ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    高级检索

    西秦岭白龙江地区志留系迭部组岩石地球化学特征及碎屑锆石原位U–Pb年代学研究

    俞胜, 贾轩, 姚皓骞, 徐磊, 赵斌斌, 贾新勇

    俞胜, 贾轩, 姚皓骞, 等. 西秦岭白龙江地区志留系迭部组岩石地球化学特征及碎屑锆石原位U–Pb年代学研究[J]. 西北地质, 2023, 56(5): 245-261. DOI: 10.12401/j.nwg.2023062
    引用本文: 俞胜, 贾轩, 姚皓骞, 等. 西秦岭白龙江地区志留系迭部组岩石地球化学特征及碎屑锆石原位U–Pb年代学研究[J]. 西北地质, 2023, 56(5): 245-261. DOI: 10.12401/j.nwg.2023062
    YU Sheng, JIA Xuan, YAO Haoqian, et al. Geochemistry Characteristics and Detrital Zircon In–Site U–Pb Geochronology of Silurian Diebu Formation in Bailongjiang Area, West Qinling Mountains[J]. Northwestern Geology, 2023, 56(5): 245-261. DOI: 10.12401/j.nwg.2023062
    Citation: YU Sheng, JIA Xuan, YAO Haoqian, et al. Geochemistry Characteristics and Detrital Zircon In–Site U–Pb Geochronology of Silurian Diebu Formation in Bailongjiang Area, West Qinling Mountains[J]. Northwestern Geology, 2023, 56(5): 245-261. DOI: 10.12401/j.nwg.2023062

    西秦岭白龙江地区志留系迭部组岩石地球化学特征及碎屑锆石原位U–Pb年代学研究

    基金项目: 甘肃省科技计划项目“甘肃北山成宣镁铁质–超镁铁质杂岩体成因与找矿潜力研究”(21JR7RA787),甘肃省自然资源厅项目“甘肃省迭部县尖尼–洛大地区1∶5万矿产远景调查”(甘国土资财发[2015]16号、甘国土资财发[2016]15号、甘财经二[2017]62号)联合资助。
    详细信息
      作者简介:

      俞胜(1984–),男,高级工程师,长期从事区域地质矿产调查与研究工作。E–mail:78181205@qq.com

      通讯作者:

      徐磊(1986–),男,高级工程师,长期从事区域地质矿产调查相关工作。E–mail:397315452@qq.com

    • 中图分类号: P595

    Geochemistry Characteristics and Detrital Zircon In–Site U–Pb Geochronology of Silurian Diebu Formation in Bailongjiang Area, West Qinling Mountains

    • 摘要:

      白龙江地区志留系迭部组浅变质碎屑岩微量元素地球化学指示其物源主要来自上地壳长英质岩浆岩,源区与活动大陆边缘背景密切有关。迭部组LA–ICP–MS碎屑锆石U–Pb年代学显示年龄值跨度较大,最小年龄为440 Ma,指示其沉积时代不早于早志留世,结合区域化石资料限定迭部组为早志留世。碎屑锆石U–Pb年龄可分出440~680 Ma、798~876 Ma、1012~1291 Ma、1590~1990 Ma、 2113~2455 Ma等5个峰值年龄区间,显示区内沉积物源具有多源多时代地质体的贡献特征。其中,最高峰值440~680 Ma(占总有效数据76.9%)的年龄谱图与北秦岭微地块吻合度高,显示迭部组沉积物源主要来自北秦岭微地块,而其他组少量峰值碎屑锆石年龄则显示南秦岭微地块、扬子地块,北祁连东段可能参与了部分物源供给。

      Abstract:

      Trace element geochemistry of the shallow metamorphic clastic rocks of the Silurian Diebu Formation in the Bailongjiang area indicates that their provenance is mainly derived from felsic magmatic rocks in the upper crust, and the source area is closely related to the background of the active continental margin. LA–ICP–MS detrital zircon U–Pb chronology of the Diebu Formation shows a large age span, with a minimum age of 440 Ma, indicating that its sedimentary age is not earlier than the Early Silurian. Combined with regional fossil data, the Diebu Formation is defined as the Early Silurian. The U–Pb ages of detrital zircons can be divided into five peak age ranges of 440~680 Ma, 798~876 Ma, 1012~1291 Ma, 1590~1 990 Ma, and 2113~2455 Ma, indicating that the sediment sources in the area have the contribution characteristics of multiple sources and multiple ages of geological bodies. The age spectrum with the highest peak value of 440~680 Ma (accounting for 76.9% of the total effective data) is highly consistent with the north Qinling microblock, indicating that the sediment sources of the Diebu Formation mainly come from the north Qinling microblock, while a small amount of peak clastic zircon ages of other groups indicate that the south Qinling microblock, the Yangtze block, the eastern section of the north Qilian mountains may participate in some source supply.

    • 韧性剪切带的概念及经典论著最早由Sibson(1977)Ramsay(1980)等提出,韧性剪切带型矿床的研究起源于金矿,加拿大地质学家Boyle(1979)首次提出韧性剪切带型金矿的概念。四十多年以来,地质学家在韧性剪切带的理论研究和应用实践方面取得了重要进展,众多学者提出了一系列的剪切带成矿模式,建立了典型剪切带型矿床的找矿模型(程南南等,2018)。中国韧性剪切带型金矿的研究兴起于20世纪90年代,国内典型韧性剪切带型金矿床主要位于广东河台、新洲等地(王吉珺等,1990段嘉瑞等,1992)。地质工作者在韧性剪切带型金矿类型,剪切带控矿机理研究,剪切带发展演化及其与区域岩浆活动、流体作用的关系及剪切带型金矿产生的大地构造环境等方面取得了较多成果(何绍勋等,1992路彦明等,2008程南南等,2018)。陈柏林等(2000)最早提出甘肃北山南带发育有韧性剪切带型金矿,并以小西弓金矿为例对北山南带韧性剪切带型金矿成矿机理、控矿特征、矿床成因、区域找矿潜力等开展了相关研究工作(陈柏林等,20022007)。但是,近20年来甘肃北山南带与韧性剪切带有关金矿的找矿勘查及科学研究工作陷入沉寂。

      北山地区地处西伯利亚、哈萨克斯坦和塔里木三大板块交汇部位(图1a),区内前寒武纪和古生代地层大面积出露,深大断裂和韧性剪切带发育,加里东期至印支期岩浆活动频繁,成矿条件十分有利(江思宏,2006俞胜等,2022)。北山成矿带是中国西北地区重要的金矿床产出地段,已发现金矿床(点)上百处(江彪等,2022张振亮等,2022),中型金矿床有南金山、460、小西弓、新(老)金厂、马庄山、拾金坡–南金滩、金厂沟和北山金矿等;小型金矿床以狼娃山、扫子山、金庙沟、金庙井和花牛山为代表(丁嘉鑫等,2015陈耀等,2023)(图1b)。王世称等(2004)从统计学方法研究大型、超大型贵金属和有色金属矿床发现,超大型、大型矿床同中、小型矿床在空间上具有“鹤立鸡群”的分布特征。甘肃北山地区金矿床(点)星罗棋布,具备形成大型、超大型金矿的成矿地质条件,但已报道的金矿床中尚未见资源量超过20 t的大型矿床。近年来,甘肃省地质矿产勘查开发局第四地质矿产勘查院在北山南带新发现了前红泉金矿,经过4个年度的普查工作,目前探获金推断资源量约为15.3 t,预计普查工作结束后可达25 t以上,具有形成大型以上金矿床的潜力。笔者通过剖析该矿床的地质特征、发现过程及找矿思路等,试图为地质工作者在甘肃北山地区众多中、小型金矿中寻找“鹤”提供思路和方向。

      图  1  甘肃北山区域地质简图(a据Jahn,2002
      1.第四系;2.新近系;3.白垩系;4.侏罗系;5.三叠系;6.二叠系;7.石炭系;8.泥盆系;9.志留系;10.奥陶系;11.寒武系;12.青白口系;13.蓟县系;14.长城系;15.古元古宇—太古界;16.二叠纪石英二长闪长岩;17.二叠纪花岗岩;18.石炭纪闪长岩;19.石炭纪花岗闪长岩;20.石炭纪英云闪长岩;21.泥盆纪花岗闪长岩;22.奥陶纪花岗闪长岩;23.奥陶纪英云闪长岩;24.断裂;25.韧性剪切带;26.金矿床;27.研究区范围
      Figure  1.  Regional geological map of Beishan, Gansu Province

      前红泉金矿位于甘肃北山南带,大地构造位置处于塔里木陆块区敦煌地块(潘桂棠等,2009),属小西弓—帐房山华力西期—印支期金、钨成矿带(陈毓川等,2006杨镇熙等,2020)。北山南带地区已发现以小西弓、新(老)金厂、金庙沟等为代表的的金矿床(点)50多处,占整个北山地区已发现金矿床(点)的一半以上,是北山地区金矿找矿前景最好的区域。研究区出露的前寒武纪地层以太古宙—古元古代敦煌岩群、长城纪古硐井群及铅炉子沟群为主,是北山南带地区石英脉型、蚀变岩型和韧性剪切带型金矿的主要产出层位(王军等,2005)。其中,敦煌岩群为一套中深变质岩系,二云石英片岩是主要的含矿岩性,以小西弓金矿为代表(袁伟恒等,2020);古硐井群是一套浅变质碎屑岩夹碳酸盐岩建造,千枚岩、千枚状板岩是主要的含矿岩性,以前红泉金矿为代表(赵吉昌等,2021a);铅炉子沟群为一套变质火山碎屑岩、中–基性火山岩、变质碎屑岩夹少量碳酸盐岩建造,绢云千枚岩和变安山岩是主要赋矿岩石,以金庙沟金矿为代表(周树明等,2016)。区域上侵入岩极为发育,岩性以中酸性花岗岩类为主,基性、超基性岩较为少见,侵入时代主要为蓟县纪、二叠纪以及三叠纪,形成于后碰撞伸展环境的晚二叠世—早三叠世花岗岩类与前红泉金矿空间上关系密切(杨镇熙等,20212022)。研究区构造发育,近EW向断层和韧性剪切带截切SN向、NE向及NW向3组断裂,是区域上最重要的控岩、控矿构造。北山南带韧性剪切带西起白墩子,向东在音凹峡南一带分叉,北支近EW向延伸至金庙井以东,南支呈SEE向自小西弓、黄尖丘过帐房山掩入第四系覆盖区,全长超过250 km,宽8~15 km。韧性剪切带内岩石韧性变形明显,面理发育,其方向近EW向,区内岩石按照韧性变形程度可分为3个构造层次,前长城系中深变质岩与区内金成矿关系密切(陈柏林等,20022007)。韧性剪切带及深大断裂是区域上良好的赋矿构造,控制着区域各类地质体及矿床(点)的展布,具有重要的成矿意义(丁书宏,2021)。小西弓、金庙沟(井)和前红泉等多个金矿床与韧性剪切带关系密切(图1b),该韧性剪切带是区域上金矿床成矿有利部位,找矿前景较大。

      前红泉金矿区赋矿地层为长城纪古硐井群(ChG),根据岩性组合特征和空间展布特征将其分为两个岩组,并进一步将古硐井群一岩组细分为上、下两段。古硐井群一岩组下段(ChG11)分布于勘查区北侧,岩性主要有二云石英片岩、石英岩等,与北侧的中元古代片麻状花岗岩为断层接触关系;古硐井群一岩组上段(ChG12)在矿区大面积出露,是主要的含金层位,岩性组合为千枚岩、千枚状板岩、粉砂质板岩、砂质板岩夹少量长英质千糜岩、石英岩透镜体等,与上段为断层接触;古硐井群二岩组(ChG2)小面积分布于矿区南侧,岩性以条带状大理岩、角砾状大理岩为主,与古硐井群一岩组上段亦为断层接触。区内侵入岩主要有中元古代片麻状花岗岩、二叠纪花岗闪长岩、三叠纪二长花岗岩和斑状花岗闪长岩等,还见有花岗闪长岩岩脉、石英闪长岩脉、石英闪长玢岩脉、辉长岩脉等各类脉岩,花岗岩脉与区内金成矿关系最为密切(丁书宏,2021)。

      研究区内发育NWW向韧性剪切带和脆性断层,韧性剪切带是区内主要的控矿构造(图2)。区内岩石中可见“S–C”组构、不对称旋转碎斑系(图3a图3b)、糜棱岩化花岗闪长岩(图3c)、不对称褶皱(图3d)、膝折构造(图3e)等宏观韧性变形特征及云母鱼(图4a图4b)、石英核幔构造(图4c)、绕晶及拖尾构造(图4d)等微观韧性变形特征,“σ”型不对称旋转斑、云母鱼、绕晶构造等特征均指示该韧性剪切带具右行剪切特征。此外,区内二叠纪花岗闪长岩糜棱岩化明显,暗色矿物定向排列(图3c),千枚状板岩型金矿石韧性变形特征较为明显(图3f),镜下也可见大量交织定向排列的细小绢云母,构成明显的显微褶皱构造。

      图  2  前红泉金矿地质简图
      1.第四系;2.长城纪古硐井群二组;3.长城纪古硐井群一组上段;4.长城纪古硐井群一组下段;5.三叠纪斑状花岗闪长岩;6.二叠纪花岗闪长岩;7.中元古代片麻状花岗岩;8.石英脉;9.花岗岩脉/花岗闪长岩脉;10.石英闪长岩脉/石英闪长玢岩脉;11.辉长岩脉;12.金矿体及编号;13.韧性剪切带;14.逆断层;15.平移断层;16.性质不明断层;17.1∶50 000综合异常及编号;18.1∶10 000综合异常及编号;19.基线;20.勘查线
      Figure  2.  Geological diagram of the Qianhongquan gold deposit
      图  3  前红泉金矿野外宏观及金矿石特征
      a.“σ”型不对称旋转斑,指示右行剪切;b.糜棱岩化花岗岩中旋转碎斑,指示右行剪切;c.糜棱岩化花岗闪长岩中暗色矿物定向性明显;d.千枚状板岩中可见不对称褶皱;e.千枚岩中发育膝折构造;f.千枚状板岩型金矿石韧性变形明显;g.千枚状板岩中多见硅化石英细脉;h.蚀变岩型金矿石中两期交代成因石英脉;i.强硅化蚀变岩型金矿石;j.弱蚀变千枚岩,黄铁矿沿千枚理充填;k.强蚀变金矿石中含浸染状黄铁矿,指示矿化蚀变以交代为主;l.强硅化蚀变岩型金矿石中局部可见明金,粒径约0.5 mm;Ser.绢云母;Q.石英;Au.自然金;Py.黄铁矿
      Figure  3.  Field macroscopic and gold ore characteristics of the Qianhongquan gold deposit
      图  4  前红泉金矿金矿石显微镜下特征图
      a~b.云母鱼,指示右行剪切;c.石英核幔构造发育,核部具带状消光;d.黑云母和石英绕钾长石定向分布构成绕晶及拖尾构造,指示右行剪切;e.磁黄铁矿、针铁矿;f.黄铁矿、毒砂;g.银金矿、金银矿;h.自然金;i.毒砂、银金矿;a~d为正交偏光;e~i.为反射光;Ser.绢云母;Q.石英;Bt.黑云母;Kfs.钾长石;Pl.斜长石;Py.黄铁矿;Po.磁黄铁矿;Asp.毒砂;Gs.金银矿;El.银金矿;Au.自然金
      Figure  4.  Microscopic characteristics of gold ore in the Qianhongquan gold deposit

      前红泉金矿化带断续出露约为14 km,宽度为10~50 m,整体受韧性剪切带控制,总体展布方向近110°,Ⅱ矿段局部呈“Z”字型展布。根据矿体空间展布特征,将前红泉金矿自西向东、由北往南划分为3个矿段。矿体从走向上来看,Ⅰ、Ⅱ矿段矿体南倾,倾角为65°~86°;Ⅲ矿段矿体产状变化复杂,存在局部翻转和褶曲现象,在212勘查线以西,矿体总体向南倾斜,倾角为52°~85°,212勘查线以东,矿体总体向北倾斜,倾角40°~88°。矿体从倾向上来看,整体呈波状陡倾,局部可见陡缓相间变化特征(图2)。截至2022年12月,区内圈定金矿体108条,矿体长为27~876 m,厚度为0.81~6.34 m,控制斜深一般为50~270 m。矿化富集地段岩石韧性变形特征较为明显,千枚状板岩、千枚岩层间褶皱发育(图3f),岩石韧性变形强弱与金矿化富集程度关系密切。

      (1)AuⅢ-20矿体(图5)为Ⅲ矿段主要矿体,矿体呈似层状分布于韧性剪切带内,长为569 m,最大控制斜深为270 m,单工程见矿厚度为0.83~4.21 m,平均厚度1.84 m,Au单工程品位为2.34~21.63 g/t,矿体Au平均品位为3.14 g/t。矿体产状为345°~63°∠75°~85°,顶底板围岩均为千枚状板岩,品位变化系数为68.95%,厚度变化系数为59.44%。

      图  5  前红泉金矿236勘查线剖面图
      1.粉砂质板岩;2.千枚状板岩;3.石英岩;4.花岗闪长岩;5.断层角砾岩;6.韧性剪切带;7.金矿体位置及编号;8.矿体厚度(m)/平均品位(g/t);9.产状;10.钻孔位置
      Figure  5.  Section view of 236 prospecting line in the Qianhongquan gold deposit

      (2)AuⅢ-40矿体为Ⅲ矿段主要矿体,呈似层状分布于韧性剪切带内,长为580 m,最大控制斜深为460 m,单工程见矿厚度为0.82~7.81 m,平均厚度为2.11 m,Au单工程品位为2.52~12.38 g/t,矿体Au平均品位为4.56 g/t。矿体产状为15°~350°∠64°~86°,顶底板围岩均为千枚状板岩,品位变化系数为86.49%,厚度变化系数为85.25%。

      围岩蚀变在韧性剪切带控制的金矿化带及其附近表现极为强烈,矿化富集地段蚀变特征明显,主要有硅化、毒砂化、绢云母化、绿泥石化、黄铁矿化、碳酸盐化等,上述蚀变多与区内金矿化关系密切,主要表现为:①毒砂化是区内的重要找矿标志,与金矿化呈正相关关系。野外通过手持式XRF矿石分析仪可现场测定千枚岩中的As含量,若其含量超过1000×10−6则岩石含矿概率较大,超过3000×10−6者多为工业品位金矿石。②硅化与金矿化关系最为密切,表现为3种形式:第一种在弱蚀变金矿石中,石英以硅质团块或硅化石英细脉分布于蚀变岩中(图3g);第二种在中等蚀变金矿石中,石英多呈条带状穿插分布于蚀变岩中,局部可见多期硅质热液交代特征(图3h);第三种在强蚀变金矿石中,硅质热液已全部交代原岩矿物成分(图3i);区内交代成因石英脉的数量或硅化交代原岩强度与金矿石品位有明显的正相关关系。③黄铁矿化:区内千枚岩(千枚状板岩)中黄铁矿主要有两种存在形式,其一沿千枚理分布的片状、薄膜状黄铁矿(图3j),二是后期热液交代蚀变形成的浸染状黄铁矿(图3k),后者与区内金矿化关系密切。④绢云母化分布范围广,在千枚岩、千枚状板岩中均可见到,在矿化密集区表现为绢云母颗粒较大、数量增多且定向分布(图3j图4a),常与硅化、绿泥石化相伴。

      矿石自然类型主要为蚀变岩型金矿石,其以千枚状板岩、千枚岩为主。矿石结构简单,多为鳞片粒状变晶结构,少见隐晶质结构、假象结构等;矿石构造主要有千枚状构造、蜂窝状构造、网脉浸染状构造等(丁书宏,2021)。金矿石中含金矿物主要为自然金(图3l),其次是金银矿(图4g)和银金矿(图4g图4i);金属矿物主要有磁黄铁矿(图4e)、黄铁矿(图4f)、毒砂(图4f图4i),还可见有少量黄铜矿、铜蓝、辉铜矿、毒砂、褐铁矿等;非金属矿物主要为长石、石英、绢云母、绿泥石、方解石等。镜下多见独立分布的自然金(图4h),尚未见黄铁矿中的包裹金。

      为加强重要成矿区带关键地质矿产问题研究,评价区域矿产资源潜力,甘肃省自然资源厅在2017年决定实施一批基础地质调查项目。甘肃省地质矿产勘查开发局第四地质矿产勘查院在分析区域成矿地质背景的基础上提出,前红泉一带前长城系地层广泛分布,岩浆活动频繁,不同期次构造相互叠加,区域上已发现了多个受韧性剪切带控制的金矿床(点),前红泉地区位于小西弓韧性剪切带的东延部分,金矿找矿潜力较大,有必要开展基础调查工作。

      2017年,通过1∶50 000水系沉积物测量在老君庙一带圈定AS-3综合异常(图6),该异常呈不规则状,长轴方向与区内发育的韧性剪切带展布方向基本一致,异常面积约为58 km2,元素组合主要为Au、As、Sb、W、Mo等,各元素之间套合较好,主成矿元素具有三级浓度分带(陈世明等,2022)。对该异常开展查证时,在1∶50 000化探Au峰值点处(117.1×10−9)首先发现了前红泉金矿点(即现Ⅰ矿段和Ⅱ矿段局部地段,图2),通过槽探工程在地表圈定金矿体6条,矿体呈似层状、脉状,长为100~770 m,厚度为0.81~4.13 m,Au品位为1.00~4.91 g/t。

      图  6  前红泉一带AS-3综合异常剖析图
      1.第四系;2.白垩纪新民堡群;3.长城纪古硐井群;4.晚三叠世斑状花岗闪长岩;5.中三叠世花岗闪长岩;6.中叠世花岗闪长岩;7.中元古代片麻状花岗岩;8.花岗岩脉;9.辉长岩脉;10.性质不明断层;11.正断层;12.综合异常及编号
      Figure  6.  Comprehensive anomaly analysis chart of AS-3 of the Qianhongquan area

      2019年,在前红泉金矿点东侧继续开展查证工作,采用1∶10 000地化剖面测量、1∶10 000岩屑测量、1∶2 000地化剖面测量、1∶10 000地质填图、槽探等进行重点查证,在地表圈定金矿体7条,长为80~1200 m,厚度为0.80~4.50 m,Au品位为0.83~4.15 g/t。新发现了老君庙金矿点,即现为前红泉金矿Ⅲ矿段西段(图2)。2020年,通过分析认为从前红泉金矿点至老君庙金矿点,地势西北高东南低,已发现的前红泉金矿点和老君庙金矿点均与韧性剪切带关系密切,且AS-3综合异常内3个化探异常浓集中心连线和区域韧性剪切带方向(110°)几乎一致,推断该异常东部仍有较大找矿潜力;在东段(图2)继续开展1∶10 000岩屑测量,并圈定了多处Au高值异常。通过槽探揭露,在前红泉金矿Ⅲ矿段东段圈定金矿体7条,矿体呈层状、似层状、透镜状,长为190~1240 m,厚度为0.83~7.56 m,Au品位为1.12~5.40 g/t。

      在勘查过程中,部分钻孔结果显示金矿体深部较地表有厚度变大、品位增高之趋势。同时在Ⅱ矿段2条金矿化带,并非与Ⅰ、Ⅲ矿段平行分布,而是由后期褶皱构造导致局部呈“Z”字型分布。这一认识通过地质填图和槽探工程得以印证,该金矿化带并未尖灭,而是继续向南东延伸,掩入第四系覆盖层之下。2022年,重点对Ⅲ矿段开展解剖,局部金矿体品位自地表向深部明显增高(图5),截至2022年12月,初步估算金推断资源量为15.3 t,矿床Au平均品位为4.81 g/t,矿床规模达中型。

      (1)甘肃北山南带巨型韧性剪切带是区域上重要的金矿富集带,已发现多个韧性剪切带型金矿或与韧性剪切带有关的金矿床,以小西弓金矿、新(老)金厂金矿、金庙沟(井)金矿等为典型代表。但是,近20年来该区韧性剪切带型金矿的研究和找矿勘查工作陷入沉寂,前红泉金矿的发现为该项研究工作注入了活力,引起地质工作者关注。北山南带韧性剪切带为三叠纪韧性剪切带(丁书宏,2021),其自西至东截切了不同类型地质体,韧性剪切带内含金岩性有敦煌岩群二云石英片岩、古硐井群千枚岩、铅炉子沟群绢云千枚岩和变安山岩及华力西期—印支期中酸性侵入岩等,表明韧性剪切带内金矿成矿对岩性没有选择性,各类岩石均可作为赋矿岩石,区域找矿前景巨大。应加强甘肃北山南带韧性剪切带与金矿成矿关系的研究,已有矿床深部和外围是重要的找矿空间。近年来,甘肃省组织实施的1∶50 000矿产地质调查已基本覆盖北山基岩区,同步开展了1∶50 000化探工作,圈定的以Au为主的各类综合异常应是下一步查证的重点区域。

      (2)前红泉金矿区内1∶10 000化探工作圈定了以金为主的综合异常9处(图2)。在AR-1、AR-5、AR-7、AR-8、AR-9综合异常内已圈定多条金矿体,矿体与异常对应性良好;AR-2综合异常内发现了Au、Cu、Co矿化信息(赵吉昌等,2021a陈世明等,2022);AR-3、AR-4、AR-6综合异常由于地表覆盖较厚,尚未发现较好金矿化信息,但上述异常从元素组合、空间展布等特征与AR-7、AR-8、AR-9综合异常极为相似,应加强对上述3个综合异常的查证力度。AR-9综合异常南侧向东掩入第四系覆盖区,建议开展浅钻地球化学测量(或剖面)工作,替代传统的化探工作手段,圈定异常或发现矿体,力争在(浅)覆盖区取得找矿新突破。此外,勘查区内可见有较多的酸性和基性岩脉,在AR-2综合异常内辉长岩脉中已发现了热液型Au、Cu、Co矿化体,应对区内各类岩浆岩开展相关研究,寻找除韧性剪切带以外潜在致矿岩体或岩脉附近有利的容矿空间,探讨区内是否存在第二找矿空间,开展综合勘查评价工作。

      (3)前红泉金矿化带长约为14 km,宽为10~50 m,其规模在北山地区较为罕见。区内圈定矿体数量超百条,但矿体控制斜深多为50~270 m,仅Ⅲ矿段个别矿体控制斜深在300 m以上,探获金推断资源量已接近大型规模,具有寻找大型以上与韧性剪切带有关金矿的潜力。就现有工作而言,Ⅲ矿段矿体整体工程控制程度较高,Ⅰ矿段和Ⅱ矿段深部钻孔控制程度较低,下一步应加强Ⅰ矿段矿体转弯部位矿化富集规律研究,对地表及浅部见矿较好的Ⅰ矿段东段和Ⅱ矿段东段提高深部钻孔控制程度,扩大矿床规模;对Ⅲ矿段矿体500~1000 m深度进行验证,初步查明矿体在深部延伸、产状、厚度、品位等变化情况,分析找矿远景,也为后续在Ⅰ、Ⅱ矿段系统开展工作奠定基础。

      (1)前红泉金矿是在1∶50 000矿调工作的基础上通过大比例尺化探手段逐步发现的。该矿床的发现证实1∶50 000水系沉积物测量是该区最有效的找矿手段,Au高值异常可直接指示矿体的赋存部位,低弱异常也具有较好的找矿潜力,后续勘查工作中不但要重视“高、大、全”异常,更不能忽视对“低、弱、缓”异常的查证力度。1∶10 000岩屑测量在矿床发现过程中起到了重要作用,不仅使1∶50 000化探异常得到重现和浓缩,还能在地表快速锁定找矿靶区,直接指示矿化富集地段。因此,1∶50 000化探异常在查证过程中不仅仅要依靠综合剖面测量等手段,大比例尺化探扫面工作能够加快找矿进程。

      (2)甘肃北山地区推荐的水系沉积物测量和土壤测量采样粒级均为−4~+20目。前红泉金矿勘查过程中采用构造裂隙地球化学方法,按照100 m×40 m网度直接在地表采集块径为2~20 mm的5~8块基岩风化碎屑组合为一个样品,采样介质包括基岩风化碎块(岩屑)、断裂构造岩屑、矿化蚀变岩屑、断层角砾(泥)等,在断层破碎带、节理裂隙处、矿化蚀变带、岩性界面及石英脉等处加密取样(赵吉昌等,2021b雷自强等,2022),取得了良好效果。前红泉金矿区1∶10 000化探工作证实,北山干旱荒漠戈壁残山区等特殊地球化学景观区在地表直接采集基岩风化碎屑是更高效、直接的化探方法,岩屑测量可作为土壤测量的有效补充。

      (3)北山地区金矿点近百个,但有规模的金矿床寥寥可数,大部分中、小型金矿床的勘查深度多在300 m以浅,勘查程度较低,仅小西弓金矿和460金矿最大勘查深度约500 m。前红泉金矿个别矿体目前已控制斜深730 m,自浅部向深部表现出局部厚度增大、品位增高趋势,500 m以下显示了良好的找矿前景。因此,北山地区诸多金矿未取得找矿突破的原因中应充分考虑勘查深度的因素。

      (4)前红泉金矿能够取得快速突破的一个重要原因就是大额资金的投入,甘肃省财政在7个年度的矿调、普查工作中累计投入资金超过6000万元,为前红泉金矿的发现和勘查提供了资金保障。面对复杂的国际局势和中国矿产资源的严峻形势(陈毓川等,2020),自然资源部正在组织实施新一轮找矿突破战略行动,尤其突出紧缺战略性矿产资源。中国亟需强化公益性、基础性、战略性基础地质调查工作,加大战略性矿产找矿勘查力度,保障国家能源资源安全。

      致谢:甘肃省地质矿产勘查开发局第四地质矿产勘查院康维良、杜红伟、魏万疆、赵青虎、郭峰、张增馨、雷自强等人一起参与了该矿床的发现和勘查过程;业内同仁对前红泉金矿普查项目的顺利实施给予了诸多建设性意见和建议,在此一并表示感谢!

    • 图  1   研究区地质简图(角图据李亦飞等,2018

      1.第四系全新统;2.第四系更新统;3.白垩系热当坝组;4.三叠系光盖山组;5.三叠系郭家山组;6.三叠系隆务河组;7.三叠系马热松多组;8.三叠系扎里山组;9.二叠系迭山组;10.二叠系大关山组;11.石炭系岷河组;12.石炭系略阳组;13.石炭系益哇沟组;14.石炭系擦阔合组;15.石炭系蒲莱组;16.石炭系下吾那组;17.泥盆系当多组;18.泥盆系普通沟组;19.志留系卓乌阔组;20.志留系舟曲组;21.志留系迭部组;22.奥陶系苏里木塘组;24.三叠纪黑云母石英闪长岩;25.三叠纪黑云母石英闪长岩;26.石英闪长岩脉/石英闪长玢岩脉;27.石英脉;28.花岗岩脉;29.花岗斑岩脉;30.闪长玢岩脉;31.地质界线;32.正常/倒转岩层产状;33.断层;34.采样位置及编号

      Figure  1.   Geological map of the study area

      图  2   迭部组岩石野外照片和显微镜下图

      a.碳硅质板岩野外照片;b.YQ-2正交偏光照片;c.千枚状泥质板岩;d.YQ-4正交偏光照片;Qtz.石英;Ser.绢云母;Chl.绿泥石;C.碳质

      Figure  2.   Field photos and micrographs of Diebu Formation rocks

      图  3   碎屑锆石阴极发光图像及年龄图

      Figure  3.   Zircon cathodoluminescence image

      图  4   样品Th/U–Th图解(据McLennan et al.,1993

      Figure  4.   Th/U–Th discrimination diagram

      图  5   样品Zr/Sc–Th/Sc图解(据McLennan et al.,1993

      Figure  5.   Zr/Sc–Th/Sc discrimination diagram

      图  6   样品稀土元素球粒陨石标准化配分图(据Boynton,1984

      Figure  6.   Rare earth element pattern distribution diagram

      图  7   样品La/Th–Hf(a)(据Floyd et al.,1987) 和Co/Th–La/Sc(b)(据Bhatia,1983)源岩属性判别图解

      Figure  7.   (a) LA/Th–Hf and (b) Co/Th–La/Sc discrimination diagrams of source rocks

      图  8   样品微量元素原始地幔标准化蛛网图(据Sun et al.,1989

      Figure  8.   Spider diagram of trace elements in clastic rocks of Diebu Formation

      图  9   样品Ti/Zr–La/Sc构造环境判别图解(据Bhatia,1983

      Figure  9.   Ti/Zr–La/Sc discrimination diagram of tectonic environment

      图  10   构造环境判别图解(据Bhatia,1983

      a. La–Th–Sc图解;b. Th–Sc–Zr/10图解;c. Th–Co–Zr/10图解;A.大洋岛弧;B.大陆岛弧;C.活动大陆边缘;D.被动大陆边缘

      Figure  10.   Discrimination diagram of tectonic environment

      图  11   锆石U–Pb 谐和曲线图

      Figure  11.   U–Pb harmonic curve of zircon

      图  12   锆石U–Pb年龄谱图

      Figure  12.   Zircon U–Pb age spectrum

      图  13   研究区及其邻区碎屑锆石U–Pb年龄累计频谱图(据罗芬红,2019任龙,2019寇琳琳等,2022

      Figure  13.   Cumulative U–Pb age spectrum of detrital zircon in the study area and its adjacent areas

      表  1   志留系迭部组划分沿革表

      Table  1   Stratigraphic division and evolution of Silurian Diebu Formation

      地层划分机构(时间)
      叶连俊
      等(1945)
      穆恩之
      (1992)
      翟玉沛
      (1977)
      原西安地质
      矿产研究所(1989)
      川西北地质
      大队(1990)
      《甘肃省岩石
      地层》(1997)
      志留系下统白龙江系白龙江群迭部群迭部群(尖尼沟组、
      各子组、安子沟组)
      白龙江群下地组迭部组
      拉垅组
      塔尔组
      下载: 导出CSV

      表  2   稀土及微量元素分析结果表(10–6

      Table  2   Analysis results of rare earth and trace elements (10–6)

      样号YQ-1YQ-2YQ-3YQ-4样号YQ-1YQ-2YQ-3YQ-4样号YQ-1YQ-2YQ-3YQ-4
      Li9.58524.7652.3389.98 Ba48939862478.8797.7 Th9.3927.3220.3624.1
      Be1.3792.3842.1983.092La20.649.2442.1646.05U12.5911.033.745.065
      Sc5.45817.4414.6420.93Ce36.1495.2183.483.24∑REE112.93264.91225.31260.13
      Ti1450415746144362Pr4.59510.289.08910.25LREE82.58199.27172.84184.67
      V396.7204.5124.5151Nd16.5635.2931.3636.6HREE30.3565.6452.4775.46
      Cr29.1158.4861.17108.1Sm3.0876.2345.5476.926(La/Yb)N10.5211.8113.109.70
      Co0.40989.03414.9918.74Eu1.5993.0181.2851.608(La/Sm)N4.365.174.974.35
      Ni18.3944.542.3559.62Gd2.6995.4494.9536.543(Gd/Yb)N1.591.511.771.59
      Cu25.6428.6744.246.04Tb0.43940.86950.7641.028La/Th2.191.802.071.91
      Zn7.91662.6198.11134.1Dy2.2674.8254.0585.689La/Sc3.772.822.882.20
      Ga9.34621.2920.4830.17Ho0.54321.0980.88031.248Co/Th0.040.330.740.78
      Ge1.9034.9586.2448.296Er1.4513.0412.5633.525Th/U0.752.485.444.76
      As9.6435.7083.5397.486Tm0.25990.50370.36550.5656Zr/Sc11.419.9310.857.56
      Rb58.4153.8126.7198.9Yb1.4042.9912.3093.404Th/Sc1.721.571.391.15
      Sr44.1895.451.3967.11Lu0.25590.50170.37760.5651
      Y15.5728.9221.5631.96Hf1.7334.6964.1964.654
      Zr62.29173.2158.9158.2Ta0.76391.9241.6971.363
      Nb9.2624.3123.0715.41W1.2482.351.5772.437
      Mo30.8913.420.18790.2047Tl0.10890.091110.078030.0664
      Sn1.5033.9823.1144.161Pb15.3230.9210.718.752
      Cs3.4458.9667.35412.28Bi0.29530.50960.22120.5662
      下载: 导出CSV

      表  3   碎屑岩LA–ICP–MS 锆石U–Pb年龄测定结果表

      Table  3   LA–ICP–MS Zircon U–Pb dating results of clastic rocks

      样品号及
      分析点号
      PbThUTh/U同位素比值表面年龄(Ma)
      10–6207Pb/235U206Pb/238U207Pb/235U206Pb/238U
      TW1-095.7850.6660.850.8320.53990.00730.07070.0004438.44.8440.22.6
      TW1-0423.99127.21291.930.4360.54240.00760.06930.0004440.05.0432.12.5
      TW1-0826.15172.32277.630.6210.54310.00810.07060.0004440.55.4439.92.6
      TW1-25121.07105.37197.390.5340.54520.00640.07120.0005441.84.2443.33.1
      TW1-23140.93248.02287.740.8620.54540.00720.06970.0004442.04.7434.32.6
      TW1-26322.28212.26584.010.3630.55080.00730.07210.0005445.54.8449.02.7
      TW1-106.9637.97109.500.3470.55380.00790.07130.0005447.55.2444.13.1
      TW1-177.4562.0647.511.3060.55440.01180.07200.0005447.97.7448.43.2
      TW1-1316.5368.5186.690.7900.55500.00720.07190.0005448.34.7447.63.0
      TW1-1210.1662.20109.690.5670.55780.01350.07190.0006450.18.8447.33.7
      TW1(2)-6020.41429.00529.390.8100.56270.01170.07360.0007453.37.6458.04.5
      TW1-1535.09216.89376.090.5770.56550.00910.07320.0005455.15.9455.53.1
      TW1-1119.1166.37183.110.3620.56990.00920.07150.0004458.06.0445.02.5
      TW1-1428.22171.60291.240.5890.57010.00690.07220.0005458.14.5449.22.9
      TW1(2)-59103.271127.291152.010.9790.57670.01380.07360.0006462.38.9457.83.6
      TW1(2)-6237.26140.27386.550.3630.58230.01190.07580.0006465.97.6470.93.7
      TW1-1951.04127.08324.630.3910.58850.01190.07220.0005469.97.6449.53.3
      TW1-279.5054.31120.150.4520.59030.01130.07460.0007471.17.2463.64.1
      TW1(2)-64204.80286.521271.520.2250.59030.01620.07720.0008471.110.4479.34.6
      TW1(2)-6340.14214.11414.410.5170.59230.01280.07680.0008472.48.2477.24.6
      TW1-1631.82210.06343.860.6110.59690.01270.07800.0007475.38.1484.14.0
      TW1(2)-6125.75134.20257.130.5220.59780.02200.07410.0009475.814.0460.95.2
      TW1(2)-6728.81144.50288.260.5010.60140.01290.07980.0007478.18.2495.04.2
      TW1(1)-5347.13338.28477.280.7090.60410.02050.06970.0008479.813.0434.44.9
      TW1-4433.70304.87362.690.8410.61460.01150.08070.0008486.47.2500.34.7
      TW1-4217.65152.77194.230.7870.61520.01680.08000.0009486.810.6496.25.1
      TW1-2436.08221.50354.590.6250.61750.01160.07120.0009488.37.3443.25.3
      TW1(2)-6654.41262.32559.110.4690.61780.01350.07930.0007488.48.5492.24.4
      TW1-1829.71196.02342.730.5720.62190.01240.07930.0007491.17.8492.14.3
      TW1-41111.7938.61262.060.1470.62490.01160.07910.0007492.97.2490.94.3
      TW1-4839.60438.68406.491.0790.62940.00980.08120.0008495.76.1503.34.6
      TW1-408.3857.2292.250.6200.62980.01030.07760.0006496.06.4481.63.5
      TW1-4955.70375.96671.620.5600.63160.01230.08160.0007497.17.6505.94.2
      TW1(2)-6544.40221.13317.050.6970.63200.01090.07790.0008497.36.8483.65.0
      TW1-4744.33435.02497.840.8740.63310.01900.08110.0010498.011.8502.45.9
      TW1-4551.37175.51620.560.2830.63380.01200.08070.0008498.57.5500.64.5
      TW1-3030.67198.82370.040.5370.65730.01100.08350.0008512.96.8517.04.9
      TW1-287.0115.6516.230.9650.66120.01250.08300.0007515.37.7514.14.3
      TW1-3238.54176.81465.350.3800.66170.01470.08380.0008515.69.0518.55.0
      TW1-3167.79592.44715.470.8280.66220.02260.08350.0009515.913.8517.25.6
      下载: 导出CSV
      续表3
      样品号及
      分析点号
      PbThUTh/U同位素比值表面年龄(Ma)
      106207Pb/235U206Pb/238U207Pb/235U206Pb/238U
      TW1(2)-6813.87170.3977.002.2130.66250.01540.08590.0007516.19.4531.04.1
      TW1-4389.88547.821046.160.5240.66750.01190.08060.0007519.27.2499.74.1
      TW1-2018.83134.78193.410.6970.67130.01290.06480.0009521.57.8404.85.2
      TW1-2993.17434.87569.390.7640.68320.01800.08300.0008528.710.9514.24.8
      TW1-4655.44593.22643.820.9210.69840.01190.08100.0008537.87.1502.04.6
      TW1(2)-6983.99504.00813.350.6200.70730.01890.08890.0010543.111.2548.86.1
      TW1(1)-5016.03107.39176.200.6090.72140.01490.07980.0008551.58.8494.64.9
      TW1-3346.3582.49130.080.6340.72430.01530.08870.0009553.29.0547.85.6
      TW1-3434.01238.46376.360.6340.77340.01660.09430.0011581.79.5581.26.3
      TW1-36193.41293.75998.840.2940.86740.03450.10730.0014634.218.7657.08.1
      TW1-35341.75170.93764.530.2240.88660.01810.10320.0009644.59.7633.35.5
      TW1(2)-7139.88253.59444.570.5700.95370.03100.11230.0020680.016.1686.111.3
      TW1-3713.9198.38165.510.5941.19600.01890.13250.0013798.88.8801.97.2
      TW1(2)-7215.0159.18153.530.3851.20350.02160.13330.0015802.210.0806.58.4
      TW1-3829.72177.42307.690.5771.28570.01690.13990.0010839.47.5844.25.7
      TW1(2)-7385.35468.84869.610.5391.37020.04270.15000.0017876.318.3900.89.8
      TW1(1)-5115.6081.26181.480.4481.71100.04960.14530.00321012.718.6874.318.0
      TW1(2)-7486.03414.22487.410.8501.78780.02390.17400.00171041.08.71034.29.6
      TW1-3934.28207.02389.860.5312.32370.03590.20170.00241219.611.01184.313.0
      TW1(2)-7564.56344.62645.800.5343.78860.04590.28180.00211590.39.81600.310.8
      TW1(2)-7622.73106.76239.780.4454.42790.09030.30940.00381717.616.91737.718.5
      TW1(2)-7747.54278.03472.730.5886.00700.07590.36590.00301976.911.12010.014.4
      TW1(2)-7890.46476.32749.470.6366.10020.06360.37340.00241990.39.22045.611.2
      TW1(1)-5234.65208.34363.470.5737.01880.06310.35000.00222113.88.11934.810.5
      TW1(2)-7954.82354.98551.920.6439.74150.10070.43420.00312410.69.72324.713.8
      TW1(2)-8032.97153.56396.190.38810.22560.12930.46760.00392455.411.82473.017.4
      下载: 导出CSV
    • 敖文昊, 张宇昆, 张瑞英, 等. 新元古代扬子北缘地壳增生事件: 来自汉南祖师店奥长花岗岩地球化学、锆石LA-ICP-MS U-Pb年代学和Hf同位素证据[J]. 地质论评, 2014, 60(6): 1393-1408

      Ao Wenhao, Zhang Yukun, Zhang Ruiying, et al. Neoproterozoic crustal accretion of the northern margin of Yangzte plate: constrains from geochemical characteristics, LA-ICP-MS zircon U-Pb chronology and Hf isotopic compositions of trondhjemite from Zushidian area, Henan region[J]. Geological Review, 2014, 60(6): 1393-1408.

      丁仨平, 裴先治, 李勇, 等. 西秦岭北缘新阳-元龙韧性剪切带中花岗质糜棱岩黑云母40Ar-39Ar年龄及地质意义[J]. 地质学报, 2009, 83(11): 1624-1632 doi: 10.3321/j.issn:0001-5717.2009.11.007

      Ding Saping, Pei Xianzhi, Li Yong, et al. Biotite 40Ar-39Ar ages of granitic mylonite at Xinyang-Yuanlong ductile shear zone in the north margin of west Qinling and their geological significance[J]. Acta Geologica Sinica, 2009, 83(11): 1624-1632. doi: 10.3321/j.issn:0001-5717.2009.11.007

      丁振举, 文成雄, 国阿千, 等. 西秦岭吴家山群地层时代及物源特征: 来自碎屑锆石U-Pb年龄证据[J]. 地球科学与环境学报, 2018, 40(3): 111-132

      Ding Zhenju, Wen Chengxiong, Guo Aqian, et al. Stratigraphic age and provenance chararcteristics of Wujiashan group in west Qinling, China: evidences from detrital ziron U-Pb age[J]. Journal of Earth Sciences and Environment, 2018, 40(3): 111-132.

      董顺利. 塔里木盆地环满加尔地区早古生代中晚期沉积物源体系及构造-古地理格局[D]. 北京: 中国科学院大学, 2013, 1-193.

      DONG Shunli. The middle-late Early Paleozoic sedimentary provenance systems and tectonic-paleogeographic framework in circum-Mangar area, Tarim basin[D]. Beijing: University of Chinese Academy of Sciences, 2013: 1−193.

      甘肃省地矿局. 甘肃省岩石地层[M]. 武汉: 中国地质大学出版社, 1997: 1−314

      Gansu Provincial Bureau of Geology and Mineral Resources. Lithostratigraphy of Gansu Province[M]. WuHan: China University of Geosciences Press, 1997: 1-314.

      甘肃省地矿局. 尖尼幅(I48E012007)区域地质图说明书[M]. 武汉: 中国地质大学出版社, 1999: 1−45

      Gansu Provincial Bureau of Geology and Mineral Resources. Description of regional geological map of Jianni sheet[M]. Wuhan: China University of Geosciences Press, 1999: 1-45.

      高盛, 陈丹玲, 宫相宽, 等. 天水东岔地区宽坪岩群碎屑岩和花岗岩中的锆石U-Pb定年及其地质意义[J]. 地学前缘, 2015, 22(4): 255-264 doi: 10.13745/j.esf.2015.04.026

      Gao Sheng, Chen Danling, Gong Xiangkuan, et al. Zircon U-Pb dating of clastic rocks and granites of Kuanping group in Dongcha areas of Tianshui, and its geological implications[J]. Earth Science Frontiers, 2015, 22(4): 255-264. doi: 10.13745/j.esf.2015.04.026

      郭荣鑫. 嵩山地区新太古代北沟岩体地球化学特征及其地质意义[D]. 焦作: 河南理工大学, 2018: 1−51

      GUO Rongxin. Geochemical characteristics of neoarchean Beigou pluton and its geological implications in Songshan area[D]. Jiaozuo: Henan University of Technology, 2018: 1−51.

      何艳红, 孙勇, 陈亮, 等. 陇山杂岩的LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 岩石学报, 2005, 21(1): 125-134 doi: 10.3321/j.issn:1000-0569.2005.01.012

      He Yanhong, Sun Yong, Chen Liang, et al. Zircon U-Pb chronology of Longshan complex By LA-ICP-MS and its geological significance[J]. Acta Petrologica Sinica, 2005, 21(1): 125-134. doi: 10.3321/j.issn:1000-0569.2005.01.012

      洪吉安, 段苏浩. 扬子北缘新元古代岩浆活动架构[J]. 矿物岩石地球化学通报, 2009, 28: 66

      Hong Jian, Duan Suhao. Framework of Neoproterozoic magmatism in the northern margin of the Yangtze river[J]. Bulletin of Mineralogy, Pertology and Geochemistry, 2009, 28: 66.

      胡建, 邱检生, 王汝成, 等. 新元古代Rodinia超大陆裂解事件在扬子北东缘的最初响应: 东海片麻状碱性花岗岩的锆石U-Pb年代学及Nd同位素制约[J]. 岩石学报, 2007, 23(6): 1321-1333. doi: 10.3969/j.issn.1000-0569.2007.06.009

      Hu Jian, Qiu Jiansheng, Wang Rucheng, et al. Earliest response of the neoproterozoic Rodinia break-up in the northeastern Yangtze craton: constraints from zircon U-Pb geochronology and Nd isotopes of the gneissic alkaline granites in Donghai area[J]. Acta Petrologica Sinica, 2007, 23(6): 1321-1333. doi: 10.3969/j.issn.1000-0569.2007.06.009

      胡娟, 刘晓春, 陈龙耀, 等. 扬子克拉通北缘约2.5Ga岩浆事件: 来自南秦岭陡岭杂岩锆石U-Pb年代学和Hf同位素证据[J], 科学通报, 2013, 58(34): 3579-3588 doi: 10.1360/csb2013-58-34-3579

      Hu Juan, Liu Xiaochun, Chen Longyao, et al. A~2.5Ga magmatic enent at the northern margin of the Yangtze craton: evidence from U-Pb dating and Hf isotope analysis of zircons from the Douling complex in the South Qinling orogen[J]. Chin Sci Bull, 2013, 58(34): 3579-3588. doi: 10.1360/csb2013-58-34-3579

      黄波. 华北克拉通南缘新太古代增生碰撞造山作用及其地球动力学启示[D]. 武汉: 中国地质大学, 2020: 1−131

      HUANG Bo. Neoarchean accretionary-to-collisinal orogenesis in the southern North China craton and its geodynamic implications[D]. Wuhan: China University of Geosciences, 2020: 1−131.

      蒋幸福. 扬子克拉通黄陵背斜庙湾蛇绿杂岩程英及大地构造意义[D]. 武汉: 中国地质大学, 2014: 1−94

      JIANG Xingfu. Genesis and tectonic significance of the Miaowan ophiolite complex in the Huangling anticline, Yangtze craton[D]. Wuhan: China University of Geosciences, 2014: 1-94.

      姜寒冰, 杨合群, 赵国斌, 等.西秦岭成矿带区域成矿规律概论[J]. 西北地质, 2023, 56(2): 187−202.

      JIANG Hanbing, YANG Hequn, ZHAO Guobin, et al. Discussion on the Metallogenic Regularity in West Qinling Metallogenic Belt, China[J]. Northwestern Geology, 2023, 56(2): 187-202.

      寇琳琳, 李海龙, 李振宏, 等. 青藏高原东北缘烟囱山构造带二叠系红泉组沉积时代及物源示踪[J]. 地质通报, 2022, 41(2~3): 315-326

      Kou Linlin, Li Hailong, Li Zhenhong, et al. Sedimentary age and provenance tracing of the Permian Hongquan formation in the Yantonshan structural belt on the northeastern magin of the Qinghai-Tibet plateau[J]. Geological Bulletin of China, 2022, 41(2~3): 315-326.

      兰瑞烜, 李加好, 杨挺宇. 秦岭岩群早古生代晚期构造热事件及地质意义[J]. 合肥工业大学学报, 2020, 43(11): 1550-1555

      Lan Ruixuan, Li Jiahao, Yang Tingyu. Alate early Paleozoic tectono thermal event of the Qinling group and its geological significance[J]. Journal of Hefei University of Technology(Natural Science), 2020, 43(11): 1550-1555.

      李怀坤, 陆松年, 陈志宏, 等. 南秦岭耀岭河群裂谷型火山岩锆石U-Pb年代学[J]. 地质通报, 2003, 22(10): 775-781 doi: 10.3969/j.issn.1671-2552.2003.10.005

      Li Huaikun, Lu Songnian, Chen Zhihong, et al. Ziron U-Pb geochronology of rift-type volcanic rocks of the Yaolinghe group in the South Qinling orogen[J]. Geological Bulletin of China, 2003, 22(10): 775-781. doi: 10.3969/j.issn.1671-2552.2003.10.005

      李平, 陈隽璐, 张越, 等. 商丹俯冲增生带南缘土地沟–池沟地区侵入岩形成时代及地质意义[J]. 西北地质, 2023, 56(2): 10−27.

      LI Ping, CHEN Junlu, ZHANG Yue, et al. The Formation Age of Intrusions from Tudigou–Chigou Region in Southern Margin of Shangdan Subduction–Accretion Belt and Its Geological Significance[J]. Northwestern Geology, 2023, 56(2): 10−27.

      李王晔. 西秦岭-东昆仑造山带蛇绿岩及岛弧型岩浆岩的年代学和地球化学研究—对特提斯洋演化的制约[D]. 合肥: 中国科学技术大学, 2008: 1-124

      LI Wangye. Geochronology and geochemistry of the ophiolites and island-arc-type igneous rocks in the western Qinling orogen and the eastern Kunlun orogen: implication for the evolution of the Tethyan ocean[D]. Hefei: University of Science and Technology of China, 2008: 1−124.

      李亦飞, 罗金海, 徐欢, 等. 西秦岭伯阳-元龙地区中泥盆统变砂岩碎屑锆石U-Pb年龄和地球化学特征及地质意义[J]. 地质论评, 2018, 64(5): 1087-1103.

      Li Yifei, Luo Jinhai, Xu Huan, et al. Detrital Zircon U-Pb Age, geochemical characteristics and geological significance of meta-sandstones form Boyang-Yuanlong area in the western Qinling orogenic belt[J]. Geological Review, 2018, 64(5): 1087-1103.

      林慈銮. 河南鲁山地区太古代片麻岩系的地球化学、锆石年代学及其构造环境[D]. 西安: 西北大学, 2006: 1-72

      LIN Ciluan. Geochemistry, geochronology and tectonic settings of archean gneisses in Lushan, Henan Province[D]. Xi’an: Northwest University, 2006: 1−72.

      林振文, 秦艳, 周振菊, 等. 南秦岭勉略带铧厂沟火山岩锆石U-Pb年代学及地球化学研究[J]. 岩石学报, 2013, 29(1): 83-94

      Lin Zhenwen, Qin Yan, Zhou Zhenju, et al. Zircon U-Pb dating and geochemistry of the volcanic rocks at Huachanggou area, Mianlue suture, South Qinling[J]. Acta Petrologica Sinica, 2013, 29(1): 83-94.

      凌文黎, 任邦方, 段瑞春, 等. 南秦岭武当群、耀岭河群及基性侵入岩群锆石U-Pb同位素年代学及其地质意义[J]. 科学通报, 2007, 52(12): 1445-1456 doi: 10.3321/j.issn:0023-074X.2007.12.015

      Ling Wenli, Ren Bangfang, Duan Ruichun, et al. Zircon U-Pb isotopic chronology of Wudang group, Yaolinghe group and basic intrusive rock group in South Qinling Mountains and its geological significance [J]Chinese Science Bulletin, 2007, 52(12): 1445-1456. doi: 10.3321/j.issn:0023-074X.2007.12.015

      刘宝星. 勉略构造带横现河构造混杂岩带地质特征及区域构造研究[D]. 西安: 长安大学, 2020: 1-71

      LIU Baoxing. Study on the geological characteristics and tectonic of Hengxianhe mélanges belt in Mianlue tectonic zone[D]. Xi’an: Chang’an University, 2020: 1−71.

      刘会彬, 裴先治, 丁仨平, 等. 西秦岭天水市元龙地区新元古代花岗质片麻岩锆石LA-ICP-MS U-Pb定年及地质意义[J]. 地质通报, 2006, 25(11): 115-1320

      Liu Huibin, Pei Xianzhi, Ding Sanping, et al. LA-ICP-MS ziron U-Pb dating of the Neoproterozoic granitic gneisses in the Yuanlong area, Tianshui city, west Qinling, China and their geological significance[J]. Geological Bulletin of China, 2006, 25(11): 115-1320.

      刘仁燕, 牛宝贵, 李崇. 南秦岭武当群锆石SHRIMP U-Pb定年及其地质意义[J]. 岩石矿物学杂志, 2020, 39(6): 751-768 doi: 10.3969/j.issn.1000-6524.2020.06.006

      Liu Renyan, Niu Baogui, Li Chong. Zircon SHRIMP U-Pb dating of the Wudang group in South Qinling belt and its geological significance[J]. Acta Petrologica et Mineralogica, 2020, 39(6): 751-768. doi: 10.3969/j.issn.1000-6524.2020.06.006

      刘伟. Columbia超大陆在扬子陆块西缘的响应[D]. 合肥: 中国科学技术大学, 2019: 1−124

      Liu Wei. Response to Columbia supercontinent in the western margin of Yangtze block[D]. Hefei: University of Science and Technology of China, 2019: 1−124.

      罗芬红. 北秦岭构造带西段秦岭岩群的物质组成、形成时代及其变质特征研究[D]. 西安: 西北大学, 2019: 1−98

      LUO Fenhong. Composition, forming age and metamorphism of the Qinling group in the western segment of the North Qinling orogenic belt[D]. Xi’an: Northwest University, 2019: 1−98.

      裴先治, 丁仨平, 李佐臣, 等. 西秦岭北缘关子镇蛇绿岩的形成时代: 来自辉长岩中LA-ICP-MS锆石U-Pb年龄的证据[J]. 地质学报, 2007, 81(11): 1550-1561 doi: 10.3321/j.issn:0001-5717.2007.11.010

      Pei Xianzhi, Ding Saping, Li Zuocheng, et al. LA-ICP-MS Zircon U-Pb Dating of the Gabbro from the Guanzizhen Ophiolite in the Northern Margin of the Western Qinling and Its Geological Significance [J]. Acta Geological Sinica, 2007, 81(11): 1550-1561. doi: 10.3321/j.issn:0001-5717.2007.11.010

      彭守涛, 李忠, 许承武. 库车坳陷北缘白垩世源区特征: 来自盆地碎屑锆石U-Pb年龄的信息[J]. 沉积学报, 2009, 27(5), 956-966.

      Peng Shoutao, Li Zhong, Xu Chengwu. Provenance of early cretaceous deposites in Kuqa subbsin, the southern margin of Tianshan: implication from detrital zircon LA-ICP-MS age data[J]. Acta Sedimentologica Sinica, 2009, 27(5): 956-966.

      任光明, 庞维华, 潘桂堂, 等. 扬子陆块西缘中元古代菜子园蛇绿混杂岩的厘定及其地质意义[J]. 地质通报, 2017, 36(11): 2061-2075 doi: 10.3969/j.issn.1671-2552.2017.11.016

      Ren Guangming, Pang Weihua, Pan Guitang, et al. Ascertainment of the mesoproterozic Caiziyuan ophiolitic mélange on the western margin of the Yangtze block and its geological significance[J]. Geological Bulletin of China, 2017, 36(11): 2061-2075. doi: 10.3969/j.issn.1671-2552.2017.11.016

      任龙. 秦岭造山带西段唐藏地区加里东-印支期岩浆作用及地质意义[D]. 广州: 中国科学院大学广州地球化学研究所, 2019: 1−168

      REN Long. The caledonian and indosinian magmatism in the Tangzang area of the western Qinling orogenic belt and their tectonic implications[D]. Guangzhou: Guangzhou Institute of geochemistry, University of Chinese Academy of Sciences, 2019: 1−168.

      尚渊甲. 秦祁结合部早古生代岩浆事件及地质意义[D]. 西安: 西北大学, 2021: 1−50

      SHANG Yuanjia. The early paleozoic magmatic events in the tectionc conjunction of the Qinling-Qilian orogen and tis geological significance[D]. Xi’an: Northwest University, 2021: 1−50.

      苏文博, 李怀坤, Huff W D, 等. 铁岭组钾质斑脱岩锆石SHRIMP U-Pb年代学研究及其地质意义[J]. 科学通报, 2010, 55(22): 2197-2206 doi: 10.1360/csb2010-55-22-2197

      Su Wenbo, Li Huaikun, Huff W D, et al. SHRIMP U-Pb dating for a K-bentonite bed in the Tieling formation, North China[J]. Chinese Sci Bull, 2010, 55(22): 2197-2206. doi: 10.1360/csb2010-55-22-2197

      王海杰, 陈丹玲, 任云飞, 等. 北秦岭构造带与华北板块关系探讨: 来自宽坪岩群碎屑锆石U-Pb年代学与变质作用证据[C]. 中国地球科学联合学术年会, 2020: 341

      WANG Haijie, CHEN Danling, REN Yunfei, et al. Discussion on the relationship between north Qinling tectonic belt and North China plate: evidence from Clastic zircon U-Pb chronology and metamorphism of Kuanping group[C]. Annual Meeting of China Geoscience Association, 2020: 341.

      王洪亮, 徐学义, 陈隽璐, 等. 南秦岭略阳鱼洞子岩群磁铁石英岩形成时代的锆石U-Pb年代学约束[J]. 地质学报, 2011, 85(8): 1284-1290

      Wang Hongliang, Xu Xueyi, Chen Junlu, et al. Constraints from zircon U-Pb chronology of Yudongzi group magnetite-quartzite in the Lueyang area, Southern Qinling, China[J]. Acta Geologica Sinica, 2011, 85(8): 1284-1290.

      王梦玺, 王焰, 赵军红. 扬子板块北缘周庵超镁铁质岩体锆石U-Pb年龄和Hf-O同位素特征: 对源区性质和Rodinia超大陆裂解时限的约束[J]. 科学通报, 2012, 57(34): 3283-3294 doi: 10.1360/csb2012-57-34-3283

      Wang Mengxi, Wang Yan, Zhao Junhong. Zircon U-Pb dating and Hf-O isotopes of the Zhouan ultramafic intrusion in the northern margin of the Yangtze block, SW China: constirains on the nature of mantle source and timing of the supercontinent Rodinia breakup[J]. Chin Sci Bull, 2012, 57(34): 3283-3294. doi: 10.1360/csb2012-57-34-3283

      王清海, 杨德彬, 许文良. 华北陆块东南缘新元古代基性岩浆活动: 徐淮地区辉绿岩床群岩石地球化学、年代学和Hf同位素证据[J]. 中国科学: 地球化学, 2011, 41(6): 796-815

      Wang Qinghai, Yang Debin, Xu Wenliang. Neoproterozoic basic magmatism in the southeast margin of North China craton: evidence from whole-rock geochemistry, U-Pb and Hf isotopic study of zircons from diabase swarms in the Xuzhou-Huaibei area[J]. Sci China Earth Sci, 2011, 41(6): 796-815.

      王银川, 裴先治, 李佐臣, 等. 祁连造山带东端张家川地区长宁驿中元古代花岗质片麻岩LA-ICP-MS锆石U-Pb年龄及其构造意义[J]. 地质通报, 2012, 31(10): 1576-1587

      Wang Yinchuan, Pei Xianzhi, Li Zuocheng, et al. LA-ICP-MS zircon U-Pb dating of the Mesoproterozoic granitic gneisses at Changningyi of Zhangjiachuan area on the eastern edge of the Qilian Orogenic belt. Geological Bulletin of China, 2012, 31(10): 1576-1587.

      魏方辉, 裴先治, 李瑞保, 等. 甘肃天水地区早古生代黄门川花岗闪长岩体LA-ICP-MS锆石U-Pb定年及构造意义[J]. 地质通报, 2012, 31(9): 1496-1509 doi: 10.3969/j.issn.1671-2552.2012.09.013

      Wei Fanghui, Pei Xianzhi, Li Ruibao, et al. LA-ICP-MS ziron U-Pb dating of early paleozoic Huangmenchuan granodiorite in Tianshui area of Gansu province and its tectonic significance[J]. Geological Bulletin of China, 2012, 31(9): 1496-1509. doi: 10.3969/j.issn.1671-2552.2012.09.013

      吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1605 doi: 10.3321/j.issn:0023-074X.2004.16.002

      Wu Yuanbao, Zheng Yongfei. Genetic mineralogy of zircon and its constraints on U-Pb age interpretation[J]. Chinese Science Bulletin, 2004, 49(16): 1589-1605. doi: 10.3321/j.issn:0023-074X.2004.16.002

      肖庆辉, 李晓波, 贾跃明, 等. 当代造山带研究中值得重视的若干前沿问题[J]. 地学前缘, 1995, 2(1~2), 43-50.

      Xiao Qinghui, Li Xiaobo, Jia Yueming, et al. Frontiers on orogenic researches[J]. Earth Science Frontiers, 1995, 2(1-2): 43-50.

      徐多勋, 魏立勇, 张振, 等. 西秦岭临潭地区隆务河组碎屑锆石U-Pb年龄、地球化学特征及沉积环境分析[J]. 西北地质, 2020, 53(2): 102-125 doi: 10.19751/j.cnki.61-1149/p.2020.02.006

      Xu Duoxun, Wei Liyong, Zhang Zhen, et al. U-Pb age, geochemical characteristics and sedimentary environment analysis of detrital zircons from the Longwuhe formation in Lintan area, West Qinling[J]. Northwestern Geology, 2020, 53(2): 102-125. doi: 10.19751/j.cnki.61-1149/p.2020.02.006

      徐通. 秦岭南缘勉略构造带康县-略阳地区组成特征及构造演化研究[D]. 西安: 长安大学, 2016: 1−112

      XU Tong. Component features and tectonic evolution of Mianlue tectonic zone in Kangxian-Lueyang area, south margin of Qinling orogen[D]. Xi’an: Chang’an University, 2016: 1−112.

      徐学义, 夏林圻, 陈隽璐, 等. 扬子地块北缘西乡群孙家河组火山岩形成时代及元素地球化学研究[J]. 岩石学报, 2009, 25(12): 3309-3326

      Xu Xueyi, Xia Linqi, Chen Junlu, et al. Zircon U-Pb dating and geochemical study of volcanic rocks from Sunjiahe formation of Xixiang group in northern margin of Yangtze plate[J]. Acta Petrologica Sinica, 2009, 25(12): 3309-3326.

      薛怀民, 马芳, 宋永勤. 扬子克拉通北缘随(州)-枣(阳)地区新元古代变质岩浆岩的地球化学和SHRIMP锆石U-Pb年代学研究[J]. 岩石学报, 2011, 27(4): 1116-1130

      Xue Huaimin, Ma Fang, Song Yongqin. Geochemistry and SHRIMP ziron U-Pb data of Neoproterozoic meta-magmatic rocks in the Suizhou-Zaoyang area, northern margin of the Yangtze Craton, Central China[J]. Acta Petrologica Sinica, 2011, 27(4): 1116-1130.

      闫全人, 王宗起, 陈隽璐, 等. 北秦岭斜峪关群和草滩沟群火山岩成因的地球化学和同位素约束、SHRIMP年代及其意义[J]. 地质学报, 2007, 81(4): 488-502 doi: 10.3321/j.issn:0001-5717.2007.04.007

      Yan Quanren, Wang Zongqi, Chen Junlu, et al. Tectonic setting and SHRIMP age of volcani rocks in the Xieyuguan and Caotangou groups: implications for the North Qinling orogenic belt[J]. Acta Geologica Sinica, 2007, 81(4): 488-502. doi: 10.3321/j.issn:0001-5717.2007.04.007

      闫义, 林舸, 李自安. 利用锆石形态、成分组成及年龄分析进行沉积物源区示踪的综合研究[J]. 大地构造与成矿学, 2003, 27(2), 184-190.

      Yan Yi, Lin Ge, Li Zian. Provenance tracing of sediments by means of synthetic study of shape, composition and chronology of zircon[J]. Geotectonica et Metallogenia, 2003, 27(2): 184-190.

      雍拥, 肖文交, 袁超, 等. 中祁连东段花岗岩LA-ICP-MS 锆石U-Pb年龄及地质意义[J]. 新疆地质, 2008, 26(1): 62-70 doi: 10.3969/j.issn.1000-8845.2008.01.013

      Yong Yong, Xiao Wenjiao, Yuan Chao, et al. LA-ICP-MS ziron U-Pb ages of granitic plutons from the eastern sector of the central Qilian and their geologic implication[J]. Xinjiang Geology, 2008, 26(1): 62-70. doi: 10.3969/j.issn.1000-8845.2008.01.013

      张健, 田辉, 李怀坤, 等. 华北克拉通北缘Columbia超大陆裂解事件: 来自燕辽裂陷槽中部长城系碱性火山岩的地球化学、锆石U-Pb年代学和Hf同位素证据[J], 2015, 31(10): 3129-3146

      Zhang jian, Tian hui, Li Huaikun, et al. Age, geochemistry and zircon Hf isotope of the alkaline basaltic rocks in the middle section of the Yan-liao aulacogen along the northern margin of the North China Craton: new evidence for the break-up of the Columbia supercontinent[J]. Acta petrologica Sinica, 2015, 31(10): 3129-3146.

      张欣, 徐学义, 宋公社, 等. 西秦岭略阳地区鱼洞子杂岩变形花岗岩锆石LA-ICP-MS U-Pb测年及地质意义[J]. 地质通报, 2010, 29(4): 510-517 doi: 10.3969/j.issn.1671-2552.2010.04.004

      Zhang Xin, Xu Xueyi, Song Gongshe, et al. Zircon LA-ICP-MS U-Pb dating and significance of Yudongzi group deformation granite from Lueyang area, Western Qinling, China[J]. Geological Bulletin of China, 2010, 29(4): 510-517. doi: 10.3969/j.issn.1671-2552.2010.04.004

      赵太平, 翟明国, 夏斌, 等. 熊耳群火山岩锆石SHRIMP年代学研究: 对华北克拉通盖层发育初始时间的制约[J]. 科学通报, 2004, 46(22): 2342-2346 doi: 10.3321/j.issn:0023-074X.2004.22.015

      Zhao Taiping, Zhai Mingguo, Xia Bin, et al. SHRIMP zircon chronology of volcanic rocks in Xionger group: constraints on the initial development time of the caprock of the North China craton [J]. Chin Sci Bull, 2004, 46(22): 2342-2346. doi: 10.3321/j.issn:0023-074X.2004.22.015

      祝禧艳, 陈福坤, 王伟, 等. 豫西地区秦岭造山带武当群火山岩和沉积岩锆石U-Pb年龄[J]. 地球学报, 2008, 29(6): 817-829

      Zhu Xiyan, Chen Fukun, Wang Wei, et al. Zircon U-Pb ages of volcanic and sedimentary rocks of the Wudang group in the Qinling orogenic belt with in Western Henan Province[J]. Acta Geoscientica Sinica, 29(6): 817-829.

      Anderson T. Correction of commom Pb in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192: 59-79. doi: 10.1016/S0009-2541(02)00195-X

      Bhatia M R. Plate tectonics and geochemical composition of sandstones[J]. The journal of Geology, 1983, 91(6): 611-627. doi: 10.1086/628815

      Boynton MV. Cosmochemistry of the rare earth elements: metorite studies[A]. In: Henderson P(ed. ). Rare Earth Element Geochemistry[M]. New York: Elsevier, 1984, 63−114.

      Dickinson W R. Interpreting provenance relations from detrital modes of sandstones[J]. Provenance of arenites, 1985, 148: 333-361.

      Floyd P A, Leveridge B E. Tectonic enviroment of the Devonian Gramscatho basin, south Cornwall: Framework mode and geochemical evidence from turbiditic sandstones[J]. Journal of the Geological Society, 1987, 144(4): 531-542. doi: 10.1144/gsjgs.144.4.0531

      Hoskin P W O. Rare earth element chemistry of zircon and its use as provenance indicator[J]. Geology, 2002, 28(8): 627-630.

      McLennan S, Hemming S, McDaniel D. Geochemical approaches to sedimentation, provenance, and tectonics[J]. Special Papers-Geological Society of America, 1993, 89: 21-21.

      Rogers J J, Santosh M. Configuration of Columbia, a Mesoproterozoic supercontinent[J]. Gondwana Research, 2002, 5: 5-22. doi: 10.1016/S1342-937X(05)70883-2

      Sun S S, McDonough W F. Chemical and isotope systematicas of oceanic basalts: implications for mantle composition and processes[A]. In: Saunders A D and Norry M J. Magmatism in the Ocean Basins[M]. Geological Society Special Publication, 1989, 42: 313−345.

    • 期刊类型引用(2)

      1. 刘昊,崔军平,金玮,成科璋,刘静静. 松辽盆地东部地区花岗岩地球化学特征及其地质意义. 西北地质. 2024(02): 46-58 . 本站查看
      2. 代新宇,周斌,李新林,杜彪,范鹏,赵江林,杨文博,武忠山. 西昆仑奇台达坂北中新世石英二长岩侵入岩年代学、地球化学及其构造意义. 西北地质. 2024(04): 191-205 . 本站查看

      其他类型引用(0)

    图(13)  /  表(4)
    计量
    • 文章访问数:  229
    • HTML全文浏览量:  32
    • PDF下载量:  116
    • 被引次数: 2
    出版历程
    • 收稿日期:  2023-02-02
    • 修回日期:  2023-04-06
    • 录用日期:  2023-04-10
    • 网络出版日期:  2023-04-20
    • 刊出日期:  2023-10-19

    目录

    /

    返回文章
    返回