ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    高级检索

    塔吉克斯坦南帕米尔阿里秋(Alichur)穹隆花岗岩锆石U-Pb定年、Hf同位素特征及地质意义

    刘江, 罗彦军, 范堡程, MustafoGadoev

    刘江,罗彦军,范堡程,等. 塔吉克斯坦南帕米尔阿里秋(Alichur)穹隆花岗岩锆石U-Pb定年、Hf同位素特征及地质意义[J]. 西北地质,2024,57(6):290−299. doi: 10.12401/j.nwg.2024027
    引用本文: 刘江,罗彦军,范堡程,等. 塔吉克斯坦南帕米尔阿里秋(Alichur)穹隆花岗岩锆石U-Pb定年、Hf同位素特征及地质意义[J]. 西北地质,2024,57(6):290−299. doi: 10.12401/j.nwg.2024027
    LIU Jiang,LUO Yanjun,FAN Baocheng,et al. U-Pb Dating, Hf-isotopic Characteristics and Tectonic Implications of Granite, Alichur Dome, Southern Pamir, Tajikistan[J]. Northwestern Geology,2024,57(6):290−299. doi: 10.12401/j.nwg.2024027
    Citation: LIU Jiang,LUO Yanjun,FAN Baocheng,et al. U-Pb Dating, Hf-isotopic Characteristics and Tectonic Implications of Granite, Alichur Dome, Southern Pamir, Tajikistan[J]. Northwestern Geology,2024,57(6):290−299. doi: 10.12401/j.nwg.2024027

    塔吉克斯坦南帕米尔阿里秋(Alichur)穹隆花岗岩锆石U-Pb定年、Hf同位素特征及地质意义

    基金项目: 中国地质调查局项目“丝绸之路境内段(新疆)资源环境承载能力监测评价项目”(DD20221731),第三次新疆综合科学考察项目“塔里木河流域关键区生态适宜性评估及绿色发展建议”(2022xjkk0305),国家重点研发计划项目课题“中亚成矿域战略性矿产信息及成矿规律” (2021YFC2901802)联合资助
    详细信息
      作者简介:

      刘江(1985–),男,博士,副研究员,主要从事构造地质研究。E-mail:liujiang689@163.com

    • 中图分类号: P581

    U-Pb Dating, Hf-isotopic Characteristics and Tectonic Implications of Granite, Alichur Dome, Southern Pamir, Tajikistan

    • 摘要:

      南帕米尔地区分布一系列受拆离断层控制,于印度–欧亚大陆碰撞过程中形成的穹隆构造,穹隆核部以晚中生代花岗岩和高级变质岩为主,并有少量新生代花岗质侵入岩。为阐明穹隆有关花岗岩的侵位背景和构造意义,笔者通过LA-MC-ICP锆石U-Pb定年测试获得侵位到穹隆拆离断层韧性剪切带中的花岗岩和占穹隆体积主体的核部白垩纪花岗岩年龄,分别为(19.3±0.4)Ma和(111.7±0.8)Ma。结合帕米尔地区和南帕米尔穹隆构造已有研究成果,笔者认为锆石Hf同位素特征反映南帕米尔地区晚中生代花岗岩是含有亏损地壳熔融作用的结果。新生代花岗岩形成于构造减压导致的中下地壳部分熔融作用,宏观上可能形成于印度板块碰撞俯冲过程中的减速调整阶段。

      Abstract:

      Cenozoic domes separated by detachments and formed during the India-Eurasian collision, are commonly distributed in the southern Pamir. The core complex of these domes are made up of high-grade metamorphic rocks and granite. The granite mainly formed during the Late Mesozoic and minor of them formed during the Cenozoic. The granite samples gathered along the detachments and from the granite comprising the bulk Alichur dome are measured by on the LA-MC-ICP U-Pb zircon dating. The formation times of the granite are (19.30±0.36) Ma and (111.7±0.8) Ma. Hf-isotopic characteristics of zircon demonstrate the granite formed by partial melting of crust. The Cenozoic granite is probably closely associated with the structural decompression caused by the extensional decollement of the domes.

    • 图  1   帕米尔地区构造地质简图(a)和Alichur穹隆构造地质图(b)(据Stübner et al.,2013b修改)

      ACSZ. 阿里秋拆离断层;SPSZ. 南帕米尔剪切带

      Figure  1.   (a) Geological sketch of Pamir and (b) the geological map of Alichur dome

      图  2   阿里秋穹隆花岗岩野外、手标本和显微照片

      A、C. 样品NP03野外露头和正交偏光显微照片;B、D. 样品NP04手标本(样品长度为13 cm)和正交偏光显微照片; Qtz. 石英;Pl. 斜长石;Kfs. 碱性长石

      Figure  2.   Photographys of granitic rocks from the Alichur dome in the views of outcrop, hand specimen and rock section

      图  3   阿里秋穹隆花岗岩代表性锆石CL图像、U-Pb年龄谐和图和年龄分布

      a. 样品NP03锆石年龄与CL图像;b. NP04锆石年龄与CL图像;CL图像束斑直径为24 μm

      Figure  3.   CL images of representative zircons and zircon U-Pb concordia diagram of grantic rocks from the Alichur dome

      图  4   阿里秋穹隆花岗岩样品锆石εHf-t图解

      Figure  4.   εHf-t diagram of grantic rocks from the Alichur dome

      表  1   南帕米尔阿里秋穹隆花岗岩LA-MC-ICPMS锆石原位U-Pb测试数据统计表

      Table  1   LA-MC-ICPMS in-situ analysis of zircon U-Pb isotopic data of the granitic rocks from the Alichur dome

      分析
      点号
      含量(10−6 Th/U 同位素比值 表观年龄(Ma)
      Th U 207Pb/235U ±1σ 206Pb/238U ±1σ 208Pb/232Th ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 208Pb/232Th ±1σ
      NP0301 143.8 218.79 0.66 0.01924 0.00617 0.00306 0.00020 0.00175 0.00035 19.3 6.15 19.7 1.27 35.4 7.09
      NP0303 74.3 1073.54 0.07 0.01875 0.00151 0.00287 0.00010 0.00076 0.00080 18.9 1.50 18.5 0.67 15.3 16.17
      NP0305 242.0 1273.30 0.19 0.01868 0.00147 0.00289 0.00010 0.00110 0.00023 18.8 1.47 18.6 0.67 22.2 4.71
      NP0306 105.8 399.03 0.27 0.01982 0.00494 0.00299 0.00017 0.00066 0.00062 19.9 4.92 19.3 1.06 13.3 12.54
      NP0307 474.1 1537.50 0.31 0.02046 0.00138 0.00305 0.00011 0.00113 0.00017 20.6 1.37 19.6 0.68 22.9 3.37
      NP0308 416.4 814.53 0.51 0.01909 0.00219 0.00300 0.00013 0.00125 0.00016 19.2 2.18 19.3 0.80 25.3 3.13
      NP0309 160.3 373.64 0.43 0.02008 0.00468 0.00302 0.00019 0.00094 0.00050 20.2 4.66 19.4 1.25 19.0 10.00
      NP0311 93.1 5043.10 0.02 0.01862 0.00096 0.00282 0.00009 0.00446 0.00116 18.7 0.96 18.2 0.59 90.0 23.32
      NP0312 273.3 1000.64 0.27 0.01915 0.00185 0.00303 0.00011 0.00180 0.00023 19.3 1.84 19.5 0.73 36.4 4.74
      NP0314 125.3 214.46 0.58 0.02058 0.00635 0.00317 0.00023 0.00033 0.00048 20.7 6.32 20.4 1.46 6.6 9.63
      NP0315 118.0 188.78 0.62 0.02032 0.00798 0.00299 0.00021 0.00095 0.00048 20.4 7.95 19.2 1.35 19.2 9.66
      NP0316 143.2 1130.85 0.13 0.02051 0.00157 0.00311 0.00011 0.00077 0.00034 20.6 1.56 20.0 0.71 15.5 6.82
      NP0317 153.1 211.37 0.72 0.02003 0.00869 0.00308 0.00022 0.00061 0.00047 20.1 8.65 19.8 1.39 12.4 9.44
      NP0319 114.2 620.13 0.18 0.01979 0.00314 0.00299 0.00016 0.00107 0.00059 19.9 3.12 19.2 1.01 21.5 11.96
      NP0321 122.4 342.71 0.36 0.01900 0.00438 0.00298 0.00017 0.00122 0.00047 19.1 4.36 19.2 1.08 24.6 9.57
      NP0322 312.4 1203.89 0.26 0.02029 0.00166 0.00308 0.00012 0.00163 0.00020 20.4 1.66 19.8 0.74 32.8 4.08
      NP0323 353.8 884.27 0.40 0.01995 0.00185 0.00300 0.00011 0.00108 0.00016 20.1 1.84 19.3 0.74 21.9 3.18
      NP0324 247.9 438.90 0.56 0.01879 0.00401 0.00310 0.00016 0.00106 0.00023 18.9 3.99 20.0 1.03 21.3 4.61
      NP0325 104.3 395.11 0.26 0.01962 0.00401 0.00298 0.00017 0.00153 0.00051 19.7 4.00 19.2 1.09 31.0 10.30
      NP0326 513.0 879.07 0.58 0.01956 0.00220 0.00304 0.00013 0.00121 0.00013 19.7 2.19 19.5 0.81 24.3 2.60
      NP0327 213.9 1486.34 0.14 0.02058 0.00172 0.00310 0.00012 0.00130 0.00030 20.7 1.71 19.9 0.78 26.3 5.97
      NP0328 111.5 246.43 0.45 0.01994 0.00945 0.00300 0.00025 0.00193 0.00070 20.0 9.41 19.3 1.58 39.0 14.14
      NP0330 113.6 390.17 0.29 0.02005 0.00729 0.00322 0.00025 0.00030 0.00097 20.2 7.26 20.7 1.58 6.1 19.55
      NP0402 57.9 2654.42 0.02 0.12643 0.00510 0.0173 0.0005 0.00058 0.00166 120.9 4.6 110.7 3.3 11.7 33.5
      NP0403 171.0 269.53 0.63 0.39155 0.02198 0.0512 0.0017 0.02486 0.00131 335.5 16.0 321.8 10.3 496.4 25.9
      NP0405 412.3 724.18 0.57 0.82503 0.02686 0.0977 0.0028 0.02909 0.00111 610.8 14.9 600.8 16.3 579.5 21.8
      NP0406 101.7 1267.19 0.08 0.15105 0.00707 0.0207 0.0007 0.01285 0.00162 142.8 6.2 132.2 4.2 258.1 32.3
      NP0407 37.6 1524.64 0.02 0.11813 0.00478 0.0175 0.0005 0.00206 0.00274 113.4 4.3 111.6 3.3 41.5 55.3
      NP0408 77.4 2529.12 0.03 0.12049 0.00430 0.0174 0.0005 0.00800 0.00135 115.5 3.9 110.9 3.2 161.1 27.1
      NP0409 52.9 3352.01 0.02 0.11700 0.00379 0.0171 0.0005 0.00561 0.00200 112.4 3.5 109.1 3.0 113.2 40.2
      NP0410 104.3 4012.15 0.03 0.11850 0.00400 0.0175 0.0005 0.00658 0.00120 113.7 3.6 112.0 3.1 132.6 24.1
      NP0411 59.7 3293.66 0.02 0.11706 0.00375 0.0177 0.0005 0.00676 0.00132 112.4 3.4 112.8 3.1 136.1 26.5
      NP0413 162.2 436.98 0.37 0.70484 0.02512 0.0872 0.0026 0.02872 0.00143 541.7 15.0 539.2 15.2 572.3 28.1
      NP0414 67.5 1492.78 0.05 0.12044 0.00474 0.0176 0.0005 0.00713 0.00160 115.5 4.3 112.6 3.3 143.7 32.1
      NP0415 70.0 1037.48 0.07 0.12457 0.00607 0.0177 0.0006 0.00495 0.00148 119.2 5.5 113.2 3.6 99.8 29.8
      NP0416 81.5 1462.34 0.06 0.12392 0.00455 0.0176 0.0005 0.00631 0.00113 118.6 4.1 112.4 3.2 127.1 22.7
      NP0417 51.1 1906.82 0.03 0.11629 0.00449 0.0175 0.0005 0.00441 0.00170 111.7 4.1 111.6 3.3 89.0 34.2
      NP0418 85.2 3397.08 0.03 0.11352 0.00366 0.0174 0.0005 0.00435 0.00119 109.2 3.3 111.3 3.1 87.7 24.0
      NP0419 78.5 251.13 0.31 0.11288 0.00346 0.0174 0.0005 0.00766 0.00113 108.6 3.2 111.2 3.1 154.1 22.7
      NP0420 251.1 255.73 0.98 1.25702 0.04523 0.1377 0.0042 0.04214 0.00162 826.6 20.4 831.7 23.6 834.2 31.5
      NP0421 93.1 4868.35 0.02 0.11638 0.00365 0.0175 0.0005 0.00725 0.00111 111.8 3.3 111.6 3.1 145.9 22.3
      NP0422 38.1 1223.48 0.03 0.11991 0.00622 0.0175 0.0006 0.00117 0.00210 115.0 5.6 112.0 3.7 23.7 42.4
      NP0424 70.9 852.63 0.08 0.12380 0.00808 0.0178 0.0007 0.00404 0.00151 118.5 7.3 113.6 4.3 81.4 30.4
      NP0425 116.7 135.35 0.86 0.72411 0.03842 0.0913 0.0031 0.02536 0.00158 553.1 22.6 563.0 18.1 506.2 31.1
      NP0426 223.5 495.14 0.45 1.28393 0.03913 0.1380 0.0040 0.03992 0.00152 838.6 17.4 833.5 22.5 791.1 29.5
      NP0427 42.5 1101.99 0.04 0.12908 0.01095 0.0210 0.0009 0.00672 0.00484 123.3 9.9 134.2 5.5 135.4 97.2
      NP0428 36.1 2083.96 0.02 0.12043 0.00983 0.0175 0.0007 0.02813 0.01335 115.5 8.9 111.8 4.2 560.8 262.4
      NP0429 72.7 4401.50 0.02 0.06997 0.02132 0.0111 0.0008 0.04031 0.03220 68.7 20.2 71.3 4.9 798.8 625.7
      NP0430 29.2 2307.17 0.01 0.11104 0.01823 0.0174 0.0008 0.05540 0.04297 106.9 16.7 111.1 5.3 ****** 919.5
      下载: 导出CSV

      表  2   南帕米尔阿里秋穹隆花岗岩LA-MC-ICPMS锆石原位Lu-Hf同位素测试数据统计表

      Table  2   LA-MC -ICPMS in-situ analysis of zircon Lu-Hf isotopic compositions of the granitic rocks from the Alichur dome

      样点t(Ma)176Yb/177Hf176Lu/177Hf176Hf/177Hf±2σεHf(t±1σTM1(Ga)±1σTM2(Ga)±1σ 
      Hf-NP030119.70.0138350.0004760.2825850.000026−6.20.90.9330.0371.4930.037
      Hf-NP030318.90.0134840.0004230.2826580.000044−3.61.50.8300.0611.3290.061
      Hf-NP030518.80.0180610.0005930.2826550.000031−3.71.10.8370.0441.3350.044
      Hf-NP030619.30.0145540.0005000.2826770.000029−2.91.00.8050.0401.2860.040
      Hf-NP030719.60.0223870.0007570.2827450.000033−0.51.20.7140.0471.1320.047
      Hf-NP030819.30.0166930.0005390.2826410.000031−4.21.10.8550.0431.3650.043
      Hf-NP030919.40.0217240.0007840.2826960.000028−2.31.00.7850.0391.2440.039
      Hf-NP031118.20.0263570.0009930.2826870.000011−2.60.40.8010.0161.2640.016
      Hf-NP031219.50.0284320.0010180.2827010.000029−2.11.00.7820.0421.2320.042
      Hf-NP031420.40.0198710.0007110.2826570.000014−3.60.50.8370.0191.3300.019
      Hf-NP031519.20.0098780.0003390.2826430.000028−4.11.00.8480.0381.3610.038
      Hf-NP031620.00.0055330.0002000.2826300.000024−4.60.80.8630.0331.3910.033
      Hf-NP031719.80.0205460.0007490.2826640.000030−3.41.00.8280.0421.3150.042
      Hf-NP031919.20.0114750.0004200.2826790.000026−2.90.90.8010.0361.2820.036
      Hf-NP032119.20.0107600.0004010.2826300.000028−4.61.00.8670.0391.3900.039
      Hf-NP032219.80.0095210.0003360.2825910.000026−6.00.90.9200.0361.4780.036
      Hf-NP032319.30.0306480.0011020.2826930.000026−2.40.90.7950.0361.2510.036
      Hf-NP032420.00.0165240.0005860.2826470.000031−4.01.10.8480.0431.3520.043
      Hf-NP032519.20.0114860.0004360.2826710.000024−3.20.80.8110.0331.2990.033
      Hf-NP032619.50.0258730.0008980.2826440.000029−4.11.00.8600.0411.3600.041
      Hf-NP032719.90.0325990.0011790.2826930.000026−2.40.90.7960.0361.2490.036
      Hf-NP032819.30.0143800.0005080.2827530.000026−0.20.90.6980.0361.1140.036
      Hf-NP033020.70.0106490.0003850.2826290.000025−4.60.90.8690.0341.3930.034
      Hf-NP0402110.70.0094280.0004220.2816340.000040−37.81.42.2340.0543.5410.054
      Hf-NP0403321.80.0334970.0013030.2822660.000028−11.11.01.4040.0402.0300.040
      Hf-NP0405600.80.0193340.0007610.2825400.0000244.70.81.0020.0331.2430.033
      Hf-NP0406132.20.0122610.0004460.2823820.000027−10.90.91.2120.0371.8760.037
      Hf-NP0407111.60.0163620.0006650.2823520.000025−12.40.91.2610.0351.9560.035
      Hf-NP0408110.90.0105490.0004450.2824500.000022−9.00.81.1180.0301.7380.030
      Hf-NP0409109.10.0119970.0005130.2819520.000043−26.71.51.8060.0582.8450.058
      Hf-NP0410112.00.0527770.0020210.2824930.000023−7.60.81.1050.0331.6490.033
      Hf-NP0411112.80.0129040.0005320.2820240.000028−24.01.01.7090.0392.6850.039
      Hf-NP0413541.70.0082170.0003730.2821270.000025−11.00.91.5610.0352.1910.035
      Hf-NP0414112.60.0129570.0004870.2823410.000023−12.80.81.2710.0321.9810.032
      Hf-NP0415113.20.0188100.0007260.2823720.000024−11.70.91.2350.0341.9120.034
      Hf-NP0416112.40.0368710.0014030.2824480.000024−9.10.91.1500.0351.7460.035
      Hf-NP0417111.60.0246630.0009370.2821960.000042−18.01.51.4880.0592.3050.059
      Hf-NP0418111.30.0298750.0011340.2823640.000024−12.10.81.2600.0331.9320.033
      Hf-NP0419111.20.0342720.0013110.2824080.000021−10.50.81.2040.0301.8360.030
      Hf-NP0420831.70.0204170.0009680.2818140.000028−16.11.02.0180.0382.7210.038
      Hf-NP0421111.60.0265610.0010490.2823800.000023−11.50.81.2350.0321.8970.032
      Hf-NP0422112.00.0278460.0010960.2824940.000025−7.50.91.0760.0351.6430.035
      Hf-NP0424113.60.0203490.0007800.2824050.000024−10.50.81.1910.0331.8380.033
      Hf-NP0425553.10.0184010.0007550.2824770.0000241.50.81.0900.0331.4140.033
      Hf-NP0426833.50.0134240.0005690.2823600.0000213.50.71.2470.0291.5000.029
      Hf-NP0427134.20.0196540.0007600.2823620.000024−11.60.81.2510.0341.9220.034
      Hf-NP0428111.80.0193000.0007520.2822810.000034−15.01.21.3630.0472.1160.047
      Hf-NP042971.30.0387640.0014220.2824340.000029−10.51.01.1710.0411.8010.041
      Hf-NP0430111.10.0252800.0009690.2823890.000031−11.21.11.2200.0441.8760.044
       注:本次实验采用91500作标样,所测样品锆石的Hf同位素成分用标样进行校正;表中锆石Hf同位素成分的计算参数为:λ(176Lu)=1.867×10−11a−1,球粒陨石176Lu/177Hf =0.0332176Hf/177Hf =0.282 772(Blichert-Toft et al.,1997);亏损地幔176Lu/177Hf =0.0384176Hf/177Hf =0.28325Griffin et al.,2000)。
      下载: 导出CSV
    • 范堡程, 孟广路, 刘明义, 等. 塔吉克斯坦成矿单元划分及其特征[J]. 地质科技情报, 2017, 36(2): 168−175.

      FAN Baocheng, MENG Guanglu, LIU Mingyi, et al. Division and Features of the Metallogenic Units in Tajikistan[J]. Geological Science and Technology Information,2017,36(2):168−175.

      范堡程, 张晶, 孟广路, 等. 帕米尔构造结锂矿资源潜力评价——基于1∶100万地球化学调查[J]. 西北地质, 2022, 55(1): 156−166.

      FAN Baocheng, ZHANG Jing, MENG Guanglu, et al. An Assessment of Lithium Resource Potentiality in Pamir Syntax: Based on 1: 1 million Scale of Geochemical Survey[J]. Northwestern Geology,2022,55(1):156−166.

      范堡程, 张晶, 孟广路, 等. 地球化学块体理论在塔吉克斯坦金资源潜力预测中的应用[J]. 西北地质, 2020, 53(1): 138−145.

      FAN Baocheng, ZHANG Jing, MENG Guanglu, et al. Application of Geochemical Blocks Theory in the Prediction of Gold Resource Potential in Tajikistan[J]. Northwestern Geology,2020,53(1):138−145.

      洪俊, 计文化, 张海迪, 等. 帕米尔地区穆尔尕布辉长岩-闪长岩的成因: 锆石U-Pb年龄、Hf同位素及岩石地球化学证据[J]. 中国地质, 2017, 44(4): 722−736. doi: 10.12029/gc20170406

      HONG Jun, JI Wenhua, ZHANG Haidi, et al. Petrogenesis of Murgab gabrro-diorite from Pamir: Evidence from zircon U-Pb dating, Hf isotopes and lithogeochemistry[J]. Geology in China,2017,44(4):722−736. doi: 10.12029/gc20170406

      侯可军, 李延河, 邹天人, 等. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J]. 岩石学报, 2007, 23(10): 2595−2604.

      HOU Kejun,LI Yanhe,ZOU Tianren,et al. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological appications[J]. Acta Petrologica Sinica,2007,23(10):2595−2604.

      李艳广, 汪双双, 刘民武, 等. 斜锆石LA-ICP-MS U-Pb定年方法及应用[J]. 地质学报, 2015, 89(12): 2400−2418.

      LI Yanguang,WANG Shuangshuang,LIU Minwu,et al. U-Pb Dating Study of Baddeleyite by LA-ICP-MS:Technique and Application[J]. Acta Geologica Sinica,2015,89(12):2400−2418.

      李艳广, 靳梦琪, 汪双双, 等. LA-ICP-MS U-Pb定年技术相关问题探讨[J]. 西北地质, 2023, 56(4): 274−282. doi: 10.12401/j.nwg.2023104

      LI Yanguang, JIN Mengqi, WANG Shuangshuang, et al. Exploration of Issues Related to the LA–ICP–MS U–Pb Dating Technique[J]. Northwestern Geology,2023,56(4):274−282. doi: 10.12401/j.nwg.2023104

      吕鹏瑞, 姚文光, 张辉善, 等. 巴基斯坦及中国邻区构造单元划分及其演化[J]. 西北地质, 2017, 50(3): 126−139. doi: 10.3969/j.issn.1009-6248.2017.03.014

      LÜ Pengrui, YAO Wenguang, ZHANG Huishan, et al. Tectonic Unit Division and Geological Evolution of Pakistan and Its Adjacent Regions[J]. Northwestern Geology,2017,50(3):126−139. doi: 10.3969/j.issn.1009-6248.2017.03.014

      吴福元, 刘志超, 刘小驰, 等. 喜马拉雅淡色花岗岩[J]. 岩石学报, 2015, 31(1): 1−36.

      WU Fuyuan,LIU Zhichao,LIU Xiaochi,et al. Himalayan leucogranite: Petrogenesis and implications to orogenesis and plateau uplift[J]. Acta Petrologica Sinica,2015,31(1):1−36.

      张海迪, 吕鹏瑞, 罗彦军, 等. 塔吉克斯坦帕米尔地区构造单元划分及其特征[J]. 地质与勘探, 2019, 55(01): 135−144.

      ZHANG Haidi,LÜ Pengrui,LUO Yanjun,et al. Tectonic Unit Division of the Pamir Area in Tajikistan and its Geological Characteristics[J]. Geology and Exploration,2019,55(01):135−144.

      Blichert-Toft J, Albarède F. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System[J]. Earth and Planetary Science Letters,1997,148(1−2):243−258.

      Griffin W L, Pearson N J, Belousova E A, et al. The Hf isotope composition of cratonic mantle: LA-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 64, 133–147.

      Hubbard M S, Grew E S, Hodges K V, et al. Neogene cooling andexhumation of upper-amphibolite facies ‘‘whiteschists’’ in the southwest Pamir Mountains, Tajikistan[J]. Tectonophysics, 1999, 305: 325 – 337.

      Meng E, Liu F L, Liu P H, et al. Petrogenesis and tectonic significance of Paleoproterozoic meta-mafic rocks from central Liaodong Peninsula, northeast China: Evidencefrom zircon U-Pb dating and in situ Lu-Hf isotopes, and whole-rock geochemistry[J]. Precambrian Research,2014,247:92−109. doi: 10.1016/j.precamres.2014.03.017

      Ludwig K R. ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel[A]. Berkeley Geochronology Center, California, Berkeley, 2003.

      Schmidt J, Hacker B R, Ratschbacher L, et al. Cenozoic deep crust in the Pamir [J]. Earth and Planetary Science Letters, 2011, 312, 411–421. doi: 10.1016/j.jpgl.2011.10.034.

      Schwab M, et al. (2004), Assembly of the Pamirs: Age and origin of magmatic belts from the southern Tien Shan to the southern Pamirs and their relation to Tibet. [J] Tectonics, 23, TC4002. doi: 10.1029/2003TC001583.

      Sippl C, Schurr B, Tympel J, et al. Geometry of the Pamir–Hindu Kush intermediate-depth earthquakes zone from local seismic data[J]. Journal of Geophysical Research-Atmospheres, 2013,118, 1438–1457.

      Smit M A, Hacker B R, Ratschbacher L. Lu–Hf geochronol-ogy constrains slow burial of crust in active orogens: The Pamir gneiss domes[A]. European Mineral Confonrence, 2012, 1, EMC2012-706.

      Smit M A, Ratschbacher L, Kooijman E, et al. arly evolution of the Pamir deep crust from Lu-Hf and U-Pb geochronology and garnet thermometry[J]. Geology,2014,42(12):1047−1050. doi: 10.1130/G35878.1

      Stübner K, Ratschbacher L, Rutte D, et al. The giant Shakhdaramigmatitic gneiss dome, Pamir, India–Asia collision zone: 1. Geometry and kinematics[J]. Tectonics,2013a,32:948−979. doi: 10.1002/tect.20057

      Stübner K, Ratschbacher L, Weise C, et al. The giant Shakhdaramigmatitic gneiss dome, Pamir, India–Asia collision zone: 2 Timing of dome formation[J]. Tectonics,2013b,32:1401−1431.

      Tapponnier P, Mattauer M, Proust F, et al. Mesozoic ophiolites, sutures, and large-scale tectonic movements in Afghanistan[J]. Earth and Planetary Science Letters,1981,52:355−371. doi: 10.1016/0012-821X(81)90189-8

      Yin A, Harrison T M. Geologic evolution of the Himalayan–Tibet orogen [J]. Annual Review of Earth and Planetary Sciences, 2000, 28, 211–280.

      Van Achterbergh E, Ryan C G, Jackson S E, et al. Data reduction software for LA-ICP-MS[A]. In: Sylvester P J (Ed.). Laser-Ablation-ICP MS in the Earth Sciences: Principles and Applications[M]. Mineralogical Society of Canada Short Course Series 29, 2001: 239–243.

    • 期刊类型引用(13)

      1. 钱永新,赵毅,刘新龙,刘鸿,刘国梁,朱涛,邹阳,陈方文. 玛湖凹陷二叠系风城组页岩油储层特征及高产主控因素. 岩性油气藏. 2025(01): 115-125 . 百度学术
      2. 唐勇,贾承造,陈方文,何文军,支东明,单祥,尤新才,姜林,邹阳,吴涛,谢安. 准噶尔盆地玛湖凹陷二叠系风城组全粒序储层孔喉结构与原油可动性关系. 石油勘探与开发. 2025(01): 99-111 . 百度学术
      3. 张洪,冯有良,杨智,何文军,高之业,李嘉蕊,丁立华,蒋文琦,马国明,赵辛楣. 碱湖页岩油甜点储层特征及其形成机制——以准噶尔盆地玛湖凹陷风城组为例. 地质学报. 2025(02): 535-550 . 百度学术
      4. 何晋译,冷筠滢,李志明,何文军,刘得光,杨森,李楚雄. 不同岩相泥页岩生烃能力与含油性特征——以玛湖凹陷风城组玛页1井为例. 东北石油大学学报. 2025(01): 1-17+131-132 . 百度学术
      5. 宋涛. 准噶尔盆地乌尔禾地区风城组页岩油成藏特征与“甜点”评价. 特种油气藏. 2025(02): 42-50 . 百度学术
      6. 方少伯,王训练,周洪瑞,岑武轩. 似犬齿珊瑚属Caninophyllum Lewis, 1929(四射珊瑚)两个种个体系统发育特征研究. 西北地质. 2024(02): 24-33 . 本站查看
      7. 李思佳,唐玄,昝灵,花彩霞,冯赫青,陈学武,郑逢赞,陈宗铭. 溱潼凹陷阜二段页岩岩相组合特征及其对含油性的影响. 中国海上油气. 2024(02): 37-49 . 百度学术
      8. 解馨慧,邓虎成,胡蓝霄,李勇,毛金昕,刘佳杰,张鑫,李柏洋. 湖相细粒沉积岩颗粒微观力学特征及类型划分——以鄂尔多斯盆地上三叠统延长组7段页岩为例. 石油与天然气地质. 2024(04): 1079-1088 . 百度学术
      9. 杨彦波,陈虹,王进伟,陈放. 准噶尔盆地黄花沟地区下白垩统吐谷鲁群上段沉积特征与铀矿找矿潜力. 科学技术与工程. 2024(23): 9746-9756 . 百度学术
      10. 李卉,刘新龙,周作铭,阿不力孜·克力木,姜懿洋,任海姣,刘得光,李娜,马银山. 准噶尔盆地玛湖凹陷风城组储层致密化过程与成藏模式研究——以玛西地区风二段为例. 地球学报. 2024(06): 1023-1032 . 百度学术
      11. 贾春明,潘拓,余海涛,岳喜伟,张洁,况昊,于景维. 准噶尔盆地沙湾凹陷风城组储层特征及物性控制因素分析. 西北地质. 2023(04): 49-61 . 本站查看
      12. 郭文建,姜颜良,卞保力,袁波,张学才,吴孔友,孙文洁,李天然. 准噶尔盆地南缘中段山前复杂构造变形特征及形成演化. 西北地质. 2023(04): 62-74 . 本站查看
      13. 李萌,杨若姣,刘斌,魏晨华. 井中微地震逆时干涉震源定位在风城重油油田SAGD快速预热中的应用. 西北地质. 2023(05): 111-119 . 本站查看

      其他类型引用(3)

    图(4)  /  表(2)
    计量
    • 文章访问数:  89
    • HTML全文浏览量:  10
    • PDF下载量:  48
    • 被引次数: 16
    出版历程
    • 收稿日期:  2022-09-13
    • 修回日期:  2023-12-13
    • 录用日期:  2023-12-13
    • 网络出版日期:  2024-10-13
    • 刊出日期:  2024-12-19

    目录

      /

      返回文章
      返回