A New Method for Fast Identification of Basic-ultrabasic Rocks—Basic Degree Index from Remote Sensing Image
-
摘要: 目前,利用多光谱遥感影像近红外波段提取蚀变矿物信息的技术已很成熟,但对如何利用热红外波段定量识别与岩浆熔离型矿床密切相关的基性-超基性岩仍需探索。笔者通过分析典型矿物在热红外波谱范围内的发射谱特征,提出了一种“基性度遥感指数法”。以北山柳园地区为实验区,基于ASTER热红外数据识别基性-超基性岩体;通过室内对比与野外核查的方式定量评价方法的有效性。结果表明:“基性度遥感指数法”可较好地识别基性-超基性岩体,总体识别精度约70%,且识别的岩体边界比以往地质图中填绘边界更为精细。对红柳沟典型区的应用分析表明,新方法识别的基性-超基性岩体分布特征与实际地质状况吻合,且基性度遥感指数高值区与已知地磁异常和地球化学异常区也有较好重叠。这对矿产勘查中利用多种方法快速锁定基性-超基性岩的分布提供了新依据。研究结果对北山乃至西北其他区域开展基性岩体的遥感定量识别研究都具有理论和实践意义。Abstract: Although the technique for extracting altered mineral information using near-infrared bands of multispectral remote sensing images is very developed, how to use thermal infrared bands to quantitatively identify the basic-ultrabasic rocks that are closely related to magmatic liquation deposits needs to be explored. By analyzing the emission spectrum characteristics of typical minerals in the range of thermal infrared spectrum, a "basic degree index method" was proposed. The Liuyuan area of Beishan was selected as the experimental area, and basic-ultrabasic rocks were identified based on ASTER thermal infrared data, and the effectiveness of the method was quantitatively evaluated by means of indoor comparison and field verification. The results show that the new method can identify basic-ultrabasic rocks well, the overall identification accuracy can reach about 70%, and the boundaries of the identified rock masses are more detailed than those mapped in the previous geological maps. The application analysis of the Hongliugou typical area shows that the distribution characteristics of the basic-ultrabasic rock masses identified by remote sensing are consistent with the actual geological conditions, and the high-basic degree index area overlaps with the known geomagnetic and geochemical anomalies very well. These findings provide a new basis for the use of multiple methods to locate basic-ultrabasic rocks in mineral exploration. The research results have theoretical and practical significance for similar research in Beishan and even Northwest China.
-
-
别小娟, 张廷斌, 孙传敏, 等.藏东罗布莎蛇绿岩遥感岩矿信息提取方法研究[J].国土资源遥感, 2013, 25(3):72-78. BIE Xiaojuan, ZHANG Tingbin, SUN Chuanmin, et al. Study of Methods for Extraction of Remote Sensing Information of Rocks and Altered Minerals from Luobusha Ophiolite in East Tibet[J].Remote Sensing for Land and Resources, 2013, 25(3):72-78.
陈圣波, 于亚风, 杨金中, 等.基于实测光谱指数法的ASTER遥感数据岩性信息提取[J].吉林大学学报(地球科学版), 2016, 46(3):938-944. CHEN Shengbo, YU Yafeng, YANG Jinzhong, et al. Lithologic Information Extraction from ASTER Remote Sensing Data Based on Spectral Ratio Method[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(3):938-944.
成功, 朱佳玮, 毛先成.基于ASTER数据的金川铜镍矿床外围遥感找矿预测[J].国土资源遥感, 2016, 28(1):16-21. CHENG Gong, ZHU Jiawwei, MAO Xiancheng. Remote sensing prospecting prediction in periphery of the Jinchuan copper-nickel deposit based on ASTER data[J]. Remote Sensing for Land and Resources, 2016, 28(1):15-21.
韩海辉, 王艺霖, 任广利, 等.基于ASTER数据的北山方山口地区蚀变矿物提取与找矿应用[J].遥感技术与应用, 2016, 31(2):368-377. HAN Haihui, WANG Yilin, REN Guangli, et al. Extraction and Application of Altered Mineral in Prospecting from ASTER Data in Fangshankou, Beishan[J]. Remote Sensing Technology and Application, 2016, 31(2):368-377.
韩海辉, 任广利, 张转, 等.北山方山口地区典型蚀变岩矿的光谱特征研究[J].西北地质, 2018, 51(4):263-275. HAN Haihui, REN Guangli, ZHANG Zhuan, et al. Spectral Characteristics of Typical Altered Rocks and Minerals from Fangshankou area in Beishan[J].Northwestern Geology, 2018, 51(4):263-275.
胡鹏.北山南带构造岩浆演化与金的成矿作用[D].北京:中国地质科学院, 2007. HU Peng. Tectonomagmatic Evolution and Gold Metallogeny in South Beishan Mountain, Northwest China[D]. Beijing:Chinese Academy of Geological Sciences, 2007.
刘汉湖.岩矿波谱数据分析与信息提取方法研究[D].成都:成都理工大学, 2008. LIU Hanhu. Research on the Analysis of the Spectrum Data and Extraction Methods of Minerals[D] Chengdu:Chengdu University of Technology, 2008.
任广利, 杨军录, 杨敏, 等.高光谱遥感异常提取在甘肃北山金滩子-明金沟地区成矿预测中的应用[J].大地构造与成矿学, 2013, 37(4):765-776. REN Guangli, YANG Junlu, YANG Min, et al. Application of Hyperspectral Remote Sensing Anomaly Information on Metallogenic Prediction in the Jintanzi-Mingjingou Area of Beishan, Gansu[J]. Geotectonica et Metallogenia, 2013, 37(4):765-776.
任广利, 梁楠, 张转, 等.高光谱标志性蚀变矿物组合在找矿预测中的应用研究-以东昆仑东-西大滩一带金矿床为例[J].西北地质, 2018, 51(2):93-107. REN Guangli, LIANG Nan, ZHANG Zhuan, et al. Iconic Altered Mineral Assemblages on Prospecting Prediction by Hyperspectral Remote Sensing:Example from the Gold Deposits in Dongdatan and Xidatan Region of East Kunlun Mountain[J].Northwestern Geology, 2018, 51(2):93-107.
王立社, 杨建国, 谢春林, 等.甘肃怪石山铜镍矿化基性超基性岩成矿潜力研究[J].大地构造与成矿学, 2008, 32(3):392-399. WANG Lishe, YANG Jianguo, XIE Chunlin, et al. Metallogenic Potentiality of Guaishishan Cu-Ni Mineralized Basic-ultrabasic Rocks in Beishan Area, Gansu Province[J]. Geotectonica et Metallogenia, 2008, 32(3):392-399.
谢燮, 杨建国, 王小红, 等.甘肃北山红柳沟基性-超基性岩体岩石成因及成矿条件[J].现代地质, 2015, 29(6):1259-1270. XIE Xie, YANG Jianguo, WANG Xiaohong, et al.The Petrogenesis and Mineralization of the Hongliugou Mafic-ultramafic Rock in Beishan, Gansu Province[J]. Geoscience, 2015, 29(6):1259-1270.
谢燮, 杨建国, 王小红, 等.甘肃北山红柳沟铜镍矿化基性-超基性岩体SHRIMP锆石U-Pb年龄及其地质意义[J].中国地质, 2015, 42(2):396-405. XIE Xie, YANG Jianguo, WANG Xiaohong, et al.Zircon SHRIMP U-Pb Dating of Hongliugou Mafic-ultramafic Complex in the Beishan Area of Gansu Province and its Geological Significance[J]. Geology in China, 2015, 42(2):396-405.
杨长保, 朱群, 姜琦刚, 等.ASTER热红外遥感地表岩石的二氧化硅含量定量反演[J].地质与勘探, 2009, 45(6):692-696. YANG Changbao, ZHU Qun, JIANG Qigang, et al. Silicon Dioxide Content of Surface Rock Quantify Inversion and Retrieval by Thermal Infrared ASTER Data[J].Geology and Exploration, 2009, 45(6):692-696.
杨建国, 谢春林, 王小红, 等.甘肃北山地区基本构造格局和成矿系列特征[J].地质通报, 2012, 31(2-3):422-438. YANG Jianguo, XIE Chunlin, WANG Xiaohong, et al. Basic tectonic framework and features of metallogenic series in Beishan area, Gansu Province[J]. Geological Bulletin of China, 2012, 31(2-3):422-438.
袁金国, 牛铮, 王锡平.基于FLAASH的Hyperion高光谱影像大气校正[J].光谱学与光谱分析, 2009, 29(5):1181-1185. YUAN Jinguo, NIU Zheng, WANG Xiping. Atmospheric Correction of Hyperion Hyperspectral Image Based on FLAASH[J]. Spectroscope and Spectral Analysis, 2009, 29(5):1181-1185.
张良培.高光谱目标探测的进展与前沿问题[J].武汉大学学报:信息科学版, 2014, 39(12):1387-1400. ZHANG Liangpei. Advance and Future Challenges in Hyperspectral Target Detection[J]. Geomatics and Information Science of Wuhan University, 2014, 39(12):1387-1400.
张莹彤, 肖青, 闻建光, 等.地物波谱数据库建设进展及应用现状[J].遥感学报, 2017, 21(1):12-26. ZHANG Yingtong, XIAO Qing, WEN Jianguang, et al. Review on Spectral Libraries:Progress and Application[J]. Journal of Remote Sensing, 2017, 21(1):12-26.
Asadzadeh S, De Souza Filho C R. A Review on Spectral Processing Methods for Geological Remote Sensing[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 47:69-90.
Bishop C., Rivard B, De Souza Filho C R, et al. Geological Remote Sensing[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 64:267-274.
Boissieu F F, Sevin B, Cudahy T. Regolith-Geology Mapping with Support Vector Machine:A Case Study over Weathered Ni-bearing Peridotites, New Caledonia[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 64:377-385.
Carrino T A, Crósta A P, Toledo C L B, et al. Hyperspectral Remote Sensing Applied to mineral Exploration in Southern Peru:A Multiple Data Integration Approach in the Chapi Chiara Gold Prospect[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 64:287-300.
Chavez P S, Berlin G L, Sowers L B. Statistical Methods for Selecting Landsat MSS Ratios[J]. Journal of Applied Photographic Engineering, 1982, 8(1):23-30.
Crosta A P, McMoore J. Enhancement of Landsat Thematic Mapper Imagery for Residual Soil Mapping in SW Minas Gerais State, Brazil:A Prospecting Case History in Greenstone Belt Terrain[C].Seventh Thematic Conference on Remote Sensing for Exploration Geology, Calgary, Alberta, Canada, 1989.
Duke E F, Lewis R S. Near Infrared Spectra of White Mica in the Belt Supergroup and Implications for Metamorphism[J].Am. Mineral, 2010, 95(7):908-920.
Gabr S, Ghulam A, Kusky T. Detecting Areas of High-Potential Gold Mineralization Using ASTER Data[J]. Ore Geology Reviews, 2010, 38(1-2):59-69.
Gabr S S, Hassan S M, Sadek M F. Prospecting for New Gold-bearing Alteration Zones at El-Hoteib area, South Eastern Desert, Egypt, Using Remote Sensing Data Analysis[J]. Ore Geology Reviews, 2015, 71:1-13.
Goetz A F H, Rowan L C. Geologic Remote Sensing[J]. Science, 1981, 211(4484):781-791.
Govil H, Gill N, Rajendran S, et al. Identification of New Base Metal Mineralization in Kumaon Himalaya, India, Using Hyperspectral Remote Sensing and Hydrothermal Alteration[J]. Ore Geology Reviews, 2018, 92:271-283.
Hunt G R, Salisbury J W, Lenhoff G J. Visible and Near-Infrared Spectra of Minerals and Rocks:III Oxides and Hydroxides[J]. Modern Geology, 1978, 2:195-205.
Kalinowski A, Oliver S. ASTER Mineral Index Processing Manual[M]. Remote Sensing Applications Geoscience Australia, 2004.
Liu L, Feng J L, Rivard B, et al.Mapping Alteration Using Imagery from the Tiangong-1 Hyperspectral Spaceborne system:Example for the Jintanzi gold Province, China[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 64:275-286.
Loughlin W P. Principal Component Analysis for Alteration Mapping[J].Photogrammetric Engineering and Remote Sensing, 1991, 57(9):1163-1169.
Ninomiya Y. Mapping Quartz, Carbonate Minerals and Mafic-ultramafic Rocks Using Remotely Sensed Multispectral Thermal Infrared ASTER Data[J]. Proceedings of SPIE, 2002, 4710(P1):191-202.
Pour A B, Hashim M. Identifying Areas of High Economic-potential Copper Mineralization Using ASTER Data in the Urumieh-Dokhtar Volcanic Belt, Iran[J]. Advances in Space Research, 2012, 49(4):753-769.
Rowan L C, Goetz A F H., Ashley R P. Discrimination of Hydrothermally Altered and Unaltered Rocks in Visible and Near Infrared Multispectral Images[J]. Geophysics, 1977, 42(3):522-535.
Salisbury J W, Walter L S, Vergo N. Availability of a Library of Infrared (2.1-25.0 MU-M) Mineral Spectra[J]. American Mineralogist, 1989, 74:938-939.
Salisbury J W, Daria D M. Emissivity of Terrestrial Materials in the 8-14 MU-M Atmospheric Window[J]. Remote Sensing of Environment, 1992, 42(2):83-106.
Salisbury J W, Daria D M. Emissivity of Terrestrial Materials in the 3-5 MU-M Atmospheric Window[J]. Remote Sensing of Environment, 1994, 47(3):345-361.
Salles R D R, De Souza Filho C R, Cudahy T, et al. Hyperspectral Remote Sensing Applied to Uranium Exploration:A Case Study at the Mary Kathleen Metamorphic-hydrothermal U-REE Deposit, NW, Queensland, Australia[J].Journal of Geochemicl Exploration, 2017, 179:36-50.
Son Y S, Kang M K, Yoon W J. Lithological and Mineralogical Survey of the Oyu Tolgoi Region, Southeastern Gobi, Mongolia Using ASTER Reflectance and Emissivity Data[J]. International Journal of Applied Earth Observation and Geoinformation, 2014, 26:205-216.
Van Der Meer F D, Van Der Werff H M A, Van Ruitenbeek F J A, et al.=Multi-and Hyperspectral Geological Remote Sensing:A Review[J]. International Journal of Applied Earth Observation and Geoformation, 2012, 14(1):112-128.
Yang M, Yang J L, Ren G L, et al. The Application of Near-Infared Spectral Data in Studying The Chloritized Rocks[C].International Symposium on Optoelectronic Technology and Application, 2014, 99-103.
Zadeh M H, Tangestani M H, Roldan F V, et al. Spectral Characteristics of Minerals in Alteration Zones Associated with Porphyry Copper Deposits in the Middle Part of Kerman Copper Belt, SE Iran[J]. Ore Geology Reviews, 2014, 62:191-198.
-
期刊类型引用(1)
1. 匡薇,刘超,田江涛,朱彦菲,于浩. ASTER卫星数据在西昆仑团结峰地区基性-超基性岩信息提取中的应用研究. 新疆地质. 2023(04): 630-634 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 348
- HTML全文浏览量: 15
- PDF下载量: 253
- 被引次数: 1