ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

东昆仑东段到木提岩体成因及构造意义:来自年代学及地球化学的约束

韩建军, 李红刚, 何俊, 赵明福, 韩旭, 张新远, 柴云

韩建军, 李红刚, 何俊, 等. 东昆仑东段到木提岩体成因及构造意义:来自年代学及地球化学的约束[J]. 西北地质, 2023, 56(6): 140-154. DOI: 10.12401/j.nwg.2023133
引用本文: 韩建军, 李红刚, 何俊, 等. 东昆仑东段到木提岩体成因及构造意义:来自年代学及地球化学的约束[J]. 西北地质, 2023, 56(6): 140-154. DOI: 10.12401/j.nwg.2023133
HAN Jianjun, LI Honggang, HE Jun, et al. Petrogenesis and Tectonic Implications of Daomuti Intrusive Rocks in East Kunlun Orogen: Constraints from the Geochronology and Geochemistry[J]. Northwestern Geology, 2023, 56(6): 140-154. DOI: 10.12401/j.nwg.2023133
Citation: HAN Jianjun, LI Honggang, HE Jun, et al. Petrogenesis and Tectonic Implications of Daomuti Intrusive Rocks in East Kunlun Orogen: Constraints from the Geochronology and Geochemistry[J]. Northwestern Geology, 2023, 56(6): 140-154. DOI: 10.12401/j.nwg.2023133

东昆仑东段到木提岩体成因及构造意义:来自年代学及地球化学的约束

基金项目: 青海省地质勘查项目“青海省都兰县昂日塔地区1∶25000万区域地质矿产调查”(2017042034jc015)资助。
详细信息
    作者简介:

    韩建军(1991–),男,硕士,工程师,从事构造地质学及矿产勘查工作。E–mail:wsxh91@foxmail.com

    通讯作者:

    李红刚(1973–),男,工程师,从事区域地质调查和矿产调查工作。E–mail:674833190@qq.com

  • 中图分类号: P595;P597+.1

Petrogenesis and Tectonic Implications of Daomuti Intrusive Rocks in East Kunlun Orogen: Constraints from the Geochronology and Geochemistry

  • 摘要:

    到木提岩体位于东昆仑造山带东段,主要岩性有二长花岗岩、花岗闪长岩及闪长岩。笔者对新发现的闪长岩进行了锆石U–Pb测年和岩石地球化学测试,以确定其形成时代及岩石成因,结合二长花岗岩和花岗闪长岩的岩石地球化学特征,综合探讨到木提岩体的侵位时代、岩石成因及构造演化程。LA–ICP–MS锆石U–Pb测年获得的闪长岩206Pb/238U年龄为(244.6±1.8)Ma,到木提闪长岩体结晶时代为早三叠世。二长花岗岩和花岗闪长岩的地球化学特征显示:里特曼指数小于3.3,具钙碱性–高钾钙碱性特征;铝饱和指数A/CNK值均小于1.1;岩石中P2O5含量普遍较低,且与SiO2含量呈负相关性;富集K、Rb、La等LILE,亏损Nb、Ta、Ti、P等HFSE。地球化学特征表明,到木提岩体属于I型花岗岩。综合分析认为,东昆仑东段到木提岩体是下地壳岩石发生部分熔融形成的火山弧花岗岩,阿尼玛卿洋俯冲作用可以持续到早—中三叠世,俯冲过程中形成区域性的地幔岩浆底侵就是导致下地壳熔融的热源,且幔源岩浆不同程度混入到到木提岩浆演化中,岩浆演化中伴有一定的结晶分异发生。

    Abstract:

    The Daomuti intrusive rocks is located in the eastern section of the East Kunlun orogenic belt, and mainly includes monzogranite, granodiorite and diorite. In this paper, zircon U–Pb dating and petrogeochemical tests are performed on newly discovered diorite to determine its crystalline age and petrogenesis. Comprehensively analyse the petrogeochemical characteristics of monzogranite and granodiorite, and discuss the emplacement age, rock genesis and tectonic evolution of the Daomuti intrusive rocks. LA–ICP–MS zircon U–Pb dating analysis shows that the 206Pb/238U weighted average age of diorite is (244.6±1.8) Ma, and the crystallization age of the diorite is Early Triassic. The geochemical characteristics of the monzogranite and granodiorite show that the Ritman index is greater than 3.3 and has the characteristics of calcium alkalinity–high potassium calcium alkalinity; the aluminum saturation index A/CNK values are less than 1.1; the P2O5 content in the rocks is low, and its has a negative correlation with SiO2 content; It is enriched with LILE such as K, Rb, La, and loses HFSE such as Nb, Ta, Ti and P. The above characteristics indicate that the Daomuti intrusive rocks belongs to type I granite. Based on the research results of this paper, it can be considered that the Daomuti intrusive rocks is a volcanic arc granite, its formed by partial melting of the lower crust rocks, and the Animaqing Ocean subduction continued to the Early–Middle Triassic The mantle magma underplating during the subduction process is the heat source that causes the melting of the lower crust, and the mantle source magma is mixed into the Daomuti intrusive rocks’ magma evolution, and during the Daomuti intrusive rocks’ magma evolution occurred fractional crystallization.

  • 水资源紧缺一直是制约社会可持续发展的重要因素,尤其是中国西北干旱地区地下水资源匮乏,研究地下水的水文地球化学特征及水质可为水资源的开发利用提供支持。

    水文地球化学的研究最早起始于地下水勘探开发利用的水文地质研究,自20世纪60、70年代起,水文地球化学在地下水监测及分析中应用越来越广泛(沈照理,1985)。20世纪60年代,开始研究地下水在地壳中的作用(任福弘等,1993),召开了相应的水文地球与生物地球化学研讨会,研究水文地球化学相关问题。1992年《水文地球化学》将此研究分为理论与应用两部分,从地下水形成、迁移等理论问题和饮用、地热水、矿水和模拟预测的应用两方面进行论述(叶思源等,2002)。近期水文地球化学围绕油田水、海底矿藏、地热水、环境等方面进行特定的分析,研究手段也不断增加(马致远等,2017刘瑞平等,2019)。

    新疆地质构造复杂多样,地壳活动频繁,地势具有南高北低、西高东低少环山封闭盆地的特点,地热资源丰富,各热水区带的水热活动强度自北而南逐渐增强,自西向东逐渐减弱(中国各省地热资源全解析,2020)。王书峰(1985)对新疆乌鲁木齐河流域的水文地球化学进行了初步研究,周金龙(2010)将新疆地下水划分7个方面对其进行整体分析研究,为新疆等西北干旱地区地下水资源与环境问题研究提供了可借鉴的方法和理念。顾新鲁等(2015)对新疆地热资源成因类型及控热模式进行了分析,将地热成因类型分为断裂构造型、沉积盆地型和煤层自燃型,主要受区域断裂构造及次级构造、大地热流背景和热源、水源流体等因素的影响和控制。殷秀兰等(2015)对乌鲁木齐河流域北部的水文地球化学特征进行了研究。蒋万军等(2016)赵江涛等(2017)雷米等(2020)分别对新疆吐−哈盆地、焉耆盆地平原区和昌吉州东部平原区的地下水行了水文地球化学分析,对地下水演化及分布特征进行整体研究。

    新疆地质演化历史复杂,博罗科努–阿其克库都克断裂(简称“博阿断裂”)是超岩石圈断裂,有长期和多期活动的特点,是良好的导热导水通道及地下水容集通道,形成条件和岩性等都影响着其蓄水能力和地下水流场。因此,通过研究博阿断裂附近的地表水及地下水的水化学等特征可判断其对地下水演化、流场等影响。总体来看,针对新疆单一地区的水文地球化学分析相对较多,但缺乏针对整体构造的不同分布位置的水的水文地球化学研究。新疆属于西北干旱地区,水资源匮乏,通过研究博阿断裂带上泉水的水文地球化学特征可以更好分析断裂构造上对地下水化学演化、径流的影响,为开发利用地下水及进行水利工程建设等提供理论研究支撑。

    博阿断裂是一条巨大的NW向构造,断裂起始于哈萨克斯坦境内沿阿拉胡西南侧的阿拉套山山前,从阿拉山口由NW向SE进入中国,在中国境内长约为800 km(图1杨晓平等,2000)。博阿断裂属于超岩石圈断裂(陈哲夫等,1997),属准噶尔–哈萨克斯坦古板块与塔里木古板块结合部位,次级断裂及褶皱构造十分发育,是褶皱山地断裂型地热资源有利赋存地区,以密集的NWW向大型右行压扭性断裂为主体,为天山山脉主要控热构造。从该断裂控制的地层和侵入岩体看,它具有长期和多期活动的特点,早古生代以前即已形成。中新生代以来,由于天山强烈隆起而导致断裂重新活动,形成由南向北推挤的叠瓦状断裂带,断面向西南倾,倾角为50°~60°。沿断裂发育破碎带和动力变质带,其中片理、挤压透镜体长轴及小型褶皱曲轴面与主断裂面成15°夹角,显示断裂的压扭性质(冯先岳,1997)。

    图  1  天山地区主要活动断裂及采样点位置(杨晓平等,2000
    Ⅰ. 准噶尔盆地;Ⅱ.塔城盆地;Ⅲ .伊宁盆地;Ⅳ. 吐鲁番盆地;Ⅴ. 尤都鲁斯盆地;Ⅵ. 焉耆盆地;Ⅶ .塔里木盆地
    Figure  1.  Main active faults in Tianshan area and sampling point location

    研究区位于北天山优地槽褶皱带,西部位于依连哈比尔尕复背斜带,受区域构造控制,形成一系列NWW、SEE向压性及压扭性断裂,NE−SW向和NW−SE向扭断裂。置属中山区地貌,山势陡峻,沟谷纵横交汇,河谷深切,呈“U”型谷。侵蚀作用强烈,温泉出露部位地势相对西高东低,南高北低,总体地势是南高北低(陈锋等,2016)。西部地区主要发育地层为中石炭统前峡亚组,由沉积作用、火山喷发作用形成的一套以浅海–滨海相正常沉积岩、火山碎屑沉积岩、火山碎屑岩建造,地层多呈单斜产出(陈首,2017)。中部位于昌吉市头屯河水库−三屯河努尔加水库,地处天山北麓准噶尔盆地南缘的头屯河−三屯河冲洪积扇的山前倾斜平原上,地势总趋势西南高北东低,地表被两河水系、冲沟侵蚀切割,切割深度自南向北逐渐变小。头屯河发育有三至四级堆积阶地,并有河漫滩发育,切割深度为25~35 m,河谷宽为400~600 m;三屯河发育有四级阶地,切割深度为30~40 m,河岸宽为300~600 m,并有河漫滩发育。中部地区岩性单一,岩性为卵石、砾石、砂砾石、砂层等,结构松散,透水性好。地形复杂,总体上呈西高东低,南高北低,海拔高程为1095~1306 m,相对高差为275 m,山体地形走向以NW向的沟谷为主。受控于地质构造运动、三屯河水系及头屯河水系的径流切割,以低山丘陵地貌为主,台地地貌为次,局部地势切割剧烈。东南地区位于乌鲁木齐河流域,属于天山北坡中段,准噶尔盆地南缘,北部为倾斜平原,东望可见天山主峰博格达峰,南依天山中段天格尔峰,NW向准噶尔盆地倾斜,区广泛分布多层结构的潜水、承压水和深部自流水(周金龙,2010)。

    在位于博阿断裂带的头屯河水库−三屯河努尔加水库地区共采集地表水水样3组,在同位于博阿断裂带的沙湾县、呼图壁县及乌鲁木齐市采集温泉水样6组。另外收集位于博阿断裂带的乌鲁木齐河泉水水样7组(表1高朋等,2021)。

    表  1  水化学同位素测试分析结果表
    Table  1.  Analysis results of water chemistry and isotope test
    编号水温
    (℃)
    pHTDS
    (mg/L)
    Na+
    (mg/L)
    Ca2+
    (mg/L)
    Mg2+
    (mg/L)
    Cl
    (mg/L)
    SO42−
    (mg/L)
    HCO3
    (mg/L)
    NO3
    (mg/L)
    NH4+
    (mg/L)
    δDδ18O
    DRT1499.95387.74103.262.000.2414.3254.7323.195.545.51−78.94−10.49
    DRT238.79.84378.83100.892.000.7314.3261.4534.183.813.95−83.28−11.36
    DRT3509.92553.73163.121.600.2415.75158.4425.635.745.70−78.81−10.65
    DRT437.49.29328.84111.074.010.2496.6316.3234.180.140.52−74.57−9.19
    DRT529.58.82304.75109.084.010.4982.3215.3648.832.260.39−75.17−9.71
    TT1228.243633.911081.4977.2550.76207.741982.86363.8231.84<0.04−−−−
    TT2258.583145.981072.9536.1212.17518.991239.95423.6517.920.16−−−−
    TT3238.011338.64332.2294.1125.6167.36537.86451.7314.292.20−−−−
    SD01−−7.8797.001.4024.366.045.9828.7961.36−−−−−60.9−9.1
    SD02−−7.8479.001.2421.274.174.2719.1357.27−−−−−59−9.15
    SD03−−7.70170.003.6850.188.089.4013.78169.47−−−−−50−7.81
    SD04−−7.6095.000.8725.995.574.7818.5177.72−−−−−56.7−9.07
    SD05−−7.6298.000.5524.457.703.4221.1881.81−−−−−57.4−8.98
    SD06−−7.7077.000.7821.873.398.2019.5446.75−−−−−58−9.38
    SD07−−7.97155.001.3144.438.706.4923.03142.00−−−−−45.8−7.8
    下载: 导出CSV 
    | 显示表格

    采集的泉水样品进行了水质全分析,部分温泉样品进行了氢氧同位素分析,水质全分析根据中华人民共和国国家标准饮用天然矿泉水检验方法(GB/T8538-2008)检测,其中阳离子使用的ICP方法进行离子浓度检测,阴离子使用离子色谱进行分析,阴阳离子平衡误差控制在3 %以内。氢氧同位素利用波长扫描−光腔衰荡光谱法在温度23 ℃,湿度50 %情况下进行检测。本次样品均由国土资源部地下水矿泉水及环境检测中心(中国地质科学院水文地质环境地质研究所)检测完成。

    (1)pH和TDS

    研究区温泉水、地表水和冷泉水的水化学特征有明显的区别。从温泉水、地表水到地下水,pH值逐渐降低,分别为8.82~9.92、8.01~8.58和7.6~7.97,且均大于7.5,为碱性水。温泉水、地表水和冷泉水的TDS含量为77~3633.91 mg/L,且从地表水、温泉水到冷泉水,TDS含量逐渐降低。其中,温泉水和冷泉水的TDS分别为304.75~553.73 mg/L和77~170 mg/L,均小于1g/L,为淡水。然而,地表水的TDS为1338.64~3633.91 mg/L,大于1 g/L或 3g/L,为微咸水和咸水。

    (2)水化学特征及主要离子含量

    不同类型水的主要离子含量和水化学类型有明显的区别(张帆等,2023)。地表水中的各种主要离子含量都明显要高于温泉水和冷泉水,而且温泉水和冷泉水中各个主要离子的相对含量大小趋势并不存在一致性(图2)。由piper三线图(图3)可知地表水的水化学类型主要为SO4−Na、Cl·SO4−Na和HCO3·SO4−Ca·Na型,Na+为主要的阳离子,其含量为332.22~1081.49 mg/L,SO42-为主要的阴离子,其含量为537.86~198.26 mg/L。温泉水的水化学类型为SO4·HCO3−Na/HCO3·SO4−Na和HCO3·Cl−Na型,Na+为主要的阳离子,其含量为100.89~163.12 mg/L,HCO3为最主要的阴离子,其含量为23.19~48.83 mg/L,此外,SO42−和Cl为温泉水的主要阴离子,含量分别为15.36~158.44 mg/L和14.32~96.63 mg/L。冷泉水的水化学类型为SO4·HCO3−Mg·Ca、HCO3−Ca、HCO3−Mg·Ca和SO4·HCO3-Ca型,SO42−和HCO3为主要的阴离子,含量分别在13.78~28.79 mg/L和46.75~169.47 mg/L,Ca2+和Mg2+为主要的阳离子,含量分别为21.87~50.18 mg/L和3.39-8.7 mg/L。此外,温泉水的Ca2+和Mg2+含量要显著小于地表水和冷泉水,含量仅分别为1.6~4.01mg/L和0.24~0.73 mg/L。同时,冷泉水的Na+和Cl含量明显偏低,分别为0.55~3.68 mg/L和3.42~9.4 mg/L。

    图  2  研究区主要离子浓度图
    Figure  2.  Major ion concentration in the study area
    图  3  研究区piper三线图
    Figure  3.  Piper map of the study area

    (3)特征组分

    笔者主要对NO3、NH4+、F和偏硅酸进行讨论。由于并未收集到冷泉水的特征组分的数据,因此只讨论温泉水和地表水中这些特征组分的含量特征。从图4可以看到,温泉水中的偏硅酸含量要显著高于地表水,其在温泉水和地表水中的含量分别为40.86~133.43 mg/L和16.75~37.66 mg/L。温泉水的F含量也要高于地表水,分别为2.43~10.97 mg/L和1.82~2.76 mg/L,并且DRT4和DRT5水样的F含量要显著偏高分别为10.97 mg/L和9.67 mg/L。温泉水中的NO3含量显著低于地表水,分别为0.14~5.74 mg/L和14.29~31.84 mg/L。然而,温泉水的NH4+含量则明显高于地表水,分别为0.39~5.7 mg/L和<0.04~2.2 mg/L。

    图  4  研究区特征组分浓度图
    Figure  4.  Characteristic component concentration of study area

    地表水和地下水经历的不同的水–岩相互作用、混合作用、循环时间和路径以及所处的氧化还原环境等因素都控制着水中的离子或元素的含量(张锡根,1988张保健,2011张未,2016Wang et al.,2020)。因此,阐明地下水和地表水在循环过程中所经历的水文地球化学过程对了解地下水和地表水的化学组分的形成机理十分重要。

    (1)蒸发作用

    通过对河流、湖泊和雨水等样本分析,Gibbs(1970)提出了地表水的3种离子来源:蒸发结晶、岩石风化和降水(韩朝辉等,2023)。通过分析TDS vs. Na+/(Na++Ca2+)和TDS vs. Cl/(Cl+HCO3)(图5),可以发现地表水水样点大部分位于蒸发结晶区域,冷泉位于岩石风化区域,温泉位于岩石风化域和蒸发区域,说明研究区地表水受到了蒸发作用的强烈影响,冷泉和温泉主要受到岩石风化或水岩作用的影响。因此,地表水的主要离子含量与温泉水和冷泉水相比显著偏高。同时,地表水水样点在TDS vs. Cl/(Cl+HCO3)图中位于Gibbs图偏左,而在TDS vs. Na+/(Na++Ca2+)图中位于Gibbs图右侧,这可能是由于Ca2+发生了沉淀导致了其含量的降低,或者Na+与Ca2+发生了阳离子交换反应,导致Na+含量增加而Ca2+含量降低。

    图  5  研究区Gibbs图
    Figure  5.  Gibbs map of the study area

    (2)矿物溶解与沉淀

    一般来说,地下水和地表水中的溶解组分的含量主要来自围岩的溶滤、大气降水以及人类活动等(Lasaga et al.,1994; Xing et al.,2013),矿物的溶解和沉淀会导致水化学类型发生变化(Gao et al.,2022)。

    运用PHREEQC对温泉水、地表水和冷泉水的部分矿物饱和指数(SI)进行了模拟计算(图6),发现硬石膏、萤石和石膏的SI值都<0,且大部分都<−1,说明研究区这些水中的硬石膏、萤石和石膏都处于溶解状态。然而,方解石、白云石和文石的矿物饱和指数大部分为−1~1,表明研究区的这些水中的方解石、白云石和文石处于平衡和沉淀状态,有发生沉淀的趋势。同时,温泉水中的方解石、白云石和文石基本上都>0,处于沉淀状态,这也解释了其水样点在(Na+K)vs. HCO3图中位于1∶1直线上方的原因。这些矿物对地下水水文地球化学过程起了相当重要的作用。

    图  6  温泉水(a)、地表水(b)和冷泉水(c)SI图
    Figure  6.  SI map of (a) hot spring, (b) surface water and (c) cold spring

    通过Ca2+与Mg2+的比值分析,可更好了解方解石与白云石的溶解与沉淀(Gao et al., 2020)。作研究区Ca2+ vs. Mg2+图(图7)显示,水样基本落在1∶1直线的下方,说明研究区中方解石比白云岩更占优势。

    图  7  研究区Ca2+ vs Mg2+离子关系图
    Figure  7.  Diagram of Ca2+ vs Mg2+ relationship in the study area

    (3)阳离子交替吸附

    通过主要离子的毫克当量数据点以及矿物溶解比直线可以揭示主要离子的主要来源。

    从HCO3vs.(Ca2++Mg2+)、(Ca2++Mg2+)vs.(SO42−+HCO3)、HCO3vs. Ca2+、Na+ vs. Cl以及(Na++K+)vs. HCO3的主要离子关系图(图8)可以看出,地表水样点分布都十分分散,表明地表水中的这些元素来自于多种矿物的溶解。温泉水水样点在HCO3vs. (Ca2++Mg2+)、(Ca2++Mg2+)vs.(SO42−+HCO3)、HCO3vs. Ca2+图中都位于1∶1直线下方,说明有其他的HCO3来源,而在Na+ vs. Cl以及(Na++K+)vs. HCO3图位于1∶1直线上方,说明Na+有其他的来源。通常在非碳酸盐岩热储中的地下热水中,由于深部CO2的影响,长石类矿物会发生溶解,导致地下热水中有较高含量的Na+和HCO3,同时由于少量钙长石的溶解,因此地下热水中具有少量的Ca2+。同时,含Mg2+的矿物很少,因此Mg2+的含量很低,低于地下冷水和地表水。可以用如下化学方程式表示:

    图  8  主要离子关系图
    Figure  8.  Major ion relationship map
    $$\begin{split} & {\rm{ 2NaAlSi_{3}O_{8}+3H_{2}O+2CO_{2} \to Al_{2}(Si_{2}O_{5})(OH)_{4}+}} \\& {\rm{4SiO_{2}+2Na^++2HCO_{3}^- }} \end{split} $$ (1)
    $$ \begin{split} \\& {\rm{2KAlSi_{3}O_{8}+3H_{2}O+2CO_{2} \to Al_{2}(Si_{2}O_{5})(OH)_{4}+}} \\ &{\rm{4SiO_{2}+2K^++2HCO_{3}^- }} \end{split} $$ (2)
    $$\begin{split} & {\rm{ CaAl_{2}Si_{2}O_{8}+3H_{2}O+2CO_{2} \to Al_{2}(Si_{2}O_{5})(OH)_{4}+}} \\& {\rm{4SiO_{2}+Ca^{2+}+2HCO_{3}^- }} \end{split} $$ (3)

    冷泉水样点在(Ca2++Mg2+)vs.(SO42−+HCO3)图中刚好位于1∶1溶解比直线,这说明冷泉水中的Ca2+、Mg2+、SO42−和HCO3主要来自于白云石、方解石以及石膏的溶解,可用如下化学方程式来表示:

    $${\rm{ CaCO_{3}+CO_{2}+H_{2}O \to Ca^{2+}+2HCO_{3}^- }}$$ (4)
    $$ {\rm{CaMg(CO_{3})+2CO_{2}+2H_{2}O \to Ca^{2+}+Mg^{2+}+4HCO_{3}^- }} $$ (5)
    $$ {\rm{CaSO_{4} \to Ca^{2+}+SO_{4}^{2-} }} $$ (6)

    其数据点在HCO3vs.(Ca2++Mg2+)、HCO3vs. Ca2+以及SO4 vs. Ca2+图中都位于1∶1直线的上方,也说明了冷泉中这些元素的含量不止一种来源,表明离子交换作用对地下水化学成分影响较为强烈。

    (4)氧化还原环境

    NO3和NH4+可以作为氧化还原环境的指示剂。在有氧条件下,亚硝酸细菌和硝酸细菌能够将NH4+最终氧化成为NO3,可用如下化学方程式来表达:

    $${\rm{ NH_{4}^++2O_{2} \to NO_{3}^-+2H^++H_{2}O }} $$ (7)

    通过上述特征组分含量的分析可以知道,地表水中的NO3含量远大于温泉水,但是其NH4+含量却小于温泉水,这说明地表水处于相对氧化的环境,促进了NH4+在亚硝酸细菌和硝酸细菌的作用下,被氧化成为NO3。地表水与空气直接接触,空气中的O2可以溶解进入地表水中,因而使得地表水处于氧化状态。同时,这也说明了温泉水处于相对的还原状态或者较弱的氧化状态,因此其NH4+含量要远高于地表水。温泉水的循环路径较长,在接受大气降水补给之后,往往经历较长时间的深循环,在循环过程中水中的大气降水中的O2就会消耗导致含量降低,如果没有其他O2的补给来源,就会导致温泉水处于相对还原或者弱氧化的环境,因而较少的NH4+被亚硝酸细菌和硝酸细菌的氧化成为NO3

    (1) 补给来源

    研究地下水氢氧同位素特征可以判断地下水的起源(张帆等,2023王新娟等,2023),确定地下水的补给条件、大气降水与地表水和地下水的联系程度,了解地下水的循环途径(Song et al.,2017)。由于D和18O的蒸汽张力比较小,因此其在液相中富集,在气相中贫化,从而导致不同的地下水循环氢氧同位素含量不同(张锡根,1988)。地下水中的δD的变化值除了少部分的混合作用的影响外,主要取决于补给温度及补给高程,δ18O的变化则主要根据水–岩作用的交换程度和水、岩比值(Craig,1961)。

    将水样点的氢氧稳定同位素数据和全球大气降水线以及当地大气降水线绘制在同一张图中(图9),判断水样点与大气降水线的相对位置,可以揭示研究区水的补给来源。其中全球大气降水线:δD=8δ18O+10(倪高倩等,2016),新疆乌鲁木齐大气降水线:δD=7.215δ18O+4.5(李晖等,2009)。由于缺乏研究区地表水的氢氧稳定同位素数据,因此只判断研究区温泉水和冷泉水的补给来源。

    图  9  研究区样品δD–δ18O关系图
    Figure  9.  Study area samples δD–δ18O diagram

    研究区温泉水和冷泉水水样点都落在大气降水线附近,表明它们的主要补给来源为大气降水。然而,温泉水和冷泉水水样点的分布位置有较大区别。温泉水分布在全球大气降水线和当地大气降水线的下方,且出现了“18O漂移”的现象,这主要是因为温泉水与围岩发生的水–岩相互作用导致温泉水和围岩发生了δ18O的交换,导致水中δ18O富集(Wang et al.,2019)。冷泉水有多数水样点分布在全球大气降水线和当地大气降水线的上方,这主要是因为发生了水汽再循环,导致冷泉水中的δD富集。

    温泉水相对于冷泉水表现出δ18O和δD贫化以及更高的温度的特征,这说明温泉水比冷泉水可能接受了更高的大气降水补给,以及经历了更深的水循环,其在含水层中滞留的时间更长,径流相对较长,水-岩相互作用程度更加强烈。

    (2) 补给高程

    通常来说,大气降水的δD和δ18O与气温呈线性关系,高程效应指的就是海拔越高,温度越低,δD和δ18O值同时也降低(孙占学等,1992)。主要原因是由于高程的增加导致气温降低,水汽冷凝同位素分馏,雨滴蒸发减少,因此伴有山体迎面风的雨量增加,形成了山体迎面风的超前降雨区,从而随着云团上升,同位素含量减少,形成高程效应(陈礼明,2019)。通过研究这种高程效应,可根据氢氧同位素推测地下水补给高程。根据资料可知地下水补给高程公式:

    $$ \mathrm{H}=\frac{{\mathrm{\delta }}_{\mathrm{G}}-{\mathrm{\delta }}_{\mathrm{P}}}{\mathrm{k}}+\mathrm{h} $$ (8)

    式中:δG为样品中δD的值;δP为大气降水中δD的值;k为大气降水中δD的高程梯度;h为取样点高程(m)。根据李学礼等(2000)推理得出研究区大气降水的同位素成分,大气降水δD值为−44.61,高程梯度为−0.046‰/100 m。

    根据计算公式得到研究区温泉水补给高程为3064~4161 m,冷泉补给高程为2874~3943 m(表2),南部天山山脉海拔3800~4200 m以上为常年积雪和现代冰川作用带,研究区补给高程与附近山体融雪线高程较为一致,说明研究区泉水点的主要来源是周围山脉的大气降水与冰川融雪,通过断裂,径流、排泄等过程到达研究区,经过静水压力等作用下上升至地表形成泉水。

    表  2  研究区补给高程表
    Table  2.  Recharge elevation in the study area
    编号δDV-SMOW(‰)δ18OV-SMOW(‰)补给高程(m)
    DRT1−78.94−10.494066.30
    DRT2−83.28−11.364160.65
    DRT3−78.81−10.654063.48
    DRT4−74.57−9.193971.30
    DRT5−75.17−9.713064.35
    DRT6−79.35−10.453155.19
    SD01−60.9−9.13109
    SD02−59−9.153662.5
    SD03−50−7.812874.5
    SD04−56.7−9.073667.5
    SD05−57.4−8.983570
    SD06−58−9.383943
    SD07−45.8−7.83579
    下载: 导出CSV 
    | 显示表格

    F值评分法是中国水质评价最常用的一种方法,适用于化学指标分级明显、无超标或多项指标均超标等各类情况(王一凡等,2014)。利用F值评分法对研究区的温泉水和地表水的水质进行评价。具体步骤如下(孟春芳等,2015):

    (1)首先对各个离子进行单项组分评价,得到单项组分评价分值(表3)。

    表  3  地下水质量评分表
    Table  3.  Groundwater quality scoring table
    类别IIIIIIIVV
    Fi013610
    下载: 导出CSV 
    | 显示表格

    (2)根据公式计算综合评价分值F:

    $$ \overline F = \frac{1}{n}\sum\limits_{i = 1}^n {{F_i}} $$ (9)
    $$ F = \sqrt {\frac{{{F^2} + F_{\max }^2}}{2}} $$ (10)

    式中:$ \overline F $为各单项指标评价分值Fi的平均值;Fmax为单项指标评价分值Fi中的最大值;n为参加评价的单项指标个数。

    (3)根据综合评分值F确定水质分级(表4)。

    表  4  地下水质量分级表
    Table  4.  Groundwater quality classification table
    级别优秀良好较好较差极差
    F0.80.8~2.52.5~4.254.25~7.2>7.2
    下载: 导出CSV 
    | 显示表格

    采用pH、TDS、Cl、SO42−、NO3、NO2、NH4+、F等8种离子指标进行水质分析,结果见表5

    表  5  研究区水质F分值法评价结果表
    Table  5.  Evaluation results of F-score method for water quality in the study area
    DRT1DRT2DRT3DRT4DRT5TT1TT2TT3
    F值7.727.657.877.627.418.118.438.03
    下载: 导出CSV 
    | 显示表格

    根据表5发现,研究区温泉水和地表水的水质都大于7.2,属于V类水,水质均属于极差等级,且地表水的水质要比温泉水更差。通过前面的分析可知,温泉水循环深度较深,循环路径较长,因此其水–岩相互作用时间较长,导致其水质很差。地表水则由于强烈的蒸发浓缩作用,导致其离子和元素的含量很高,因此水质很差。同时,人类活动对地表水产生的污染可能也是导致地表水F值很高、水质较差的原因。

    (1)研究区不同类型的地表水和地下水的水化学类型有很大的区别。地表水的水化学类型主要为SO4–Na、Cl·SO4–Na和HCO3·SO4–Ca·Na型。温泉水的水化学类型为SO4·HCO3–Na/HCO3·SO4–Na和HCO3·Cl–Na型。冷泉水的水化学类型为SO4·HCO3–Mg·Ca、HCO3–Ca、HCO3–Mg·Ca和SO4·HCO3–Ca型。

    (2)研究区地表水和地下水主要离子都主要来源于围岩的溶滤或风化,且地表水中主要离子的含量受到了强烈的蒸发作用的影响。研究区冷泉水中Ca2+、Mg2+、HCO3和SO42−主要来源于白云石、方解石和石膏的溶解。温泉水中的Na+、Ca2+、K+和HCO3主要来源于长石类矿物的溶解。地表水中的主要离子则较复杂,具有多种来源。温泉水和地表水中的NO3和NH4+的相对含量主要受到了氧化还原环境的影响,而且地表水中很高的NO3含量又受到了蒸发作用的影响。

    (3)研究区的温泉水和冷泉水的补给来源都主要为大气降水。由于水–岩相互作用,温泉水表现出了明显的“18O漂移”现象,而冷泉水的氢氧稳定同位素受到了水汽再循环的影响。温泉水和冷泉水的补给高程分别为3064~4161 m和2874~3943 m。

    (4)研究区的温泉水和地表水的水质极差,都属于V类水,不适合直接饮用。

  • 图  1   东昆仑东段到木提地区大地构造位置(a)及地质简图(b)

    Figure  1.   (a) Geotectonic location and (b) geological map in Daomuti area of east Kunlun orogeny

    图  2   到木提岩体的野外和显微照片

    a.花岗闪长岩及闪长质包体;b.花岗闪长岩显微照片;c.二长花岗岩;d.二长花岗岩显微照片;e.闪长岩;f.闪长岩显微照片;Pl.斜长石;Kfs.钾长石;Q.石英;Bt.黑云母;Hbl.角闪石;Ap.磷灰石

    Figure  2.   Field photos and microphotographs of the Daomuti intrusive rocks

    图  3   闪长岩的锆石阴极发光图像(a)和谐和图(b)

    Figure  3.   (a) CL images and (b) U–Pb concordia diagrams of zircons from diorite

    图  4   到木提岩体的TAS图解(a)(据Irvine et al.,1971Middlemost,1994)、K2O–SiO2图解(b)(据Rickwood,1989)和A/CNK–A/NK图解(c)(据Maniar et al.,1989

    Figure  4.   (a) TAS diagram, (b) K2O–SiO2 diagram and (c) A/CNK–A/NK diagram for Daomuti intrusive rocks

    图  5   到木提岩体的球粒陨石标准化稀土元素配分图(a)(标准化值据Boynton,1984)和原始地幔标准化微量元素蛛网图(b)(标准化值据Sun et al.,1989

    Figure  5.   (a) Chondrite–normalized rare earth element distribution patterns and (b) primitive mantle–normalized trace element spidergrams for Daomuti intrusive rocks

    图  6   到木提岩体的成因判别图解(据Collins et al.,1982

    Figure  6.   Origin distinguishing diagram of Daomuti intrusive rocks

    图  7   二长花岗岩和花岗闪长岩构造环境判别图解(据Pearce et al.,1984

    VAG.火山弧花岗岩;syn-COLG.同碰撞花岗岩;WPG.板内花岗岩;ORG.洋脊花岗岩

    Figure  7.   Diagrams of the tectonic setting for monzogranite and granodiorite

    表  1   闪长岩的锆石LA–ICP–MS U–Pb测年分析结果统计表

    Table  1   LA–ICP–MS U–Pb zircon analysis results for diorite

    样品
    编号
    元素含量
    (10−6
    Th/U同位素比值同位素年龄
    ThU比值207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb207Pb/235U206Pb/238U
    T0511.428.20.40580.05230.00320.27200.01670.03840.0007300139244132434
    T0615.740.90.38480.05270.00360.27330.01700.03880.0007318153245142455
    T0712.827.40.46620.05340.00350.27460.01790.03870.0009348148246142455
    T0813.736.30.37740.05230.00340.26790.01560.03860.0007300146241132444
    T0914.939.60.37570.05320.00350.27320.01710.03850.0007339150245142444
    T1011.932.50.36610.05480.00310.27840.01460.03810.0006405125249122414
    T1215.545.30.34160.05160.00230.27070.01160.03870.000526610224392453
    T139.426.30.35630.05380.00350.27460.01760.03830.0007361147246142424
    T1415.234.20.44350.05400.00330.27980.01690.03810.0007370137250132415
    T1512.423.00.54000.05540.00590.27330.02710.03830.0009428236245222426
    T1615.841.10.38360.05420.00360.28230.01770.03870.0009381149252142455
    T2019.164.10.29810.05210.00310.27380.01620.03860.0008290136246132445
    T2116.642.10.39420.05410.00410.28230.02060.03900.0008375171253162475
    T2214.534.60.41790.05140.00410.27190.02110.03920.0012258184244172487
    T2313.537.80.35890.05430.00330.28940.01800.03940.0008385138258142495
    T2410.731.60.33800.05290.00280.27380.01410.03910.0007324119246112475
    T2519.241.70.46100.05380.00320.27880.01480.03920.0006362136250122484
    T2616.048.10.33320.05180.00320.27010.01610.03830.0008274140243132425
    T2713.939.40.35190.05330.00280.28220.01420.03930.0006340118252112484
    T2911.228.60.39250.05500.00340.27500.01610.03850.0007410140247132444
    T3013.737.80.36170.05250.00280.27150.01330.03870.0006306121244112444
    T3120.863.70.32600.04910.00210.25930.01120.03860.000515010123492443
      注:测试单位为北京燕都中实测试技术有限公司,测试时间为2019年。
    下载: 导出CSV

    表  2   到木提岩体的常量元素(%)、稀土和微量元素数据(106)统计表

    Table  2   Major (%) and trace (10–6) element compositions of Daomuti intrusive rocks

    岩性二长花岗岩花岗闪长岩闪长岩
    样品号2PM2-12PM37-13PM2-13PM3-13PM4-13PM10-13PM14-12PM8-12PM18-12PM30-13PM1-13PM5-13PM8-12PM47-12PM48-12PM48-2
    SiO274.4772.1277.0676.6176.6570.3277.0974.9872.9369.6576.5571.5769.0358.8250.0949.51
    TiO20.130.230.040.040.060.290.040.080.250.350.040.320.371.251.451.48
    Al2O313.6314.2412.2912.7112.4114.9712.4313.0913.4415.1912.6214.2215.2615.0618.6318.63
    TFe2O31.632.801.411.411.573.101.332.013.443.581.373.263.768.8013.4014.26
    MnO0.040.090.060.050.070.090.040.050.090.080.060.080.100.160.210.23
    MgO0.330.650.160.130.210.770.150.380.480.890.150.720.942.881.791.92
    CaO0.881.530.790.700.862.210.300.792.053.570.783.003.065.927.898.07
    Na2O5.154.183.923.823.754.183.603.984.464.023.813.873.912.743.293.23
    K2O2.733.003.613.983.712.744.814.001.751.494.091.912.452.341.080.87
    P2O50.060.070.020.020.020.090.010.040.060.110.020.080.120.130.480.48
    LOI0.900.990.650.360.491.140.310.970.770.700.350.580.671.501.080.71
    Total99.9499.91100.0199.8399.7999.89100.10100.3799.7299.6499.8399.5999.6699.6099.3999.40
    A/CNK1.051.101.041.071.051.081.061.061.041.031.041.021.040.840.890.89
    A/NK1.191.401.191.201.221.521.111.201.451.851.181.691.682.142.832.98
    Mg#28.4331.6018.5815.7720.8932.9418.3027.4721.5832.9317.7130.3733.1939.3320.9521.08
    K2O/Na2O0.530.720.921.040.990.661.331.010.390.371.070.490.630.850.330.27
    σ1.971.761.661.811.651.742.071.991.281.131.861.161.541.582.482.41
    La42.3634.0138.2836.2142.5653.7913.9018.7758.2519.0836.0370.0246.4121.6945.8042.20
    Ce70.6360.5263.9161.9672.3093.9933.3334.71108.1934.6563.26121.9384.3843.6283.5183.15
    Pr6.655.445.465.225.987.163.283.1610.003.035.609.096.514.568.408.37
    Nd25.8320.2823.4922.8926.2129.4818.4213.7539.9912.8523.5439.0328.0321.4341.7841.04
    Sm4.673.574.244.274.644.065.192.847.162.134.665.324.344.997.587.61
    Eu1.371.071.101.001.141.380.310.862.611.420.941.691.511.883.563.44
    Gd6.214.465.155.295.985.107.643.678.612.665.657.435.456.538.738.74
    Tb0.810.670.750.800.810.581.650.661.210.340.840.810.691.121.201.22
    Dy4.433.753.884.824.452.7410.174.175.671.654.883.713.286.005.835.91
    Ho0.890.820.871.020.930.592.330.921.240.361.010.840.741.361.291.35
    下载: 导出CSV
    续表2
    岩性二长花岗岩花岗闪长岩闪长岩
    样品号2PM2-12PM37-13PM2-13PM3-13PM4-13PM10-13PM14-12PM8-12PM18-12PM30-13PM1-13PM5-13PM8-12PM47-12PM48-12PM48-2
    Er2.502.452.553.062.751.766.582.833.431.092.992.432.133.783.663.84
    Tm0.390.400.400.500.460.290.990.480.460.190.480.370.310.530.500.52
    Yb2.482.592.573.192.991.746.493.132.671.303.062.432.093.353.133.25
    Lu0.380.390.340.420.400.250.700.470.380.240.400.330.270.460.450.47
    ∑REE169.59140.41153.00150.65171.60202.91110.9890.43249.8681.00153.33265.43186.12121.30215.43211.12
    LREE151.51124.88136.48131.55152.83189.8674.4474.09226.2073.16134.02247.08171.1798.17190.63185.82
    HREE18.0815.5316.5219.1018.7713.0536.5416.3323.677.8419.3218.3514.9523.1324.7925.30
    LREE/HREE8.388.048.266.898.1414.552.044.549.569.336.9413.4711.454.247.697.34
    δEu0.780.820.720.640.660.920.150.811.011.820.560.820.951.011.331.29
    Ba692.59775.971477.961330.701535.58956.45251.43895.83880.88659.551234.95761.41954.30549.35361.61261.73
    Th10.9723.7025.9330.3425.0617.6015.9422.3211.2512.0230.5314.7415.0911.729.108.75
    Nb10.4312.6315.1015.8912.5314.7721.9110.7418.5510.8915.5313.6912.6347.5316.6816.51
    Sr203.31192.3074.1578.71268.3363.2432.08137.87230.91303.6065.77247.06307.76290.15481.48465.38
    Zr126.42114.5061.9589.23104.56197.03113.27104.32240.48242.5674.99295.24203.41219.86416.36623.22
    Ti1059.901601.06448.00421.98558.292123.53413.66724.601843.012377.33385.922212.972361.558420.519460.819216.83
    Rb68.1680.9686.36110.23109.1758.06180.23110.8862.3658.14125.7456.9466.8288.9739.0432.11
    Ta0.920.941.141.011.510.742.281.261.370.581.190.790.652.290.840.84
    Hf4.163.452.433.263.865.336.033.576.766.452.787.775.695.288.7612.98
    U0.020.060.020.020.030.040.060.030.070.030.090.020.020.120.150.08
    Sc2.964.863.403.454.004.911.113.138.634.413.228.437.4040.4743.0345.41
    Cs0.831.730.802.033.520.491.661.381.381.702.712.031.400.891.181.55
    V9.9820.962.202.464.1126.051.999.6313.7735.261.6026.4730.99168.4185.7684.99
    Co1.953.750.930.891.104.130.782.293.235.680.774.644.9518.3813.1913.66
    Ni3.273.332.911.241.885.551.443.192.073.321.602.793.076.053.0216.55
    Y26.8724.4126.8330.9328.4816.3856.0427.8729.969.8430.4723.4319.7533.9431.9032.45
    Th/Ce0.160.390.410.490.350.190.480.640.100.350.480.120.180.270.110.11
    Th/La0.260.700.680.840.590.331.151.190.190.630.850.210.330.540.200.21
    Nb/Ta11.2913.4613.2914.5610.5116.849.608.5513.5818.7613.0217.2419.4420.7919.7619.66
     注:Mg#=100*Mg / (Mg+Fe);测试单位为北京燕都中实测试技术有限公司,测试时间为2019年。
    下载: 导出CSV
  • 陈国超, 裴先治, 李瑞保, 等. 东昆仑造山带东段南缘和勒冈希里克特花岗岩体时代、成因及其构造意义[J]. 地质学报, 2013, 87(10): 1525-1541

    CHEN Guochao, PEI Xianzhi, LI Ruibao, et al. Geochronology and genesis of the Helegang Xilikete granitic plutons from the southern margin of the Eastern East Kunlun Orogenic Belt and Their Tectonic Significance[J]. Acta Geologica Sinica, 2013, 87(10): 1525-1541.

    陈国超, 裴先治, 李瑞保, 等. 东昆仑东段香加南山花岗岩基的岩浆混合成因: 来自镁铁质微粒包体的证据[J]. 地学前缘, 2016, 23(4): 226-240

    CHEN Guochao, PEI Xianzhi, LI Ruibao, et al. Genesis of magma mixing and mingling of Xiangjiananshan granite batholith in the eastern section of East Kunlun Orogen: Evidence from mafic microgranular Enclaves(MMEs) [J]. Earth Science Frontiers, 2016, 23(4): 226-240.

    陈国超, 裴先治, 李瑞保, 等. 东昆仑东段香加南山花岗岩基中加鲁河中基性岩体形成时代、成因及其地质意义[J]. 大地构造与成矿学, 2017, 41(06): 1097-1115

    CHEN Guochao, PEI Xianzhi, LI Ruibao, et al. Age and Petrogenesis of Jialuhe Basic-Intermediate Pluton in Xiangjia’nanshan Granite Batholith in the Eastern Part of East Kunlun Orogenic Belt, and its Geological Significance[J]. Geotectonica et Metallogenia, 2017, 41(06): 1097-1115.

    陈国超, 裴先治, 李瑞保, 等. 东昆仑东段可日正长花岗岩年龄和岩石成因对东昆仑中三叠世构造演化的制约[J]. 岩石学报, 2018a, 34(03): 567-585

    CHEN Guochao, PEI Xianzhi, LI Ruibao, et al. Age and lithogenesis of Keri syenogranite from eastern part of East Kunlun Orogenic Belt: Constraint on the Middle Triassic tectonic evolution of East Kunlun[J]. Acta Petrologica Sinica, 2018a, 34(3): 567-585.

    陈国超, 裴先治, 李瑞保, 等. 东昆仑东段三叠纪岩浆混合作用: 以香加南山花岗岩基为例[J]. 岩石学报, 2018b, 34(08): 2441-2480

    CHEN Guochao, PEI Xianzhi, LI Ruibao, et al. , Triassic magma mixing and mingling at thethe eastern section of Eastern Kunlun: A case study from Xiangjiananshan granitic batholith[J]. Acta Petrologica Sinica, 2018b 34( 8): 2441-2480.

    高永宝, 李文渊, 钱兵, 等. 东昆仑野马泉铁矿相关花岗质岩体年代学、地球化学及Hf同位素特征[J]. 岩石学报, 2014, 30(06): 1647-1665.

    GAO Yongbao, LI Wenyuan, QIAN Bing, et al. Geochronology, geochemistry and Hf isotopic compositions of the granitic rocks related with iron mineralization in Yemaquan deposit, East Kunlun, NW China[J]. Acta Petrologica Sinica, 2014, 30( 6) : 1647 - 1665.

    韩建军, 李运冬, 宋传中, 等. 东昆仑东段都兰热水花岗岩锆石U-Pb年龄、地球化学及构造意义. 地质学报, 2020, 94(3): 768~781

    HAN Jianjun, LI Yundong, SONG Chuanzhong, et al. Zircon U-Pb dating and geochemistry of granite in the Reshui area of Dulan County, eastern section of east Kunlun orogeny and its tectonic implications. Acta Geologica Sinica, 2020, 94(3): 768~781.

    雷玮琰, 施光海, 刘迎新. 不同成因锆石的微量元素特征研究进展[J]. 地学前缘, 2013, 20(04): 273-284

    LEI Weiyan, SHI Guanghai, LIU Yingxin. Research progress on trace element characteristics of zircons of different origins[J]. Earth Science Frontiers, 2013, 20(4): 273-284.

    李碧乐, 孙丰月, 于晓飞, 等. 东昆中隆起带东段闪长岩U-Pb年代学和岩石地球化学研究[J]. 岩石学报, 2012, 28(4): 1163-1172

    LI Bile, SUN Fengyue, YU Xiaofei, et al. U-Pb dating and geochemistry of diorite in the easternsection from eastern Kunlun middle uplifted basement and granitic belt[J]. Acta Petrologica Sinica, 2012, 28(4): 1163-1172.

    李积清, 张鑫利, 王涛, 等. 东昆仑战红山地区花岗斑岩LA-ICP-MAS锆石U-Pb测年及岩石地球化学特征[J]. 西北地质, 2021, 54(1): 30-40

    LI Jiqing, ZHANG Xinli, WANG Tao, et al. Zircon U-Pb dating and geochemical characteristics of granite porphyry in zhanhongshan area, east Kunlun[J]. Northwestern Geology, 2021, 54(1): 30-40.

    李荣社, 计文化, 杨永成, 等. 昆仑山及邻区地质[M]. 北京: 地质出版社, 2008: 1−400

    LI Rongshe, JI Wenhua, YANG Yongcheng, et al. Geology of Kunlun Mountain and adjacent areas[M]. Beijing: Geological Publishing House, 2008: 1−400.

    李瑞保, 裴先治, 李佐臣, 等. 东昆仑东段晚古生代-中生代若干不整合面特征及其对重大构造事件的响应[J]. 地学前缘, 2012, 19(5): 244-254

    LI Ruibao, PEI Xianzhi, LI Zuochen, et al. Geological characteristics of Late Palaeozoic-Mesozoic unconformities and their response to some significant tectonic events in eastern part of Eastern Kunlun[J]. Earth Science Frontiers, 2012, 19(5): 244-254.

    李瑞保, 裴先治, 李佐臣, 等. 东昆仑东段下三叠统洪水川组沉积序列与盆地构造原型恢复[J]. 地质通报, 2015, 34(12): 2302-2314

    LI Ruibao, PEI Xianzhi, LI Zuochen, et al. The depositional sequence and prototype basin forLower Triassic Hongshuichuan Formation in the eastern segment of East Kunlun Mountains[J]. Geological Bulletin of China, 2015, 34(12): 2302-2314.

    李瑞保, 裴先治, 李佐臣, 等. 东昆仑东段古特提斯洋俯冲作用——乌妥花岗岩体锆石U-Pb年代学和地球化学证据[J]. 岩石学报, 2018, 34(11): 3399-3421

    LI Ruibao, PEI Xianzhi, LI Zuochen, et al. Paleo-Tethys Ocean subduction ineastern section of East Kunlun Orogen: Evidence from the geochronology and geochemistry of the Wutuo pluton[J]. Acta Petrologica Sinica, 2018, 34(11): 3399-3421.

    李艳广, 靳梦琪, 汪双双, 等. LA–ICP–MS U–Pb定年技术相关问题探讨[J]. 西北地质, 2023, 56(4): 274−282.

    LI Yanguang, JIN Mengqi, WANG Shuangshuang, et al. Exploration of Issues Related to the LA–ICP–MS U–Pb Dating Technique[J]. Northwestern Geology, 2023, 56(4): 274−282.

    罗明非, 莫宣学, 喻学惠, 等. 东昆仑香日德地区晚三叠世花岗岩LA-ICP-MS锆石U-Pb定年、岩石成因和构造意义[J]. 岩石学报, 2014, 30(11): 3229-3241

    LUO Mingfei, MO Xuanxue, YU Xuehui, et al. Zircon LA-ICP-MS U-Pb age dating, petrogenesis andtectonic implications of the Late Triassic granites from the Xiangride area, East Kunlun[J]. Acta Petrologica Sinica, 2014, 30(11): 3229-3241.

    罗照华, 柯珊, 曹永清, 等. 东昆仑印支晚期幔源岩浆活动[J]. 地质通报, 2002, 21(6): 292-297 doi: 10.3969/j.issn.1671-2552.2002.06.003

    LUO Zhaohua, KE Shan, CAO Yongqing, et al. Late indosinian mantle-derived magmatism in the East Kunlun[J]. Geoliogical Bulletin of China, 2002, 21(6): 292-297. doi: 10.3969/j.issn.1671-2552.2002.06.003

    马昌前, 熊富浩, 张金阳, 等. 从板块俯冲到造山后阶段俯冲板片对岩浆作用的影响: 东昆仑早二叠世-晚三叠世镁铁质岩墙群的证据[J]. 地质学报, 2013, 87(增刊): 79-81

    MA Changqian, XIONG Fuhao, ZHANG Jinyang, et al. Impact of subducted slabs on magmatism from plate subduction to post-orogenic stage: Evidence from the Early Permian-Late Triassic Magnesite Wall Group in East Kunlun [J]. Acta Geologica Sinica, 2013, 87(supp): 79-81.

    马昌前, 熊富浩, 尹烁, 等. 造山带岩浆作用的强度和旋回性: 以东昆仑古特提斯花岗岩类岩基为例[J]. 岩石学报, 2015, 31(12): 3555-3568

    MA Changqian, XIONG Fuhao, YIN Shuo, et al. Intensity and cyclicity of orogenic magmatism: An example from aPaleo-Tethyan granitoid batholith, Eastern Kunlun, northern Qinghai-Tibetan Plateau[J]. Acta Petrologica Sinica, 2015, 31(12): 3555-3568.

    莫宣学, 罗照华, 邓晋福, 等. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, 2007, 13(03): 403-414 doi: 10.3969/j.issn.1006-7493.2007.03.010

    MO Xuanxue, LUO Zhaohua, DENG Jinfu, et al. Granitoids and crustal growth in the East-Kunlun Orogenic Belt[J]. Geological Journal of China Universities, 2007, 13(03): 403-414. doi: 10.3969/j.issn.1006-7493.2007.03.010

    牛腾, 倪志耀, 孟宝航, 等. 冀北康保芦家营巨斑状花岗岩: 华北克拉通北缘中段1.3~1.2Ga B.P.伸展-裂解事件的地质记录[J]. 成都理工大学学报(自然科学版), 2023, 50(4): 486−503.

    NIU Teng, NI Zhiyao, MENG Baohang, et al. The Lujiaying megaporphyric granite in Kangbao area, North Hebei: A geological record of extension and breakup event at 1.3~1.2Ga B.P. in the central segment of northern margin of North China Craton [J], Journal of Chengdu University of Technology (Science & Technology Edition), 2023, 50(4): 486−503.

    祁生胜, 宋述光, 史连昌, 等. 东昆仑西段夏日哈木-苏海图早古生代榴辉岩的发现及意义[J]. 岩石学报, 2014, 30(11): 3345-3356

    QI Shengsheng, SONG Shuguang, SHI Lianchang, et al. Discovery and its geological significance of Early Paleozoic eclogite in Xiarihamu-Suhaitu area, western part of the East Kunlun[J]. Acta Petrologica Sinica, 2014, 30(11): 3345-3356.

    祁晓鹏, 范显刚, 杨杰, 等. 青海省都兰县尕日当地区1: 5万I47E002011、I47E003011、I47E004011、I47E004012四幅区域地质调查成果报告[R]. 陕西省核工业地质调查院, 2016a.

    QI Xiaopeng, FAN Xiangang, YANG Jie, et al. Report from 1: 50000 regional geological survey results in the Jiedang area, Dulan County, Qinghai[R]. Shanxi Institute of Nuclear Geology, 2016a.

    祁晓鹏, 范显刚, 杨杰, 等. 2016b, 东昆仑东段浪木日上游早古生代榴辉岩的发现及其意义[J]. 地质通报, 35(11): 1771-1783

    QI Xiaopeng, FAN Xiangang, YANG Jie, et al. The discovery of Early Paleozoic eclogite in the upper reaches of Langmuri in eastern East Kunlun Mountains and its significance[J]. Geological Bulletin of China, 2016b, 35(11): 1771-1783.

    史连昌, 常革红, 祁生胜, 等. 东昆仑大灶火沟-万宝沟晚二叠世陆缘弧火山岩的发现及意义[J]. 地质通报, 2016, 35(7): 1115-1122 doi: 10.3969/j.issn.1671-2552.2016.07.007

    SHI Lianchang, CHANG Gehong, QI Shengsheng, et al. The discovery of Dazaohuogou-Wanbaogou Late Permian epicontinental arc volcanic rocks in Eastern Kunlun Mountains and its significance[J]. Geological Bulletin of China, 2016, 35(7): 1115-1122. doi: 10.3969/j.issn.1671-2552.2016.07.007

    王梓桐, 王根厚, 张维杰, 等. 阿拉善地块南缘志留纪花岗闪长岩LA-ICP-MS锆石U-Pb年龄及地球化学特征[J]. 成都理工大学学报(自然科学版), 2022, 49(5): 586−600.

    WANG Zitong, WANG Genghou, ZHANG Weijie, et al. LA-ICP-MS zircon U-Pb dating and geochemical characteristics of the Silurian granodiorite in the southern margin of Alxa Block, China [J], Journal of Chengdu University of Technology (Science Technology Edition), 2022, 49(5): 586−600.

    吴树宽, 陈国超, 李积清, 等. 东昆仑东段沟里地区战红山过铝质流纹斑岩年代学、岩石成因及构造意义[J]. 西北地质, 2023, 56(2): 92−108.

    WU Shukuan, CHEN Guochao, LI Jiqing, et al. Geochronology, Petrogenesis and Tectonic Significance of Zhanhongshan Peraluminous Rhyolite Porphyry in Gouli Area, Eastern Section of East Kunlun[J]. Northwestern Geology, 2023, 56(2): 92−108.

    吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1604 doi: 10.3321/j.issn:0023-074X.2004.16.002

    WU Yuanbao, ZHENG Yongfei. Study on the mineralogy of zircon and its constraints on the interpretation of U-Pb age[J]. Chinese Science Bulletin, 2004, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002

    熊富浩, 马昌前, 张金阳, 等. 东昆仑造山带早中生代镁铁质岩墙群LA-ICP-MS锆石U-Pb定年、元素和Sr-Nd-Hf同位素地球化学[J]. 岩石学报, 2011, 27(11): 3350-3364

    XIONG Fuhao, MA Changqian, ZHANG Jinyang, et al. LA-ICP-MS zircon U-Pb dating, elements and Sr-Nd-Hf isotopegeochemistry of the Early Mesozoic mafic dyke swarms in East Kunlun orogenic belt[J]. Acta Petrologica Sinica, 2011, 27(11): 3350-3364.

    许荣华, Harris N B W, Lewis C L, 等. 拉萨至格尔木的同位素地球化学. 青藏高原地质演化[M]. 北京: 科学出版社, 1990: 282−302

    XU Ronghua, Harris N B W, Lewis C L, et al. Isotope geochemistry of the Tibet Geotraverse, Lhasa to Golmud. The geological evolution of the Tibet Plateau[M]. Beijing: Science Press, 1990: 282−302.

    许长坤, 刘世宝, 赵子基, 等. 青海省东昆仑成矿带铁矿成矿规律与找矿方向研究[J]. 地质学报, 2012, 86(10): 1621-1678 doi: 10.3969/j.issn.0001-5717.2012.10.006

    XU Changkun, LIU Shibao, ZHAO Ziji, et al. Metallogenic law and prospect direction of iron deposits in the East Kunlun metallogenic belt in Qinghai[J]. Acta Geologica Sinica, 2012, 86(10): 1621-1678. doi: 10.3969/j.issn.0001-5717.2012.10.006

    许志琴, 杨经绥, 张建新, 等. 阿尔金断裂两侧构造单元的对比及岩石圈剪切机制[J]. 地质学报, 1999, 73(03): 193-205 doi: 10.3321/j.issn:0001-5717.1999.03.001

    XU Zhiqin, YANG Jingsui, ZHANG jianxin, et al. A ComParison between the Teetonic Units on the Two Sides of the AItun Sinistral Strike-sliP Fault and the Meehanism of Lithospheric Shearing[J]. Acta geologica sinica, 1999, 73(03): 193-205. doi: 10.3321/j.issn:0001-5717.1999.03.001

    许志琴, 杨经绥, 李海兵, 等. 中央造山带早古生代地体构架与高压/超高压变质带的形成[J]. 地质学报, 2006, 80(12): 1793-1806 doi: 10.3321/j.issn:0001-5717.2006.12.002

    XU Zhiqin, YANG Jingsui, LI Haibing, et al. The Early Palaeozoic Terrene Framework and the Formation of the High-Pressure ( HP) and Ultra-High Pressure ( UHP) MetamorphicBelts at the Central Orogenic Belt ( COB) [J]. Acta geologica sinica, 2006, 80(12): 1793-1806. doi: 10.3321/j.issn:0001-5717.2006.12.002

    杨经绥, 刘福来, 吴才来, 等. 中央碰撞造山带中两期超高压变质作用: 来自含柯石英锆石的定年证据. [J]地质学报, 2003, 77(4): 463-477 doi: 10.3321/j.issn:0001-5717.2003.04.003

    YANG Jingsui, LIU Fulai, WU Cailai, et al. Two Ultrahigh Pressure Metamorphic Events Recognized in the Central Orogenic Belt of China: Evidence from the U-Pb Dating of Coesite-bearing Zireons[J]. Acta geologica sinica, 2003, 77(4): 463-477. doi: 10.3321/j.issn:0001-5717.2003.04.003

    杨经绥, 许志琴, 李海兵, 等. 东昆仑阿尼玛卿地区古特提斯火山作用和板块构造体系[J]. 岩石矿物学杂志, 2005, 24(5): 369-380 doi: 10.3969/j.issn.1000-6524.2005.05.004

    YANG Jingsui, XU Zhiqin, LI Haibing, et al. The paleo-Tethyan volcanism and plate tectonic regime in the A nyemaqen region of East Kunlun, northern Tibet Plateau[J]. Acta Petrologica et Mineralogica, 2005, 24(5): 369-380. doi: 10.3969/j.issn.1000-6524.2005.05.004

    袁万明, 莫宣学, 喻学惠, 等. 东昆仑印支期区域构造背景的花岗岩记录[J]. 地质论评, 2000, 46(2): 203-211 doi: 10.3321/j.issn:0371-5736.2000.02.012

    YUAN Wanming, MO Xuanxue, YU Xuehui, et al. The Record of Indosinian Tectonic Setting from the Granotoid of Eastern Kunlun Mountains[J]. Geological review, 2000, 46(2): 203-211. doi: 10.3321/j.issn:0371-5736.2000.02.012

    张照伟, 钱兵, 李文渊, 等. 东昆仑夏日哈木铜镍矿区发现早古生代榴辉岩: 锆石U-Pb定年证据[J]. 中国地质, 2017, 44(04): 816-817

    ZHANG Zhaowei, QIAN Bing, LI Wenyuan, et al. The discovery of Early Paleozoic eclogite from the Xiarihamu magmatic Ni-Cu sulfide deposit in eastern Kunlun orogenic belt: Zircon U-Pb chronologic evidence[J]. Geology in china, 2017, 44(04): 816-817.

    Barbarin B. A review of the relationships between granitoid types, their origins and their geodynamic environments[J]. Lithos, 1999, 46(3): 605-626. doi: 10.1016/S0024-4937(98)00085-1

    Boynton W V. Geochemistry of the rare earth elements: Meteorite studies[J]. Developments in Geochemistry, 1984, 2: 63-114.

    Chappell B W. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 1999, 46(3): 535-551. doi: 10.1016/S0024-4937(98)00086-3

    Collins W J, Beams S D, White A J R, et al. Nature and origin of A-type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy and Petrology, 1982, 80: 189-200. doi: 10.1007/BF00374895

    Frey F A and Prinz M. Ultramafic inclusions from San Carlos, Arizona: petrologic and geochemical data bearing on their petrogenesis[J]. Earth and Planetary Science Letters, 1978, 38: 129-176. doi: 10.1016/0012-821X(78)90130-9

    Green T H, Watson E B. Crystallization of apatite in natural magmas under high pressure, hydrous conditions, with particular reference to ‘orogenic’rock series[J]. Contributions to mineralogy and petrology, 1982, 79(1): 96-105. doi: 10.1007/BF00376966

    Green T H. Significance of Nb /Ta as an indicator of geochemical processes in the crust-mantle system[J]. Chemical Geology, 1995, 120(3): 347-359.

    Irvine T N and Baragar W R A. A guide to chemical classification of the common volcanic rock[J]. Canadian Journal of Earth Sciences, 1971, 8: 523-548. doi: 10.1139/e71-055

    Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt- peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51(1/2): 537-571.

    Maniar PD, Piccoli PM. Tectonic discrimination of granitoids. GSA Bullentin, 1989, 101(5): 635−643.

    McDonough WF and Sun SS. The composition of the Earth[J]. Chemical Geology, 1995, 120( 3-4) : 223-253. doi: 10.1016/0009-2541(94)00140-4

    Meng F C, Zhang J X and Cui M H. Discovery of Early Paleozoic eclogite from the East Kunlun, western China and its tectonic significance[J]. Gondwana Research, 2013, 23( 2) : 825-836. doi: 10.1016/j.gr.2012.06.007

    Middlemost EAK. Naming materials in the magma /igneous rock system[J]. Earth-Science Review, 1994, 37(3-4): 215-224. doi: 10.1016/0012-8252(94)90029-9

    Pearce J A, Harris N B W and Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25: 956-983. doi: 10.1093/petrology/25.4.956

    Rickwood P C. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos, 1989, 22(4): 247-263. doi: 10.1016/0024-4937(89)90028-5

    Rogers G and Hawkesworth C J. Reply to comment of C. R. Sternon “A geochemical traverse across the North Chilean Andes: Evidence for crust generation from the mantle wedge” [J]. Earth and Planetary Science Letters, 1990, 101(1): 134–137. doi: 10.1016/0012-821X(90)90135-K

    Rubatto D, Gebauer D. Use of cathodoluminescence for U-Pb zircon dating by IOM Microprobe: Some examples from the western Alps[J]. Cathodoluminescence in Geoscience, Springer-Verlag Berlin Heidelberg, Germany. 2000, 373-400.

    Sajona F G, Maury R C, Bellon H, et al. High field strength element enrichment of Pliocene-Pleistocene island arc basalts, Zamboanga Peninsula, Western Mindanao ( Philippines) [J]. Journal of Petrology, 1996, 37(3): 693-726. doi: 10.1093/petrology/37.3.693

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders A D, Norry M J, eds. magmatism in the ocean basins[J]. Geological Society, London, Special Publications, 1989, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    Taylor S R and Mclennan S M. The continental crust: Its composition and evolution[J]. Journal of Geology, 1985, 94(4): 632-633.

    Vavra G, Gebauer D, Schmid R. Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps): Anion microprobe (SHRIMP) study[J]. Contrib Mineral Petrol, 1996, 122(4): 337~358. doi: 10.1007/s004100050132

    Weyer S, Münker C and Mezger K. Nb /Ta, Zr /Hf and REE in the depleted mantle: Implications for the differentiation history of the crust-mantle system[J]. Earth and Planetary Science Letters, 2003, 205( 3-4) : 309-324. doi: 10.1016/S0012-821X(02)01059-2

    Wolf M B and London D. 1994. Apatite dissolution into peraluminous haplogranitic melts: An experimental study of solubilities and mechanisms[J]. Geochimica et Cosmochimica Acta, 1994, 58(19) : 4127 -4145. doi: 10.1016/0016-7037(94)90269-0

    Xiong F H, Ma C Q, Zhang J Y, et al. Reworking of old continental lithosphere: An important crustal evolution mechanism in orogenic belts, as evidenced by Triassic I-type granitoids in the East Kunlun orogen, Northern Tibetan Plateau[J]. Journal of the Geological Society, 2014, 171( 6) : 847-863. doi: 10.1144/jgs2013-038

    Zhang J Y, Ma C Q, Xiong F H, et al. Petrogenesis and tectonic significance of the Late Permian-Middle Triassic calcalkaline granites in the Balong region, eastern Kunlun Orogen, China[J]. Geological Magazine, 2012, 149( 5) : 892-908. doi: 10.1017/S0016756811001142

  • 期刊类型引用(3)

    1. 张建芳,陈浩然,伍江涵,王振,张琨仑,吕鹏瑞,曹华文,邹灏. 萤石矿床成因研究方法及发展趋势. 西北地质. 2024(04): 97-112 . 本站查看
    2. 程秀花,李艳广,叶美芳,张明祖,黎卫亮,李忠煜,韩延兵,汪双双. 西北地区地质实验测试技术研究进展及其在地质调查中的应用. 西北地质. 2022(03): 170-190 . 本站查看
    3. 田朋飞. 白云鄂博矿床包裹体同步辐射X射线荧光分析. 科技视界. 2022(33): 116-118 . 百度学术

    其他类型引用(2)

图(7)  /  表(3)
计量
  • 文章访问数:  114
  • HTML全文浏览量:  12
  • PDF下载量:  47
  • 被引次数: 5
出版历程
  • 收稿日期:  2021-11-14
  • 修回日期:  2022-04-23
  • 网络出版日期:  2023-09-24
  • 刊出日期:  2023-12-19

目录

/

返回文章
返回