Progress and Prospect of the Darbut Ophiolite in West Junggar, Central Asian Orogenic Belt
-
摘要:
蛇绿岩是研究古大洋的主要载体和划分古板块边界的重要证据,记录了从大洋岩石圈的最初形成到最后洋盆闭合的诸多信息,是研究洋–陆转换过程的关键地质体。西准噶尔达尔布特蛇绿岩是北疆地区发育规模最大、最为典型的蛇绿岩带之一,相关研究近年来取得了系列成果。①在萨尔托海铬铁矿中发现金刚石等深部矿物群,从而对此前铬铁矿的浅部成矿理论提出了质疑。②在蛇绿岩中识别出前弧玄武岩,它是俯冲起始的地质记录之一。③蛇绿岩中存在古海山物质组分,其中玄武岩具有OIB特征。④萨尔托海铬铁矿是深部地幔预富集和浅部再富集的结果。⑤达尔布特蛇绿岩形成于俯冲有关的构造环境,并有地幔柱的参与。在取得进展的同时,也出现了一些新的科学问题和研究方向,主要包括深部物质循环过程、俯冲起始机制、陆壳增生机制和俯冲带型蛇绿岩成因等。
Abstract:Ophiolite is a major material for studying of ancient oceans and important lithological evidence for delineating ancient plate boundaries. It records valuable information from the initial formation of the oceanic lithosphere to the final closure of the ocean basin, and is also a key geological target for studying the ocean–continent transition process. The Darbut ophiolite in West Junggar is one of the largest and most typical ophiolites exposed in northern Xinjiang. A series of new advances have been achieved in recent years: ① Diamonds and other exotic minerals have been recovered from chromitites of the Sartohay ophiolites, thus challenging the previous theory of shallow chromitite genesis. ② Fore–arc basalts have been identified in the ophiolite, which is one of the geological records of subduction initiation. ③ Ancient seamount material components have been recognized in the ophiolite, in which the basalt show OIB characteristics. ④ Sartohay chromitite is the result of deep mantle pre–enrichment and shallow re–enrichment. ⑤ A formation environment mainly associated with a subduction–related tectonic setting, with the involvement of the mantle plume, has been suggested. Despite progresses mentioned above, some new scientific issues and research directions have emerged, mainly concerning deep mantle mass recycling processes, subduction initiation mechanisms, crustal growth processes, and subduction zone ophiolite genesis.
-
Keywords:
- tectonics /
- ophiolite /
- seamount /
- Dartbut /
- West Junggar
-
蛇绿岩是构造侵位大陆边缘的古大洋岩石圈残片,主要组成包括上部的玄武质洋壳和下部的地幔岩,通常被作为恢复古大洋、识别古板块边界的最直接证据(Coleman,1977;马中平等,2004;史仁灯,2005;张进等,2012;臧遇时等,2013;吴福元等,2014;王国灿等,2019;翟庆国等,2019;张继恩等,2021;Yao et al.,2021;敖松坚等,2022)。自1813年,法国矿物学家Alexandre Brongniart提出蛇绿岩概念以来,关于蛇绿岩分类有很多种,聚焦其不同的方面的性质,比如依据地壳岩石地球化学(Pearce et al.,1984)、地幔岩石成分(Nicolas et al.,2003)、洋中脊扩张速率(肖序常,1995)、蛇绿岩出露特征(Wakabayashi et al.,2003)及形成构造环境(Dilek et al.,2014)对蛇绿岩进行分类的方案。最新研究认为,在威尔逊旋回的各个阶段都会形成性质不同的蛇绿岩,并根据其形成环境不同,将蛇绿岩分为与俯冲作用无关和与俯冲作用相关两大类(Dilek et al.,2011)。
中亚造山带是属于巨大的增生型造山带,也是全球显生宙以来增生最强烈的地区之一(Sengör et al.,1993;Jahn et al.,2000;Windley et al.,2007;Xiao et al.,2015,2018,2020;Huang et al.,2020;Wang et al.,2022,2023a,2023b;Liu et al.,2023)。西准噶尔地区位于增生型中亚造山带西南缘,也是中亚–兴蒙构造成矿域的主要组成部分(Shen et al., 2017;Zhu et al.,2019)。西准噶尔主要由一系列的增生杂岩带、古生代岩浆弧和蛇绿岩构成(Zhang et al.,1993,2022b;Buckman et al.,2004;Choulet et al.,2012;Yang et al.,2015a;高俊等,2022),发育NE–SW向断裂构造,由北向南依次主要包括为巴尔雷克、玛依勒、达尔布特断裂和乌尔禾逆冲断层,这些断裂构造控制着西准噶尔地区花岗岩类和蛇绿岩的分布(图1)。在西准噶尔地区最为显著的特征是发育数条不同时代的蛇绿岩带,如唐巴勒、玛依勒、巴尔雷克、达尔布特、白碱滩等蛇绿带(张向飞等,2023)(图1)。这些蛇绿岩主要沿断裂带分布,变形强烈,形态复杂,时代跨度较大,自震旦纪到石炭纪均有发育(Feng et al.,1989;Zhang et al.,1993;Yang et al.,2012a,2012b,2013,2019,2020a;Du et al.,2019)。近年来,对达尔布特蛇绿岩的研究取得了系列进展,但缺少系统总结。为此,笔者在前人基础上将取得的成果和存在问题进行梳理和总结,以期对达尔布特蛇绿岩成因及其构造环境提供新的制约。
1. 达尔布特蛇绿岩地质特征
达尔布特蛇绿岩是新疆境内出露的规模最大、最为典型的蛇绿岩带之一,近年来备受国内外学者关注(雷敏等,2008;辜平阳等,2009;刘希军等,2009;Yang et al.,2012b;Chen et al.,2014;Zhang et al.,2018;田亚洲等,2019;李海等,2021;Zhu et al.,2022)。达尔布特蛇绿岩分布于克拉玛依市以北的扎依尔山一带,东起木哈塔依,向南西经萨尔托海、也格孜卡拉、达尔布特、科果拉,在坎土拜克越向达尔布特河谷南侧,再经库朗库朵克转向西至苏鲁乔克后被阿克巴斯套花岗岩体所侵入截断(图2)。实际上,向西在阿克巴斯套和阿音那巴斯套,再向北的包古图河上游地区,也有蛇绿岩断续出露,只是展布方向由EW向转为近SN向,全长达100 km,大部分蛇绿岩带与达尔布特断裂带平行,甚至沿断裂分布,宽多为2~9 km,出露面积约为50 km2,在苏鲁乔克及萨尔托海一带出露面积最广,而窄处只有数十米,甚至缺失。蛇绿岩原有层序被构造强烈改造,原始的属于下部层位的铁镁质(超铁镁质)岩石逆冲到复理石沉积地层之上,深海硅质岩和枕状玄武岩与地幔橄榄岩断层接触(Yang et al.,2012b;Chen et al.,2014)。
图 2 西准噶尔达尔布特蛇绿岩带简图(据李行等,1987)Figure 2. Spatial distribution map for the Darbut ophiolite from West Junggar达尔布特蛇绿中发育早—中泥盆世和早石炭世放射虫和珊瑚化石,前人在辉长岩和橄长岩中获得Sm–Nd同位素年龄为(395±1.2)Ma(Zhang et al.,1993);辜平阳等(2009)在辉长岩中获得LA–ICP–MS锆石年龄为(391.1±6.8)Ma;最新在玄武岩及辉长岩中获得锆石U–Pb年龄分别为(375±2)Ma和(368±11)Ma(Yang et al.,2012c),表明达尔布特蛇绿岩形成时代为中泥盆世—早石炭世。蛇绿岩带上覆上石炭统包古图组和太勒古拉组,主要为一套火山–沉积岩岩石组合。此外,位于达尔布特蛇绿岩带北西段的萨尔托海岩体产出典型的蛇绿岩型铬铁矿,是中国第二大铬铁矿产地,吸引了众多研究者针对铬铁矿成矿与找矿开展了丰富的研究(鲍佩声等, 1990,1992;郝梓国等,1991;Zhou et al.,2001;鲍佩声,2009;田亚洲等,2015,2016,Qiu et al.,2018,杨经绥等,2022;Li et al.,2023)。
2. 达尔布特蛇绿岩研究进展
2.1 金刚石等矿物的发现
自1981年在西藏罗布莎蛇绿岩的地幔橄榄岩中首次发现金刚石以来,在西藏和俄罗斯的极地乌拉尔等地的蛇绿岩铬铁矿中新发现了金刚石等深部矿物群(Bai et al., 1993;杨经绥等,2013,2014,2021;Yang et al.,2021),对此前铬铁矿的浅部成因理论提出了质疑(杨经绥等,2022)。超高压、强还原性和壳源矿物在西藏罗布莎、土耳其Aladag、内蒙古贺根山和俄罗斯的极地乌拉尔蛇绿岩中也有报道(Bai et al.,1993;Xu et al.,2015;Yang et al.,2015b;Huang et al.,2015;Xiong et al.,2017;Rui et al.,2022),暗示可能存在深部地幔物质循环过程(图3)。最近,田亚洲等(2015)在达尔布特蛇绿岩带的萨尔托海高铝型铬铁矿中发现20余种矿物,包括金刚石、单质铬、自然铁、单质硅等元素类矿物,除此之外还有铁镍铬合金、碳硅石、方铁矿、方铅矿、顽火辉石等(Tian et al.,2015),暗示萨尔托海铬铁矿的形成可能经历了深部地幔预富集过程和浅部再富集成矿两个阶段(田亚洲等,2015)。总体而言,上述这些超高压、强还原性和壳源矿物的发现,为认识板块深俯冲、地幔不均一性和地幔深部动力学等过程提供了窗口(Lian et al.,2019;Yang et al.,2021)。
图 3 地球地幔中金刚石和铬铁矿的形成和深部物质循环模式(据Yang et al.,2021)Figure 3. The formation of diamond and chromitite in Earth's mantle and recycle of deep subducted crust2.2 前弧玄武岩的识别
前弧玄武岩最初是在Mariana岛弧定义的(Reagan et al.,2010,2013),在岩石学和地球化学上与洋脊玄武岩和弧后盆地玄武岩类似(Ishizuka et al.,2011;Shervais et al.,2021),前弧玄武岩低Ti/V和Yb/V值表明其地幔源区比大洋中脊和弧后盆地玄武岩源区更加亏损(Shervais et al.,2019)。前弧玄武岩是地幔楔熔融的最初产物,形成于俯冲起始之前的扩张中心或俯冲起始之后靠近海沟的位置(Reagan et al.,2010)。因此,前弧玄武岩是研究俯冲起始过程的最好地质记录之一(Ishizuka et al.,2011)。事实上,前弧玄武岩和玻安岩一起经常出现在蛇绿混杂岩中。例如,塞浦路斯Troodos、西藏雅鲁藏布江和西昆仑库地等蛇绿岩带中均有玻安岩产出(Taylor et al.,1994;Wang et al.,2002;Dilek et al.,2009;Dai et al.,2013; Li et al.,2021;Yang et al.,2022a,2022b)。Zhu等(2022)通过岩石地球化学研究发现,萨尔托海蛇绿岩中均质辉长岩具有平坦的REE模型、低Nb/Yb和高Ti/V值的特征,类似于MORB,而角闪石辉长岩显示较高流体活动元素含量和高Th/Yb值特征,类似于前弧玄武岩。据此认为,达尔布特蛇绿岩形成于弧前环境(Zhu et al.,2022)。
2.3 古海山的厘定
海山(大洋高原)是在板块内部由地幔柱热点作用形成的(图3),通常认为板块是运动的,地幔柱是固定的,当板块在地幔柱上方移动时,就形成了系列海山组合即为火山岛链(Morgan,1971)。在现代大洋中发育规模不等、源自地幔柱的火山岛链,如太平洋的Hawaiian-Emperor海岭(Duncan et al.,2004),大西洋的Walvis及Rio Grande脊(O'Connor et al.,1990),印度洋的Deccan高原(O'Neill et al.,2003)及中国南海中的玳瑁海山(Yan et al.,2015)。实际上在古大洋中也有海山发育,如特提斯洋及古亚洲洋中均有与地幔柱相关的OIB发育(朱弟成等,2008;Yang et al.,2012a,2020b;Safonova et al.,2014)。中亚造山带西段蛇绿岩的物质组成复杂,各个蛇绿混杂岩中除了正常洋壳的主要组成之外,还发育枕状玄武岩、火山角砾岩、礁灰岩、滑塌堆积岩、陆源碎屑岩等(Safonova et al.,2014;Yang et al.,2015a,2019),这是典型的海山岩石组合特征(Buchs et al.,2011)。在西准噶尔达尔布特蛇绿岩中也有类似组分发育,其中的玄武岩均为碱性系列,具有较高的TiO2含量(大多>2.5%),无明显Nb、Ta负异常,强烈富集轻稀土元素,轻稀土元素含量总体与典型OIB及夏威夷洋岛型玄武岩一致(Hofmann et al.,1996),认为其来源于地幔柱有关的海山或大洋高原(Yang et al.,2013,2015a)。
2.4 豆荚状铬铁矿的成因
豆荚状铬铁矿是蛇绿岩中特有的矿产,主要赋存于蛇绿岩莫霍面过渡带或地幔上部的超基性岩中(Zhou et al.,2014;Arai et al.,2016)。尽管豆荚状铬铁矿的研究已经近100年的历史,但是其成矿机制一直是争论的焦点(Yang et al.,2021),其成矿模型主要包括以下5种:①镁铁质–超镁铁质岩浆分异(Dickey,1975)。②地幔橄榄岩部分熔融(鲍佩声,2009)。③地幔橄榄岩与熔体反应(Zhou et al.,1996)。④熔体与古大陆岩石圈地幔反应(Shi et al.,2012)。⑤深部地幔柱成因模式(Yang et al.,2015b,2021)。萨尔托海岩体产出典型的蛇绿岩型铬铁矿,是中国第二大铬铁矿产地。矿石类型主要为致密块状,次为浸染状和条带状等,矿体大小悬殊、形态各异,单个矿体多呈豆荚状、透镜状、囊状和脉状等(李海等,2021)。在铬铁矿成矿理论方面,有研究者认为铬铁矿是地幔部分熔融残余形成的(鲍佩声,2009),也有学者认为其为地幔橄榄岩与熔体反应的结果(Zhou et al.,1996)。最新研究发现,在达尔布特蛇绿岩中发育深部地幔矿物以及浅部壳源矿物(Tian et al.,2015),从而认为达尔布特蛇绿岩中萨尔托海铬铁矿的形成可能经历了深部地幔预富集和浅部再富集成矿两个阶段(田亚洲等,2015)。该模型认为俯冲板片会抵达地幔过渡带甚至更深,由于温度和流体的作用,俯冲板片发生熔融。这些熔融物质随地幔柱上涌,在地幔过渡带结晶出铬铁矿,伴随携带金刚石等超高压矿物继续向上运移至浅部,从而形成含金刚石等矿物的铬铁矿(图3)(Yang et al., 2021)。
2.5 蛇绿岩的形成环境
目前,国内外学者对蛇绿岩的成因分类方案众多(Pearce et al.,1984;肖序常, 1995),但被学界普遍接受的是将其分为洋中脊型(MOR)和俯冲带之上型(SSZ)。Dilek等(2011)以蛇绿岩的形成环境为依据,将蛇绿岩可分为与俯冲过程无关的和与俯冲过程相关的两类,其中与俯冲过程无关的蛇绿岩包括陆缘型、洋中脊型和地幔柱型,而与俯冲作用相关的蛇绿岩包括俯冲带上盘型和火山弧型。可见蛇绿岩可以形成于威尔逊旋回的各个阶段。对于达尔布特蛇绿岩,前人主要通过岩石地球化学方法对其形成环境进行制约,主要有以下观点:大洋中脊环境(Zhang et al., 1993)和岛弧环境(Yang et al.,2012b;Zhang et al.,2018)。如前文述及,在达尔布特蛇绿岩发育弧前玄武岩(Zhu et al.,2022),这充分说明达尔布特蛇绿岩中有形成于俯冲带的物质组分。更为重要的是在蛇绿岩识别出古海山残片,并发现金刚石等深部矿物群(Tian et al.,2015;杨经绥等,2021),这表明特蛇绿岩中还保存有来自深部地幔的物质(图3),即为地幔柱型蛇绿岩(Dilek et al.,2011)。可见,达尔布特蛇绿岩形成于俯冲有关的构造环境,并有地幔柱的参与。
3. 未来研究展望
3.1 深部物质循环
达尔布特蛇绿岩的萨尔托海岩体中发育豆荚状铬铁矿,更为重要的是,除了在豆荚状铬铁矿中发现壳源矿物如金红石、锆石等矿物外,识别出金刚石、碳硅石等深部地幔矿物。此外,达尔布特蛇绿岩中还存在碱性洋岛玄武岩(OIB),这些壳源矿物、超高压矿物和洋岛玄武岩的存在,为认识俯冲物质深地幔循环提供了新思路(图3)。
3.2 俯冲起始机制
板块俯冲起始是岩浆活动和构造运动发生转变的重要过程,其中会形成相应的地质记录,主要包括俯冲带(SSZ)型蛇绿岩、前弧玄武岩、玻安岩和变质底板。目前,在达尔布特蛇绿岩中发育前弧玄武岩,同时蛇绿岩也具有俯冲带的信息,这将为西准噶尔俯冲起始的时限和机制提供物质基础。
3.3 陆壳增生机制
达尔布特蛇绿岩中存在古海山残片,是海山在俯冲过程中被刮削、增生在增生楔中保存在造山带中。实际上,在西准噶尔也有大洋高原和洋内弧的多阶段增生过程。那么,陆壳增生具体是如何实现的?此外,在地壳增生的同时,是否有俯冲带上盘的物质通过俯冲侵蚀进入地幔深部?需要深入研究。
3.4 俯冲带型蛇绿岩成因
目前,普遍认为达尔布特蛇绿岩与西准噶尔其他蛇绿岩类似,是形成于俯冲带之上的SSZ型蛇绿岩。但实际上,其中的俯冲印记可以来源于俯冲板片,也可以来源于超慢速洋脊。换句话说,具有俯冲印记的蛇绿岩也可能是形成于超慢速大洋中脊的大洋核杂岩。实际上,造山带中的蛇绿岩有相当一部分是大洋核杂岩,是洋底拆离断层作用形成的。因此,需要对达尔布特乃至中亚造山带中的蛇绿开展综合对比研究,对蛇绿岩的成因具有普适意义。
4. 结论
(1)达尔布特蛇绿岩是新疆境内出露的规模最大蛇绿岩带之一,其形成时代主体为早—中泥盆世。
(2)近年来,对达尔布特蛇绿岩的研究取得以下进展:金刚石等矿物的发现、前弧玄武岩的识别、古海山的厘定、豆荚状铬铁矿地幔柱成因和蛇绿岩构造背景的再厘定。
(3)在取得进展的同时,出现了一些的新的科学问题和方向,即深部物质循环过程、俯冲起始机制、陆壳增生机制和俯冲带型蛇绿岩成因等。
(4)总体而言,在后续的工作中,需要对特定区域的蛇绿岩进行细致解剖,同时开展大时空尺度蛇绿岩的综合对比研究,揭示大洋壳–幔系统演变过程,从而完善大洋岩石圈形成演化和板块构造理论。
-
图 1 中亚造山带构造格架图(a)(据Jahn et al.,2000)及西准噶尔地质简图(b)(据Yang et al.,2013)
Figure 1. (a) Simplified tectonic sketch of the Central Asian Orogenic Belt and (b) regional geological map of the West Junggar
图 2 西准噶尔达尔布特蛇绿岩带简图(据李行等,1987)
Figure 2. Spatial distribution map for the Darbut ophiolite from West Junggar
图 3 地球地幔中金刚石和铬铁矿的形成和深部物质循环模式(据Yang et al.,2021)
Figure 3. The formation of diamond and chromitite in Earth's mantle and recycle of deep subducted crust
-
敖松坚, 肖文交, 韩春明, 等. 中亚造山带南缘蛇绿岩研究现状与展望[J]. 地球科学, 2022, 47(9): 3107-3126 doi: 10.3321/j.issn.1000-2383.2022.9.dqkx202209002 AO Songjian, XIAO Wenjiao, HAN Chunming, et al. Status and prospect of research on ophiolites in the southern margin of the Central Asian Orogenic Belt[J]. Earth Science, 2022, 47(9): 3107-3126. doi: 10.3321/j.issn.1000-2383.2022.9.dqkx202209002
鲍佩声, 王希斌, 郝梓国, 等. 对富铝型豆荚状铬铁矿矿床成因的新认识——以新疆萨尔托海铬铁矿矿床为例[J]. 矿床地质, 1990, 9(2): 3-17. BAO Peisheng, WANG Xibin, HAO Ziguo, et al. A new idea about the genesis of the aluminium rich podiform chromite deposit—with theSartuohai chromite deposit of Xinjiang as an example[J]. Mineral Deposits, 1990, 9(2): 97-111.
鲍佩声, 王希斌, 彭根永, 等. 新疆西准噶尔重点含铬岩体成矿条件及找矿方向的研究[A]. 中国地质科学院地质研究所文集[C]. 1992, 24: 1−177 BAO Peisheng, WANG Xibin, PENG Genyong, et al. Study on mineralization constraints and assessment of ore potential of main chrome-bearing rock bodies in western Junggar[A]. Bulletin of the Institute of Geology Chinese Academy of Geological Sciences[C]. 1992, 24: 1−177.
鲍佩声. 再论蛇绿岩中豆荚状铬铁矿的成因——质疑岩石/熔体反应成矿说[J]. 地质通报, 2009, 28(12): 1741-1761 doi: 10.3969/j.issn.1671-2552.2009.12.008 BAO Peisheng. Further discussion on the genesis of the podiform chromite deposits in the ophiolites—questioning about the rock/melt interaction metallogeny[J]. Chinese Journal of Geology, 2009, 28(12): 1741-1761. doi: 10.3969/j.issn.1671-2552.2009.12.008
高俊, 江拓, 王信水, 等. 准噶尔—天山—北山蛇绿岩: 对中亚造山带西南缘洋陆格局演化的制约[J]. 地质科学, 2022, 57(1): 1-42 doi: 10.12017/dzkx.2022.001 GAO Jun, JIANG Tuo, WANG Xinshui, et al. The Junggar, Tianshan and Beishan ophiolites: Constraint on the evolution of oceanic and continental framework along the southwestern margin of the Central-Asian Orogenic Belt[J]. Chinese Journal of Geology, 2022, 57(1): 1-42. doi: 10.12017/dzkx.2022.001
辜平阳, 李永军, 张兵, 等. 西准达尔布特蛇绿岩中辉长岩LA-ICP-MS锆石U-Pb测年[J]. 岩石学报, 25(6): 1364-1372 GU Pingyang, LI Yongjun, ZHANG Bing, et al. LA-ICP-MS zircon U-Pb dating of gabbro in the Darbut ophiolite, western Junggar, China[J]. Acta Petrologica Sinica, 2009, 25: 1364-1372.
郝梓国, 王希斌, 鲍佩声. 造山带中富集型上地幔的成因——以萨尔托海蛇绿岩块为例[J]. 中国地质科学院院报, 1991(01): 159-166 HAO Ziguo, WANG Xibin, BAO Peisheng. Genesis of enriched upper mantle in orogenic zone—a case stufy of the Saertuohai ophiolitic block[J]. Bulletin of the Chinese Academy of Geological Sciences, 1991(01): 159-166.
李海, 李永军, 徐学义, 等. 西准噶尔达尔布特蛇绿岩带萨尔托海岩体深部结构、构造特征: 地质与地球物理证据[J]. 大地构造与成矿学, 2021, 45(4): 634-650 LI Hai, LI Yongjun, XU Xueyi, et al. Deep structure and tectonic of Sartohay ophiolite in West Junggar, Xinjiang: New geological and geophysical evidence[J]. Geotectonica et Metallogenia, 2021, 45(4): 634-650.
雷敏, 赵志丹, 侯青叶, 等. 新疆达拉布特蛇绿岩带玄武岩地球化学特征: 古亚洲洋与特提斯洋的对比[J]. 岩石学报, 2008, 24(4): 661-672 LEI Min, ZHAO Zhidan, HOU Qinye, et al. Geochemical and Sr-Nd-Pb isotopic characteristics of the dalabute ophiolite, Xinjiang: Comparison between the paleo-Asian ocean and the Tethyan mantle domains[J]. Acta Petrologica Sinica, 2008, 24(4): 661-672.
李行, 巩志超, 董显扬, 等. 新疆西准噶尔地区基性超基性岩生成地质背景及区域成矿特征[J]. 中国地质科学院西安地质矿产研究所所刊, 1987, 8(4): 3-140 LI Hang, GONG Zhichao, DONG Xianyang, et al. On the geological setting of basic and ultrabasic rocks and the characteristics of regional metallization (mainly chromite) in the West Junggar of Xinjiang, China[J]. Bulletin of Xi`an Institute of Geology, Chinese Academy of Geological Sciences, 1987, 8(4): 3-140.
刘希军, 许继峰, 王树庆, 等. 新疆西准噶尔达拉布特蛇绿岩E-MORB型镁铁质岩的地球化学、年代学及其地质意义[J]. 岩石学报, 2009, 25(6): 1373-1389 LIU Xijun, XU Jifeng, WANG Shuqing, et al. Geochemistry and dating of E-MORB type rocks from Darbute ophiolite in West Junggar, Xinjiang and geological implications[J]. Acta Petrologica Sinca, 2009, 25(6): 1373-1389.
马中平, 夏林圻, 夏祖春, 等. 蛇绿岩年代学研究方法及应注意的问题[J]. 西北地质, 2004, 37(3): 103−108. MA Zhongping, XIA Linqi, XIA Zuchun, et al. Method of ophiolite geochronology study and the related problems[J]. Northwestern Geology, 2004, 37(3): 103−108.
史仁灯. 蛇绿岩研究进展、存在问题及思考[J]. 地质论评, 2005, 51(6): 681-693 doi: 10.3321/j.issn:0371-5736.2005.06.010 SHI Rendeng. Comment on the progress in and problems on ophiolite study[J]. Geological Review, 2005, 51(6): 681-693. doi: 10.3321/j.issn:0371-5736.2005.06.010
田亚洲, 杨经绥, 杨华燊, 等. 新疆萨尔托海铬铁矿中铂族矿物及硫化物特征[J]. 地质学报, 2019, 93(10): 2639-2655 doi: 10.3969/j.issn.0001-5717.2019.10.016 TIAN Yazhou, YANG Jingsui, YANG Huashen, et al. The characteristics of PGE and BMS in Sartohay chromitites, Xinjiang[J]. Acta Geologica Sinica, 2019, 93(10): 2639-2655. doi: 10.3969/j.issn.0001-5717.2019.10.016
田亚洲, 杨经绥, 张仲明, 等. 新疆萨尔托海高铝铬铁矿中异常矿物群的发现及意义[J]. 岩石学报, 2015(12): 3650-3662 TIAN Yazhou, YANG Jingsui, ZHANG Zhongming, et al. Discovery and implication of unusual mineral group from Sarthay high-Al chromitites, Xinjiang[J]. Acta Petrologica Sinica, 2015, 31(12): 3650-3662.
田亚洲, 杨经绥. 萨尔托海铬铁矿中的矿物包体研究[J]. 地质学报, 2016(11): 3114-3128 TIAN Yazhou, YANG Jingsui. Study on the mineral Inclusions in Sartohay chromitites[J]. Acta Geologica Sinica, 90(11): 3114-3128.
王国灿, 张攀. 蛇绿混杂岩就位机制及其大地构造意义新解: 基于残余洋盆型蛇绿混杂岩构造解析的启示[J]. 地球科学, 2019, 44(5): 1688-1704 WANG Guocan, ZHANG Pan. A new understanding on the emplacement of ophiolitic mélanges and its tectonic significance: Insights from the structural analysis of the remnant oceanic basin-type ophiolitic mélanges[J]. Earth Science, 2019, 44(5): 1688-1704.
吴福元, 刘传周, 张亮亮, 等. 雅鲁藏布蛇绿岩——事实与臆想[J]. 岩石学报, 2014, 30(2): 293-325 WU Fuyuan, LIU Chuanzhou, ZHANG Liangliang, et al. Yarlung Zangbo ophiolite: A critical updated view[J]. Acta Petrologica Sinica, 2014, 30(2): 293-325.
肖序常. 从扩张速率试论蛇绿岩的类型划分[J]. 岩石学报, 1995, 11(增刊): 10-23 doi: 10.3321/j.issn:1000-0569.1995.z1.002 XIAO Xuchang. Discussion on the classification of ophiolite by spreadding rate[J]. Acta Petrologica Sinica, 1995, 11(suppl. ): 10-23. doi: 10.3321/j.issn:1000-0569.1995.z1.002
杨经绥, 徐向珍, 张仲明, 等. 蛇绿岩型金刚石和铬铁矿深部成因[J]. 地球学报, 2013, 34(6): 643-653. , YANG Jingsui, XU Xaingzhen, ZHANG Zhongming, et al. Ophiolite-type diamond and deep genesis of chromitite[J]. Acta Geoscientica Sinica, 2013, 34(6): 643-653.
杨经绥, 徐向珍, 白文吉, 等. 蛇绿岩型金刚石的特征[J]. 岩石学报, 2014, 30(8): 2113-2124 YANG JingSui, XU XiangZhen, BAI WenJi, et al. Features of diamond in ophiolite[J]. Acta Petrologica Sinica, 2014, 30(8): 2113-2124.
杨经绥, 连东洋, 吴魏伟, 等. 俯冲物质深地幔循环——地球动力学研究的一个新方向[J]. 地质学报, 2021, 95(1): 42-63 doi: 10.19762/j.cnki.dizhixuebao.2021038 YANG Jingsui, LIAN Dongyang, WU Weiwei, et al. Recycling of subducted crust in deep mantle: a new research orientation to earth dynamics[J]. Acta Geologica Sinica, 2021, 95(1): 42-63. doi: 10.19762/j.cnki.dizhixuebao.2021038
杨经绥, 连东洋, 吴魏伟, 等. 蛇绿岩中铬铁矿研究的问题与思考[J]. 地质学报, 2022, 96(5): 1608-1634 doi: 10.3969/j.issn.0001-5717.2022.05.007 YANG Jingsui, LIAN Dongyang, WU Weiwei, et al. Chromitites in ophiolites: questions and thoughts[J]. Acta Geologica Sinica, 2022, 96(5): 1608-1634. doi: 10.3969/j.issn.0001-5717.2022.05.007
臧遇时, 杨高学, 赵金凤. 蛇绿岩的定义、分类及其发展[J]. 西北地质, 2013, 46(2): 12−17. ZANG Yushi, YANG Gaoxue, ZHAO Jinfeng. The Definition, Classification and Development of Ophiolites[J]. Northwestern Geology, 2013, 46(2): 12−17.
翟庆国, 高俊, 宋述光. 中国蛇绿岩与造山带大地构造研究: 前言[J]. 岩石学报, 2019, 35(10): 2943-2947 doi: 10.18654/1000-0569/2019.10.01 ZHAI QingGuo, GAO Jun, SONG ShuGuang. New progress in ophiolite and tectonics of China: Preface[J]. Acta Petrologica Sinica, 2019, 35(10): 2943-2947. doi: 10.18654/1000-0569/2019.10.01
张进, 邓晋福, 肖庆辉, 等. 蛇绿岩研究的最新进展[J]. 地质通报, 2012, 31(1): 1-12 doi: 10.3969/j.issn.1671-2552.2012.01.001 ZHANG Jin, DENG Jinfu, XIAO Qinghui, et al. New advances in the study of ophiolites[J]. Geological Bulletin of China, 2012, 31(1): 1-12. doi: 10.3969/j.issn.1671-2552.2012.01.001
张继恩, 陈艺超, 肖文交, 等. 蛇绿岩与蛇绿混杂带结构[J]. 地质科学, 2021, 56(2): 560-595 doi: 10.12017/dzkx.2021.029 ZHANG Ji'en, CHEN Yichao, XIAO Wenjiao, et al. Architecture of ophiolite and ophiolitic mélange[J]. Chinese Journal of Geology, 2021, 56(2): 560-595. doi: 10.12017/dzkx.2021.029
张向飞, 陈莉, 曹华文, 等. 中国新疆–中亚大地构造单元划分及演化简述[J]. 西北地质, 2023, 56(4): 1−39. ZHANG Xiangfei, CHEN Li, CAO Huawen, et al. Division of Tectonic Units and Their Evolutions within Xinjiang, China to Central Asia[J]. Northwestern Geology, 2023, 56(4): 1−39.
朱弟成, 莫宣学, 王立全, 等. 新特提斯演化的热点与洋脊相互作用: 西藏南部晚侏罗世—早白垩世岩浆作用推论[J]. 岩石学报, 2008, 24(2): 225-237. ZHU Dicheng, MO Xuanxue, WANG Liquan, et al. Hotspot-ridge interaction for the evolution of Neo-Tethys: insights from the Late Jurassic-Early Cretaceous magmatism in southern Tibet[J]. Acta Petrologica Sinica, 2008, 24(2): 225-237
Arai S, Miura M. Formation and modification of chromitites in the mantle[J]. Lithos, 2016, 264: 277-295. doi: 10.1016/j.lithos.2016.08.039
Bai W J, Zhou M F, Robinson P T. Possibly diamond-bearing mantle peridotites and podiform chromitites in the Luobusa and Donqiao ophiolites, Tibet[J]. Canadian Journal of Earth Sciences, 1993, 30(8): 1650-1659. doi: 10.1139/e93-143
Buchs D M, Arculus R J, Baumgartner P O, et al. Oceanic intraplate volcanoes exposed: example from seamounts accreted in Panama[J]. Geology, 2011, 39: 335-338.
Buckman S, Aitchison J C. Tectonic evolution of Paleozoic terranes in West Junggar, Xinjiang, NW China[C]. Aspects of the Tectonic Evolution of China. Geological Society of London Special Publication, 2004, 226: 101-129.
Chen S, Pe-Piper G, Piper D J W, et al. Ophiolitic mélanges in crustal-scale fault zones: Implications for the Late Palaeozoic tectonic evolution in West Junggar, China[J]. Tectonics, 2014, 33: 2419-2443. doi: 10.1002/2013TC003488
Choulet F, Faure M, Cluzel D, et al. From oblique accretion to transpression in the evolution of the Altaid collage: New insights from West Junggar, northwestern China[J]. Gondwana Research, 2012, 21: 530-547. doi: 10.1016/j.gr.2011.07.015
Coleman R G. Ophiolites[M]. Springer, Berlin, Heidelberg, New York, 1977, 1-220.
Dai J G, Wang C S, Polat A, et al. Rapid forearc spreading between 130 and 120 Ma: Evidence from geochronology and geochemistry of the Xigaze ophiolite, southern Tibet[J]. Lithos, 2013, 172-173: 1-16. doi: 10.1016/j.lithos.2013.03.011
Dickey J S. A hypothesis of origin for podiform chromite deposits[J]. Geochimica et Cosmochimica Acta, 1975, 39(6): 1061-1074.
Dilek Y, Furnes H. Structure and geochemistry of Tethyan ophiolites and their petrogenesis in subduction rollback systems[J]. Lithos, 2009, 113: 1-20. doi: 10.1016/j.lithos.2009.04.022
Dilek Y, Furnes H. Ophiolite genesis and global tectonics: geochemical and tectonic fingerprinting of ancient oceanic lithosphere[J]. Geological Society of America Bulletin, 2011, 123: 387-411. doi: 10.1130/B30446.1
Dilek Y, Furnes H. Ophiolites and their origins[J]. Elements, 2014, 10: 93-100. doi: 10.2113/gselements.10.2.93
Du H Y, Chen J F, Ma X, et al. Origin and tectonic significance of the Hoboksar ophiolitic mélange in northern West Junggar (NW China)[J]. Lithos, 2019, 336-337: 293-309. doi: 10.1016/j.lithos.2019.04.010
Duncan R A, Keller R A. Radiometric ages for basement rocks from the Emperor Seamounts, ODP Leg 197[J]. Geochemistry, Geophysics, Geosystems, 2004, 5(8): 1-13.
Feng Y M, Coleman R G, Tilton G R, et al. Tectonic evolution of the West Junggar region, Xinjiang, China[J]. Tectonics, 1989, 8: 729-752. doi: 10.1029/TC008i004p00729
Hofmann A, Jochum K. Source characteristics derived from very incompatible trace elements in Mauna Loa and Mauna Kea basalts, Hawaii Scientific Drilling Project[J]. Journal of Geophysical Research, 1996, 101: 831-839.
Huang H, Wang T, Tong Y, et al. Rejuvenation of ancient micro-continents during accretionary orogenesis: insights from the Yili Block and adjacent regions of the SW Central Asian Orogenic Belt[J]. Earth-Science Reviews, 2020, 208: 103-255.
Huang Z, Yang J S, Zhu Y W, et al. The study of deep mineral association in chromitites of the Hegenshan ophiolite, Inner Mongolia, China[J]. Acta Geologica Sinica, 2015, 89(z2): 30-31.
Ishizuka O, Tani K, Reagan M K, et al. The timescales of subduction initiation and subsequent evolution of an oceanic island arc[J]. Earth and Planetary Science Letters, 2011, 306: 229-240. doi: 10.1016/j.jpgl.2011.04.006
Jahn B M, Wu F Y, Chen B. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic[J]. Transactions of the Royal Society of Edinburgh, 2000, 91: 181-193. doi: 10.1017/S0263593300007367
Li H, Li Y J, Yang G X, et al. Prospecting for ophiolite-type chromite deposit in Sartohay, West Junggar (NW China): Constraints from geological and geophysical data[J]. Ore GeologyReviews, 2023, 156: 105379. doi: 10.1016/j.oregeorev.2023.105379
Li H Y, Zhao R P, Li J, et al. Molybdenum isotopes unmask slab dehydration and melting beneath the Mariana arc [J]. Nature Communications, 2021, 12(1): 6015. doi: 10.1038/s41467-021-26322-8
Lian D Y, Yang J S. Ophiolite-hosted diamond: a new window for probing carbon cycling in the deep mantle[J]. Engineering, 2019, 5: 406-420. doi: 10.1016/j.eng.2019.02.006
Liu Y J, Xiao W J, Ma Y F, et al. Oroclines in the Central Asian Orogenic Belt[J]. National Science Review, 2023, 10: nwac243. doi: 10.1093/nsr/nwac243
Morgan W J. 1971. Convection plumes in the lower mantle[J]. Nature, 1971, 230: 42-43. doi: 10.1038/230042a0
Nicolas A, Boudier F. Where ophiolites come from and what they tell us[J]. Geological Society of America Special Papers, 2003, 373: 137-152.
O'Connor J M, Duncan R A. Evolution of the Walvis Ridge-Rio Grande Rise Hot Spot System: Implications for African and South American Plate motions over plumes[J]. Journal of Geophysical Research, 1990, 95(B11): 17475-17502 doi: 10.1029/JB095iB11p17475
O'Neill C, Müller D, Steinberger B. Geodynamic implications of moving Indian Ocean hotspots[J]. Earth and Planetary Science Letters, 2003, 215: 151-168. doi: 10.1016/S0012-821X(03)00368-6
Pearce J A, Lippard S J, Roberts S. Characteristics and tectonic significance of supra-subduction zone ophiolites[A]. Marginal basin geology[C]. London: Blackwell Scientific Publications, 1984: 77−94.
Qiu T, Zhu Y F. Listwaenite in the Sartohay ophiolitic mélange (Xinjiang, China): A genetic model based on petrology, U-Pb chronology and trace element geochemistry[J]. Lithos, 2018, 302-303: 427-446. doi: 10.1016/j.lithos.2018.01.029
Reagan M K, Ishizuka O, Stern R J, et al. Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(3): Q03X12.
Reagan M K, Mcclelland W C, Girard G, et al. The geology of the southern Mariana Fore-Arc crust: implications for the scale of Eocene volcanism in the Western Pacific[J]. Earth and Planetary Science Letters, 2013, 380: 41-51. doi: 10.1016/j.jpgl.2013.08.013
Rui H C, Yang J S, Lian D Y, et al. Deep origin of mantle peridotites from the Aladağ ophiolite, Turkey: Implication from trace element geochemistry of pyroxenes and mineralogy of ophiolitic diamonds[J]. Journal of Asian Earth Sciences, 2022, 228: 105153. doi: 10.1016/j.jseaes.2022.105153
Safonova I Y, Santosh M. Accretionary complexes in the Asia-Pacific region: Tracing archives of ocean plate stratigraphy and tracking mantle plumes[J]. Gondwana Research, 2014, 25: 126-158. doi: 10.1016/j.gr.2012.10.008
Sengör A M C, Natal’in B A, Burtman V S. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia[J]. Nature, 1993, 364: 299-307. doi: 10.1038/364299a0
Shen P, Pan H D, Cao C, et al. The formation of the Suyunhe large porphyry Mo deposit in the West Junggar terrain, NW China: zircon U-Pb age, geochemistry and Sr-Nd-Hf isotopic results[J]. Ore Geology Reviews, 2017, 81: 808-828. doi: 10.1016/j.oregeorev.2016.02.015
Shervais J W, Reagan M K, Haugen E, et al. Magmatic response to subduction initiation: part 1. fore-arc basalts of the Izu-Bonin arc from IODP Expedition 352[J]. Geochemistry, Geophysics, Geosystems, 2019, 20: 314-338. doi: 10.1029/2018GC007731
Shervais J W, Reagan M K, Godard M, et al. Magmatic response to subduction initiation, Part II: boninites and related rocks of the Izu-Bonin arc from IODP expedition 352[J]. Geochemistry, Geophysics, Geosystems, 2021, 22(1): e2020GC009093.
Shi R D, Griffin W L, O`Reilly S Y, et al. Archean mantle contributes to the genesis of chromitite in the Palaeozoic Sartohay ophiolite, Asiatic Orogenic Belt, northwestern China[J]. Precambrian Research, 2012, 1: 87-94.
Taylor R N, Nesbitt R W, Vidal P, et al. Mineralogy, chemistry, and genesis of the boninite series volcanics, chichijima, bonin islands, Japan[J]. Journal of Petrology, 1994, 35: 577-617. doi: 10.1093/petrology/35.3.577
Tian Y Z, Yang J S, Robinson P T, et al. Diamond discovered in high-al chromitites of the Sartohay ophiolite, Xinjiang Province, China[J]. Acta Geologica Sinica, 2015, 89(2): 332-340. doi: 10.1111/1755-6724.12433
Wakabayashi J, Dilek Y. What constitutes‘emplacement’of an ophiolite?: Mechanisms and relationship to subduction initiation and formation of metamorphic soles[J]. Geological Society, London, Special Publications, 2003, 218: 427⁃447.
Wang T, Tong Y, Xiao W J, et al. Rollback, scissor-like closure of the Mongol-Okhotsk Ocean and formation of an orocline: magmatic migration based on a large archive of age data[J]. National Science Review, 2022, 9: nwab210. doi: 10.1093/nsr/nwab210
Wang T, Tong Y, Huang H, et al. Granitic record of the assembly of the Asian continent[J]. Earth-Science Reviews, 2023a, 237: 104298. doi: 10.1016/j.earscirev.2022.104298
Wang T, Huang H, Zhang J J, et al. Voluminous continental growth of the Altaids and its control on metallogeny[J]. National Science Review, 2023b, 10: nwac283. doi: 10.1093/nsr/nwac283
Wang Z H, Sun S, Li J L, et al. , Petrogenesis of tholeiite associations in Kudi ophiolite (western Kunlun Mountains, northwestern China): implications for the evolution of back-arc basins[J]. Contributions to Mineralogy and Petrology, 2002, 143: 471-483. doi: 10.1007/s00410-002-0358-5
Windley B F, Alexeiev D, Xiao W J, et al. Tectonic models for accretion of the Central Asian Orogenic belt[J]. Journal of the Geological Society, 2007, 164: 31-47. doi: 10.1144/0016-76492006-022
Xiao W J, Windley B F, Sun S, et al. A tale of amalgamation of three collage systems in the permian-middle Triassic in Central Asia: oroclines, sutures and terminal accretion[J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 477-507. doi: 10.1146/annurev-earth-060614-105254
Xiao W J, Windley B F, Han C M, et al. Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia[J]. Earth-Science Reviews, 2018, 186: 94-128. doi: 10.1016/j.earscirev.2017.09.020
Xiao W J, Song D F, Windley B F, et al. Research progresses of the accretionary processes and metallogenesis of the Central Asian Orogenic Belt[J]. Science China Earth Sciences, 2020, 63: 329-361. doi: 10.1007/s11430-019-9524-6
Xiong F H, Yang J S, Robinson P T, et al. Diamonds discovered from high–Cr podiform chromitites of Bulqiza, eastern Mirdita ophiolite, Albania[J]. Acta Geologica Sinica, 2017, 91(2): 455-468. doi: 10.1111/1755-6724.13111
Xu X Z, Yang J S, Robinson P T, et al. Origin of ultrahigh pressure and highly reduced minerals in podiform chromitites and associated mantle peridotites of the Luobusa ophiolite, Tibet[J]. Gondwana Research, 2015, 27: 686-700. doi: 10.1016/j.gr.2014.05.010
Yan Q S, Castillo P, Shi X F, et al. Geochemistry and petrogenesis of volcanic rocks from Daimao Seamount (South China Sea) and their tectonic implications[J]. Lithos, 2015, 218-219: 117-126. doi: 10.1016/j.lithos.2014.12.023
Yang G X. Subduction initiation triggered by collision: A review based on examples and models[J]. Earth-Science Reviews, 2022, 232: 104129. doi: 10.1016/j.earscirev.2022.104129
Yang G X, Li Y J, Santosh M, et al. A Neoproterozoic seamount in the Paleoasian Ocean: evidence from zircon U-Pb geochronology and geochemistry of the Mayile ophiolitic mélange in West Junggar, NW China[J]. Lithos, 2012a, 140-141: 53-65. doi: 10.1016/j.lithos.2012.01.026
Yang G X, Li Y J, Gu P Y, et al. Geochronological and geochemical study of the Darbut Ophiolitic complex in the West Junggar (NW China): implications for petrogenesis and tectonic evolution[J]. Gondwana Research, 2012b, 21: 1037-1049. doi: 10.1016/j.gr.2011.07.029
Yang G X, Li Y J, Santosh M, et al. Geochronology and geochemistry of basaltic rocks from the Sartuohai ophiolitic mélange, NW China: Implications for a Devonian mantle plume within the Junggar Ocean[J]. Journal of Asian Earth Sciences, 2012c, 59: 141-155. doi: 10.1016/j.jseaes.2012.07.020
Yang G X, Li Y J, Santosh M, et al. Geochronology and Geochemistry of Basalts from the Karamay Ophiolitic Mélange in West Junggar (NW China): Implications for Devonian-Carboniferous Intra-oceanic Accretionary Tectonics of the Southern Altaids[J]. Geological Society of America Bulletin, 2013, 125: 401-419. doi: 10.1130/B30650.1
Yang G X, Li Y J, Xiao W J, et al. OIB-type rocks within West Junggar ophiolitic mélanges: evidence for the accretion of seamounts[J]. Earth-Science Reviews, 2015a, 150: 477-496. doi: 10.1016/j.earscirev.2015.09.002
Yang G X, Li Y J, Tong L L, et al. An overview of oceanic island basalts in accretionary complexes and seamounts accretion in the western Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 2019, 179: 385-398. doi: 10.1016/j.jseaes.2019.04.011
Yang G X, Li Y J, Tong L L, et al. An Early Cambrian plume-induced subduction initiation event within the Junggar Ocean: Insights from ophiolitic mélanges, arc magmatism, and metamorphic rocks[J]. Gondwana Research, 2020b, 88: 45-66. doi: 10.1016/j.gr.2020.07.002
Yang G X, Li Y J, Tong L L, et al. Natural observations of subduction initiation: Implications for the geodynamic evolution of the Paleo-Asian Ocean[J]. Geosystems and geoenvironment, 2022, 1: 100009. doi: 10.1016/j.geogeo.2021.10.004
Yang J S, Meng F C, Xu X Z, et al. Diamonds, native elements and metal alloys from chromitites of the Ray-Iz ophiolite of the Polar Urals[J]. Gondwana Research, 2015b, 27: 459-485. doi: 10.1016/j.gr.2014.07.004
Yang J S, Wu W W, Lian D Y, et al. Peridotites, chromitites and diamonds in ophiolites[J]. Nature Reviews Earth & Environment, 2021, 2: 198-212.
Yang Y Q, Zhao L, Zheng R G, et al. An early Ordovician fossil seamount of the Hongguleleng-Balkybey Ocean in the Northern West Junggar terrane (NW China) and its implications for the ocean evolution[J]. Journal of Asian Earth Sciences, 2020a, 194: 10406.
Yao J L, Cawood P A, Zhao G C. Mariana-type ophiolites constrain the establishment of modern plate tectonic regime during Gondwana assembly[J]. Nature Communications, 2021, 12: 4189. doi: 10.1038/s41467-021-24422-z
Zhang C, Zhai M G, Allen B, et al. Implications of Paleozoic ophiolites from Western Junggar, NW China, for the tectonics of Central Asia[J]. Journal of Geological Society, 1993, 150: 551-561. doi: 10.1144/gsjgs.150.3.0551
Zhang J E, Chen Y C, Xiao W J, et al. Architecture of ophiolitic mélanges in the Junggar region, NW China[J]. Geosystems and Geoenvironment, 2022b, https://doi.org/10.1016/j.geogeo.2022.100175.
Zhang P, Wang G C, Polat A, et al. Geochemistry of mafic rocks and cherts in the Darbut and Karamay ophiolitic mélanges in West Junggar, northwest China: Evidence for a Late Silurian to Devonian back-arc basin system[J]. Tectonophysics, 2018, 745: 395-411. doi: 10.1016/j.tecto.2018.08.018
Zhou M F, Robinson P T, Malpas J, et al. Melt/mantle interaction and melt evolution in the Sartohay high-Al chromite deposits of the Dalabute ophiolite (NW China)[J]. Journal of Asian Earth Sciences, 2001, 19: 517-534. doi: 10.1016/S1367-9120(00)00048-1
Zhou M F, RobinsonP T, Su B X, et al. Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits: The role of slab contamination of asthenospheric melts in suprasubduction zone environments[J]. Gondwana Research, 2014, 26(1): 262-283. doi: 10.1016/j.gr.2013.12.011
Zhou M F, Robinson P T, Malpas J, et al. Podiform chromitites in the Luobusa ophiolite (southern Tibet): implications for melt-rock interaction and chromite segregation in the upper mantle[J]. Journal of Petrology, 1996, 37(1): 3-21. doi: 10.1093/petrology/37.1.3
Zhu Q M, Zhu Y F. Platinum-group minerals and Fe–Ni minerals in the Sartohay podiform chromitite (west Junggar, China): Implications for T–pH–fO2–fS2 conditions during hydrothermal alteration[J]. Ore Geology Reviews, 2019, 112: 103020. doi: 10.1016/j.oregeorev.2019.103020
Zhu Q M, Zhu Y F. Petrology and geochemistry of ultramafic and mafic rocks in the late Silurian-early Devonian darbut ophiolitic mélange of west Junggar (NORTHWESTERN CHINA): implications for petrogenesis and tectonic evolution[J]. International Geology Review, 2022, 64: 2601-2625. doi: 10.1080/00206814.2021.1995788
-
期刊类型引用(2)
1. 武磊,翟新伟,王二腾,王赟,郭志昂,宋高瑞,王金荣,杜君. 北山地区芨芨台子蛇绿岩地球化学特征及形成环境. 西北地质. 2025(01): 27-42 . 本站查看
2. 查显锋,黄博涛,罗克勇,孙吉明,关冲,王欣. 北山造山带南缘潘家井子二叠纪弧岩浆岩的识别及构造意义. 西北地质. 2024(06): 58-77 . 本站查看
其他类型引用(0)