ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

黄土滑坡高分辨率遥感影像识别——以陕西省延安市地区为例

丁辉, 张茂省, 朱卫红, 张涛

丁辉, 张茂省, 朱卫红, 等. 黄土滑坡高分辨率遥感影像识别——以陕西省延安市地区为例[J]. 西北地质, 2019, 52(3): 231-239. DOI: 10.19751/j.cnki.61-1149/p.2019.03.022
引用本文: 丁辉, 张茂省, 朱卫红, 等. 黄土滑坡高分辨率遥感影像识别——以陕西省延安市地区为例[J]. 西北地质, 2019, 52(3): 231-239. DOI: 10.19751/j.cnki.61-1149/p.2019.03.022
DING Hui, ZHANG Maosheng, ZHU Weihong, et al. High Resolution Remote Sensing for the Identification of Loess Landslides: Example from Yan'an City[J]. Northwestern Geology, 2019, 52(3): 231-239. DOI: 10.19751/j.cnki.61-1149/p.2019.03.022
Citation: DING Hui, ZHANG Maosheng, ZHU Weihong, et al. High Resolution Remote Sensing for the Identification of Loess Landslides: Example from Yan'an City[J]. Northwestern Geology, 2019, 52(3): 231-239. DOI: 10.19751/j.cnki.61-1149/p.2019.03.022

黄土滑坡高分辨率遥感影像识别——以陕西省延安市地区为例

基金项目: 

国家自然科学基金项目“基于多特征面向对象黄土滑坡现象识别”(41502338)、“黄土水敏性力学机制及其致滑机理研究”(41530640),中国地质调查局地质大调查项目“关中平原城市群综合地质调查”(DD20190294)共同资助

详细信息
    作者简介:

    丁辉(1975-),女,博士,主要研究方向为资源与环境遥感、地质灾害区划。E-mail:xagscdh@126.com

  • 中图分类号: P627

High Resolution Remote Sensing for the Identification of Loess Landslides: Example from Yan'an City

  • 摘要: 中国西部黄土高原地区面积广,滑坡数量多。针对野外调查和目视解译费时、费力、周期较长等问题,利用高空间分辨率卫星遥感数据和DEM,以中国陕西省延安市宝塔区为研究区域,采用面向对象的分类方法,基于波段选择、尺度分析,利用影像分割,结合光谱特征、空间特征和地貌特征进行区域黄土滑坡识别。实验区分析结果表明,滑坡后壁和滑坡体识别精度达78.9%和73.6%,滑坡后壁比滑坡体更易于识别,该方法对研究同类型区域滑坡编目、地学分析和影像理解具有重要的意义。
    Abstract: The Loess Plateau in West China covers a wide area and has many landslides. Due to problems with field investigations and visual interpretation, such as the time and effort involved, as well as relatively long cycles of data acquisition and update, the high spatial resolution remote sensing data and digital elevation model (DEM) have been used for regional identification of loess landslides in Baota District, Yan'an City, Shaanxi Province, China. The regional loess landslides have been identified by using the object-oriented classification method, this method is to use the image segmentation combined with spectral-spatial and geomorphological features and based on band selection and scale analysis to analyze the landslides. Analysis of the study site showed that the recognition accuracy for the landslide back scarp and landslide mass is 78.9% and 73.6%, respectively; the landslide back scarp is easier to recognize than the landslide mass. This method is important for landslide cataloging, earth science analysis, and image interpretation.
  • 刘东生.黄土与环境[M].北京:科学出版社,1985.

    LIU Dongsheng. Loess and Environment[M]. Beijing:Science Press,1985.

    文宝萍,李媛,王兴林,等. 黄土地区典型滑坡预测预报及减灾对策研究[M].北京:地质出版社,1997.

    WEN Baoping, LI Yuan, WANG Xinglin, et al. Study on Typical Landslide Prediction and Mitigation counter mesure in losses region[M]. Beijing:Geology Press, 1997.

    郝立贞,白世彪,徐红波,等.基于CBERS-02 卫星数据的地震滑坡识别-以青川县为例[J]. 防灾科技学院学报,2010,12(4):46-52.

    HAO Lizhen, BAI Shibiao, XU Hongbo, et al. Landslide identification after earthquake based on CBERS-02 remote sensing data-the case of Qinchuan[J].Journal of Institute of Disaster-Prevention, 2010, 12(4):46-52.

    沈永林,李晓静,吴立新.基于航空影像和LiDAR 数据的海地地震滑坡识别研究[J]. 地理与地理信息科学,2011,27(1):16-20.

    SHEN Yonglin, LI Xiaojing, WU Lixin. Detection of Haiti earthquake induce landslides from aerial images and LiDAR data[J]. Geography and Geo-Information Science, 2011, 27(4):16-20.

    杨文涛,汪明,史培军.利用ndvi时间序列识别汶川地震滑坡的分布[J]. 遥感信息,2012,27(6):45-56.

    YANG Wentao, WANG Ming,SHI Peijun. Identification of landslides in Wenchuan earthquake affected region using NDVI time series[J]. Remote Sensing Information, 2012,27(6):45-56.

    杨文涛,汪明,史培军,等.基于地形因子分割、分类的面向对象滑坡快速识别方法[J].自然灾害学报,2015,24(4):1-6.

    YANG Wentao, WANG Ming,SHI Peijun. Object-oriented rapid identification of landslides based on terrain factor segmentation and classification[J].Journal of Natural Disasters,2015,24(4):1-6.

    周志华,林维芳,许高程,等.基于面向对象的滑坡快速识别技术研究[J].安徽农业科学, 2012,40(5):3017-3071.

    ZHOU Zhihua, LIN Weifang, XU Gaocheng, et al. Research of fast landslide recognition based on object-oriented technology[J]. Journal of Anhui Agriculture, 2012,40(5):3017-3071.

    杨树文,谢飞,韩惠,等. 基于SPOT5 遥感影像的浅层滑坡体自动提取方法[J]. 测绘科学,2012,37(1):71-88.

    YANG S W,XIE F,HAN H, et al.Automatic extraction of shallow landslides based on SPOT-5 remote sensing images[J]. Science of Surveying and Mapping, 2012,37(1):71-88.

    张毅,谭龙,陈冠,等.基于面向对象分类法的高分辨率遥感滑坡信息提取[J].兰州大学学报(自然科学版),2014,50(5):745-750.

    ZHANG Yi, TAN Long, CHEN Guan, et al. Landslide information extracted from high resolution remote sensing based on the object-oriented classification method[J]. Journal of Lanzhou University(Natural Sciences), 2014,50(5):745-750.

    李松,李亦秋,安裕伦.基于变化检测的滑坡灾害自动识别[J].遥感信息,2010,1(6):27-31.

    LI Song, LI Yiqiu, AN Yulun. Automatic recognition of landslides based on change detection[J].Remote Sensing Information, 2010, 1(6):27-31.

    李松,邓宝昆,徐红勤,等.地震型滑坡灾害遥感快速识别方法研究[J].遥感信息,2015,30(4):25-28.

    LI Song, DENG Baokun, XU Hongqin, et al.Fast interpretation methods of landslides triggered by earthquake using remote sensing imagery[J]. Remote Sensing Information, 2015,30(4):25-28.

    彭令,徐素宁,梅军军.地震滑坡高分辨率遥感影像识别[J].遥感学报, 2017, 21(4):509-518.

    PENG Lin, XU Suning, MEI Junjun. Earthquake-induced landslide recognition using high-resolution remote sensing images[J].Journal of Remote Sensing, 2017, 21(4):509-518.

    李勋,杨环,殷宗敏,等.基于DEM和遥感影像的区域黄土滑坡体识别方法研究[J].地理与地理信息科学,2017,33(4):86-92.

    LI Xun, YANG Huan, YIN Zongming, et al.Regional loess landslide recognition method research based on DEM and remote sensing image[J].Geography and Geo-Information Science, 2017,33(4):86-92.

    丁辉,张茂省,李林. 基于多特征面向对象区域滑坡现象识别[J]. 遥感技术与应用, 2013, 28(6):1107-1113.

    DING Hui, ZHANG Maosheng, LI Lin. Regional Landslide Identification base on Multi-feature Object-oriented Image Classification[J]. Remote Sensing Technology and Application, 2013, 28(6):1107-1113.

    丁辉, 张茂省, 李林. 西北黄土高原区滑坡遥感解译研究-以陕西延安、宁夏彭阳等地为例[J]. 第四纪研究, 2011, 31(6):1077-1085.

    DING Hui, ZHANG Maosheng, LI Lin. Interpretation NTERPRETING Landslides in the Northwest Loess Plateau Using Remote Sensing Images[J].Quaternary Sciences,2011, 31(6):1077-1085.

    张茂省,李同录.黄土滑坡诱发因素及其形成机理研究[J].工程地质学报,2011,19(4):530-540.

    ZHANG Maosheng, LI Tonglu. Triggering factors and mechanism of losses landslides[J].Journal of Engineer Geology, 2011,19(4):530-540.

    祝俊华,陈志新,祝艳波.延安市滑坡分布规律及发育特征[J].地质科技情报,2017,36(2):236-243.

    ZHU Junhua,CHEN Zhixin, ZHU Yanbo. Distribution Regularity and Development Characteristic of Landslides in Yan'an[J]. Geological Sciences and Technology Information, 2017, 36(2):236-243.

    薛强,张茂省.延安淹土安滑坡监测预警及变形特征[J].西北地质,2018,51(2):220-226.

    XUE Qiang, ZHANG Maosheng. Monitoring, Early Warning and Deformation Characteristics of Yantu'an Landslides in Yan'an[J].Northwestern Geology,2018,51(2):220-226.

    段钊,彭建兵,陈伟,等.泾河下游黄土台塬区滑崩灾害空间分异研究[J].西北地质,2018,51(3):214-222.

    DUAN Zhao,PENG Jianbing,CHEN Wei,et al. Distribution Difference of Landslide and Collapse in the Loess Tableland Area at the Downstream of Jing River[J]. Northwestern Geology,2018,51(3):214-222.

    张树轩, 杨为民, 程小杰, 等. 甘肃天水红旗山黄土滑坡群成因及稳定性分析[J].中国地质, 2017,44(5):924-937.

    ZHANG Shuxuan, YANG Weimin, CHENG Xiaojie, et al. Genetic mechanism and stability analysis of loess landslides group in Tianshui Hongqishan, Gansu Province[J]. Geology in China, 2017,44(5):924-937.

    丁华,丁辉.遥感技术在滑坡灾害解译中的应用-以陕西省延安市子长县为例[J].自然灾害学报,2013, 22(2):229-233.

    DING Hua, DING Hui. Application of remote sensing technology to interpretation of landslides disaster:a case study of Zichang country, Shaanxi province[J]. Journal of Nature Disasters, 2013,22(2):229-233.

    刘辰,刘修国,陈启浩,等.面向对象滑坡信息提取中DEM空间分辨率影响分析[J].遥感技术与应用,2014,29(4):631-638.

    LIU Chen,LIU Xiuguo,CHEN Qihao,et al. Impact of DEM spatial resolution on landslide extraction using object-oriented methods[J]. Remote Sensing Technology and Application, 2014,29(4):631-638.

    王耀南,李树涛,毛建旭.计算机图像处理与识别技术[M].北京:高等教育出版社,2001.

    WAO Yaonan, LI Shutao, MAO Janxu. Computer image process and recognition technology[M]. Beijing:High Education Press,2001.

    BARLOW J, MARTIN Y, FRANLIN S E. Detecting translational landslide scars using segmentation of Landsat ETM+ and DEM data in the northern Cascade Mountains, British Columbia[J]. Canadian Journal of Remote sensing, 2003,29(4):510-517.

    BARLOW J, FRANKLIN S E,MARTIN Y. High spatial resolution satellite imagery,DEM derivatives, and image segmentation for the detection of mass wasting processes[J]. Photogrammetric Engineering and Remote Sensing, 2006,72(6):687-692.

    MARTIN Y E, FRANKLIN S E. Classification of soil and bedrock-dominated landsides in British Columbia using segmentation of satellite imagery and DEM data[J]. International Journal of Remote Sensing, 2005,26(7):1505-1509.

    NICHOL J, WONG M S. Satellite remote sensing for detailed landslide inventories using change detection and image fusion[J]. International Journal of Remote Sensing, 2005,26(9):1913-1926.

    BORGHUIS A M, CHANG K, LEE H Y. Comparison between automated and manual mapping of typhoon-triggered landslides from SPOT-5 imagery[J]. International Journal of Remote Sensing, 2007,28(8):1843-1856.

    MARTHA T R, KERLE N,JETTEN V, et al. Characterising spectral, spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods[J]. Geomorphology, 2010,116(1):24-36.

    MARTHA T R, KERLE N,VANWESTEN C J, et al. Object-oriented analysis of multi-temporal panchromatic images for creation of historical landslide inventories[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 67(2):105-119.

    MARTHA T R,VANWESTEN C J,KERLE N, et al. landslide hazard and risk assessment using semi-automatically created landslide inventories[J].Geomorphology, 2013,184:139-150.

    MONDINI A C, MARCHESINI I, ROSSI M, et al. Bayesian framework for mapping and classifying shallow landslides exploiting remote sensing and topographic data[J]. Geomorphology, 2013, 201:135-147.

    MONDINI A C, GUZETTI F, REICHENBACH P, et al. Semi-automatic recognition and mapping of rainfall induced shallow landslides using optical satellite images[J].Remote Sensing of Environment, 2011,115(7):1743-1757.

    LU P, STUMPF A, KERLE N, et al. Object-Oriented change detection for landslides rapid mapping[J]. IEEE Geo-science and Remote Sensing letters, 2011,8(4):701-705.

    STUMPF A, KERLE N. Object-oriented mapping of landslides using Random Forests[J]. Remote Sensing of Environment, 2011,115(10):2564-2577.

    AKSOY B, ERCANOGLU M. Landslide identification and classification by object-based image analysis and fuzzy logic:An example from the Azdavay region[J]. Computers& Geosciences, 2012,38(1):87-98.

    LI Y G, CHEN G Q, WANG B, et al. A new approach of combining aerial photography with satellite imagery for landslide detection[J]. Nature Hazard, 2013,66(2):649-669.

    RUDY A C A, LAMOUREUX S F, TREITZ P, et al. Identifying permafrost slope disturbance using multi-temporal optical satellite images and change detection techniques[J]. Cold Regions Science and Technology, 2013,88:37-49.

    CHENG G, GUO L, ZHAO TY, et al. Automatic landslide detection rom remote-sensing imagery using a scene classification method based on BOVW and PLSA[J]. International Journal of Remote Sensing, 2013,34(1):45-59.

    MOOSAVI V,TALEBI A,SHIRMOHAMMADI,B. Producing a landslide inventory map using pixel-based and object-oriented approaches optimized by Taguchi method[J]. Geomorphology, 2014,204:646-656.

    KURTZ C,STUMPF A,MALET J P, et al. Hierarchical extraction of landslides from multiresolution remotely sensed optical images[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 87:122-136.

    GOLOVKO D,ROESSNER S,BEHLINGR, et al. Development of multi-temporal landslide inventory information system for southern Kyrgyzstan using GIS and satellite remote sensing[J]. Photogrammetrie Ferner Kundung Geoinformation, 2015,2:157-172.

    BEHLING R, Roessner S, Golovko D, et al. Derivation of long-term spatiotemporal landslide activity a multi-sensor time series approach[J].Remote Sensing of Environment, 2016,186:88-104.

    LI Z B,SHI W Z,MYINT S W, et al. Semi-automated landslide inventory mapping from bi temporal aerial photographs using change detection and level set method[J]. Remote Sensing of Environment, 2016, 175:215-230.

    YU B, CHEN F. A new technique for landslide mapping from a large-scale remote sensed image:A case study of central Nepal[J]. Computers & Geoscience, 2017,100:115-124.

    CHEN F, YU B, XU C, et al. Landslide detection using probability regression,a case study of Wenchuan,northwest of Chengdu[J].Applied Geography,2017,89:32-40.

    HARIS K, EFSTRATIADISf N S, MAGLAVERAS N,et al. Hybirdimage segmentation using watersheds and fast region merging[J]. IEEE Transactions on Image Processing,1998,7(12):1684-1699.

    ROBINSON D J, REDDING N J, CRISP D J. Implementation of a fastalgorithm for segmenting SAR imagery[R]. Scientific and Technical Report,Australia:Defense Science and Technology Organization,2002.

  • 期刊类型引用(10)

    1. 张跃恒,赵伟,董振国. 遥感技术在矿区水文地质环境调查中的应用研究. 能源与环保. 2023(03): 171-177 . 百度学术
    2. 贾俊,李志忠,郭小鹏,武文英. 多源遥感技术在降雨诱发勉县地质灾害调查中的应用. 西北地质. 2023(03): 268-280 . 本站查看
    3. 牛朝阳,高欧阳,刘伟,赖涛,张浩波,黄燕. 光学遥感图像滑坡检测研究进展. 航天返回与遥感. 2023(03): 133-144 . 百度学术
    4. 丁永辉,张勤,杨成生,王猛,丁辉. 基于高分遥感的金沙江流域滑坡识别——以巴塘县王大龙村为例. 测绘通报. 2022(04): 51-55 . 百度学术
    5. 杨昭颖,韩灵怡,郑向向,李文吉,冯磊,王轶,杨永鹏. 基于卷积神经网络的遥感影像及DEM滑坡识别——以黄土滑坡为例. 自然资源遥感. 2022(02): 224-230 . 百度学术
    6. 韩海辉,李健强,易欢,阎晓娟,张转,闫瑞,陈霄燕,蔡浩杰. 遥感技术在西北地质调查中的应用及展望. 西北地质. 2022(03): 155-169 . 本站查看
    7. 陶真鹏,徐宗恒,张宇,牛福长. 基于面向对象的云南永胜县金官盆地东缘古滑坡群识别. 自然灾害学报. 2022(05): 244-254 . 百度学术
    8. 李文娟,邵海. 基于遥感影像多尺度分割与地质因子评价的滑坡易发性区划. 中国地质灾害与防治学报. 2021(02): 94-99 . 百度学术
    9. 王俊豪,魏云杰,梅傲霜,管建军,丁祥,王双亭. 基于无人机倾斜摄影的黄土滑坡信息多维提取与应用分析. 中国地质. 2021(02): 388-401 . 百度学术
    10. 郝大海,姚玉增,关长庆,付建飞. 基于高分辨率遥感技术的辽宁大孤山铁矿排土场滑坡灾害评价. 世界地质. 2020(04): 937-945 . 百度学术

    其他类型引用(16)

计量
  • 文章访问数:  1699
  • HTML全文浏览量:  1
  • PDF下载量:  1787
  • 被引次数: 26
出版历程
  • 收稿日期:  2018-09-17
  • 修回日期:  2019-03-27
  • 网络出版日期:  2022-07-28
  • 发布日期:  2019-09-04

目录

    /

    返回文章
    返回