):182−195.
莫宣学, 罗照华, 邓晋福, 等. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, 2007, 13(3): 403−414. doi: 10.3969/j.issn.1006-7493.2007.03.010 MO Xuanxue, LUO Zhaohua, DENG Jinfu, et al. Granitoids and crustal growth in the East–Kunlun Orogenic Belt[J]. Geological Journal of China Universities,2007,13(3):403−414. doi: 10.3969/j.issn.1006-7493.2007.03.010
钱壮志, 李厚民, 胡正国, 等. 东昆仑中带闪长玢岩脉与金矿成矿关系——以石灰沟金矿床为例[J]. 西安工程学院学报, 1999, 21(1): 1−4. QIAN Zhuangzhi, LI Houmin, HU Zhengguo, et al. The relationship between the dioritic porphyritedikes and the gold mineralization in the middle belt of East Kunlun Mountains[J]. Journal of Xi’an Engineering University,1999,21(1):1−4.
秦拯纬, 马昌前, 付建明, 等. 东昆仑香加花岗质岩体中镁铁质包体成因: 岩相学及地球化学证据[J]. 地球科学, 2018, 43(7): 2420−2437. QIN Zhengwei, MA Changqian, FU Jianming, et al. The origin of mafic enclaves in Xiangjia granitic pluton of East Kunlun Orogenic Belt: Evidence from petrography and geochemistry[J]. Earth Science,2018,43(7):2420−2437.
宋忠宝, 张雨莲, 贾群子, 等. 青海祁漫塔格地区野马泉花岗闪长岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 地质通报, 2016, 35(12): 2006−2013. SONG Zhongbao, ZHANG Yulian, JIA Qunzi, et al. LA-ICPMS zircon U-Pb age of the Yemaquan granodiorite in the Qimantag area, Qinghai Province and its geological implications[J]. Geological Bulletin of China,2016,35(12):2006−2013.
孙非非, 张爱奎, 刘智刚, 等. 东昆仑西段阿其音金矿成矿流体特征及其成因机制[J]. 西北地质, 2023, 56(6): 82−94. SUN Feifei, ZHANG Aikui, LIU Zhigang, et al. Analysis of the Genesis and H−O−S−Pb Isotopic Characteristics of Aqiyin Gold Deposit in the Western Section of the East Kunlun[J]. Northwestern Geology,2023,56(6):82−94.
田龙, 康磊, 刘良, 等. 东昆仑巴什尔希晚奥陶世二长花岗岩成因及其地质意义[J]. 西北地质, 2023, 56(2): 28−45. TIAN Long, KANG Lei, LIU Liang, et al. Petrogenesis and Geological Implications of Bashenerxi Monzogranite from East Kunlun Orogen Belt[J]. Northwestern Geology,2023,56(2):28−45.
王秉璋, 陈静, 罗照华, 等. 东昆仑祁漫塔格东段晚二叠世-早侏罗世侵入岩岩石组合时空分布、构造环境的讨论[J]. 岩石学报, 2014, 30(11): 3213−3228. WANG Bingzhang, CHEN Jing, LUO Zhaohua, et al. Spatial and temporal distribution of Late Permian-Early Jurassic intrusion assemblages in eastern Qimantag area, East Kunlun, and their tectonic settings[J]. Acta Petrologica Sinica,2014,30(11):3213−3228.
王鸿祯, 杨森南, 刘本培. 中国及邻区构造古地理和生物古地理[M]. 武汉: 中国地质大学出版社, 1990, 1−17. WANG Hongzhen, YANG Sennan, LIU Benpei. Tectonopalaeogeography and Palaeobiogeography of China and Adjacent Regions[M]. Wuhan: China University of Geosciences Press, 1990, 1−17.
王巍, 熊富浩, 马昌前, 等. 东昆仑造山带索拉沟地区三叠纪赞岐质闪长岩的成因机制及其对古特提斯造山作用的启示[J]. 地球科学, 2021, 46(8): 2887−2902. WANG Wei, XIONG Fuhao, MA Changqian, et al. Petrogenesis of Triassic Suolagou sanukitoid - like diorite in East Kunlun Orogen and its implications for Paleo - Tethyan Orogeny[J]. Earth Science, 2021, 46(8): 2887−2902.
吴树宽, 陈国超, 李积清, 等. 东昆仑东段沟里地区战红山过铝质流纹斑岩年代学、岩石成因及构造意义[J]. 西北地质, 2023, 56(2): 92−108. WU Shukuan, CHEN Guochao, LI Jiqing, et al. Geochronology, petrogenesis and tectonic significance of Zhanhongshan peraluminous rhyolite porphyry in Gouli area, eastern section of East Kunlun[J]. Northwestern Geology,2023,56(2):92−108.
肖积福, 张志强, 何俊江, 等. 青海省都兰县波洛尕熊地区金多金属矿地质特征与找矿标志[J]. 中国锰业, 2018, 36(6): 134−137. XIAO Jifu, ZHANG Zhiqiang, HE Junjiang, et al. Geological Characteristics and Prospecting Criteria of Gold Ore Polymetallic Deposit in Dulan County of Qinghai Province[J]. China’s Manganese Industry,2018,36(6):134−137.
熊富浩. 东昆仑造山带东段古特提斯域花岗岩类时空分布、岩石成因及其地质意义[D]. 武汉: 中国地质大学, 2014. XIONG Fuhao. Spatial-temporal Pattern, Petrogenesis and Geological Implications of Paleo-Tethyan Granitoids in the East Kunlun Orogenic Belt(Eastern Segment)[D]. Wuhan: China University of Geoscience, 2014.
许志琴, 杨经绥, 李海兵, 等. 造山的高原—青藏高原的地体拼合、碰撞造山及隆升机制[M]. 北京: 地质出版社, 2007, 1−458. XU Zhiqin, YANG Jingsui, LI Haibing, et al. Orogenic Palteaux: Terrane Aamalgamation, Collision and Uplift in the Qinghai-Tibet Plateau[M]. Beijing: Geological Publishing House, 2007, 1−458.
许志琴, 杨经绥, 李文昌, 等. 青藏高原中的古特提斯体制与增生造山作用[J]. 岩石学报, 2013, 29(6): 1847−1860. XU Zhiqin, YANG Jingsui, LI Wenchang, et al. Paleo-Tethys system and accretionary orogen in the Tibet Plateau[J]. Acta Petrologica Sinica,2013,29(6):1847−1860.
冶玉娟, 康伟浩, 冶文斌. 青海波洛尕熊地区多金属矿成因分析及找矿标志[J]. 青海大学学报, 2017, 35(5): 85−88. YE Yujuan, KANG Weihao, YE Wenbin. Geological background and prospecting criteriain of the gold polymetallic ore at Boluogaxiong area in Qinghai province[J]. Journal of Qinghai University,2017,35(5):85−88.
岳维好, 周家喜. 青海都兰县阿斯哈石英闪长岩岩石地球化学、锆石U-Pb年龄与Hf同位素特征[J]. 地质通报, 2019, 38(2/3): 328−338. YUE Weihao, ZHOU Jiaxi. Geochemistry, zircon U-Pb age and Hf isotopic characteristics of the Asiha diorite in Dulan County, Qinghai Province[J]. Geological Bulletin of China,2019,38(2/3):328−338.
曾闰灵, 魏俊浩, 李欢, 等. 东昆仑鑫拓斑状二长花岗岩成因及其地质意义[J]. 大地构造与成矿学, 2021, 45(6): 1233−1251. ZENG Runling, WEI Junhao, LI Huan, et al. Petrogenesis of the Xintuo porphyritic monzogranite from East Kunlun and its geological implications[J]. Geotectonica et Metallogenia,2021,45(6):1233−1251.
张德全, 党兴彦, 佘宏全, 等. 柴北缘—东昆仑地区造山型金矿床的Ar-Ar测年及其地质意义[J]. 矿床地质, 2005, 24(2): 87−98. ZHANG Dequan, DANG Xingyan, SHE Hongquan, et al. Ar-Ar dating of orogenic gold deposits in northern margin of Qaidam and East Kunlun Mountains and its geological significance[J]. Mineral Deposits,2005,24(2):87−98.
张明东, 马昌前, 王连训, 等. 后碰撞阶段的“俯冲型”岩浆岩: 来自东昆仑瑙木浑沟晚三叠世闪长玢岩的证据[J]. 地球科学, 2018, 43(4): 1183−1206. ZHANG Mingdong, MA Changqian, WANG Lianxun, et al. Subduction-type magmatic rocks in post-collision stage: Evidence from Late Triassic diorite-porphyrite of Naomuhungou area, East Kunlun Orogen[J]. Earth Science,2018,43(4):1183−1206.
张玉, 裴先治, 李瑞保, 等. 东昆仑东段阿拉思木辉长岩锆石U−Pb年代学、地球化学特征及洋盆闭合时限界定[J]. 中国地质, 2017, 44(3): 526−540. ZHANG Yu,PEI Xianzhi,LI Ruibao,et al. Zircon U−Pb geochronology,geochemistry of the Alasimu gabbro in eastern section of East Kunlun Mountains and the closing time of Paleo-ocean basin[J]. Geology in China,2017,44(3):526−540.
Batchelor R A and Bowden P. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemical Geology,1985,48:43−55. doi: 10.1016/0009-2541(85)90034-8
Chen J J, Wei J H, Fu L B, et al. Multiple sources of the earlyMesozoic Gouli batholith, Eastern Kunlun Orogenic Belt, northern Tibetan Plateau: linking continental crustal growth with oceanic subduction[J]. Lithos,2017,292−293:161−178. doi: 10.1016/j.lithos.2017.09.006
Condie K C. Geochemical changes in basalts and andesites across the Archean-Proterozoic boundary: Identification and significance[J]. Lithos,1989,23(1):1−18.
Dai J G, Wang C S, Hourigan J, et al. Multi-stage tectono-magmatic events of the Eastern Kunlun Range, northern Tibet: insights from U–Pb geochronology and(U–Th)/He thermochronology[J]. Tectonophysics,2013,599:97−106. doi: 10.1016/j.tecto.2013.04.005
Ding Q F, Jiang S Y, Sun F Y. Zircon U–Pb geochronology, geochemical and Sr–Nd–Hf isotopic compositions of the Triassic granite and diorite dikes from the Wulonggou mining area in the Eastern Kunlun Orogen, NW China: Petrogenesis and tectonic implications[J]. Lithos,2014,205(9):266−283.
Dong Y P, He D F, Sun S S, et al. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System[J]. Earth-Science Reviews,2018,186:231−261. doi: 10.1016/j.earscirev.2017.12.006
Hu Y, Niu Y L, Li J Y, et al. Petrogenesis and tectonic significance of the late Triassic mafic dikes and felsic volcanic rocks in the East Kunlun Orogenic Belt, Northern Tibet Plateau[J]. Lithos,2016,245:205−222. doi: 10.1016/j.lithos.2015.05.004
Li B L, Zhi Y B, Zhang L, et al. U–Pb dating, geochemistry, and Sr–Nd isotopic composition of a granodiorite porphyry from the Jiadanggen Cu–(Mo) deposit in the Eastern Kunlun metallogenic belt, Qinghai Province, China[J]. Ore Geology Reviews,2015b,67:1−10. doi: 10.1016/j.oregeorev.2014.11.008
Li X W, Huang X F, Luo M F, et al. Petrogenesis and geodynamic implications of the Mid-Triassic lavas from East Kunlun, northern Tibetan Plateau[J]. Journal of Asian Earth Sciences,2015a,105:32−47. doi: 10.1016/j.jseaes.2015.03.009
Liu B, Ma C Q, Huang J, et al. Petrogenesis and tectonic implications of Upper Triassic appinite dykes in the East Kunlun orogenic belt, northern Tibetan Plateau[J]. Lithos,2017,284-285:766−778. doi: 10.1016/j.lithos.2017.05.016
Ludwig K R. Users Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center Special Publication, 2003, 25−32.
Middlemost E A K. Magmas and Magmatic Rocks[M]. London: Longman, 1985.
Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews,1994,37(3−4):215−224.
Pearce J A. Trace element characteristics of lavas from destructive plate boundaries[A]. Thorpe R S (ed.). Andesites: Orogenic Andesites and Related Rocks[M]. Chichester: Willy, 1982, 525–548.
Pearce T H, Gorman B E, Birkett T C. The relationship between major element chemistry and tectonic environment of basic and intermediate volcanic rocks[J]. Science Letter, 1977, 36: 121–132.
Peccerillo R, Taylor S R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy and Petrology,1976,58:63−81. doi: 10.1007/BF00384745
Rudnick R L, Gao S. Composition of the continental crust[A]. In: Rudnick R L, ed. The crust, treaties on geochemistry[M]. Oxford: Elsevier Pergamon, 2003, 3: 1–64.
Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalt: Implications for mantle composition and process[A]. Saunders A D, Norry M J (eds.). Magmatism in the Ocean Basins[M]. Geological Society, London, Special Publication, 1989, 42: 313−345.
Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution[M]. Oxford: Blackwell Scientific Publications, 1985, 57−72.
Taylor S R, McLennan S M. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 1995, 33(2): 241–165.
Wang Q, Li Z X, Chung S L, et al. Late Triassic high-Mg andesite/dacite suites from northern Hohxil, North Tibet: Geochronology, geochemical characteristics, petrogenetic processes and tectonic implications[J]. Lithos,2011,126:54−67. doi: 10.1016/j.lithos.2011.06.002
Xia R, Deng J, Qing M, et al. Petrogenesis of ca. 240 Ma intermediate and felsic intrusions in the Nan’getan Implications for crust–mantle interaction and geodynamic process of the East Kunlun Orogen[J]. Ore Geology Reviews,2017,90:1099−1117. doi: 10.1016/j.oregeorev.2017.04.002
Xia R, Wang C M, Deng J, et al. Crustal thickening prior to 220 Ma in the East Kunlun Orogenic Belt: Insights from the Late Triassic granitoids in the Xiao-Nuomuhong pluton[J]. Journal of Asian Earth Sciences,2014,93:193−210. doi: 10.1016/j.jseaes.2014.07.013
Xia R, Wang C M, Qing M, et al. Molybdenite Re−Os, zircon U−Pb dating and Hf isotopic analysis of the Shuangqing Fe−Pb−Zn−Cu skarn deposit, East Kunlun Mountains, Qinghai Province, China[J]. Ore Geology Reviews,2015b,66:114−131. doi: 10.1016/j.oregeorev.2014.10.024
Xia R, Wang C M, Qing M, et al. Zircon U−Pb dating, geochemistry and Sr−Nd−Pb−Hf−O isotopes for the Nan'getan granodiorites and mafic microgranular enclaves in the East Kunlun Orogen: record of closure of the Paleo-Tethys[J]. Lithos,2015a,234:47−60.
Xiong F H, Ma C Q, Jiang H A, et al. Petrogenetic and tectonic significance of Permian calc-alkaline lamprophyres, East Kunlun orogenic belt, Northern Qinghai-Tibet Plateau[J]. International Geology Review,2013,55:1817−1834. doi: 10.1080/00206814.2013.804683
Xiong F H, Ma C Q, Zhang J Y, et al. Reworking of old continental lithosphere: an important crustal evolution mechanism in orogenic belts, as evidenced by Triassic I-type granitoids in the East Kunlun orogen, Northern Tibetan Plateau[J]. Journal of the Geological Society,2014,171:847−863. doi: 10.1144/jgs2013-038
Xiong F H, Ma C Q, Zhang J Y, et al. The origin of mafic microgranular enclaves and their host granodiorites from East Kunlun, Northern Qinghai-Tibet Plateau: implications for magma mixing during subduction of Paleo-Tethyan lithosphere[J]. Mineralogy and Petrology,2012,104:211−224. doi: 10.1007/s00710-011-0187-1
Yu M, Dick J M, Feng C Y, et al. The tectonic evolution of the East Kunlun Orogen, northern Tibetan Plateau: A critical review with an integrated geodynamic model[J]. Journal of Asian Earth Sciences,2020,191:104168. doi: 10.1016/j.jseaes.2019.104168
Yuan C, Sun M, Xiao W J, et al. Garnet-bearing tonalitic porphyry from East Kunlun, northeast Tibetan plateau: implications for adakite and magmas from the mash zone[J]. International Journal of Earth Sciences,2009,98:1489−1510. doi: 10.1007/s00531-008-0335-y
Zhang J Y, Ma C Q, Li J W, et al. A possible genetic relationship between orogenic gold mineralization and post-collisional magmatism in the eastern Kunlun Orogen, western China[J]. Ore Geology Reviews,2017,81:342−357. doi: 10.1016/j.oregeorev.2016.11.003
Zhang J Y, Ma C Q, Xiong F H, et al. Petrogenesis and tectonic significance of the Late Permian-Middle Triassic calc-alkaline granites in the Balong region, eastern Kunlun Orogen, China[J]. Geological Magazine,2012,149(5):892−908. doi: 10.1017/S0016756811001142