ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

山西五台绿岩带柏枝岩组条带状铁建造(BIFs)成因及其环境意义

孙迪, 李秋根, 陈隽璐, 王宗起, 高山松, YASIN Rahim, 胡鹏月

孙迪, 李秋根, 陈隽璐, 等. 山西五台绿岩带柏枝岩组条带状铁建造(BIFs)成因及其环境意义[J]. 西北地质, 2021, 54(4): 16-41. DOI: 10.19751/j.cnki.61-1149/p.2021.04.002
引用本文: 孙迪, 李秋根, 陈隽璐, 等. 山西五台绿岩带柏枝岩组条带状铁建造(BIFs)成因及其环境意义[J]. 西北地质, 2021, 54(4): 16-41. DOI: 10.19751/j.cnki.61-1149/p.2021.04.002
SUN Di, LI Qiugen, CHEN Junlu, et al. The Origin and Environmental Significance of Banded Iron Formations in the Baizhiyan Formation of Wutai Greenstone Belt, Shaanxi Province[J]. Northwestern Geology, 2021, 54(4): 16-41. DOI: 10.19751/j.cnki.61-1149/p.2021.04.002
Citation: SUN Di, LI Qiugen, CHEN Junlu, et al. The Origin and Environmental Significance of Banded Iron Formations in the Baizhiyan Formation of Wutai Greenstone Belt, Shaanxi Province[J]. Northwestern Geology, 2021, 54(4): 16-41. DOI: 10.19751/j.cnki.61-1149/p.2021.04.002

山西五台绿岩带柏枝岩组条带状铁建造(BIFs)成因及其环境意义

基金项目: 

国家自然科学基金项目“华北克拉通古元古代吕梁群火山沉积作用与构造环境”(41372193),国家自然科学基金项目“华北克拉通东部太古宙壳幔作用与地壳生长方式”(41530207)。

详细信息
    作者简介:

    孙迪(1992-),女,北京大学在读博士,从事前寒武纪地质学研究。E-mail:sd19920623@163.com。

    通讯作者:

    李秋根(1973-),男,江西吉安人,副教授,博士生导师,从事前寒武纪地质学、岩石地球化学、独居石化学法测年及沉积大地构造学研究工作。E-mail:qgli@pku.edu.cn。

  • 中图分类号: P618.31

The Origin and Environmental Significance of Banded Iron Formations in the Baizhiyan Formation of Wutai Greenstone Belt, Shaanxi Province

  • 摘要: 五台绿岩带BIFs主要分布在金岗库组、文溪组和柏枝岩组中,其中以柏枝岩组BIFs铁矿最具工业规模和开采价值。对柏枝岩组8个BIFs矿区及出露点的12件铁矿石和1件变质火山岩样品进行了岩相学、地质年代学和地球化学分析。研究表明,柏枝岩组BIFs自东向西含铁矿物由磁铁矿逐渐转变为碳酸铁矿物(铁白云石或菱铁矿),对应的CaO含量和FeO/Fe2O3值有明显增加的趋势。LA-ICP-MS锆石U-Pb定年结果显示,BIFs赋存的变质火山岩(石英绿泥钠长片岩)原岩形成于(2 526±14) Ma,代表了柏枝岩组BIFs的沉积年龄。高Al2O3、TiO2、HFSE和TREY含量及其之间呈正相关性暗示BIFs中有微量陆源碎屑物质混染,并且根据La/Sc,Th/Sc和Zr/Sc值认为这些物质主要来源于地壳长英质碎屑。尽管如此,大部分BIFs显示出一致的La正异常、Y正异常、LREE亏损、HREE富集及高于球粒陨石的Y/Ho值的特征,与现代海水REY特征相一致。并且BIFs还显示出强烈的正Eu异常,表明有高温热液流体的参与。根据改进的Sm/Yb vs.Y/Ho和Eu/Sm vs.Sm/Yb元素混合计算模型可知,柏枝岩组BIFs的成矿物质来源于大量海水和少量海底高温热液(0.1%~1%)的混合,并在沉积过程中混入少量地壳长英质碎屑组分(<0.1%)。相比西部富碳酸盐BIFs,东部和中部富磁铁矿BIFs受到地壳长英质碎屑的贡献比例更大。此外,根据五台绿岩带新太古代—古元古代"二阶段"构造演化模型,柏枝岩组BIFs形成于第一阶段的末期。并且,依据无Ce异常、正Eu异常、较低的Th/U值和极高的Fe/Mn值,认为沉积时水体整体处于缺氧状态,但其水体是不均一的,出现了细微的氧化还原分层。西部富碳酸盐BIFs因沉积于深部的还原水体中而具有更高的正Eu异常,而中部和东部富磁铁矿BIFs沉积于相对较浅的弱还原水体中而具有较低的Eu异常。
    Abstract: The Wutai greenstone belt preserves abundant BIFs resources, which distributes in the formations of Jingangku, Wenxi and Baizhiyan. Among them, the BIFs of Baizhiyan Formation have the largest industrial scale and commercial value. In this study, the authors present detailed petrographic and geochemical analyses for twelve iron ores from eight mines or ore occurrences, and LA-ICP-MS U-Pb zircon dating for one metamorphic volcanic rock (quartz chlorite albite schist) interbedded with BIFs. The results show that the petrography of BIFs from the eastern to western part has changed, with the iron-bearing mineral switching from magnetite to iron carbonate (ankerite or siderite) gradually, corresponding to the increasing tendency of CaO content and FeO/Fe2O3 value. LA-ICP-MS U-Pb zircon dating result suggest that the protolith of meta-volcanic rock formed in the (2 526±14) Ma, which represents the deposition age of BIFs in the Baizhiyan Formation. High concentrations of Al2O3, TiO2, HFSEs, TREY and their positive correlations indicate that there was a minor terrigenous input, and these detritus are probably crustal felsic rocks based on La/Sc, Th/Sc and Zr/Sc ratios. Even so, the majority of BIF samples display seawater-like REY profiles characterized by concordant positive La and Y anomalies, HREE enrichment relative to LREE and superchondritic Y/Ho ratios in PAAS-normalized REE diagrams. Consistently positive Eu anomalies are also observed, which suggests the participation of high-T hydrothermal fluids. According to the improved element mixing calculation model of Sm/Yb vs. Y/Ho and Eu/Sm vs. Sm/Yb, the source of BIFs in the Baizhiyan Formation are derived from mixtures of major seawater and minor high-T hydrothermal fluids (0.1%~1%), accompanied by minute contamination of crustal felsic clasts (<0.1%). Compared with carbonate-rich BIFs in the west, the magnetite-rich BIFs in the eastern and middle part received larger contribution from the terrigenous clast. In addition, based on the "two-step tectonic evolution model" for Neoarchean-paleoproterozoic Wutai greenstone belt, the BIFs in the Baizhiyan Formation was formed in the end of the first phase(2.56~2.52 Ga). Moreover, no Ce anomalies, positive Eu anomalies,low Th/U values and extremely high Fe/Mn ratios might indicate an anoxic condition for the contemporary sedimentary water. Furthermore, the water was inhomogeneous and showed subtle redox layering. The western carbonate-rich BIFs deposited in deeper reduced water with higher positive Eu anomalies, while the middle and eastern magnetite-rich BIFs deposited in relatively shallow weak-reduced water with lower positive Eu anomalies.
  • 白瑾.五台山早前寒武纪地质[M]. 天津:天津科学技术出版社, 1986.

    BAI Jin.The Early Precambrian Geology of Wutaishan[M]. Tianjin:Tianjin Science and Technology Press, 1986.

    成功, 孙卫宾, 李尚林, 等.印度达尔瓦尔克拉通绿岩带BIF型铁矿地质特征及成因分析[J]. 西北地质, 2016, 49(4):136-145.

    CHENG Gong, SUN Weibin, LI Shanglin, et al. Geological Characters and Genesis Analysis of Greenstone-type BIF Iron Deposits in Dharwar Craton, India[J]. Northwestern Geology, 2016, 49(4):136-145.

    杜利林, 杨崇辉, 王伟, 等.五台地区滹沱群时代与地层划分新认识:地质学与锆石年代学证据[J]. 岩石学报, 2011, 27(04):1037-1055.

    DU Lilin, YANG Chonghui, WANG Wei, et al. The re-examination of the age and stratigraphic subdivision of the HutuoGroup in the Wutai Mountains area, North China Craton:evidence from geologyand zircon U-Pb geochronology[J]. Acta Petrologica Sinica, 2011, 27(04):1037-1055.

    李树勋, 冀树楷, 马志红, 等.五台山区变质沉积铁矿地质[M]. 吉林:吉林科学技术出版社, 1986.

    LI Shuxun, JI Shukai, MA Zhihong, et al. The geology of metamorphosed sedimentary iron deposit in the Wutai Mountain area[M]. Jilin:Jilin Science and Technology Press, 1986.

    李志红, 朱祥坤, 唐索寒, 等.冀东、五台和吕梁地区条带状铁矿的稀土元素特征及其地质意义[J]. 现代地质, 2010, 24(5):840-846.

    LI Zhihong, ZHU Xiangkun, TANG Suohan, et al. Characteristics of rare earth elements and geological significations of BIFs from Jidong, Wutai and Lüliang area[J]. Geoscience, 2010, 24(5):840-846.

    骆辉, 彭晓亮, 赵运起.五台山绿岩带铁建造金矿[M]. 北京:地质出版社, 1994.

    LUO Hui, PENG Xiaoliang, ZHAO Yunqi.BIF-hosted gold deposits in Wutaishan greenstone belt[M]. Beijing:Geological Publishing House, 1994.

    南景博, 黄华, 王长乐, 等.内蒙古固阳绿岩带条带状铁建造地球化学特征与沉积环境讨论[J]. 中国地质, 2017, 44(2):331-345.

    NAN Jingbo, HUANG Hua, WANG Changle, et al. Geochemistry and depositional setting of Banded Iron Formations in Guyang greenstone belt, Inner Mongolia[J]. Geology in China, 2017, 44(2):331-345.

    沈其韩, 宋会侠, 杨崇辉, 等.山西五台山和冀东迁安地区条带状铁矿的岩石化学特征及其地质意义[J]. 岩石矿物学杂志, 2011, 30(2):161-171.

    SHEN Qihan, SONG Huixia, YANG Chonghui, et al. Petro-chemical characteristics and geological significations of banded ironformations in the Wutai Mountain of Shanxi and Qian'an of eastern Hebei[J]. Acta Petrologica et Mineralogica, 2011, 30(2):161-171.

    田永清.五台山-恒山绿岩带地质及金的成矿作用[M]. 太原:山西科技出版社, 1991.

    TIAN Yongqing.Geology and gold mineralization of Wutai-shan-Hengshan greenstone belt[M]. Taiyuan:Shanxi Science and Technology Press, 1991.

    万渝生, 董春艳, 任鹏, 等.华北克拉通太古宙TTG岩石的时空分布、组成特征及形成演化:综述[J]. 岩石学报, 2017, 33(05):1405-1419.

    WAN Yusheng, DONG Chunyan, REN Peng, et al. Spatial and temporal distribution, compositional characteristics and formation and evolution of Archean TTG rocks in the North China Craton:A synthesis[J]. Acta Petrologica Sinica, 2017, 33(05):1405-1419.

    王长乐, 张连昌, 刘利, 等.国外前寒武纪铁建造的研究进展与有待深入探讨的问题[J]. 矿床地质, 2012, 31(6), 1311-1325.

    WANG Changle, ZHANG Lianchang, LIU Li, et al. Research progress of Precambrian iron formations abroad and some problems deserving furtherdiscussion[J]. Mineral Deposits, 2012, 31(6), 1311-1325.

    王浩然, 刘建朝, 张燕娜, 等.山东省海阳市郭城镇BIF型铁矿地球化学特征与矿床成因探讨[J]. 西北地质, 2018, 51(04):156-165.

    WANG Haoran, LIU Jianchao, ZHANG Yanna, et al. Geochemical characteristics and genesis of BIF iron deposit in Guocheng Town, Haiyang City, ShandongProvince[J]. Northwestern Geology, 2018, 51(04):156-165.

    王凯怡, WILDE Simon.山西五台地区大洼梁花岗岩的SHRIMP锆石U-Pb精确年龄[J]. 岩石矿物学杂志, 2002, 4:407-411.

    WANG Kaiyi, WILDE S.Precise SHRIMP U-Pb ages of Dawaliang granite inWutaishan area, Shanxi Province[J]. Acta Petrologica et Mineralogica, 2002, 4:407-411.

    伍家善, 耿元生, 沈其韩, 等.中朝古大陆太古宙地质特征及构造演化[M]. 北京:地质出版社, 1998.

    WU Jiashan, GENG Yuansheng, SHEN Qihan, et al. Archaean geology characteristics and tectonic evolution of China-Korea Paleo-continent[M]. Beijing:Geological Publishing House, 1998.

    姚培慧.中国铁矿志[M]. 北京:冶金工业出版社, 1993.

    YAO Peihui.Records of China's iron ore deposits[M]. Beijing:Metallurgic Industry Press, 1993.

    张连昌, 翟明国, 万渝生, 等.华北克拉通前寒武纪 BIF 铁矿研究:进展与问题[J]. 岩石学报, 2012, 28(11):3431-3445.

    ZHANG Lianchang, ZHAI Mingguo, WAN Yusheng, et al. Study of the Precambrian BIF-iron deposits in the North China Craton:Progresses and questions[J]. Acta Petrologica Sinic, 2012, 28(11):3431-3445.

    赵娜, 王忠梅, 王浩, 等.山西五台金岗库矿床成矿作用研究[J]. 地质科学, 2019, 54(2):608-641.

    ZHAO Na, WANG Zhongmei, WANG Hao, et al. Mineralization of Jingangku deposit in Wutai, North Shanxi Province[J]. Chinese Journal of Geology, 2019, 54(2):608-641.

    Achterberg E V, Ryan C G, Jackson S E, et al. Data reduction software for Laser-Ablation-ICP-Mass in the earth sciences:Principles and Applications[J]. Mineralogical Association of Canada (short course series), 2001, 29:239-243.

    Albut G, Babechuk M G, Kleinhanns I C, et al. Modern rather than Mesoarchaean oxidative weathering responsible for the heavy stable Cr isotopic signatures of the 2.95 Ga old Ijzermijn iron formation (South Africa)[J]. Geochimica et Cosmochimica Acta, 2018, 228:157-189.

    Alexander B W, Bau M, Andersson P, et al. Continentally-derived solutes in shallow Archean seawater:rare earth element and Nd isotope evidence in iron formation from the 2.9Ga Pongola Supergroup, SouthAfrica[J]. Geochimica et Cosmochimica Acta, 2008, 72(2), 378-394.

    Alibo D S, Nozaki Y.Rare earth elements in seawater:particle association, shale-normalization, and Ce oxidation[J]. Geochimica et Cosmochimica Acta, 1999, 63(3-4), 363-372.

    Andersen T.Correction of common lead in U-Pb analyses that donot report 204Pb[J]. Chemical Geology, 2002, 192(1-2):59-79.

    Basta F F, Maurice A E, Fontboté L, et al. Petrology and geochemistry of the banded iron formation (BIF) of WadiKarim and Um Anab, eastern Desert, Egypt:implications for the origin of NeoproterozoicBIF[J]. Precambrian Research, 2011, 187(3):277-292.

    Bau M.Effects of syn-and post-depositional processes on the rare-earth element distribution in Precambrian Iron-formations[J]. European Journal of Mineralogy, 1993, 5(2):257-267.

    Bau M, Dulski P.Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron formations, Transvaal Supergroup, South Africa[J]. Precambrian Research, 1996, 79:37-55.

    Bau M, Dulski P.Comparing yttrium and rare-earth in hydrothermal fluids from the mid-Atlantic ridge:implications for Y and REE behaviour during near vent mixingand for the Y/Ho ratio of Proterozoic seawater[J]. Chemical Geology, 1999, 155(1):77-90.

    Bekker A, Slack J F, Planavsky A, et al. Iron formation:The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biosphericprocesses[J]. Economic Geology, 2010, 105:467-508.

    Bolhar R, Hofmann A, Siahi M, et al. A trace element and Pb isotopic investigation into the provenance and deposition of stromatolitic carbonates, ironstones and associated shales of the~3.0 Ga Pongola Supergroup, Kaapvaal Craton[J]. Geochimica et Cosmochimica Acta, 2015, 158:57-78.

    Bolhar R, Kamber B S, Moorbath S, et al. Characterisation of early Archaean chemical sediments by trace element signatures[J]. Earth and Planetary Science Letters, 2004, 222(1):43-60.

    Bonatti E.Metallogenesis at oceanic spreading centers[J]. Annual Reviews of Earth and Planetary Sciences, 1975, 3(1):401-433.

    Busigny V, Planavsky N J, Goldbaum E, et al. Origin of the Neoproterozoic Fulu iron formation, South China:Insights from iron isotopesand rare earth element patterns[J]. Geochimica et Cosmochimica Acta, 2018, 242:123-142.

    Chen Huichun, Zhao Guochun, Sun Min, et al. Geochemistry of~2.5Ga granitoids at the northern margin of the Yinshan Block:Implications for the crustal evolution of the North China Craton[J]. Precambrian Research, 2017, 303:673-686.

    Chen Yanjing, Zhao Yongchao.Geochemical characteristics and evolution of REE in the Early Precambrian sediments:evidence from the southern margin of the north China craton[J]. Episodes, 1997, 20(2):109-116.

    Condie K C, Wronkiewicz D J.The Cr/Th ratio in Precambrian pelites from the KaapvaalCratonas an index of craton evolution[J]. Earth and Planetary Science Letters, 1990, 97(3):256-267.

    Condie K C.Chemical composition and evolution of the upper continental crust:contrasting results from surface sample and shales[J]. Chemical Geology, 1993, 104(1-4):1-37.

    Diwu Chunrong, Sun Yong, Guo Anlin, et al. Crustal growth in the North China Craton at~2.5Ga:Evidence from in situ zircon U-Pb ages, Hf isotopes and whole-rock geochemistry of the Dengfengcomplex[J]. Gondwana Research, 2011, 20(1):149-170.

    Du Lilin, Yang Chonghui, Wang Wei, et al. Paleoproterozoic rifting of the North China Craton:geochemical and zircon Hf isotopic evidence from the 2137 Ma Huangjinshan A-type granite porphyry in the Wutaiarea[J]. Journal of Asian Earth Sciences, 2013, 72, 190-202.

    Dymek R F, Klein C.Chemistry, petrology and origin of banded iron-formation lithologies from the 3800 Ma Isua supracrustal belt, West Greenland[J]. Precambrian Research, 1988, 39 (4), 247-302.

    Frei R, Dahl P S, Duke E F, et al. Trace element and isotopic characterization of Neoarchaean and Paleoproterozoic iron formations in the Black Hills (South Dakota, USA):Assessment of chemical change during 2.9~1.9 Ga deposition bracketing the 2.4~2.2 Ga first rise of atmospheric oxygen[J]. Precambrian Research, 2008, 162(3-4):441-474.

    Gao Pin, Santosh M.Building the Wutai arc:Insights into the Archean-Paleoproterozoic crustal evolution of the North China Craton[J]. Precambrian Research, 2019, 333:105429.

    Gao Pin, Santosh M.Trace element and stable isotope characteristics of Algoma-type sulfidic banded iron formations from the Wutai Complex, central NorthChina Craton[J]. Ore Geology Reviews, 2020, 116:103221.

    German C R, Elderfield H.Application of the Ce anomaly as a paleoredox indicator:The ground rules[J]. Paleoceanography, 1990, 5(5):823-833.

    German C R, Holliday B P, Elderfield H.Redox cycling of rare earth elements in the suboxic zone of the Black Sea[J]. Geochimica et Cosmochimica Acta, 1991, 55:3553-3558.

    Gnaneshwar R T G, Naqvi S M.Geochemistry, depositional environment and tectonic setting of the BIF's of the Late Archaean Chitradurga Schist Belt, India[J]. Chemical Geology, 1995, 121:217-243.

    Halevy I, Bachan A.The geologic history of seawater PH[J]. Science, 355:1061-1071.

    HAN Chunming, XIAO Wenjiao, SU Benxun, et al. Neoarchean Algoma-type banded iron formation from the Northern Shanxi, the Trans-North China Orogen:SIMS U-Pb age, origin and tectonic setting[J]. Precambrian Research, 2017, 303:548-572.

    Hou Kejun, Li Yanhe, Gao Jianfeng, et al. Geochemistry and Si-O-Fe isotope constraints on the origin of banded iron formations of the Yuanjiacun Formation, Lvliang Group, Shanxi, China[J]. Ore Geology Reviews, 2014, 57, 288-298.

    Huston D L, Logan G A.Barite, BIFs and bugs:evidence for the evolution of the Earth's early hydrosphere[J]. Earth and Planetary Science Letters, 2004, 220(1-2), 41-55.

    Hyndman R D, Rogers G C, Dragert H, et al. Giant earthquakes beneath Canada's west coast[J]. Geoscience Canada, 1996, 23(2):63-72.

    James H L.Sedimentary facies of iron-formation[J]. Economic Geology, 1954, 49:235-293.

    Kappler A, Pasquero C, Konhauser K O, et al. Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria[J]. Geology, 2005, 33(11):865-868.

    Konhauser K O, Pecoits E, Lalonde S V, et al. Oceanic nickel depletion and a methanogen famine before the great oxidation event[J]. Nature, 2009, 458(7239):750-753.

    Kusky T M, Li Jianghai.Paleoproterozoic tectonic evolution of the North China Craton[J]. Journal of Asian Earth Sciences, 2003, 22(4):383-397.

    Kusky T, Polat A, Windley B, et al. Insights into the tectonic evolution of the north China Craton through comparative tectonic analysis:a record of outward growth of Precambrian continents[J]. Earth-Science Reviews, 2016, 162:387-432.

    Lan Tingguang, Fan Hongrui, Santosh M, et al. U-Pb zircon chronology, geochemistry and isotopes of the Changyi banded iron formation in the eastern Shandong Province:constraints on BIF genesis and implications for Paleoproterozoic tectonic evolution of the North China Craton[J]. Ore Geology Reviews, 2014, 56:472-486.

    Li Qiugen, Chen Xu, Liu Shuwen, et al. Evaluating the provenance of metasedimentary rocks of the Jiangxian Group from the Zhongtiao Mountain using whole-rockgeochemistry and detrital zircon Hf isotope[J]. International Journal of Earth Sciences, 2008, 83(3), 550-561.

    Liu Chaohui, Zhao Guochun, Sun Min, et al. U-Pb and Hf isotopic study of detrital zircons from the Hutuo group in the Trans-North China Orogen and tectonicimplications[J]. Gondwana Research, 2010, 20(1):106-121.

    Liu Chaohui, Liu Fulai, Shi Jianrong, et al. Depositional age and provenance of the Wutai Group:Evidence from zircon U-Pb and Lu-Hf isotopes and whole-rock geochemistry[J].Precambrian Research, 2016, 281:269-290.

    Liu Shuwen, Pan Yuanming, Xie, Qianli, et al. Archean geodynamics in the central zone, North China Craton:constraints from geochemistry of two contrasting series of granitoids in the Fuping and Wutaicomplexes[J]. Precambrian Research, 2004, 130:229-249.

    Ludwig KR.ISOPLOT 3.0:A Geochronological Toolkit for Microsoft Excel[M]. Los Angeles, Berkeley:Berkeley Geochronology Center Special Publication, 2003.

    Mclennan S M.Rare earth elements in sedimentary rocks:Influence of provenance and sedimentary processes.In:LIPIN B R and MCKAY G A (eds).Geochemistry and Mineralogy of Rare EarthElements[J]. Reviews in Mineralogy, 1989, 21(1):169-200.

    Michard A, Michard G, Stuben D., et al. Submarine thermal springs associated with young volcanoes:the Teahitia vents, Society islands Pacific Ocean[J]. Geochimica et Cosmochimica Acta, 1993, 57(21-22):4977-4986.

    Partin C A, Lalonde S V, Planavsky N J, et al. Uranium in iron formations and the rise ofatmosphericoxygen[J]. Chemical Geology, 2013, 362:82-90.

    Pearson R G.Hard and Soft Acids and Bases[J]. Journal of the American Chemical Society, 1973, 85(22):3533-3539.

    Pecoits E, Gingras M K, Barley, M E, et al. Petrography and geochemistry of the Dales Gorge banded iron formation:paragenetic sequence, source and implications for paleo-oceanchemistry[J]. Precambrian Research, 2009, 172(1-2):163-187.

    Peng Peng, Feng Lianjun, Sun Fengbo, et al. Dating the Gaofan and Hutuo Groups-Targets to investigate the Paleoproterozoic Great Oxidation Event in North China[J]. Journal of Asian Earth Sciences, 2017, 138:535-547.

    Peter J M, Goodfellow W D.Mineralogy, bulk and rare earth element geochemistry of massive sulphide-associated hydrothermal sediments of the Brunswick Horizon, Bathurst Mining Camp, New Brunswick[J]. Canadian Journal of Earth Sciences, 1996, 33:252-283.

    Planavsky N J, Asael D, Hofmann A, et al. Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event[J]. Nature Geoscience, 2014, 7(4):283-286.

    Planavsky N, Bekker A, Rouxel O J, et al. Rare Earth Element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited:New perspectives on the significance and mechanisms ofdeposition[J]. Geochimica et Cosmochimica Acta, 2010, 74 (22):6387-6405.

    Planavsky N, Rouxel O J, Bekker A, et al. Iron isotope composition of some Archean and Proterozoic iron formations[J]. Geochimicaet Cosmochimica Acta, 2012, 80:158-169.

    Polat A, Kusky T M, Li Jianghai, et al. Geochemistry of Neoarchean (ca.2.55-2.50 Ga) volcanic and ophiolitic rocks in the Wutaishan Greenstone Belt, Central Orogenic Belt, North China Craton:implications for geodynamic setting and continental growth[J]. Bulletin of the Geological Society of America, 2005, 117:1387-1399.

    Smith A J, Beukes N J, Gutzmer J.The composition and depositional environments of Mesoarchean iron formations of the West Rand Group of the Witwatersrand Supergroup, South Africa[J]. Economic Geology, 2013, 108:111-134.

    SUN DI, LI QIUGEN, LIU Shuwen, et al. Neoarchean-Paleoproterozoic magmatic arc evolution in the Wutai-Hengshan-Fuping area, North China Craton:New perspectives from zircon U-Pb ages and Hf isotopic data[J]. Precambrian Research, 2019, 331:105368.

    Sun Shensu, Mcdonough W F.Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. In:Sauders, A D, Norry, M J (Eds.), Magmatism in the Ocean Basins.Geological Society Special Publication, 1989, 42:313-345.

    Sunder R P V.Petrography and geochemical behaviour of trace element, REE and precious metal signatures of sulphidic banded iron formations from the Chikkasiddavanahalli area, Chitradurga schist belt, India[J]. Journal of Asian Earth Sciences, 2009, 34:663-673.

    Tang Li, Santosh M.Neoarchean-Paleoproterozoic terrane assembly and Wilson cycle in the North China Craton:an overview from the central segment of the Trans-North ChinaOrogen[J]. Earth-Science Reviews, 2018, 182:1-27.

    Wang Changle, Zhang Lianchang, Dai Peiyan, et al. Source characteristics of the 2.5 Ga Wangjiazhuang Banded Iron Formation from the Wutai greenstone belt in the North China Craton:Evidence from neodymium isotopes[J]. Journal of Asian Earth Sciences, 2014b, 93:288-300.

    Wang Changle, Zhang Lianchang, Lan Caiyun, et al. Petrology and geochemistry of the Wangjiazhuang banded iron formation and associated supracrustal rocks from the Wutai greenstone belt in the North China Craton:Implications for their origin and tectonicsetting[J]. Precambrian Research, 2014a, 255:603-626.

    Wang Zhihong, Wilde S A, Wang K Y, et al. A MORB-arc basalt-adakite association in the 2.5 Ga Wutai greenstone belt:late Archean magmatism and crustal growth in the North China Craton[J]. Precambrian Research, 2004, 131(3-4):323-343.

    Widdel F, Schnell S, Heising S, et al. Ferrous iron oxidation by anoxygenic phototrophic bacteria[J]. Nature, 1993, 362(6423):834-836.

    Wilde, S A, Cawood P A, Wang K Y, et al. Determining Precambrian crustal evolution in China:a case-study from Wutaishan, Shanxi Province, demonstrating the application of precise SHRIMP U-Pb geochronology[J]. Geological Society of London, 2004a, 226:5-26.

    Wilde, S A, Cawood P A, Wang K Y, et al. Granitoid evolution in the late Archean Wutaicomplex, North China Craton[J]. Journal of Asian Earth Sciences, 2005, 24:597-613.

    Wilde, S A, Zhao Guochun, Wang K Y, et al. First precise SHRIMP U-Pb zircon ages for the Hutuo Group, Wutaishan:further evidence for the Paleoproterozoic amalgamation of the North China Craton[J]. Chinese Science Bulletin, 2014b, 49(1):83-90.

    Windley B F, Kusky T, Polat A.Onset of plate tectonics by the Eoarchean[J]. Precambrian Research, 2021, 352:105980.

    Wonder J, Spry P, Windom K.Geochemistry and origin of manganese-rich rocks related to iron-formation and sulfide deposits, Western Georgia[J]. Economic Geology, 1988, 83, 1070-1081.

    Yang Chonghui, Du Lilin, Ren Liudong, et al. Delineation of the ca.2.7 Ga TTG gneisses in the Zanhuang Complex, North China Cratonand its geological implications[J]. Journal of Asian Earth Sciences, 2013, 72:178-189.

    Zhai Mingguo, Santosh M.Metallogeny of the North China Craton:link with secular changes in the evolvingEarth[J]. Gondwana Research, 2013, 24(1):275-297.

    Zhai Mingguo, Santosh M.The early Precambrian odyssey of the North China Craton:a synoptic overview[J]. Gondwana Research, 2011, 20(1):6-25.

    Zhang Juquan, Li Shengrong, Santosh, M, et al. Metallogenesis of Precambrian gold deposits in the Wutai greenstone belt:Constrains on the tectonic evolution of the North China Craton[J]. Geoscience Frontiers, 2018, 9(2):317-333.

    Zhao Guochun, Cawood P A, LI Sanzhong, et al. Amalgamation of the North China Craton:key issues and discussion[J]. Precambrian Research, 2012, 222:55-76.

    Zhao Guochun, Sun Min, Wilde, S A, et al. Neoarchaean to Palaeoproterozoic evolution of the North China Craton:key issues revisited[J]. Precambrian Research, 2005, 136:177-202.

    WAN Yusheng, LIU Shoujie, XIE Hangqiang, et al. Formation and evolution of the Archean continental crust of China:A review[J]. China Geology, 2018, 1, 109-136. doi: 10.31035/cg2018011.

  • 期刊类型引用(4)

    1. 赵俊斌,魏荣珠,张成龙,闫涛,高宇辉,杜艳伟. 太岳山脉中段中生代—新生代隆升演化裂变径迹约束. 西北地质. 2024(03): 237-250 . 本站查看
    2. 李秋根,黄萧,初航,孙迪,刘文煜. 华北克拉通五台绿岩带锆石年代学及地质意义. 岩石学报. 2024(11): 3426-3447 . 百度学术
    3. 王欣平,彭澎,李小兵. 华北克拉通五台山~2520Ma辉长岩侵入体的成因及其地质意义. 岩石学报. 2023(03): 845-864 . 百度学术
    4. 郑方顺,宋国学. 铕异常在地质学中的应用. 岩石学报. 2023(09): 2832-2856 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  831
  • HTML全文浏览量:  6
  • PDF下载量:  693
  • 被引次数: 6
出版历程
  • 收稿日期:  2021-01-09
  • 修回日期:  2021-04-19
  • 网络出版日期:  2022-07-28
  • 发布日期:  2021-12-04

目录

    /

    返回文章
    返回